
PRÁCTICO Nº3

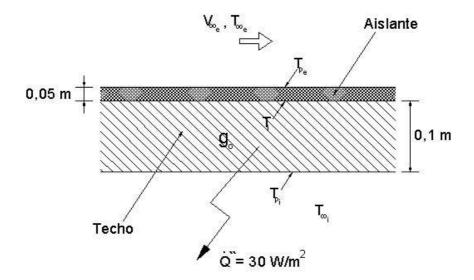
Conducción unidimensional en régimen estacionario com generación de calor

Ejercicio 1

La distribución de temperaturas de estado estable en una pared plana compuesta con tres diferentes materiales, cada uno de conductividad térmica constante, se muestra a continuación:

- **A)** Comente las magnitudes relativas de q_2 y q_3 y de q_3 y q_4
- **B)** Haga comentarios sobre las magnitudes relativas de k_A y k_b y de k_B y k_C
- C) Dibuje el flujo de calor como función de x.

Ejercicio 2


Una pared plana de espesor 0,1 m y conductividad térmica 25 W/mK, con una generación de calor volumétrica uniforme de 0,3 MW/m^3 , se aísla en uno de sus lados mientras que el otro lado se expone a un fluido a 92 °C. El coeficiente de transferencia de calor por convección entre la pared y el fluido es 500 W/m^2K . Determine la temperatura máxima en la pared.

Ejercicio 3

Una habitación es calefaccionada con un techo radiante. Para mantener la temperatura interior de la habitación (lejos del techo) en $T_{interior} = 22\,^{\circ}C$, se requiere que el techo entregue al ambiente interior una potencia calorífica por unidad de área $\dot{Q}^{\prime\prime} = 30\,W/m^2$. Se asumirá que:

- El techo tiene una generación de calor interna uniforme go.
- Sobre el techo hay una capa de un material aislante.
- El techo es cuadrado de 5 m x 5 m.
- El aire fuera de la habitación, en la zona alejada del techo, está a $T_{\it exterior} = 5\,^{\circ}\,C$.
- El coeficiente de convección exterior es $\,h_{\it exterior} = 4\,\it W\,/\,\it m^2\,^o\!\it C$.
- El coeficiente de convección interior es $\,h_{\it interior} = 1,4\,W/m^2\,^{\it o}C\,$.
- La conductividad térmica del techo es $\,k_{\rm techo} \! = \! 15 \, W/m^{o}\!C$, uniforme.
- La conductividad térmica de la capa de aislante es $\,k_{\it aislante}\!=\!0,\!03\,W/m^{o}\!C$.

Se presenta un esquema del techo con sus dimensiones:

A) Determinar la potencia calorífica total que genera el techo, la potencia calorífica total que se pierde hacia el exterior (a través del aislante) y las temperaturas de las superficies interior, exterior y de la interfase techo - aislante.

- **B)** Si se sustituye el aislante por otro de conductividad térmica $k_{aislante} = 0.001 \, W/m^{\circ}C$:
 - i) Determinar el espesor de la nueva capa de aislante si se requiere que las pérdidas hacia el exterior sean del 5% de la potencia calorífica que entrega el techo al ambiente, en las mismas condiciones del ambiente interior.
 - ii) Determinar la potencia calorífica total que genera el techo en la nueva condición.

Ejercicio 4

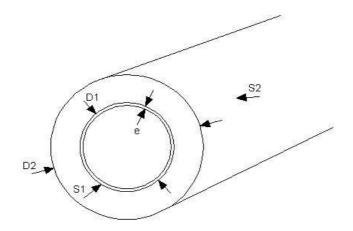
A un conductor eléctrico sin aislación (muy largo) de resistencia R se le aplica una diferencia de potencial eléctrico de valor U en sus extremos. Hallar la expresión del perfil de temperaturas sabiendo además que:

- a = radio del conductor
- k = conductividad térmica del conductor
- h = coeficiente de convección
- T_{∞} = temperatura del aire exterior
- L = largo del conductor
- **A)** Verificar el balance global al cilindro.
- **B)** Verificar también, el balance global al cilindro de radio a/2.

Ejercicio 5

Considere corazas cilíndricas y esféricas con superficies interior y exterior en r_1 y r_2 que se mantienen a temperaturas uniformes $T_{s,1}$ y $T_{s,2}$, respectivamente. Si hay generación uniforme de calor dentro de las corazas, obtenga expresiones para las distribuciones radiales unidimensionales de la temperatura, flujo de calor y transferencia de calor. Compare sus resultados con los que se resumen en el apéndice C.

Ejercicio 6


Se considera un cilindro hueco largo (L/r > 10) de diámetro interior $\Phi_1 = 16\,mm$ y diámetro exterior $\Phi_2 = 26\,mm$. En el cuerpo del cilindro se produce una generación uniforme de calor, de valor $g_o = 5 \times 10^7\,W/m^3$. La cara interna del cilindro está recubierta con una camisa de acero inoxidable de espesor $e = 0.5\,mm$ y conductividad térmica $k = 21\,W/m^oC$. La cara exterior del cilindro se considera perfectamente aislada.

A los efectos de refrigerar el cilindro se hace circular por el interior un flujo de gas a gran velocidad, el cual se considerará para los cálculos de transferencia de calor a una temperatura $T_{media} = 200\,^{\circ}C$ y que presenta un coeficiente de convección de calor $h = 520\,W/m^2\,^{\circ}C$.

El sistema se considera en régimen estacionario.

Determinar:

- A) Calor disipado por unidad de superficie interior del cilindro (superficie S1).
- **B)** Coeficiente global de transferencia de calor, de la camisa de acero inoxidable y el flujo de gas, referido a la superficie S1.
- C) Temperatura de la pared interior, T_{S1}.
- **D)** Expresión del perfil de temperaturas en el cilindro hueco (región entre S1 y S2), dejando solo como variables el radio "r" y la conductividad del material "k" del cilindro hueco, evaluando los demás parámetros. Graficar y analizar.

