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Using the pandas Python library requires a shift in thinking that is not 

always intuitive for those who use it. For beginners, pandas’ rich API can 

often be overwhelming and unclear when determining which solution is 

optimal. This book aims to give you an intuition for using pandas correctly 

by explaining how its operations work underneath. We will establish a 

foundation of knowledge covering information such as Python and NumPy 

data structures, computer architecture, and performance differences 

between Python and C. With this foundation, we will then be able to 

explain why certain pandas operations perform the way they do under 

certain circumstances. We’ll learn when to use certain operations and 

when to use a more performant alternative. And near the end we’ll cover 

what improvements can be and are being made to make pandas even more 

performant.

Introduction
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CHAPTER 1

Introduction
We live in a world full of data. In fact, there is so much data that it’s 

nearly impossible to comprehend it all. We rely more heavily than ever 

on computers to assist us in making sense of this massive amount of 

information. Whether it’s data discovery via search engines, presentation 

via graphical user interfaces, or aggregation via algorithms, we use 

software to process, extract, and present the data in ways that make sense 

to us. pandas has become an increasingly popular package for working 

with big data sets. Whether it’s analyzing large amounts of data, presenting 

it, or normalizing it and re-storing it, pandas has a wide range of features 

that support big data needs. While pandas is not the most performant 

option available, it’s written in Python, so it’s easy for beginners to learn, 

quick to write, and has a rich API.

 About pandas
pandas is the go-to package for working with big data sets in Python. It’s 

made for working with data sets generally below or around 1 GB in size, 

but really this limit varies depending on the memory constraints of the 

device you run it on. A good rule of thumb is have at least five to ten times 

the amount of memory on the device as your data set. Once the data set 

starts to exceed the single-digit gigabyte range, it’s generally recommended 

to use a different library such as Vaex.
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The name pandas came from the term panel data referring to tabular 

data. The idea is that you can make panels out of a larger panel of the data, 

as shown in Figure 1-1.

restaurant location

Diner       (4, 2)

Diner       (4, 2)

Pandas       (5, 4)

Pandas       (5, 4)

date score

02/18     90

05/18    100

04/18      55

01/18      76

Figure 1-1. Panel data

When pandas was first implemented, it was tightly coupled to 

NumPy, a popular Python package for scientific computing providing 

an n-dimensional array object for performing efficient matrix math 

operations. Using the modern implementation of pandas today, you can 

still see evidence of its tight coupling in the exposition of the Not a Number 

(NaN) type and its API such as the dtype parameter.

pandas was a truly open source project from the start. The original 

author Wes McKinney in the Python Podcast.__init__ admitted, in order 

to foster an open source community and encourage contributions, pandas 

was tied perhaps a little too closely to the NumPy Python package, but 

looking back, he wouldn’t have done it any different. NumPy was and still 

is a very popular and powerful Python library for efficient mathematical 

arithmetic. At the time of pandas inception, NumPy was the main 

Chapter 1  IntroduCtIon
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data computation package of the scientific community, and in order 

to implement pandas quickly and simply in a way that was familiar to 

its existing user and contributor base, the NumPy package became the 

underlying data structure of the pandas DataFrame. NumPy is built on 

C extensions, and while it supplies a Python API, the main computation 

happens almost entirely in C, which is why it is so efficient. C is much 

faster than Python because it is a low-level language and thus doesn’t 

consume the memory and CPU overhead that Python does in order 

to provide all the high-level niceties such as memory management. 

Even today, developers still rely heavily on NumPy and often perform 

exclusively NumPy-based operations in their pandas programs.

The difference in performance between Python and C is often not 

very significant to the average developer. Python is generally fast enough 

in most cases, and the nicety of Python’s high-level language qualities 

(built-in memory management and pseudo-code like syntax, to name a 

few) generally outweighs the headaches of having to manage the memory 

yourself. However, when operating on huge data sets with thousands of 

rows, these subtle performance differences compound into a much more 

significant difference. For the average developer, this may seem absolutely 

outrageous, but it isn’t unusual for the scientific research community 

to spend days waiting for big data computations to run. Sometimes the 

computations do really take this long; however, other times the programs 

are simply written in an inefficient way. There are many different ways to 

do the same thing in pandas which makes it flexible and powerful but also 

means it can lead developers down less efficient implementation paths 

that result in very slow data processing.

As developers, we live in an age where compute resources are 

considered cheap. If a program is CPU heavy, it’s easier for us to simply 

upgrade our AWS instance to a larger machine and pay an extra couple 

bucks than it is to invest our time to root cause our program and address 

the overtaxing of the CPU. While it is wonderful to have such readily 

available compute resources, it also makes us lazy developers. We often 

Chapter 1  IntroduCtIon
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forget that 50 years ago computers took up whole rooms and took several 

seconds just to add two numbers together. A lot of programs are simply 

fast enough and still meet performance requirements even though they 

are not written in the most optimal way. Compute resources for big data 

processing take up a significant amount of energy compared to a simple 

web service; they require large amounts of memory and CPU, often 

requiring large machines to run at their resource limits over multiple 

hours. These programs are taxing on the hardware, potentially resulting 

in faster aging, and require a large amount of energy both to keep the 

machines cool and also to keep the computation running. As developers 

we have a responsibility to write efficient programs, not just because 

they are faster and cost less but also because they will reduce compute 

resources which means less electricity, less hardware, and in general more 

sustainability.

It is the goal of this book in the coming chapters to assist developers in 

implementing performant pandas programs and to help them develop an 

intuition for choosing efficient data processing techniques. Before we deep 

dive into the underlying data structures that pandas is built on, let’s take a 

look at how some existing impactful projects utilize pandas.

 How pandas helped build an image 
of a black hole
pandas was used to normalize all the data collected from several large 

telescopes to construct the first image of a black hole. Since the black hole 

was so far away, it would have required a telescope as big as the Earth to 

capture an image of the black hole directly, so, instead, scientists came up 

with a way to piece one together using the largest telescopes we have today. 

In this international collaboration, the largest telescopes on Earth were used 

as a representative single mirror of a larger theoretical telescope that would 

be needed to capture the image of a black hole. Since the Earth turns,  

Chapter 1  IntroduCtIon
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each telescope could act as more than one mirror, filling in a significant 

portion of the theoretical larger telescope image. Figure 1-2 demonstrates 

this technique. These pieces of the larger theoretical image were then passed 

through several different image prediction algorithms trained to recognize 

different types of images. The idea was if each of these different image 

reproduction techniques outputs the same image, then they could be confident 

that the image of the black hole was the real image (or reasonably close).

Figure 1-2. Using the telescopes on Earth to represent pieces of a 
larger theoretical telescope

The library is open source and posted on GitHub.1 The images from 

radio telescopes were captured on hard disks and flown across the world to 

a lab at the Massachusetts Institute of Technology where they were loaded 

into pandas. The data was then normalized, synchronizing the captures 

from the telescopes in time, removing things like interference from the 

Earth’s atmosphere, and calculating things like absolute phase of a single 

telescope over time. The data was then sent into the different image 

prediction algorithms, and finally the first image of a black hole was born.2

1 https://github.com/achael/eht-imaging
2 https://solarsystem.nasa.gov/resources/2319/first-image-of-a-black-hole/

Chapter 1  IntroduCtIon
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 How pandas helps financial institutions 
make more informed predictions about 
the future market
Financial advisors are always looking for an edge up on the competition. 

Many financial institutions use pandas along with machine learning 

libraries to determine whether new data points may be relevant in helping 

financial advisors make better investment decisions. New data sets 

are often loaded into pandas, normalized, and then evaluated against 

historical market data to see if the data correlates to trends in the market. 

If it does, the data is then passed along to the advisors to be used in 

making financial investment decisions. It may also be passed along to their 

customers so they can make more informed decisions as well.

Financial institutions also use pandas to monitor their systems. They 

look for outages or slowness in servers that might impact their trade 

performance.

 How pandas helps improve discoverability 
of content
Companies collect tons of data on users every day. For broadcast companies' 

viewership, data is particularly relevant both for showing relevant 

advertisements and for bringing the right content in front of interested 

users. Typically, the data collected about users is loaded into pandas and 

analyzed for viewership patterns in the content they watch. They may look 

for patterns such as when they watch certain content, what content they 

watch, and when they are finished watching certain content and looking 

for something new. Then, new content or relevant product advertisements 

are recommended based on those patterns. There has been a lot of work 

recently to also improve business models so that users don’t get put into 

Chapter 1  IntroduCtIon
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a bubble (i.e., recommended content isn’t just the same type of content 

they’ve been watching before or presenting the same opinions). Often this is 

done by avoiding content silos from the business side.

Now that we’ve looked at some interesting use cases for pandas, in 

Chapter 2 we’ll take a look at how to use pandas to access and merge data.

Chapter 1  IntroduCtIon
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CHAPTER 2

Basic Data Access 
and Merging
There are many ways of accessing and merging DataFrames with pandas. 

This chapter will go over the basic methods for getting data out of a 

DataFrame, creating a sub-DataFrame, and merging DataFrames together.

 DataFrame creation and access
pandas has a dictionary-like syntax that is very intuitive for those familiar 

with Python but not with pandas. Each column name is treated as a key, 

and the row values are returned as the value. The DataFrame object 

constructor also accepts a dictionary as a way of creating a DataFrame. 

Note when you get the column from a DataFrame, it points back to the 

original DataFrame, and this is what allows us to make modifications to 

the original. This happens despite the syntax that implies we are storing it 

into a subset of the original as demonstrated near the bottom of Listing 2- 1. 

This is great for memory-based performance since we aren’t constantly 

creating copies of the data.
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Listing 2-1. Example of dictionary syntax

>> import pandas as pd

>> account_info = pd.DataFrame({

     "name": ["Bob", "Mary", "Mita"],

     "account": [123846, 123972, 347209],

     "balance": [123, 3972, 7209],

})

>> account_info["name"]

     0    Bob

     1    Mary

     2    Mita

Name: name, dtype: object

>> account_info["name"] = ["Smith", "Jane", "Patel"]

>> account_info

          name  account      balance

     0    Smith 123846       123

     1    Jane  123972       3972

     2    Patel 347209       7209

Similarly, a sub-DataFrame can be created by passing in a list of 

columns as in Listing 2-2.

Listing 2-2. Example of creating a sub-DataFrame

>> import pandas as pd

>> account_info = pd.DataFrame({

     "name": ["Bob", "Mary", "Mita"],

     "account": [123846, 123972, 347209],

     "balance": [123, 3972, 7209],

})

>> account_info[["name", "balance"]]

Chapter 2  BasiC Data aCCess anD Merging
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           name  balance

     0     Bob   123

     1     Mary  3972

     2     Mita  7209

The dictionary syntax can lead to confusion later on if you create a  

sub- DataFrame from the original DataFrame and modify the sub-DataFrame 

expecting the original to be untouched. pandas makes no guarantees outside 

of the simple cases presented in Listings 2-1 and 2-2 about whether the 

resulting object returned by the dictionary syntax is a view or a copy. 

This is why the loc method is preferred over the dictionary syntax for 

DataFrames that have multi-indexes or multi-level columns. The loc 

method, which we’ll discuss in the next section, guarantees that you are 

operating on the original DataFrame and not a copy. Similarly, if you truly 

want a copy of the DataFrame, you should explicitly create one.

 The iloc method
A DataFrame’s rows can be accessed via the iloc method which uses a list- like 

syntax. Listing 2-3 demonstrates this.

Listing 2-3. Example of accessing rows in a DataFrame using iloc

>> import pandas as pd

>> account_info = pd.DataFrame({

     "name": ["Bob", "Mary", "Mita"],

     "account": [123846, 123972, 347209],

     "balance": [123, 3972, 7209],

})

>> account_info.iloc[1]

     name        Mary

     account     123972

     balance     3972

Chapter 2  BasiC Data aCCess anD Merging
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>> account_info.iloc[0:2]

          name  account  balance

     0    Bob   123846   123

     1    Mary  123972   3972

>> account_info.iloc[:]

          name  account  balance

     0    Bob   123846   123

     1    Mary  123972   3972

     2    Mita  347209   7209

iloc is used to index a DataFrame via integer position-based indexing. 

The first position in the iloc function specifies the row indexes, while the 

second position specifies the column indexes. This means we can select 

rows as well as columns like in Listing 2-4.

Listing 2-4. Example of accessing rows and columns in a 

DataFrame using iloc

>> import pandas as pd

>> account_info = pd.DataFrame({

     "name": ["Bob", "Mary", "Mita"],

     "account": [123846, 123972, 347209],

     "balance": [123, 3972, 7209],

})

>> account_info.iloc[1, 2]

     3972

>> account_info.iloc[1, 2] = 3975

>> account_info.iloc[1, 2]

     3975

>> account_info.iloc[:, [0, 2]]

          name  balance

     0    Bob   123

     1    Mary  3975

     2    Mita  7209

Chapter 2  BasiC Data aCCess anD Merging
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iloc also accepts a Boolean array. In Listing 2-5, we grab all odd rows 

by taking the modulus of each row index and converting it to a Boolean.

Listing 2-5. Example of accessing rows and columns in a 

DataFrame using iloc

>> import pandas as pd

>> account_info = pd.DataFrame({

     "name": ["Bob", "Mary", "Mita"],

     "account": [123846, 123972, 347209],

     "balance": [123, 3972, 7209],

})

>> account_info.iloc[account_info.index % 2 == 1]

          name  account    balance

     1    Mary  123972     3972

iloc also accepts a function; however, this function is called once with 

the entire DataFrame, and there’s little difference between passing it in 

and simply calling the function beforehand so we won’t go over that here.

iloc can come in quite handy when working with multi-indexed and 

multi-level column DataFrames since levels are integer values. Let’s 

review an example and break it down. Here we specify the rows we want 

to grab as “:” meaning we want all rows, and we use a Boolean array to 

specify the columns. We grab the values for the multi-level column “data” 

which are [“score”, “date”, “score”, “date”] and then create a Boolean array 

by specifying that the value must equal “score”. This is broken down into 

stages in Listing 2-6 so it is easier to follow.

Listing 2-6. Extracting a sub-DataFrame from a multi-indexed 

multi-level column DataFrame using iloc

>> restaurant_inspections

     inspection             0                1

Chapter 2  BasiC Data aCCess anD Merging
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     data                 score date       score date

     restaurant location

     Diner      (4, 2)    90    02/18      100   05/18

     Pandas     (5, 4)    55    04/18      76    01/18

>> score_columns = (

     restaurant_inspections.columns.get_level_values("data")

     == "score")

>> score_columns

     [True, False, True, False]

>> restaurant_inspections.iloc[:, score_columns]

     inspection                0          1

     data                      score      score

     restaurant location

     Diner      (4, 2)         90         100

     Pandas     (5, 4)         55         76

 The loc method
loc is similar to iloc, but it allows you to index into a DataFrame via column 

names or labels. Listing 2-7 shows the loc equivalents to Listing 2-4.

Listing 2-7. Example of accessing rows and columns in a 

DataFrame using loc

>> import pandas as pd

>> account_info = pd.DataFrame({

     "name": ["Bob", "Mary", "Mita"],

     "account": [123846, 123972, 347209],

     "balance": [123, 3972, 7209],

})

>> account_info.loc[1, "balance"]

     3972
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>> account_info.loc[:, ["name", "balance"]]

          name  balance

     0    Bob   123

     1    Mary  3972

     2    Mita  7209

loc can also be used on multi-indexed multi-level column DataFrames 

and just like iloc supports Boolean arrays. Listing 2-8 demonstrates this.

Listing 2-8. Example of extracting a sub-DataFrame from a multi-

indexed multi-level column DataFrame using loc

>> import pandas as pd

>> account_info

     account         0                    1

     account_info    number   balance     number   balance

     name  username

     Bob   smithb    123846   123         123847   450

     Mary  mj100     123972   3972        123973   222

     Mita  patelm    347209   7209

 >> account_info.loc[

     ("Mary", "mj100"), pd.IndexSlice[:, "balance"]

]

     0    balance    3972

     1    balance    222

At the end of the dictionary syntax section, it was mentioned that the 

loc method is preferred over the dictionary syntax for complex DataFrames. 

Let’s look at what’s happening underneath when we use each syntax to 

explain why that is. Listing 2-9 shows what each access method translates 

into underneath when operating on a more complex DataFrame. Note in 

the second half of Listing 2-9 where the dictionary syntax is used, the code 

underneath uses the __getitem__ method and then calls __setitem__ on it. 
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This is in opposition to the loc method which calls __setitem__ directly. It is 

the __getitem__ that cannot be trusted here and makes no guarantees about 

whether it returns a copy or what’s called a view that points back to the 

original DataFrame. In simple cases where there are not multiple levels of 

columns, the code underneath in both these cases would look the same, but 

in the more complex case seen here, the dictionary syntax results in chained 

indexing and calls the unpredictable __getitem__.

Listing 2-9. A comparison of using loc vs. dictionary syntax to 

extract a sub-DataFrame

"""

The code below is equivalent to:

account_info.__setitem__(

      (slice(None), (0, 'balance')),

      NEW_BALANCE,

)

"""

account_info.loc[:, (0, "balance")] = NEW_BALANCE

"""

The code below is equivalent to:

account_info.__getitem__(0).__setitem__('balance', NEW_BALANCE )

"""

account_info[0]["balance"] = NEW_BALANCE

Quite often you may have data from multiple sources that you need 

to combine into a single DataFrame. Now that you know how to do some 

basic data access, we’ll look at different methods for combining data from 

different DataFrames together.
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 Combining DataFrames using the merge 
method
Merge works the same way as a relational database join and even has the 

familiar options: outer, inner, left, and right. Merge right is essentially the 

same as merge left, but the DataFrames are simply passed in in reverse 

order so this chapter won’t provide an explicit example for merge right.

Inner merge is used when you want to find the intersection between 

two pandas DataFrames (Figure 2-1). In Listing 2-10, for example, we are 

trying to find the data that is present in both data sets or in this case the 

buildings that were standing in 1844 that are still standing today.

Figure 2-1. Venn diagram of inner merge

Listing 2-10. Finding 1844 buildings that are still standing in 2020 

using an inner merge

>> import pandas as pd

>> building_records_1844

                       established

     building

     Grande Hotel      1830

     Jone's Farm       1842
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     Public Library    1836

     Marietta House    1823

>> building_records_2020

                          established

     building

     Sam's Bakery         1962

     Grande Hotel         1830

     Public Library       1836

     Mayberry's Factory   1924

>> cols = building_records_2020.columns.difference(

               building_records_1844.columns

)

>> pd.merge(

     building_records_1844,

     building_records_2020[cols],

     how='inner',

     on=["building"],

)

                          established

     building

     Grande Hotel         1830

     Public Library       1836

In Listing 2-11, we are merging two data sets of gene samplings 

together, meaning we want all the data from both in the same data 

set without duplication. We can achieve this by doing an outer merge 

(Figure 2-2).
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Listing 2-11. Merging two gene samplings together without 

duplicating the data in common using outer merge

>> import pandas as pd

>> gene_group1

                  FC1           P1

     id

     Myc          2             0.05

     BRCA1        3             0.01

     BRCA2        8             0.02

>> gene_group2

                  FC2           P2

     id

     Myc          2             0.05

     BRCA1        3             0.01

     Notch1       2             0.03

     BRCA2        8             0.02

Figure 2-2. Venn diagram of outer merge
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>> pd.merge(

     gene_group1,

     gene_group2,

     how='outer',

     on=["id"],

)

                  FC1          P2            FC2           P2

     id

     Myc          2            0.05          2             0.05

     BRCA1        3            0.01          3             0.01

     BRCA2        8            0.02          8             0.02

     Notch1       NaN          NaN           2             0.03

In Listing 2-12, we are updating the modern building records with 

more accurate historical data. The historical record contains the exact 

established date that we would like to use to update the modern record 

which contains only an estimate. First, we use a merge left to add the new 

more accurate established date as a new column in the data set (Figure 2- 3). 

The merge left is useful in this case since we only care about updating the 

established date in the modern record for buildings that still exist. Note we 

are also taking advantage of the suffixes parameter to provide names for 

the column names. This is advantageous so we don’t have to rename the 

column to be the same as the original column after we’re done performing 

the operation. Once the merge is complete, then we need to merge the 

data from the two established columns together. This is done by replacing 

all the missing values (i.e., NaNs) in the old established column with the 

values in the modern record. So, if the historical record has an established 

date, then we use that; otherwise, we fall back on the modern record’s 

established date. Finally, the modern record’s original established column 

is deleted in favor of the new column that contains the merged values from 

the modern record and the historical record.
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Listing 2-12. Updating modern records with more accurate 

historical data using a merge left

>> import pandas as pd

>> building_records_1844

     building          established

     Grande Hotel      1832

     Jone's Farm       1842

     Public Library    1836

     Marietta House    1823

>> building_records_2020

     building             established

     Sam's Bakery         1962

     Grande Hotel         1830

     Public Library       1836

     Mayberry's Factory   1924

Figure 2-3. Venn diagram of merge left
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>> merged_records = pd.merge(

     building_records_2020,

     building_records_1844,

     how='left',

     right_on="building",

     left_on="building",

     suffixes=("_2000", ""),

)

>> merged_records

     building             established_2000     established

     Sam’s Bakery         1962                 NaN

     Grande Hotel         1830                 1832

     Public Library       1835                 1836

     Mayberry’s Factory   1924                 NaN

>> merged_records["established"].fillna(

     merged_records["established_2000"],

     inplace=True,

)

>> del merged_records["established_2000"]

>> merged_records

     building             established

     Sam's Bakery         1962

     Grande Hotel         1832

     Public Library       1836

     Mayberry's Factory   1924

In Listing 2-13, we are planning on running a third medical trial, and we 

want to generate a list of participants that are eligible. Only participants who 

have participated in the previous trial a or b, but not both, will be eligible for 

the third trial. In order to generate a list of eligible patients, we need to use 

an anti-join method when performing a merge of trial a and trial b patients 

(Figure 2-4). pandas merge method provides a parameter called indicator that 
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adds an additional column called _merge into the resulting DataFrame that 

reports whether the key is present in left_only, right_only, or both DataFrames. 

This comes in handy in this particular case as we wish to do a somewhat 

unconventional merge. Using the query method, we are able to select rows 

where the _merge value is not both and then drop the _merge column. This 

can be done all in one line as shown at the end of Listing 2-13 but is broken up 

into two steps beforehand so you can see how it works underneath.

Listing 2-13. Eliminating patients who participated in both trials 

using anti-join merge method

>> import pandas as pd

>> trial_a_records

                 name

     patient

     230858       John

     237340       May

     240932       Catherine

     124093       Ahmed

Figure 2-4. Venn diagram of anti-join
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>> trial_b_records

                  name

     patient

     210858       Abi

     237340       May

     240932       Catherine

     154093       Julia

>> both_trials = pd.merge(
     trial_a_records,
     trial_b_records,
     how='outer',
     indicator=True,
     right_index=True,
     left_index=True,
     on="name",
)
                  name            _merge
     patient
     230858       John            left_only
     237340       May             both
     240932       Catherine       both
     124093       Ahmed           left_only
     210858       Abi             right_only
     154093       Julia           right_only
>> both_trials.query('_merge != "both"').drop('_merge', 1)
                  name
     patient
     230858       John
     124093       Ahmed
     210858       Abi
     154093       Julia
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>> both_trials = pd.merge(
     trial_a_records,
     trial_b_records,
     how='outer',
     indicator=True,
     right_index=True,
     left_index=True,
     on="name",

).query('_merge != "both"').drop('_merge', 1)

 Combining DataFrames using the join 
method
The pandas join method is just a wrapper around merge, and it provides 

the same basic merging methods: left, right, outer, and inner. It allows you 

to perform merge operations on multi-index DataFrames automatically 

without needing to specify the indexes to merge on. When doing a left join, 

it automatically uses the indexes from the left DataFrame to join on, and the 

same is true for the right DataFrame. Since join is performed on a DataFrame as 

opposed to merge where you pass in both DataFrames explicitly, join’s default is 

to merge on the “right” DataFrame’s indexes. In this case, “right” is the passed in 

DataFrame. This is in opposition to merge’s default which is an inner join.

Using merge, it is possible to not specify an explicit key to merge on. 

In cases where you are merging two DataFrames with the same data and 

do not wish to have duplicated columns for the left and right DataFrames 

but simply merge the two data sets together, merge is preferable over 

join. Because join calls merge underneath, it explicitly specifies the keys 

to merge on, thus eliminating the possibility of not outputting duplicated 

columns for DataFrames that share common column names. A basic rule 

to follow here is use merge if you are not joining on the index.
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Listing 2-14 plays off of a previous inner merge example in Listing 2-10, but 

unlike the previous example where the records of the buildings in common 

matched, this time there are discrepancies. A join is desirable for a couple 

reasons in this scenario. Firstly, the data has already been indexed according 

to the unique building and join will automatically pick up the indexes and use 

those to join the two sets of data. Secondly, there are discrepancies in the data, 

and thus we wish to see columns from both DataFrames side by side in the 

output DataFrame so we can compare them.

Listing 2-14. Highlighting discrepancies in established date of 1844 

buildings that are still standing in 2020 using an inner join

>> import pandas as pd

>> building_records_1844

                                   established

     building         location

     Grande Hotel     (4,5)        1831

     Jone's Farm      (1,2)        1842

     Public Library   (6,4)        1836

     Marietta House   (1,7)        1823

>> building_records_2020

                                      established

     building           location

     Sam's Bakery        (5,1)        1962

     Grande Hotel        (4,5)        1830

     Public Library      (6,4)        1835

     Mayberry's Factory  (3,2)        1924

>> building_records_1844.join(

     building_records_2020,

     how='inner',

     rsuffix="_2000",

)
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                                 established   established_2000

     building          location

     Grande Hotel      (4,5)     1831          1830

     Public Library    (6,4)     1836          1835

 Combining DataFrames using the concat 
method
Concatenate is a simple way of combining two DataFrames together. 

Listing 2-15 demonstrates a simple concatenation of the same data from 

multiple sources. Concatenate has many options including the option join 

which specifies whether to use an outer or inner merge and axis which 

specifies whether to merge across columns with axis=1 or rows with axis=0. 

By default, concatenate performs an outer merge across rows. Note in 

Listing 2-15, location (6,4) is present in both county_a and county_b data, 

and in the concatenated result, it is repeated in the index.

Listing 2-15. Joining two DataFrames together using concat

>> import pandas as pd

>> temp_county_a

                   temp

     location

     (4,5)          35.6

     (1,2)          37.4

     (6,4)          36.3

     (1,7)          40.2
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>> temp_county_b

                    temp

     location

     (6,4)          34.2

     (0,4)          33.7

     (3,8)          38.1

     (1,5)          37.0

>> pd.concat([temp_county_a, temp_county_b])

                    temp

     location

     (4,5)          35.6

     (1,2)          37.4

     (6,4)          36.3

     (1,7)          40.2

     (6,4)          34.2

     (0,4)          33.7

     (3,8)          38.1

     (1,5)          37.0

Concatenate can also be used in a more complicated manner to create 

multi-level columns or indexes. Listing 2-16 demonstrates a concatenation 

where each DataFrame being concatenated is a value in a multi-level 

column. Note in Listing 2-16, device_a and device_b data are temperature 

measurements at the same locations. Here we specify axis=1 so that the 

two DataFrames are outer merged across the columns. The key parameter 

in Listing 2-16 tells concatenate to treat the two temperature columns 

as different columns even though they are named the same and as a bi- 

product creates a multi-level column. Performing an outer merge across the 

columns and putting the temperatures of each device into separate columns 

means the concatenated result has no repeated location index values. This is 

in opposition to Listing 2-15 where the resulting index values were repeated 

and the two DataFrames were simply stacked on top of each other.
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Listing 2-16. Joining two DataFrames together using a multi- level 

column concat

>> import pandas as pd

>> temp_device_a

                   temp

     location

     (4,5)          35.6

     (1,2)          37.4

     (6,4)          36.3

     (1,7)          40.2

>> temp_device_b

                    temp

     location

     (4,5)          34.2

     (1,2)          36.7

     (6,4)          37.1

     (1,7)          39.0

>> pd.concat(

     [temp_device_a, temp_device_b],

     keys=["device_a", "device_b"],

     axis=1,

)

                   device_a       device_b

                   temp           temp

     location

     (4,5)         35.6           34.2

     (1,2)         37.4           36.7

     (6,4)         36.3           37.1

     (1,7)         40.2           39.0
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There are many different ways to combine DataFrames together 

and extract a sub-DataFrame in pandas. Which method you use really 

depends on your particular use case. The examples presented here are a 

representative sample, but you should consult the documentation of each 

method as there are some parameters that were not explicitly covered in 

this chapter, such as sorting.1

1 https://pandas.pydata.org/pandas-docs/version/0.25/user_guide/
merging.html
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CHAPTER 3

How pandas Works 
Under the Hood
As with any program language, it’s important to understand what is 
going on underneath because it helps you write more explicit, simpler, 
performant, and correct code. The building blocks of a language (its data 
structures and API) when used correctly can make an operation trivial 
and when used incorrectly can make an operation overly complex if not 
impossible. Python packages are no different.

A programming language is simply text that is easily readable and writable 
by humans that can be translated into CPU instructions that are understood 
by machines. As programming languages have become increasingly high 
level (farther removed from the machine code that computers understand), 
the necessity for developers to understand the translation has become less 
essential. A byproduct of this, however, is that software can be written in a 
non-performant and atypical way without developers being forced to address 
the underlying issues. Non-performant solutions on modern computing 
platforms typically are not visibly non- performant until they are scaled 
to handle much more data. Big data software typically operates at a scale 
where the performance impact is visible because it processes huge data sets, 
often repeating a small quick operation so many times that its performance 
becomes significant. When working at this scale, it’s important to understand 
the data structures and performance optimizations available to you, in 
order to get the most out of your machine with the least amount of effort. 
This starts with understanding the performance of data structures in the 

language you are using.
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 Python data structures
Python’s data structures are its building blocks. Choosing the right data 

structure for the problem you are trying to solve is essential to writing 

correct and performant code.

First, we’ll look at tuples. They are in many ways comparable to 

a C array and in fact are an array underneath. They are an iterable, 

meaning you can loop over them and look at each value, though they are 

immutable, meaning the values cannot be changed once a tuple has been 

created. They are great at storing static chunks of related information such 

as metadata. When a small tuple is no longer referenced in a program and 

its memory can be freed, Python keeps it around and adds it to the tuple 

free list so that it can be used again. This saves time in the interpreter as 

it does not have to re-allocate the memory for a new tuple. Underneath, 

tuples translate into a fixed-size array, meaning an array of pointers 

whose size cannot be changed. Listing 3-1 shows a code example of a 

tuple, and Figure 3-1 illustrates its representation in memory. Each index 

is represented as a memory addresses 0x0000 0FB0 8421 0000 through 

0002 in Listing 3-1. The value at each index is a memory address or pointer 

to the actual value in memory. This is how Python is able to store non-like 

types into the same underlying array object. Each address or index of the 

tuple contains a pointer and only has to make room for the pointer rather 

than the actual value.

Listing 3-1. Example tuple

person_info = ("Sara", 140, 5.7)
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A list, simply put, is a mutable tuple. A list is an array of a fixed size 

underneath, but when the number of elements exceeds the size that Python 

originally allocated, it creates a new fixed-size array with space for more 

elements and copies the elements from the old array into the new array.  

The allocated size is base 2, so if you initialize a list with five values, 

underneath Python will allocate the fixed-size array to hold eight references. 

If you then append four more values, on the fourth append, the fixed-size 

array will be re-allocated to be double the size (16) and the previous value 

references will be copied into the new array including the new fourth value 

reference that didn’t fit in the previous size 8 array. Unlike tuples, they do not 

have any behind-the-scenes performance optimizations for reusing freed 

memory. This is due to the fact that lists are mutable—meaning their values 

can be changed after creation and they are not of fixed size. Listing 3-2 shows 

an example of a list, and Figure 3-2 illustrates its representation in memory. 

Just like a tuple, the list contains references to the values rather than the 

values themselves. Note since the list was initialized with three values, the 

fixed-size array underneath is of length 4, so at index 3 (element 4), there is an 

empty placeholder value of 0x0.

Listing 3-2. Example list

people = ["Sara", "Sam", "Joe"]

Figure 3-1. A representation of Listing 3-1 in memory
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A dictionary is a hash table. The keys are hashed to a memory address 

or a particular index in an array. Depending on the number of keys in the 

dictionary, a certain number of bits of the hash are used to determine 

the index. Listing 3-3 shows an example dictionary and illustrates its 

representation in memory. In the example in Listing 3-3, 2 bits are used as 

there are only two elements. The values in the hashed array are the indexes 

into a second array that contains the complete hash, the key, and the value 

of the key in the dictionary. Note each element in the hashed index array 

only takes up 64 bytes (the size of a pointer) compared to the array of data 

which takes up much more than that because it includes the hash, the key, 

and the value. By keeping a separate array of indexes to the data array, 

the dictionary implementation is able to save space in memory by using a 

smaller hashed index array to be a placeholder for the unused keys rather 

than the larger data array. It is also able to grow the hashed index array 

as it needs to, similar to how a list grows as more elements are inserted, 

as opposed to allocating a bunch of memory for hash indexes that don’t 

exist. Note the hashed index array can be completely re-initialized when 

the number of hashed bits increases, independent of the data array. Also 

note because of this implementation, the dictionary keys are now sorted by 

insertion time in the data array, and as of Python 3.7, dictionary keys are 

now guaranteed to be in insertion order.

Figure 3-2. A representation of Listing 3-2 in memory
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Listing 3-3. Example dictionary and its representation in memory

word_alphabet = {"a": "apple", "b": "banana"}

Hash-Index            Data
None                  hash("a"), "a", "apple"

0                     hash("b"), "b", " banana"

1

None

Sets are basically the same implementation as dictionaries but without a 

value. They are a data structure for tracking membership and perform almost 

all the operations in mathematical set theory such as union and intersection. 

Listing 3-4 shows an example set and how it is represented in memory.

Listing 3-4. Example set and its representation in memory

alphabet = {"a", "b"}

Hash-Index           Data
None                 hash("a"), "a"

0                    hash("b"), "b"

1

None

There are also many other data structures including integers, floats, 

Booleans, and strings. These pretty much directly translate into their 

c-type equivalents underneath and aren’t really worth going over here. 

Something that is worth mentioning though is some of these have special 

built-in caching in Python.

Python has a string and integer cache. Take, for example, str1 and 

str2 in Listing 3-5. They are both set to the value “foo” but underneath 

they are pointing at the same memory location. This means that rather 

than creating a new string that is an exact copy of str1 and duplicating the 

memory, the new string will simply point to the existing string value. This 
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is demonstrated here by the assertion line where the “is” property is used 

to compare the references or pointers of the two strings for equality.

Listing 3-5. str1 and str2 are pointing to the same memory location

str1 = "foo"

str2 = "foo"

assert(str1 is str2)

The string cache, however, only works on strings containing letters, 

numbers, and underscore. This is advantageous to know when working 

with large data sets that may contain other letters. You can save a lot of 

memory by eliminating characters from string values in the data set that 

prevent string caching. See Listing 3-6.

Listing 3-6. str1 and str2 are not pointing to the same memory 

location

str1 = "foo bar"

str2 = "foo bar"

assert(str1 is not str2)

The integer cache works in a similar way; it only caches integers 

between and including –5 and 256. See Listing 3-7.

Listing 3-7. int1 and int2 are pointing to the same memory location 

but int3 and int4 are not

int1 = 22

int2 = 22

int3 = 257

int4 = 257

assert(int1 is int2)

assert(int3 is not int4)
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Again, this can be advantageous to know as breaking a single column 

of large numbers into two columns representing the number in scientific 

notation, for example, may lead to memory savings.

 The performance of the CPython interpreter, 
Python, and NumPy
The Python interpreter that most developers typically install is called 

CPython. It is the interpreter that is recommended for use with pandas as 

pandas is highly dependent on C for performance optimizations. CPython 

is implemented in C and translates Python code into what’s called bytecode, 

an intermediate low-level format that is run on the Python Virtual Machine. 

There are many different Python interpreters including Jython, IronPython, 

and PyPy which are implemented in Java, C#, and RPython (a restricted 

subset of Python), respectively. PyPy is a Just-In-Time or JIT compiler, which 

means it compiles the Python code into machine code as it runs. This is 

in opposition to CPython that runs the bytecode on the Python Virtual 

Machine and calls into pre-compiled C extensions. PyPy is generally faster 

than CPython because it runs low- level optimized machine code as opposed 

to parsing the bytecode on the Python Virtual Machine. Unfortunately, PyPy 

does not fully support pandas at this time.

Python is a high-level language, which means it’s easy to read and fast 

to implement. This also means it is slow compared to some lower-level 

languages because of all these self-managing niceties. These niceties include 

the garbage collector, the global interpreter lock, and dynamic typing, but 

they don’t come for free. The garbage collector is responsible for freeing 

memory that is no longer in use so that it can be used again. The global 

interpreter lock, also known as the GIL, protects objects from being accessed 

by multiple threads at the same time. Dynamic typing allows the same 

variable to hold different types of values. Because CPython is implemented 

in C, it is C compatible and thus allows Python to call into more performant 
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extensions written in C. But why is C so much more performant than 

Python? There are a several reasons why Python is relatively slower than C; it 

is interpreted rather than compiled, it has a global interpreter lock, it allows 

dynamic typing, and it has a built-in garbage collector.

Interpreting Python into bytecode is like compiling C into object files 

only bytecode is run on the Python Virtual Machine and machine code 

is run on the CPU. The interpretation of the Python code at runtime adds 

extra overhead that makes Python generally run slower than C. There are 

several phases of interpretation: a tokenizer that converts Python code 

to a token stream, a lexical analyzer that runs syntax analysis, a bytecode 

generator that optimizes and converts the Python code to bytecode (.pyc 

files), and the bytecode interpreter that interprets the bytecode stream and 

maintains the state of the bytecode interpreter.

If you’ve ever edited a Python file and re-run your program only to notice 

that it didn’t run with the change you just made, you’ll understand that the 

Python interpreter caches the bytecode in .pyc files. Deleting the .pyc files 

before re-running forces the interpreter to re-interpret the Python code into 

bytecode—in essence, forcing the Python interpreter to clear its bytecode 

cache. The bytecode cache decreases the overhead of runtime interpretation 

by not re-interpreting the Python code into bytecode unless the Python code 

has changed. On versions of Python that pre-dated 3.3, however, the method 

used to obtain the timestamp on the .py file did not match the windows 

operating system timestamp which resulted in a timestamp that was younger 

than the .pyc file. This meant that the interpreter did not re-interpret the 

.py file into bytecode. Similarly, if you remove a .py file but still import it in 

your code, the imports may continue to work because the .pyc file is still 

present on your system. While these two issues may sway you from wanting 

to use the bytecode cache, the cache plays an important role in improving 

interpretation performance and typically operates in the background without 

developers being the wiser. The bytecode cache is particularly advantageous 

for third-party libraries where the code is installed and not expected to 

change or the library owners do not want to expose the Python source code.
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Python has a global interpreter lock or what’s known to most as the 

GIL. In order to understand why the GIL exists, you really have to take a 

step back in time and explore what was happening in computer science 

at the time the GIL was invented. It began with the invention of threads. 

Anticipating the future of computing, software introduced the concept of 

multi-threading prior to multi-core CPUs. Threading enabled a program to 

run processes in parallel that operated on the same memory space. It was a 

fantastic way to improve performance of CPU-intensive computation.

For example, say we want to calculate how many times the name Tiffany 

appears in a list. You could do this by counting how many times Tiffany 

appears in the list all by yourself, or you could break up the list into sub-

lists and give one to each of your friends, and each time one of you sees 

the word Tiffany, increase the running total on the whiteboard by one. In 

this example, you and your friends are the threads and the count on the 

whiteboard is the shared memory. Generally, breaking up the problem 

into smaller chunks and using threads to parallelize the computation is 

faster than computing the whole thing on one thread. The problem you 

may encounter here is when one of your friends has erased the total on 

the whiteboard and is updating it at the same time you wish to update it. 

Fortunately, you are smart enough to realize this is happening and wait until 

your friend has finish updating the total before you try to do so. Computers, 

on the other hand, need to be told how to handle this or need to be what’s 

called thread safe. If a piece of software encounters this same scenario, it’s 

going to simply squash the value. This is what’s known as a race condition.

In Figure 3-3, time is represented on the y axis as t, and there are two 

threads that each wish to increment the total at nearly the same time. 

Total in this example is located in shared memory, meaning both threads 

can access that value. Here you can see that Thread 1 increments the 

counter first, followed by Thread 2. However, Thread 2 effectively does 

not increment the counter because at the time that it grabbed the total to 

increment, Thread 1’s increment had not taken effect yet. This has an end 

result of the total being one less than it should be (6 instead of 7).
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Similar to this running total example, the CPython interpreter uses a 

reference garbage collector technique where it keeps track of the number 

of places that refer to an object. The garbage collector is responsible for 

keeping track of allocated memory and deallocating it when it is no longer 

used. It does this by keeping a running total of all the places that reference 

each object in the program. When there are no more references, meaning 

the reference count is zero, then the memory is deallocated, meaning 

it is freed and available to store something else. In Listing 3-8, string 

foo’s reference count would be two because there are two variables that 

reference it.

Thread 1

total = 5

Thread 2Shared Memory

t=0s

Thread 1

total = 6 total = 6

Thread 2Shared Memory

t=3s

Thread 1

total = 5total = total + 1

total = total + 1

Thread 2Shared Memory

t=1s

Thread 1

total = 5total = 6

Thread 2Shared Memory

t=2s

Thread 1

total = 6

Thread 2Shared Memory

t=4s

Figure 3-3. A demonstration of a race condition on increment of 
total between Thread 1 and Thread 2
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Listing 3-8. Example of creating two references to the string foo

ref1 = "foo"

ref2 = "foo"

Recall that the string cache is at play here, and because of that, both 

ref1 and ref2 point to the same value underneath.

When we delete ref2, string foo’s reference count is 1, and when we 

delete ref1, string foo’s reference count is 0 and the memory can be freed. 

This is demonstrated in Listing 3-9.

Listing 3-9. Example of deleting references to foo that were created 

in Listing 3-8

delete(ref2)       # reference count = 1 after this line executes

delete(ref1)       # reference count = 0 after this line executes

Not all objects are freed when their references reach 0 though because 

some never reach 0. Take, for example, the scenario presented in Listing 3-10 

which tends to happen quite often when working with classes and objects in 

Python. In this scenario, exec_info is a tuple and the value at the third index is 

the traceback object. The traceback object contains a reference to the frame, 

but the frame also contains a reference to the exc_info variable. This is what’s 

known as a circular reference, and since there is no way to delete one without 

breaking the other, these two objects must be garbage collected. Periodically 

the garbage collector will run, identify, and delete circular referenced objects 

like this.
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Listing 3-10. Example of creating a circular reference

import sys

try:

      raise Exception("Something went wrong.")

except Exception as e:

      exc_info = sys.exc_info()

      frame = exc_info[2].tb_frame # create a third reference

assert(sys.getrefcount(frame) == 3)

del(exc_info)

assert(sys.getrefcount(frame) == 3)

Keeping track of these references does not come for free. Each object has 

an associated reference counter which takes up space, and each reference 

made in the code takes up CPU cycles to compute the appropriate increment 

or decrement of the object’s reference count. This is partially why, if you 

compare the size of an object in Python to the size of an object in C, the sizes 

are so much larger in Python and also why Python is slower to execute than C.  

Part of those extra bytes and extra CPU cycles are due to the reference count 

tracking. While the garbage collector does have performance implications, it 

also makes Python a simple language to program in. As a developer, you don’t 

have to worry about keeping track of memory allocation and deallocation; the 

Python garbage collector does that for you.

In a multi-threaded application, reference counts have the same 

problem as the total has in Figure 3-3. A thread may create a new reference 

to an object in the shared memory space at the same time as another thread 

and a race condition occurs where the reference count ends up only being 

incremented once instead of twice. When this happens, it can ultimately 

lead to the object being freed from memory before it should be (because 

the race condition leads to the object’s reference count being incremented 

by one instead of two). In other cases when there is a race condition on 
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a decrement of the reference counter, this can lead to a memory leak 

where the memory is never destroyed because the reference count is one 

larger than it should be. So, as you can see here, running a multi-threaded 

application can not only have consequences on the data that the program is 

operating on but also within the Python interpreter itself.

Traditionally, race conditions are solved through locks. This is effectively 

what you were doing subconsciously—that is, waiting for your friend to finish 

updating the total before you updated it yourself. In software, this is done 

through a shared memory lock. When a thread needs to update the total, it 

acquires the lock, updates the total, and then releases the lock. Meanwhile, 

the other thread waits until the lock is free, acquires the lock, and then also 

updates the total. This interaction is demonstrated in Figure 3-4.
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Thread 1

total = 5

Thread 2Shared Memory

t=0s

Thread 1

total = 6

Thread 2Shared Memory

t=5s

Thread 1

total = 6

Thread 2Shared Memory

t=6s

Thread 1

total = 5total = total + 1
total = total + 1

Thread 2Shared Memory

t=2s

Thread 1

total = 6

Thread 2Shared Memory

t=7s

Thread 1

total = 5 total = 7

Thread 2Shared Memory

t=1s

Thread 1

total = 7

Thread 2Shared Memory

t=8s

Thread 1

total = 5total = 6

Thread 2Shared Memory

t=3s

Thread 1

total = 6

Thread 2Shared Memory

t=4s

Figure 3-4. A demonstration of a lock on total shared between 
Thread 1 and Thread 2
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This is great! We’ve solved the problem! Or have we? Consider the 

scenario in Figure 3-5 where there are instead two locks and two totals.

Thread 1

total1 = 5

total2 = 4

Thread 2Shared Memory

t=0s

Thread 1

total1 = 5

total2 = 4

Thread 2Shared Memory

t=1s

Thread 1

total1 = 5

total2 = 4

Thread 2Shared Memory

t=2s x

x

Thread 1

total1 = 5

total2 = 4

Thread 2Shared Memory

t=3s x

x

Thread 1

total1 = 5

total2 = 4

Thread 2Shared Memory

t=4s x

x

Figure 3-5. A demonstration of a deadlock between Thread 1 and Thread 2

Figure 3-5 is what’s known as deadlock. This happens when two threads 

require multiple pieces of data to execute, but they request them in different 

orders. In order to avoid these kinds of issues altogether, the author of 

Python implemented a lock at the thread level which only allowed one 

thread to run at any given time. This was a simple and elegant way to solve 

this problem. At the time, since multi-core CPUs were quite uncommon, 

it didn’t really impact performance since in the CPU, these threads’ 

instructions would be run serially anyway. However, as computers have 

become more advanced and computations have become more intensive, 

multi-core CPUs have become the standard in pretty much all modern 
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computing platforms. When it comes to big data which involves running 

large CPU-intensive computations, not taking advantage of multi- core CPUs 

means in some cases not being able to run the computation at all (at least 

within a reasonable amount of time). So how can we break out of the GIL 

and truly run a multi-core big data computation?

C extensions, being written in C and not in Python, are not subject to 

the GIL. pandas is built on NumPy which is a Python wrapper around C 

extensions that do all the heavy lifting for the computation. This means 

that all the intensive computation when using pandas is done in C, where 

the computations are just generally faster due to the properties of the 

language. This also means that pandas is able to break out of the GIL and 

truly run multi-core computation on multiple cores simultaneously.

Since NumPy runs the computations in C, it must translate all the Python 

objects into C-compatible types. According to the NumPy documentation, as 

long as an array’s types are translatable to C types, the GIL is released prior to 

the calculation. This means that when using NumPy, it’s important to operate 

on types that are translatable to C types. If you operate on Python objects that 

NumPy is unable to translate to C, the operation cannot compute the result in 

C. It must instead stay in Python where the GIL cannot be released until the 

computation has finished.

The Appendix shows a detailed mapping of the types in Python to the 

types NumPy uses in its C extensions known as scalars. All of the NumPy 

types are referred to as dtypes within the NumPy API and are available as 

attributes of the NumPy library.

NumPy’s main data structure is an N-dimensional array or ndarray. 

It is a special array structure that handles this Python-C boundary. It’s 

important to note that ndarrays in NumPy are homogeneous, meaning all 

the elements have the same type. This again has to do with Python vs. C. C 

is a lower-level language where the developer must manage the memory 

allocation and deallocation themselves, and it does not permit dynamic 

typing. In the case of an array in C, all the elements must be of consistent 

and known size or type in order to allocate the appropriate amount of 
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memory for the input data arrays and the output data array in C.  

Listing 3-11 shows an example of how an array of floats is created in 

C. Note the memory must be explicitly allocated using malloc, and it is of 

fixed size 100—having only enough room for 100 floats.

Listing 3-11. Allocating memory for an array of 100 floats in C

float* array = (float*) malloc(100 * sizeof(float));

NumPy uses ndarray as shown in Listing 3-12 to build a fixed-size 

array where dtype is used to specify the type of each element in the array 

or how much memory each element in the array will take up. Recall from 

the previous section that Python’s list implementation is a dynamic array 

underneath. Python’s list type, in contrast to an ndarray, handles elements 

of any size by allocating space for the pointer to that data as opposed to 

the data itself. This leads to a Python list taking up more memory than an 

ndarray because there is a layer of indirection due to the list holding the 

pointers to the data rather than the data itself. In summary, ndarrays have a 

fixed length and each element has the same type, whereas Python’s list type 

has a dynamic length and elements can be many different types. This is an 

important distinction and why each column in pandas is assigned a particular 

dtype. This is also why it’s important to make sure pandas has the correct type 

for a particular column and why it’s important to normalize your data so that 

a type other than the all-encompassing object type is assigned. Figure 3-6 

shows how the ndarray created in Listing 3-12 is represented in memory.

Figure 3-6. A representation of Listing 3-12 in memory. Compare this 
to Figure 3-2
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Listing 3-12. ndarray of three unsigned 8-bit ints

import numpy as np

groups_waiting_for_a_table = np.ndarray(

     (3,0),

     buffer=np.array([4, 7, 21], dtype=np.uint8),

     dtype=np.uint8,

)

The CPython interpreter provides a C-API that exposes the ability 

to acquire and release the GIL. NumPy uses the macros NPY_BEGIN_

THREADS and NPY_END_THREADS to denote when C code is able to 

run without the GIL. NumPy mathematical operations are instances of 

universal functions, known as ufunc’s, implemented in C, and all of them 

call these macros. See the Appendix for a list of common ufuncs.

Recall that running without the GIL means that the program can now 

execute instructions on multiple cores simultaneously. This means that 

intensive mathematical operations when using NumPy are able to break 

up the example of counting how many times Tiffany appears in a list, 

using multi-threading at the C level. While NumPy itself doesn’t typically 

implement multi-threaded computations (simply running the computation 

in C is enough of a performance improvement itself), there are other 

libraries which will do so when used in combination with NumPy.

When NumPy is compiled to use the Basic Linear Algebra Subroutines, 

known as BLAS, or a Linear Algebra Package, known as LAPACK, it runs 

operations according to the size of the memory cache and the number 

of cores available on the system. By optimizing the calculation according 

to the resources on the machine, NumPy is able to run the computations 

much faster than it otherwise would. There are several different 

implementations of BLAS/LAPACK including OpenBLAS, ATLAS, and Intel 

MKL. We’ll explore how these libraries work to improve performance in 

more detail in later chapters, but for now, just know they exist and for large 

computations they can make a huge difference in performance.
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 An introduction to pandas performance
pandas is a wrapper around NumPy and NumPy is a wrapper around 

C; thus, pandas gets its performance from running things in C and not 

in Python. This concept is fundamental to everything you do in pandas. 

When you are in C, you are fast, and when you are in Python, you are slow.1

The same requirements present for working with NumPy arrays hold 

true when working with pandas DataFrames—namely, the Python code 

must be translatable to C code; this includes the types that hold the data 

and the operations performed on the data. Table 3-1 is a table of pandas 

types to NumPy types. Note that datetimes and timedeltas don’t translate 

into NumPy types. This is because C does not have a datetime data 

structure, and so in cases where operations must be made on datetime 

data, it is more performant to, instead, convert the datetimes to an integer 

type of seconds since the epoch.

1 www.youtube.com/watch?v=ObUcgEO4N8w

Table 3-1. pandas to NumPy types

pandas type NumPy type

object string_, unicode_

int64 int_, int8, int16, int32, int64, uint8, uint16, uint32, 

uint64

float64 float_, float16, float32, float64

bool bool_

datetime64 datetime64[ns]

timedelta[ns] na

category na
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Note that category is also not translatable into C. category is similar to a 

tuple in that it is intended to hold a collection of categorical variables, meaning 

metadata with a fixed unique set of values. Because it’s not translatable into C, 

it should never be used to hold data that needs to be analyzed. Its advantage 

mainly comes in its ability to sort things in a custom sort order efficiently and 

simply. Underneath it looks like a data array of indexes where the indexes 

correspond to a unique value in an array of categories. The documentation 

claims that it can result in a huge memory savings when using string 

categories. Of course, we know from the previous section that Python already 

has a built-in string cache that does that for us automatically for certain strings 

so this would really only make a difference if the strings contained characters 

other than alphanumeric and underscore. Listing 3-13 shows an example 

of a category and its representation in memory. Note that it uses integers to 

represent the value and those integers map to an index in the category array. 

This is a common method of conserving memory in pandas. We’ll run into 

this again later when we look at multi-indexing.

Listing 3-13. pandas category example and its representation in 
memory

import pandas as pd

produ ce = pd.Series(

     ["apple", "banana", "carrot", "apple"], dtype="category"

)

Data       Categories

0          apple

1          banana

2          carrot

0

Operations must also be translatable into C in order to take advantage 

of NumPy’s performance optimizations. This means custom functions 

like the one in Listing 3-14 will not be performant because they will run 
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in Python and not in C. We’ll dig more into this example and the apply 

function specifically in Chapter 6.

Listing 3-14. pandas custom Python operation that isn’t 

translatable to C

import pandas as pd

def grade(values):

    if 70 <= values["score"] < 80:

        values["score"] = "C"

    elif 80 <= values["score"] < 90:

        values["score"] = "B"

    elif 90 <= values["score"]:

        values["score"] = "A"

    else:

        values["score"] = "F"

    return values

scores  = pd.DataFrame( 

{"score": [89, 70, 71, 65, 30, 93, 100, 75]}

)

scores.apply(grade, axis=1)

Since pandas is built on NumPy, it uses NumPy arrays as the building 

blocks for a pandas DataFrame, which ultimately translate into ndarrays 

deep down during computations.

Listing 3-15. pandas single-index DataFrame and its representation 

in memory

import pandas as pd

restaurant_inspections = pd.DataFrame({

  "restaurant": ["Diner","Diner","Pandas","Pandas"],

  "location": [(4,2),(4,2),(5,4),(5,4)],

  "date": ["02/18","05/18","04/18","01/18"],
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  "score": [90,100,55,60]})

>> restaurant_inspections

     restaurant  location   date      score

     Diner       (4, 2)     02/18     90

     Diner       (4, 2)     05/18     100

     Pandas      (5, 4)     04/18     55

     Pandas      (5, 4)     01/18     76

Index           Blocks

restaurant      Diner      Diner     Pandas    Pandas

location        (4, 2)     (4, 2)    (5, 4)    (5, 4)

date            02/18      05/18     04/18     01/18

score           90         100       55        76

Listing 3-15 is an example of the simplest form of a pandas DataFrame. 

The data is restaurant health inspection data. It has four columns: 

restaurant, location, date, and score. Each column has four rows worth 

of data. Note that some of the data is repeated as there can be multiple 

inspections of the same restaurant over time. Underneath, this DataFrame is 

represented as a NumPy array called Index that contains the column names 

and a two-dimensional NumPy array called Blocks that contains the data.

This same data could be represented in a more expressive way using a 

multi-index DataFrame, where each index is a unique restaurant. This is 

done in two parts. First, we create the index, then the index is attached to 

the data as shown in Listing 3-16. The data is represented the same as in the 

previous example, but note there are only two data columns instead of four.

Listing 3-16. pandas multi-index DataFrame and its representation 

in memory

import pandas as pd

restaurants = pd.MultiIndex.from_tuples(

   (

         ("Diner", (4,2)),
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         ("Diner", (4,2)),

         ("Pandas", (5,4)),

         ("Pandas", (5,4)),

   ),

   names = ["restaurant", "location"]

)

restaurant_inspections = pd.DataFrame(

  {

        "date": ["02/18", "05/18", "04/18", "01/18"],

        "score": [90, 100, 55, 76],

      },

      index=restaurants,

)

>> restaurant_inspections

                          date    score

restaurant      location

Diner           (4, 2)    02/18   90

                          05/18   100

Pandas          (5, 4)    04/18   55

                          01/18   76

Levels      Names                 Labels

restaurant  Diner   Pandas        0    0

location    (4, 2)  (5, 4)        0    0

                                  1    1

                                  1    1

Index       Blocks

date        02/18     05/18    04/18    01/18

score       90        100      55       76

Something special happens when we create a multi-index. Underneath 

the index doesn’t look the same as it did in the single-index example. 
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There is still a NumPy array called Levels that holds the index names; 

however, instead of a simple two-dimensional NumPy array of data, the 

data undergoes a form of compression. The Names is a two-dimensional 

NumPy array that keeps track of the unique values within the index, and 

Labels is a two-dimensional NumPy array of integers whose values are the 

indexes of the unique index values in the Names NumPy array. This is the 

same memory saving technique used by the pandas category data type, 

and in fact, since category came later, they probably copied this technique 

from the pandas multi-index.

The DataFrame in Listing 3-16 ends up being about two-thirds the size 

of the single-index DataFrame in Listing 3-15 due to the data compression 

incurred by the use of the multi-index. pandas is able to save memory by 

using an integer type instead of another larger type to keep track of and 

represent index data. This of course is advantageous when there is a lot 

of repeated data in the index and less advantageous when there is little to 

no repeated data in the index. This is also why it is important to normalize 

the data. If, for example, there were multiple representations for the same 

restaurant name (DINER, Diner, diner), we would not be able to take 

advantage of the compression as we have done here. We would also not be 

able to take as large of an advantage of the Python string cache either.

Similar to multi-level indexes, pandas also permits multi-level columns. 

The multi-level columns are implemented the same as the multi- level 

indexes with the same data compression technique. Listing 3-17 shows an 

example of how to create a multi-index multi-level column DataFrame.

Listing 3-17. pandas multi-index multi-level column DataFrame

import pandas as pd

restaurants = pd.MultiIndex.from_tuples(

  (

        ("Diner", (4,2)),

        ("Pandas", (5,4)),

  ),
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  names = ["restaurant", "location"]

)

inspections = pd.MultiIndex.from_tuples(

  (

        (0, "score"),

        (0, "date"),

        (1, "score"),

        (1, "date"),

  ),

  names=["inspection", None],

)

restaurant_inspections = pd.DataFrame(

  [[90, "02/18", 100, "05/18"], [55, "04/18", 76, "01/18"]],

  index=restaurants,

  columns=inspections,

)

>> restaurant_inspections

     inspection             0             1

                            score date    score date

     restaurant location

     Diner      (4, 2)      90    02/18   100   05/18

     Pandas     (5, 4)      55    04/18   76    01/18

 Choosing the right DataFrame
Choosing the orientation of a pandas DataFrame is a decision that takes a 

lot of consideration and planning. Considerations include

• What kind of data processing will you be doing with the 

data?

• Do you need to run aggregated calculations over the 

data or group it?
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• Are all the data types translatable to C types and what 

can you do to make them so?

• Can you separate the data from the metadata?

• Is there a particular DataFrame orientation(s) 

that would make the processing simpler and more 

performant?

Consider the following example of health inspection data. Each 

restaurant can have multiple inspections, and as part of the data 

processing, we would like to count how many inspections each restaurant 

has had.

The simplest form of a pandas DataFrame looks like the DataFrame 

in Listing 3-18. In order to calculate the number of inspections, the data 

must be aggregated uniquely by restaurant and then the number of 

inspections for each restaurant must be counted. This DataFrame takes up 

approximately 1,120 bits underneath.

Listing 3-18. Storing and operating on restaurant health inspection 

data in a single-index DataFrame

import pandas as pd

restaurant_inspections = pd.DataFrame({

  "restaurant": ["Diner","Diner","Pandas","Pandas"],

  "location": [(4,2),(4,2),(5,4),(5,4)],

  "date": ["02/18","05/18","02/18","05/18"],

  "score": [90,100,55,60]})

>> restaurant_inspections

     restaurant  location     date      score

     Diner       (4, 2)       02/18     90

     Diner       (4, 2)       05/18     100

     Pandas      (5, 4)       02/18     55

     Pandas      (5, 4)       05/18     76
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>> total_inspections = restaurant_inspections.groupby(

     ["restaurant", "location"], as_index=False,

)["score"].count()

>> to tal_inspections.rename(

     columns={"score": "total"}, inplace=True

)

>> total_inspections

     restaurant  location    total

     Diner       (4, 2)      2

     Diner       (4, 2)      2

>> restaurant_inspections = pd.merge(

     restaurant_inspections,

     total_inspections,

     how="outer",

)

>> restaurant_inspections

     restaurant  location    date    score    total

     Diner       (4, 2)      02/18   90       2

     Diner       (4, 2)      05/18   100      2

     Pandas      (5, 4)      02/18   55       2

     Pandas      (5, 4)      05/18   76       2

Using a single-index DataFrame is less than ideal for this type of 

calculation for several reasons. First, we need to run an aggregated 

calculation so we need to group the data by unique restaurant. This grouping 

can be quite time-consuming if there are many groups. After running the 

calculation on each group, you’ll notice the resulting total_inspections is not 

the same dimensions as the original restaurant_inspections DataFrame. The 

dimension mismatch requires us to do some finagling to get the new data 

back into the original DataFrame. We end up using a merge to do it which 

builds an entirely new DataFrame. This means we will be doubling our 
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memory during the merge, and if the original DataFrame is very large, this 

could cause a slowdown or even a memory crash if we are very close to our 

max memory usage.

If instead we represent the data as a multi-index DataFrame as shown 

in Listing 3-19, the data is already grouped uniquely by restaurant. This 

means the groupby will be faster since the data is already grouped in the 

index. It also means the DataFrame will take up less memory since, as you 

recall from the previous section, the data in the index is compressed. Most 

significantly, however, we don’t have to do the kind of finagling that we 

had to do when using a single-index DataFrame. We are able to run the 

calculation and put it back into the original DataFrame without creating a 

copy which is a huge time and memory saver. The code you’ll notice is also 

simpler and easier to follow. This DataFrame takes up approximately 880 

bits underneath. Recall that when we create a multi-index, the index data 

is compressed, which is why this multi-index DataFrame is smaller than its 

single-index counterpart.

Listing 3-19. Storing and operating on restaurant health inspection 

data in a multi-index DataFrame

import pandas as pd

restaurants = pd.MultiIndex.from_tuples(

  (

      ("Diner", (4,2)),

      ("Diner", (4,2)),

      ("Pandas", (5,4)),

      ("Pandas", (5,4)),

  ),

  names = ["restaurant", "location"],

)
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restaurant_inspections = pd.DataFrame(

  {

       "date": ["02/18", "05/18", "02/18", "05/18"],

       "score": [90, 100, 55, 76],

  },

  index=restaurants,

)

>> restaurant_inspections

                          date         score

  restaurant  location

  Diner       (4, 2)      02/18        90

                          05/18        100

  Pandas      (5, 4)      02/18        55

                          05/18        76

>> restaurant_inspections["total"] = \

     restaurant_inspections["score"].groupby(

         ["restaurant","location"],

     ).count()

>> restaurant_inspections.set_index(

     ["total"],

     append=True,

     inplace=True,

    )

                                      date        score

     restaurant  location    total

     Diner       (4, 2)      2        02/18       90

                                      05/18       100

     Pandas      (5, 4)      2        02/18       55

                                      05/18       76

What if we take this one step further? If we make the dates the column 

names, then all the scores will be on the same row and the calculation 
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becomes trivial. Here the unique restaurants are indexes, and the unique 

inspection dates are columns. Note the score is now the only data. This 

makes each row a unique restaurant, and thus the count can simply be 

performed across each row. See Listing 3-20.

Listing 3-20. Storing and operating on restaurant health inspection 

data in a multi-index date column DataFrame

import pandas as pd

restaurants = pd.MultiIndex.from_tuples(

  (

      ("Diner", (4,2)),

      ("Pandas", (5,4)),

  ),

  names = ["restaurant", "location"],

)

restaurant_inspections = pd.DataFrame(

  {

      "02/18": [90, 55],

      "05/18": [100, 76],

  },

  index=restaurants,

)

>> restaurant_inspections

     date                    02/18    05/18

     restaurant  location

     Diner       (4, 2)      90       100

     Pandas      (5, 4)      55       76

>> restaurant_inspections["total"] = \

     restaurant_inspections.count(axis=1)
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>> restaurant_inspections.set_index(

     ["total"],

     append=True,

     inplace=True,

    )

     date                                 02/18    05/18

     restaurant  location    total

     Diner       (4, 2)      2            90       100

     Pandas      (5, 4)      2            55       76

This DataFrame takes up approximately 660 bits underneath. Note this 

takes up less memory because we no longer are tracking the date and score 

column names and the date values are no longer being repeated. This 

is pretty much as compressed as we can get with this data, and it allows 

us to perform a very efficient aggregated calculation over each unique 

restaurant. Let’s see if we can identify any holes in using this format on a 

larger data set.

Currently each row is a unique restaurant, but what if there were 

multiple restaurants with the same name at different locations? This would 

still mean that there is a unique restaurant per row so no issues there.

What if the restaurants were not all inspected on the same days? In a 

large city, it would be near impossible for an inspector to inspect all the 

restaurants on the same day. This means then that there would be holes in 

the data as shown in Listing 3-21.

Listing 3-21. A representation of Listing 3-20 if not all restaurants 

were inspected on the same day

date                         02/18    05/18    06/18    07/18

restaurant  location  total

Diner       (4, 2)    2      90       100      NaN      NaN

Pandas      (5, 4)    2      NaN      NaN      55       76
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These holes are potentially a big problem. Recall that the score data 

was represented as an unsigned 8-bit integer, now because there are NaNs 

in the data, the type must accommodate the NaN type size which forces 

the type to be a 32-bit float. That’s four times more memory for each score. 

Not only that, but now we have a bunch of gaps in our data that wasted 

space and ultimately wasted memory. The fewer dates in common there 

are between the restaurants, the worse this problem becomes. Multi-level 

column index to the rescue! See Listing 3-22.

Listing 3-22. Storing and operating on restaurant health inspection 

data in a multi-index multi-level column DataFrame

import pandas as pd

restaurants = pd.MultiIndex.from_tuples(

  (

      ("Diner", (4,2)),

      ("Pandas", (5,4)),

  ),

  names = ["restaurant", "location"]

)

inspections = pd.MultiIndex.from_tuples(

  (

      (0, "score"),

      (0, "date"),

      (1, "score"),

      (1, "date"),

  ),

  names=["inspection", "data"],

)
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restaurant_inspections = pd.DataFrame(

   [[90, "02/18", 100 "05/18",], [55, "04/18", 76 "01/18",]],

   index=restaurants,

   columns=inspections,

)

>> restaurant_inspections

     inspection                  0                1

                                 score date       score date

     restaurant  location

     Diner       (4, 2)          90  02/18        100  05/18

     Pandas      (5, 4)          55  04/18        76   01/18

>> total = \

     restaurant_inspections.iloc[

         :,

         restaurant_inspections.columns.get_level_values("data") \

             == "score"

     ].count()

>> new_index = pd.DataFrame(

     total.values,

     columns=["total"],

     index=restaurant_inspections.index,

)

>> new_index.set_index("total", append=True, inplace=True)

>> restaurant_inspections.index = new_index.index

>> restaurant_inspections

inspection                     0               1

                               score date      score date

restaurant  location  total

Diner       (4, 2)    2        90  02/18       100  05/18

Pandas      (5, 4)    2        55  04/18       76   01/18
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This is probably the most optimal we can get with this DataFrame 

format for this particular use case. We have compressed our data as much 

as possible taking advantage of both multi-level indexes and multi-level 

columns and organized the DataFrame in such a way as to achieve the 

fastest calculation possible. Note the main disadvantage of this particular 

format is it requires a bit of finagling to get the total back onto the index, 

and for that reason, this solution is less readable. If this was the solution 

you were going to go with, you might consider making two custom 

functions: one that puts data onto the index and another that puts data 

onto the columns. These functions would improve code readability by 

hiding the finer details of appending level data to the DataFrame.

Once you have decided on a DataFrame format that makes sense, 

you will likely need to load your raw data into pandas, normalize it, 

and convert it to that particular DataFrame format. In Chapter 4, we’ll 

dive into some common pandas data loading methods and discuss the 

normalization options they provide in more detail.
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CHAPTER 4

Loading and  
Normalizing Data
Raw data comes in many forms: CSV, JSON, SQL, HTML, and so on. 

pandas provides data input and output functions for loading data into a 

pandas DataFrame and outputting data from a pandas DataFrame into 

various common formats. In this chapter, we’ll deep dive into some of 

these input functions and explore the various loading and normalization 

options they provide.

The functions that load data into pandas provide a wide range 

of normalization and optimization capabilities that can improve the 

performance of a program, even to the point where it means the difference 

between being able to load the data into pandas and running out of 

memory. Each input function is different however, so it really depends 

on the input/output format that you are working with and it’s always 

worthwhile to check the documentation of the particular functions you are 

using. Table 4-1 lists the various input and output functions that pandas 

supports.
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Chapter 3 mentioned several very good reasons for normalizing data; 

it can save memory and optimize data analysis. Normalizing data can gain 

you the benefit of utilizing Python’s string cache or run computations in 

C rather than Python by choosing a C-compatible data type. Many of the 

preceding input functions provide options for various ways of normalizing 

data as part of the load process. Instead of loading the data with a large 

memory foot print and then removing unnecessary columns or casting 

columns to a smaller data type to reduce the memory foot print after 

loading, many of the input functions allow you to remove and specify the 

types of columns during load. This means you can load more data without 

running out of memory, and the data load and normalization process is 

faster since you are doing two things at once rather than consecutively 

loading and then normalizing.

Operations that result in the creation and elimination of data can be 

expensive because they require large chunks of memory to be allocated 

and deallocated. Converting (more commonly referred to as casting) data 

Table 4-1. IO pandas data functions

Input Output

read_csv to_csv

read_excel to_excel

read_hdf to_hdf

read_sql to_sql

read_json to_JSON

read_html to_html

read_stata to_stata

read_clipboard to_clipboard

read_pickle to_pickle
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from one type to another is also expensive as it requires large chunks of 

memory to be allocated and deallocated. Working with large chunks of 

memory often means cache misses and a lot of time is spent in IO moving 

things from memory that is farther away from the CPU to memory that is 

closer to the CPU (such as from main memory to the first level cache, for 

example). Thus, while you may think that memory has nothing to do with 

processing speed, it can actually have a huge impact on the runtime.

In these input functions, pandas typically infers the data type upon 

loading the data. While this can be quite nice at first and seem like a 

fantastic feature that you should surely always take advantage of, it also has 

a large and often negative impact on performance. Often the data being 

loaded has not yet been normalized, and numeric columns may contain 

non-numeric values, for example, that force the inferred data type to be an 

object, the largest data type it can be. Many of the data load functions allow 

you to specify the type of the columns and convert place holder values to 

NaNs which can prevent pandas from inferring the wrong data type.

 pd.read_csv
The pandas CSV loader pd.read_csv is the most widely used of the loaders 

and by far the most complete in terms of data normalization options. 

Because the Python standard library has a built-in CSV loader and the 

pandas loader has some fairly fancy Pythonic options, it has two different 

parsing engines: the C engine and the Python engine. As you can probably 

guess by now, the C engine is more performant than the Python engine, 

but depending on what options you specify, you may have no choice but 

to use the Python engine for parsing. Thus, it’s advisable to be careful 

which options you use and the values you provide to those options so that 

you guarantee you are using the C parsing engine and get the best load 

performance possible. The CSV loader has an explicit engine parameter 

that lets you force the parsing engine to be Python or C. Explicitly always 
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specifying this parameter when loading is an easy way to guarantee the 

CSV loader uses the C engine for parsing. If you specify another Python 

parser–specific option while engine is explicitly set to ‘c’, the CSV loader 

will throw an exception informing you that particular setting is not 

compatible with the C parsing engine as shown in Listing 4-1.

Listing 4-1. read_csv will raise a ValueError when engine is set to ‘c’ 

and other settings are not compatible

>> data = io.StringIO(

    """

    id,age,height,weight

    129237,32,5.4,126

    123083,20,6.1,145

    """

)

>> df = pd.read_csv(data, sep=None, engine='c')

     ValueError: the 'c' engine does not support sep=None

     with delim_whitespace=False

Another reason to use the C parsing engine is that it supports a higher 

precision of floating points via the float_precision parameter. Generally, the 

Python engine uses double floating point precision, and the C engine uses 

its own low-level string to decimal parser that is comparable to the Python 

engine. Both can result in floating point rounding errors such as cases where 

–15.361 and –15.3610 are not equal. However, the C parsing engine supports 

additional options high precision and round- trip precision. If you want your 

floats to be as accurate as possible, use the round-trip precision option. This 

is a common problem with floating points, and so, an alternative approach, 

often used when handling financial data, is to split a float into two integers: 

one integer represents the number above the decimal and the other 

represents the number below the decimal.
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The first parameter to the read_csv function is filepath_or_buffer. Typically, 

the path to the CSV file is passed here, but note for unit testing purposes 

and for example purposes in the rest of this chapter, a StringIO object can be 

passed in its place. It also accepts a URL path if the CSV file is hosted by a third-

party application for example. The documentation officially reads1

By file-like object, we refer to objects with a read() method, such as a file 

handler (e.g. via builtin open function) or StringIO.

This file-like object is another Python-ism and is commonly known 

as duck typing. This term is born of the idiom “If it walks like a duck and 

quacks like a duck, it’s a duck.” In this case, if it has a read method, it is 

a file-like object. This is why StringIO can also be substituted for a file 

handler since it also has a read method. StringIO is a nice substitute in 

unit tests since it allows you to pretend it’s a file without actually having to 

include a test.csv for validating your loader works as expected.

read_csv provides a sep parameter which specifies the character(s) used 

to delineate the data. The default is a comma. Note sep treats any values 

longer than one character with the exception of \s+ as regular expressions. 

The use of complex delimiters here can force the use of the Python parsing 

engine instead of C, and for that reason, it is advisable to use single-character 

delimiters when possible and not specify complex regular expressions. 

The parameter delim_whitespace may also be set to True as an alternative 

to setting sep= “\s+”, specifically to denote whitespace file delineation. 

The sep parameter can also be set to None, in which case the Python 

parsing engine will be used and it will automatically detect the delimiter. 

The skipinitialspace parameter can be used to ignore spaces surrounding 

the delimiter. By default, this is disabled, so if there are spaces between 

the delimiters in your file, you will need to set this to True. Listing 4-2 

demonstrates how you might use sep in combination with skipinitialspace to 

configure loading of data that is not comma delimited.

1 https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.
read_hdf.html
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Listing 4-2. Loading non-comma-delimited data

>> data = io.StringIO(

     """

     id| age| height| weight

     129237| 32| 5.4| 126

     123083| 20| 6.1| 145

     """

)

>> pd.read_csv(data, sep="|", skipinitialspace=True)

     idageheightweight

     0129237325.4126

     1123083206.1145

The parameter usecols narrows down the list of columns to load. It’s 

possible to have columns within the CSV file that you don’t care about, and thus 

this can be an efficient way of eliminating them upon load as opposed to loading 

all the data and removing them after. Note that usecols can also be a function 

where the column name is an input and the output is a Boolean indicating 

whether to include that column or discard it upon loading. A function however 

is less ideal as it requires calls between the C parsing engine and the custom 

function which will slow the loader down. Listing 4-3 shows an example of using 

use_cols to eliminate columns id and age during load.

Listing 4-3. Eliminating columns during load

>> data = io.StringIO(

     """

     id,age,height,weight

     129237,32,5.4,126

     123083,20,6.1,145

     """

)
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>> pd.read_csv(data, usecols=["height", "age"])

     heightweight

     05.4126

     16.1145

The skiprows parameter allows you to skip certain rows in the file. 

In its simplest form, it can be used to skip the first n number of rows in a 

file; however, it can also be used to skip particular rows by specifying a list 

of indexes to skip. It can also be a function that accepts a row index and 

returns True if that row should be skipped. Note if a function is passed 

here, it will have the unfortunate consequence of jumping between the 

C parsing engine and the skiprows Python function which may lead to a 

substantial slowdown when parsing large data sets. For this reason, it’s 

recommended to keep the skiprows a simple integer or list value.

The skipfooter parameter lets you specify the number of lines at the 

end of the file to skip. The documentation notes that this is unsupported 

with the C parsing engine. Since the Python engine uses the Python CSV 

parser, the CSV parser runs and then the last lines of the file are dropped. 

This makes sense if you think about this problem a little more deeply: 

How would the parser know which lines to skip without knowing how 

many lines there are in the file first (which would require first parsing the 

file)? This behavior can be somewhat surprising for some users when, 

for example, they are actively trying to avoid lines in the file because they 

break the parser and find that the parser is still trying to parse those lines 

they configured the parser to skip. If you run into this situation in your own 

program, nrows is a nice alternative. Listing 4-4 demonstrates an example 

of running into a parsing error even though the loader was configured to 

skip that line.
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Listing 4-4. Encountering a parsing error when using skipfooter

import pandas as pd

data = io.StringIO(

  """

  student_id, grade

  1045,"a"

  2391,"b"

  8723,"c"

  1092,"a"

  """

)

try:

  grades = pd.read_csv(

    data,

    skipfooter=1,

  )

except pd.errors.ParserError as e:

pass

The parameter comment lets you specify a character that denotes a 

comment, and the rest of the line is ignored after the character. This can 

be a good strategy for manually filtering out certain lines prior to parsing. 

If you comment out the line, then it will not be included in the data set. 

You may also consider setting error_bad_lines to False. Note by default 

pandas will still raise a warning on each bad line, so if you wish to disable 

the warning as well, you may set warn_bad_lines to False.

By default, the header or column names are inferred by read_csv, and 

the first row of the data is treated as the header. Using the parameter header, 

you can specify which row numbers are to be treated as columns if the data 

contains multi-level columns. Similarly, using index_col, you can specify 

which columns via column index are to be treated as part of the multi-index. 
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In Listing 4-5, a multi-index multi-level column DataFrame was dumped to 

a CSV file using the pandas to_csv function. The data contains information 

on family and species of nightshades. The indexes contain the id of the 

family and species, while the columns contain the actual names. Here, the 

first two rows contain multi-level column data so header is set to [0,1], and 

the first two columns are the multi-index so index_col is set to [0,1].

Listing 4-5. Example of loading a multi-index multi-level column 
DataFrame

>> data = io.StringIO(

     """

     family,,nightshade,nightshade,nightshade

     species,,tomatoe,deadly-nightshade,potato

     family_id,species_id,,,

     61248,129237,1,0,0

     61248,123083,0,1,0

     61248,123729,0,0,1

     """

)

>> df = pd.read_csv(data, header=[0,1], index_col=[0,1])

     family                nightshade

     species               tomatoes    deadly-nightshade potato

     family_id  species_id

     61248      12937      1           0                 0

     61248      123083     0           1                 0

     61248      123729     0           0                 1

If the squeeze parameter is enabled, read_csv returns a Series instead of 

a DataFrame if there is only one column in the CSV file. This can be useful 

when you need to load data from multiple sources and combine it into a 

single DataFrame. If the data is loaded into a series, you can simply add it to 

an existing DataFrame as a new column as demonstrated in Listing 4-6.

Chapter 4  LOadiNg aNd NOrmaLiziNg data 



74

Listing 4-6. Example of using squeeze

import pandas as pd

site_data = pd.read_csv('site1.csv')

site_data['site2'] = pd.read_csv('site2.csv', squeeze=True)

The dtype parameter allows you to specify a type for each column 

in the data. If this is not specified, read_csv will attempt to infer the data 

type which typically results in the inferred type being an object which is 

the largest size that a data type can be. Specifying the dtype during load 

can be a huge performance improvement, but that also means you have 

to have some knowledge at load time about the columns in the data set. If 

you don’t know exactly what to expect until you look at the data, you might 

consider loading the header of the data first or the first couple rows using 

nrows, identifying the column types, and then loading the whole data file 

with the appropriate types specified.

Listing 4-7. Example of not specifying the types of the columns 

when loading

>> data = io.StringIO(

     """

     id,age,height,weight

     129237,32,5.4,126

     123083,20,6.1,145

     """

)

>> df = pd.read_csv(data, index_col=[0])

                    age    height    weight

     id

     129237         32     5.398438  126

     123083         20     6.101562  145

>> df.memory_usage(deep=True)
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     Index     16

     age       16

     height    16

     weight    16

>> df.dtypes

     age          int64

     height       float64

     weight       int64

>> df.index.dtype

     dtype('int64')

Listing 4-7 shows an example of loading the data without specifying 

the type of each column. Note that all the types take up 8 bytes and are 

defaulted to the largest int and float possible, whereas in Listing 4-8, they 

take up much less memory. This data only has two rows worth of data, 

but just in those two rows, we’ve decreased the memory footprint of the 

DataFrame by more than half just by specifying the types of the columns.

Listing 4-8. Example of specifying the types of the columns when 

loading

>> data = io.StringIO(

     """

     id,age,height,weight

     129237,32,5.4,126

     123083,20,6.1,145

     """

)

>> df = pd.read_csv(

     data,

     dtype={

         'id': np.int32,

         'age': np.int8,
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         'height': np.float16,

         'weight': np.int16},

     index_col=[0],
)
                    age    height    weight
     id
     129237         32     5.398438  126
     123083         20     6.101562  145
>> df.memory_usage(deep=True)
     Index     16
     age       2
     height    4
     weight    4
>> df.dtypes
     age       int8
     height    float16
     weight    int16
>> df.index.dtype
     dtype('int64')

The converters parameter allows you to specify a function to 
convert values in a particular column such as in Listing 4-9. This is a 
nice normalization feature if, for example, there are multiple values that 
represent the same value in a column and you wish to normalize it to a 
single value. This, however, comes at a cost. Because these functions are 
written in Python, the C engine must make calls between C and Python 
to convert each of the values which can be very time-consuming when 
working with large data sets. So, while the data is being normalized at 
load time, it is also going to load more slowly because it will be jumping 
between C and Python for each value to convert in each column. In this 
scenario, it would be more performant to convert the column values after 
using an Apply-Cython implementation so that the conversion happens 
quickly all in C and avoids this jumping back and forth. See Chapter 6 for 

how to implement an apply in Cython.
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Listing 4-9. Standardizing values at load time with converters

import pandas as pd

MEDICATIONS_MAPPER = {"atg": "atg", "aftg": "atg", "bta": "bta"}

def medication_converter(value):

     return MEDICATIONS_MAPPER[value.lower()]

data = io.StringIO(

     """

     id,age,height,weight,med

     129237,32,5.4,126,bta

     123083,20,6.1,145,aftg

     """

)

>> treatments = pd.read_csv(

     data,

     converters={'med': medication_converter},

)

     id        age  height   weight   med

     129237    32   5.4      126      bta

     123083    20   6.1      145      atg

The nrows parameter allows you to specify the number of rows to read 

from the file. Something that may be unintuitive here is that nrows doesn’t 

actually skip reading the rows when using the Python parsing engine. This 

is because the Python parsing engine reads the whole file first. This means 

that if there are lines after the number of rows you intended to read from 

the file that result in parsing errors, when running with the Python parsing 

engine, you will not be able to avoid them by using nrows. Since the Python 

parsing engine reads the whole file first, it will still throw a parsing error on 

those lines, even though you told the CSV loader not to read those rows. So, 

this is yet another reason to avoid the Python parsing engine, particularly 
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when using this setting. Note that skipfooter, on the other hand, even in the 

C parsing engine does in fact read the footer row. This is simply because in 

order to identify it as the footer of the file, it has to read it and reach the end 

of the file to identify it as the footer. Listing 4-10 shows an example of how to 

avoid lines that would otherwise cause parsing errors using nrows and the C 

parsing engine.

Listing 4-10. Avoiding a parsing error by using nrows

import pandas as pd

data = io.StringIO(

     """

     student_id, grade

     1045,"a"

     2391,"b"

     8723,"c"

     1092,"a"

     """

)

grades = pd.read_csv(

     data,

     nrows=3,

)

The nrows parameter in combination with skiprows and header can also 

be useful for reading a file into memory in pieces, processing it, and then  

reading the next chunk. This is particularly useful with huge sets of data  

that you may otherwise be unable to read all at once due to memory 

constraints. Listing 4-9 shows an example of this. Note process is a function 

that is wrapping the read_csv function. It takes the loaded data from 

read_csv and does some processing on it to reduce the memory footprint 

and/or normalize it beyond the capabilities of read_csv and returns it to be 

concatenated with the rest of the data. In Listing 4-11, we load the first 1000 
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rows, process them, and use those first 1000 rows to initialize data. Then we 

continue reading in rows, processing 1000 at a time until we read in less than 

1000 rows. Once we read in less than 1000 rows, we know we’ve read the 

entire file and exit the loop.

Listing 4-11. Reading a file and processing it nrows at a time to 

reduce memory overhead

import pandas as pd

ROWS_PER_CHUNK = 1000

data = process(pd.read_csv(

     'data.csv',

     nrows=ROWS_PER_CHUNK,

))

read_rows = len(data)

chunk = 1

while chunk * ROWS_PER_CHUNK == read_rows:

     chunk_data = process(pd.read_csv(

          'data.csv',

          skiprows=chunk * ROWS_PER_CHUNK,

          nrows=ROWS_PER_CHUNK,

          header=None,

          names=data.columns,

     ))

     read_rows += len(chunk_data)

     data = data.append(process(chunk_data), ignore_index=True)

The parameter iterator used in combination with chunksize also lets 

you read the data in chunks similar to Listing 4-11. Again, this may be  

necessary for performance reasons. Maybe the data you are reading 

cannot be read in with a smaller memory footprint using read_csv, and 

some normalization must take place after loading that results in a smaller 
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memory footprint, meaning while you aren’t able to read all the data into 

memory all at once using read_csv because the resulting DataFrame would 

be too large, you are able to read it in a chunk at a time and reduce the 

memory footprint on each chunk such that the resulting DataFrame will fit 

in memory. Note using iterator and chunksize is a better alternative if you 

are reading the whole file chunks at a time than using nrows and skiprows 

as it keeps the file open at the correct location instead of constantly 

re-opening it and scrolling to the next position. Listing 4-12 shows an 

example of this.

Listing 4-12. Reading a file in chunks to reduce memory overhead

import pandas as pd

ROWS_PER_CHUNK = 1000

data = pd.DataFrame({})

reader = pd.read_csv(

     'data.csv',

     chunksize=ROWS_PER_CHUNK,

     iterator=True

)

for data_chunk in reader:

     processed_data_chunk = process(data_chunk)

     data = data.append(processed_data_chunk)

The parameter low_memory which defaults to True actually processes 

the file in chunks already when using the C parsing engine in order to save 

memory. However, it is limited in the processing it can do of each chunk 

by the options of read_csv, and thus custom processing and iterating over 

the chunks manually may be better in certain scenarios.

pandas read_csv function also provides an option called memory_map. 

When set to True and if a filepath is provided, it will map the file directly into 

virtual memory and access the data directly from there. Using this option 

can improve performance because there is no longer any IO overhead 
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waiting for the next chunk of the file to be loaded into memory. Generally, 

accessing memory mapped files is faster because the memory is local to the 

program and the memory mapped is already in the page cache so there is 

no need to load it on the fly. In practice, memory mapping the file generally 

doesn’t provide much of a performance advantage in the typical use case 

of loading a file serially from beginning to end. If you are experiencing a 

lot of cache misses, meaning the file data that would normally be loaded 

into cache (memory closer to the CPU) is not present and must be loaded 

from main memory, this may hold a performance improvement. Cache 

misses may happen if other programs are running concurrently which add 

their memory into the cache and consequently knock your file data out of 

the cache. See Chapter 8 for a more detailed explanation of the memory 

hierarchy and cache misses. This might also hold a performance advantage 

if you are reading this file many times over the course of your program or 

your program runs periodically and you don’t want to keep having to load 

the same file into memory each time it runs. So, while this feature sounds 

like it can provide you with a substantial speedup, the reality is unless you 

are working outside of the standard read a file from start to finish workflow, 

it’s unlikely to do so.

The na_values parameter allows you to specify values to interpret as 

Not a Number, also known as NaNs. This type comes from NumPy which, 

if you recall from Chapter 2, is a dependency of pandas. It’s commonly 

used in NumPy as a placeholder for a value resulting from a computation 

that is invalid such as divide by 0. Note by default pandas interprets any 

string Nan or nan as a NaN type automatically. This automatic conversion 

may be problematic if you are working with data where Nan or nan may 

actually be a valid name, for example. This is where keep_default_na 

comes in handy. Setting the parameter keep_default_na to False turns off 

pandas automatic interpretation of certain values to NaNs. For a complete 

list of values that pandas automatically converts to the NaN type, see the 

Appendix.
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The parameter na_filter when set to False disables checking for NaNs 

altogether, and the documentation notes this can lead to a performance 

improvement when you know for certain there are no NaNs in the data. 

The parameter na_values, on the other hand, lets you specify additional values 

other than the default set that you would also like to be converted to NaNs.

The parameter verbose outputs the number of NaN values in each 

column that contains NaNs when the Python parsing engine is used 

and parsing performance metrics when the C parsing engine is used. 

The pandas documentation states it outputs NaN values explicitly for 

non-numeric columns. This can be somewhat deceiving however, as 

the non-numeric determination is made at the time the parsing engine 

runs and not based on the final type of the column in the resulting 

DataFrame. Any column with a NaN in it at parsing time is considered a 

non-numeric column, even if the type of that column ultimately ends up 

being a numeric type (such as a float64 in the following example). The 

Python parser must parse all the values in the column and convert them 

appropriately to NaNs before assigning the final type. This means the NaN 

values are counted during parsing before the final type of the column has 

been assigned. Listing 4-13 demonstrates this behavior.

Listing 4-13. Unexpectedly counting NaNs in numeric columns

>> import pandas as pd

>> data = io.StringIO(

     """

     student_id,grade

     1045,"a"

     2391,"b"

     ,"c"

     1092,"a"

     """

)
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>> grades = pd.read_csv(

     data,

     verbose=True,

     index_col="student_id",

     engine='python',

)

     Filled 1 NA values in column student_id

>> grades

                grade

     student_id

     1045        a

     2391        b

     NaN         c

     1092        a

>> grades.index.dtype

     dtype('float64')

A limitation of how pandas read_csv handles placeholder types is that 

you cannot specify a converter to convert a NaN to a 0, for example, and also 

cast a column to a particular dtype. Listing 4-14 illustrates a case where you 

might wish to do this. The weight column in the data set does not always have 

a value, nor is it consistent in the way a non-value is entered. Sometimes it 

is left as empty; other times, it is “unknown”. If we do not specify a type for 

this column and let pandas infer the type, pandas stores the column values 

as objects, meaning some of them are integers, some of them are NaNs, and 

some of them are strings. Note that an object in this example takes up 32 bytes 

per element with some additional overhead. This is much more than the 

desired type of an int16 which takes up 2 bytes per element. Not only does the 

resulting DataFrame take up much more memory, but it is also unusable in its 

state to run computations over. Since some of the values are objects, summing 

all the weights in the column, for example, might result in string addition 

rather than integer addition. Thus, leaving pandas to infer the data type in this 

scenario is less than ideal.
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Listing 4-14. Example of how pandas handles NaNs in the data by 
default

>> data = io.StringIO(
     """
     id,age,height,weight
     129237,32,5.4,126
     123083,20,6.1,
     123087,25,4.5,unknown
     """
)
>> df = pd.read_csv(
     data,
     dtype={
         'id': np.int32,
         'age': np.int8,
         'height': np.float16},
     index_col=[0],
)
                 age    height     weight
     id
     129237      32     5.398438   126
     123083      20     6.101562   NaN
     123083      20     6.101562   unknown
>> df.memory_usage(deep=True)
     Index      24
     age        3
     height     6
     weight     155
>> df.dtypes
     age          int8
     height       float16
     weight       object
>> df.index.dtype

     dtype('int64')
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Instead of letting pandas infer the data type, let’s convert all the 

placeholder values to NaNs using na_values. Although ideally we would like 

them to be int16s, float16s take up the same amount of memory, and pandas 

supports NaNs being stored as floats whereas it does not support them being 

stored as integers during loading, so we set the dtype of the weight column 

to be float16. Note if we do not specify the dtype, it will be a float64. If we 

really need them to be integers, we can replace the NaNs with zeros using 

fillna and convert them using astype after loading as shown in Listing 4-15.

Listing 4-15. Example of using na_values and dtype to convert 
placeholder values to float16 NaNs during load

>> data = io.StringIO(

     """

     id,age,height,weight

     129237,32,5.4,126

     123083,20,6.1,

     123087,25,4.5,unknown

     """

)

>> df = pd.read_csv(

     data,

     dtype={

         'id': np.int32,

         'age': np.int8,

         'height': np.float16,

         'weight': np.float16},

     na_values={"unknown"},

     index_col=[0],

)

                   age    height     weight

     id

     129237        32     5.398438   126
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     123083        20     6.101562   NaN

     123083        20     6.101562   NaN

>> df.memory_usage(deep=True)

     Index      16

     age        3

     height     6

     weight     6

>> df.dtypes

     age       int8

     height    float16

     weight    float16

>> df.index.dtype

     dtype('int64')

>> df["weight"].fillna(0, inplace=True)

>> df["weight"] = df["weight"].astype(np.int16)

>> df

                 age    height    weight

     id

     129237      32     5.398438  126

     123083      20     6.101562  0

     123083      20     6.101562  0

>> df.memory_usage(deep=True)

     Index      16

     age        3

     height     6

     weight     6

>> df.dtypes

     age       int8

     height    float16

     weight    int16
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The parsing performance metrics output in verbose mode when using 

the C parsing engine can be useful in determining where the parsing engine 

is spending its time. Listing 4-16 shows an example output. Tokenization 

is the parser breaking up the data into individual values, Type conversion 

is converting each column to a particular type whether that is inferred by 

pandas or explicitly specified, and Parser memory cleanup is the time it took 

to free all the no longer needed memory after the data was read. Depending 

on these values, they may point to areas for improvement, for example, if 

Tokenization is taking a long time, you may be able to speed up performance 

by specifying additional options like how to interpret quotes, spaces, bad 

lines, and so on. If a lot of time is spent in type conversion, it may indicate 

you have some custom converters that are slowing down the process or you 

may need to specify the dtypes rather than letting pandas infer them. If you 

find a lot of time is spent in memory cleanup, you may need to not parse the 

whole file at once or you may be doing too many conversions of the data that 

lead to a lot of memory duplication and thus a lot of memory cleanup.

Listing 4-16. Example output when running in verbose mode with 
C parsing engine

>> grades = pd.read_csv(verbose=True, engine='c')

     Tokenization took: 0.01 ms

     Type conversion took: 0.45 ms

     Parser memory cleanup took: 0.01 ms

The parse_dates parameter if set to True will attempt to automatically 

detect and convert columns with date formatted strings to datetime objects. 

Rather than just setting it to True however, it’s far better to explicitly list which 

columns should be converted to datetime objects. This parameter lets you 

explicitly specify which columns to convert in the form of a list and even 

combine multiple columns into a single datetime object when it is specified as 

a list of lists of columns. Listing 4-17 shows an example of explicitly specifying 

which columns to convert. Note each datetime object takes up 8 bytes, but this 

is still far less memory than if we didn’t convert it at all.
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Listing 4-17. Explicitly converting certain columns to datetime 

objects

>> data = io.StringIO(

     """

     id,birth,height,weight

     129237,04/10/1999,5.4,126

     123083,07/03/2000,6.1,150

     123087,11/23/1989,4.5,111

     """

)

>> df = pd.read_csv(

     data,

     dtype={

         'id': np.int32,

         'height': np.float16,

         'weight': np.int16},

     parse_dates = ["birth"],

     index_col=[0],

)

                    birth        height     weight

     id

     129237         1999-04-10   5.398438   26

     123083         2000-07-03   6.101562   150

     123083         1989-11-23   6.101562   111

>> df.memory_usage(deep=True)

     Index      24

     birth      24

     height     6

     weight     6
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>> df.dtypes

     age       int8

     height    float16

     weight    datetime64[ns]

>> df.index.dtype

     dtype('int64')

Note Listing 4-17 assumes that there are no NaNs or placeholder values 

in the column. If there are, like in Listing 4-18, na_values must be specified 

to convert all the placeholder values to NaNs; otherwise, the column will 

be an object rather than a datetime because the placeholder values will be 

left as strings.

Listing 4-18. Explicitly converting certain columns to datetime 

objects and handling NaNs

>> data = io.StringIO(

     """

     id,birth,height,weight

     129237,04/10/1999,5.4,126

     123083,unknown,6.1,150

     123087,11/23/1989,4.5,111

     """

)

>> df = pd.read_csv(

     data,

     dtype={

         'id': np.int32,

         'height': np.float16,

         'weight': np.int16},

     parse_dates=["birth"],

     na_values=["unknown"],

     index_col=[0],

)
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                  birth          height      weight

     id

     129237       1999-04-10     5.398438    26

     123083       NaT            6.101562    150

     123083       1989-11-23     6.101562    111

>> df.memory_usage(deep=True)

     Index      24

     birth      24

     height     6

     weight     6

>> df.dtypes

     age             int8

     height          float16

     weight          datetime64[ns]

>> df.index.dtype

     dtype('int64')

Generally, parse_dates while it’s convenient is counterproductive from 

a performance perspective. It takes time to convert the dates, and once 

they are converted, the data type is not translatable to C. For this reason, 

it’s recommended to convert datetimes to time since the epoch or some 

simple numeric C-translatable value if possible. If you need to work with 

particular days, months, and years, it might even make sense to store those 

in separate columns.

There are many other date-specific parameters included in read_csv. 

The parameter infer_datetime_format is enabled by default, so whenever 

possible, pandas attempts to infer the format of any datetime values 

automatically. The documentation says that in some cases this can 

increase the parsing speed by five to ten times when it’s able to detect and 

use a particular date parsing format.2 When set to True, the parameter 

2 https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.
read_csv.html
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keep_date_col keeps both the combined column and the original separate 

date columns if parse_dates specified that multiple date columns should 

be combined together. The date_parser parameter lets you specify a date 

parsing function. The documentation notes this function may be called in 

several different ways ranging from calling it once on each row or passing 

in all rows and columns at once. Since this function is jumping between 

C and Python, it’s advantageous to call it the least amount of times as 

possible. This means it’s best to implement this function to operate on all 

datetime rows and columns and output an array of datetime instances. 

This function could be an existing parser (the default is dateutil.parser.

parser), or it could be a custom function. This might be useful if you need 

to do some special timezone handling or the data is stored in a special 

datetime format. Not all countries specify the day before the month so 

pandas provides a dayfirst parameter so you can specify whether the day 

comes first in the dates you are parsing. The parameter cache_dates which 

is enabled by default keeps a cache lookup of the converted dates, so that 

if the same date appears multiple times in the data set, it does not have to 

run the conversion again and can just use the cached value.

The parameter escapechar lets you escape certain characters. For 

example, in most programing languages, a commonly used escape 

character is a backslash (\) so it may be desirable to escape certain quote 

characters inside of a quote with a \” or element delimiter characters with \,. 

Listing 4-19 illustrates this use case. If the temperature recordings were 

recorded by a country that uses commas as a decimal point delimiter and 

also uses commas as a CSV element delimiter, read_csv will not be able to 

parse this file with its default configuration and will raise a parsing error, 

“pandas.errors.ParserError: Error tokenizing data. C error: Expected 2 

fields in line 5, saw 3”. If, instead, the backslash character is used to escape 

all the commas delimiting decimal places (\,), then read_csv can be 

configured in such a way to correctly parse the data.
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Listing 4-19. Using commas as a delimiter and a decimal point

>> import pandas as pd

>> data = io.StringIO(

     """

     temp, location

     35,234unf923

     32,2340inf012

     33,2340inf351

     33\,1,2340abe045

     """

)

>> grades = pd.read_csv(

     data,

     decimal=",",

     escapechar="\\",

     index_col="location",

)

                 temp

     location

     234unf923   35.000000

     2340inf012  32.000000

     2340inf351  33.000000

     2340abe045  33.100000

 pd.read_json
The read_json loader parses entirely in C unlike read_csv which may use 

the Python parser under certain conditions.
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The parameter orient defines how the JSON format will be converted 

into a pandas DataFrame. There are six different options: split, records, 

index, columns, values, and table. If the JSON is formatted such that there 

are columns, data, and an index already defined as keys, as is the case in 

Listing 4-20, the split option should be used. It’s also worth noting that the 

JSON parser is particularly picky about spacing including whitespace.

Listing 4-20. Using orient split

>> data = io.StringIO(

     """

     {

         "columns": ["temp"],

         "index": ["234unf923", "340inf351", "234abe045"],

         "data": [[35.2],[32.5],[33.1]],

     }

     """

)

>> temperatures = pd.read_json(

     data,

     orient="split",

)

                 temp

     234unf923   35.200000

     340inf351   32.500000

     234abe045   33.100000

If the JSON is formatted such that each value is a row in the data with 

the column names as keys, as is the case in Listing 4-21, the records option 

should be used.
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Listing 4-21. Using orient records

>> data = io.StringIO(

     """

     [

         {"location": "234unf923", "temp": 35.2},

         {"location": "340inf351", "temp": 32.5},

         {"location": "234abe045", "temp": 33.1},

     ]

     """

)

>> temperatures = pd.read_json(

     data,

     orient="records",

)

     location     temp

     234unf923    35.200000

     340inf351    32.500000

     234abe045    33.100000

If the JSON is formatted such that each key is the index value and the 

value of each key is a dictionary of the columns and values for the row, as 

is the case in Listing 4-22, the index option should be used.

Listing 4-22. Using orient index

>> data = io.StringIO(

     """

     {

         "234unf923": {"temp": 35.2},

         "340inf351": {"temp": 32.5},

         "234abe045": {"temp": 33.1},

     }

     """
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)

>> temperatures = pd.read_json(

     data,

     orient="index",

)

                 temp

     234unf923   35.200000

     340inf351   32.500000

     234abe045   33.100000

If the JSON is formatted such that each key is the column and each 

value is a dictionary where the key is the index and the value is the column 

value, as is the case in Listing 4-23, the columns option should be used.

Listing 4-23. Using orient columns

>> data = io.StringIO(

     """

     {

         "temp": {

             "234unf923": 35.2,

             "340inf351": 32.5,

             "234abe045": 33.1,

         },

     }

     """

)

>> temperatures = pd.read_json(

     data,

     orient="columns",

)
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                 temp

     234unf923   35.200000

     340inf351   32.500000

     234abe045   33.100000

If the JSON is formatted such that each row is simply represented as 

a list of values, as is the case in Listing 4-24, the values option should be 

used.

Listing 4-24. Using orient values

>> data = io.StringIO(

     """

     [

         ["234unf923", 35.2],

         ["340inf351", 32.5],

         ["234abe045", 33.1],

     ]

     """

)

>> temperatures = pd.read_json(

     data,

     orient="values",

)

             0           1

     0       234unf923   35.200000

     1       340inf351   32.500000

     2       234abe045   33.100000

If the JSON is formatted such that it provides a detailed data schema, 

as is the case in Listing 4-25, the table option should be used.
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Listing 4-25. Using orient table

>> data = io.StringIO(

     """

     {

         "schema": {

             "fields": [

                 {"name": "location", "type": "string"},

                 {"name": "temp", "type": "string"},

             ],

             "primaryKey": "location",

         },

         "data": [

                 {"location": "234unf923", "temp": 35.2},

                 {"location": "340inf351", "temp": 32.5},

                 {"location": "234abe045", "temp": 33.1},

         ]

     }

     """

)

>> temperatures = pd.read_json(

     data,

     orient="table",

)

                  temp

     location

     234unf923    35.200000

     340inf351    32.500000

     234abe045    33.100000

Similar to read_csv, read_json has a chunksize that lets you read the 

files in chunks at a time. This only is permitted however if the lines option 

is also set to True, meaning the JSON format is oriented as records without 

the list brackets. Listing 4-26 demonstrates this.
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Listing 4-26. Loading the file in chunks

>> data = io.StringIO(

     """

     {"location": "234unf923", "temp": 35.2}

     {"location": "340inf351", "temp": 32.5}

     {"location": "234abe045", "temp": 33.1}

     """

)

>> temperatures = pd.DataFrame({})

>> reader = pd.read_json(

     data,

     lines=True,

     chunksize=2,

)

>> for chunk in reader:

     temperatures = temperatures.append(process(chunk))

>> temperatures

     location       temp

     234unf923      35.200000

     340inf351      32.500000

     234abe045      33.100000

By default, the JSON loader determines whether certain columns are 

date-like based on the column name unlike other readers that look at the 

values. It accepts a convert_dates parameter which can be a list of column 

names or a Boolean. If it’s set to True, it converts columns that end  

with _at or _time, begin with timestamp, or are named modified or date  

into datetimes. To disable automatic detection of date columns, you can  

set keep_default_dates to False.

By default, the JSON loader will try to infer the type of each column and 

axis, unless orient is set to table, in which case the type is provided as part of 
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the JSON schema. Just like reading a CSV file, if the types are not specified 

in the JSON file, it saves a lot of memory to provide them. Listing 4-27 shows 

what the memory footprint might be of a JSON file being loaded without 

types specified vs. Listing 4-28 which shows the memory footprint of the 

same JSON file with types specified. Note in Listing 4-28 where types are 

explicitly specified, the memory of the resulting DataFrame decreased by 

about 40%.

Listing 4-27. Loading a JSON with pandas type inference

>> data = io.StringIO(

     """

     {

         "birth": {

             "129237": "04/10/1999",

             "123083": "05/18/1989",

         },

         "height": {

             "129237": 5.4,

             "123083": 6.1,

         },

         "weight": {

             "129237": 126,

             "123083": 130,

         },

     }

     """

)

>> patient_info = pd.read_json(

     data,

     orient="columns",

)
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                birth          height  weight

     129237     04/10/1999     5.4     126

     123083     05/18/1989     6.1     130

>> df.dtypes

     birth          object

     height         float64

     weight         int64

>> df.index.dtype

     dtype('int64')

>> df.memory_usage()

     Index          16

     birth          16

     height         16

     weight         16

Listing 4-28. Explicitly specifying the type when loading a JSON

>> data = io.StringIO(

     """

    {

          "birth": {

              "129237": "04/10/1999",

              "123083": "05/18/1989",

          },

          "height": {

              "129237": 5.4,

              "123083": 6.1,

          },

          "weight": {

              "129237": 126,

              "123083": 130,
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          },

      }

      """

)

>> patient_info = pd.read_json(

      data,

      orient="columns",

      convert_dates=["birth"],

      dtype={"height": np.float16, "weight": np.int16},

)

                 birth          height  weight

      129237     1999-04-10     5.4     126

      123083     1989-05-18     6.1     130

>> df.dtypes

      birth          datetime64[ns]

      height         float16

      weight         int16

>> df.index.dtype

      dtype('int64')

>> df.memory_usage()

      Index          16

      birth          16

      height         4

      weight         4

 pd.read_sql, pd.read_sql_table, and  
pd.read_sql_query
The pandas read_sql loader is a wrapper around read_sql_table and read_

sql_query. Depending on the parameters passed to it, it calls one of those 

two functions underneath. It also has built-in support for SQLAlchemy.
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SQLAlchemy is a very popular Object Relational Mapper library, also 

known as an ORM. The pandas SQL reader also supports talking directly to 

DBAPI which is a lower-level database library that SQLAlchemy depends 

on. While DBAPI is limited within pandas to SQLite3, SQLAlchemy can 

talk to all kinds of relational databases so there’s no need to rewrite all 

your SQL queries when switching databases. ORMs are quite popular 

in the application development space as they allow you to map your 

database tables to objects or classes in Python. This is nice because you 

can track your database table definitions inside your codebase. You can 

define your database tables as classes and then with a simple command 

add them to your database. You can also modify existing database tables 

via migration scripts using migration libraries like Alembic, for example, 

which let you roll forward and roll back database changes with little risk 

of unrecoverable production database mishaps. When building out table 

definitions, you can also specify things like the conversion of column types 

between Python and the database. SQLAlchemy is also nice because it 

abstracts the SQL query into more human-readable query language with 

easily parameterized expressions, like in Listing 4-29.

Listing 4-29. Using a raw SQL string query vs. the SQLAlchemy 

ORM to generate a query

cur.execute(
     """
     SELECT * FROM temperature_readings
     WHERE temperature_readings.temp > 45
     """
)

session.query(TemperatureReadings).filter(
     temp > 45

)
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Listing 4-30 shows an example of how you might build a database and 

insert data into it. In this example, we are creating a user table with two 

columns, id and name, and inserting a new user with an id of zero and 

name Eric into that table. Note two different URLs are defined in the code, 

the one in use connects to sqlite and the other connects to a local Postgres 

database instance.

Listing 4-30. Creating tables in a postgres database and adding data 

to it using SQLAlchemy

from sqlalchemy import create_engine

from sqlalchemy.orm import sessionmaker

from sqlalchemy import Column, Integer, String

from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

SQLITE_URL = "sqlite://"

POSTGRES_URL = "postgresql://postgres@localhost:5432"

class User(Base):

     __tablename__ = 'user'

     id = Column(Integer, primary_key=True)

     name =  Column(String(50))

engine = create_engine(SQLITE_URL)

Session = sessionmaker(bind=engine)

def create_tables():

     Base.metadata.create_all(engine)

def add_user():

     session = Session()

     user = User(id=0, name="Eric")

     session.add(user)
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     session.commit()

     session.close()

>> create_tables()

>> add_user()

Listing 4-31 provides a simple docker-compose.yml file which will spin up 

a local Postgres database on your machine using the command in Listing 4-32. 

Note this database is configured to write the data to disk so you can kill the 

docker container at any time and the data will persist in the postgres-data 

directory and be there the next time you spin up the docker container.

Listing 4-31. The contents of the docker-compose.yml that will 
create a local Postgres database

version: '3'

services:

     postgres:

          image: postgres:9.4-alpine

          ports:

               - '127.0.0.1:5432:5432'

          volumes:

              - ./postgres-data:/var/lib/postgresql/data

Listing 4-32. Starting the Postgres database

>> docker-compose up -d

The SQL loaders generally can either load the whole table or load parts of 

the table based on a query. Although the SQL loaders accept a SQLAlchemy 

engine, they only accept a select statement rather than a query object. This 

means while you can use SQLAlchemy’s query API, you must convert it to a 

selectable before passing it into the loader as shown in Listing 4-34. A selectable 

is essentially the raw SQL query string. Listing 4-33 shows an example of how 

you would load all the user data from the database into a DataFrame, while 

Listing 4-34 shows how you might load the user with id=0 into a DataFrame.
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Listing 4-33. Loading all the users into a DataFrame using read_sql

>> pd.read_sql(

     sql=User.__tablename__,

     con=engine,

     columns=["id", "name"],

)

     id   name

0    0    Eric

Listing 4-34. Loading the user with id=0 into a DataFrame using 

read_sql

>> se lect_user0 = session.query(Patient).filter_by(id=0).

selectable

>> pd.read_sql(

     sql=select_user0,

     con=engine,

     columns=["id", "name"],

)

     id   name

0    0    Eric

The SQL loaders have similar options as the other loaders we’ve looked 

at, for example, loading the data chunks at a time or datetime conversion. 

However, there are differences as well. Unlike some of the other loaders 

we’ve looked at, the SQL loaders do not have an option for data type 

specification. This often poses a problem for pandas users working with 

databases as they may store a normalized version of the data in a database 

and then wish to load it back out only to find the data types are not the 

same. If you run into this situation, SQLAlchemy and some custom loading 

code can help. SQLAlchemy provides a custom types option which lets 

you convert between the database type and the Python type. As we’ve seen 
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with other loaders where the types are not explicitly specified, pandas will 

store the id column as an int64. Listing 4-35 shows an example of how we 

might specify the Python type for the integer id column as an int32 instead 

of a more generic and larger integer type. Using this table definition, now 

when we add a user, the id will be stored as an integer inside the database, 

but when we read it out, it will be a NumPy int32 type.

Listing 4-35. Using SQLAlchemy TypeDecorator to specify a data 

type for pandas

from sqlalchemy import Column, String

from sqlalchemy.ext.declarative import declarative_base

import sqlalchemy.types as types

import numpy as np

Base = declarative_base()

class Int32(types.TypeDecorator):

     impl = types.Integer

     def process_bind_param(self, value, dialect):

         return value

     def process_result_value(self, value, dialect):

         return np.int32(value)

class User(Base):

     __tablename__ = 'user'

     id = Column(Int32, primary_key=True)

     name =  Column(String(50))

Listing 4-36 shows a code snippet of the internal implementation of 

read_sql where self.pd_sql is the SQLAlchemy engine object, sql_select 

is the selectable passed in as the SQL parameter, and self.frame is the 

resulting DataFrame that is returned. Here you can see exactly how pandas 

is loading the data from the database and converting it into a DataFrame. 
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The fetchall function returns the data as a list of tuples, for example, [(0, ‘Eric’)]. 

This implementation is relevant for the next step in how we will get pandas to 

use the correct data types we defined in Listing 4-35.

Listing 4-36. Part of the pandas implementation of read_sql

result = self.pd_sql.execute(sql_select)

column_names = result.keys()

data = result.fetchall()

self.frame = DataFrame.from_records(

     data, columns=column_names, coerce_float=coerce_float

)

Instead of relying on the pandas read_sql implementation, we are 

going to write our own custom SQL loading code that will maintain the 

data types we defined in the SQLAlchemy user table when creating the 

DataFrame. The custom SQL loading code is shown in Listing 4-37 and is 

faster and consumes less memory than using astype to convert the types 

after loading.

Listing 4-37. Custom SQL loader code that maintains the data types 
defined on the SQLAlchemy table in Listing 4-35

>> sql = session.query(User).selectable

>> results = engine.execute(sql).fetchall()

>> data = {

     columns[col]: np.array(

           [row[col] for row in results],

           dtype=type(results[0][col]))

     for col, v in enumerate(results[0])}

>> df = pd.DataFrame(data)

>> df.dtypes

     0    int32

     1    object
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We’ve covered several of the most popular loaders and their options 

in this chapter, but there are still many more. Be sure to read the 

documentation for the particular loader you are using and see what kinds 

of normalization during load features are at your disposal, and if not, you 

may have to write some custom code yourself. Keep in mind performance 

savings can come from reducing memory overhead and reducing steps 

during the load and normalization process. pandas provides many ways 

of improving normalization and load performance depending on the 

bottlenecks you have in your particular situation. In Chapter 5, we’ll 

explore how to reshape the data into the desired DataFrame format once 

it’s loaded and normalized.
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CHAPTER 5

Basic Data 
Transformation 
in pandas
The pandas library has a huge API that provides many ways of 

transforming data. In this chapter, we’ll cover some of the most powerful 

and most popular ways to transform data in pandas.

 Pivot and pivot table
Pivot and pivot table are very popular and particularly attractive to 

beginners because they are so powerful. However, their powerfulness 

comes at a performance cost. While pivot is a great tool for initially 

transforming the DataFrame as part of a data normalization step, it should 

not be used frequently throughout the data analysis phase. Listing 5-1 

shows an example of using pivot table to convert the raw inspection data 

into an aggregated format of restaurants and their average inspection 

score. Note in Listing 5-1 the aggregation function is explicitly specified as 

np.mean though this is unnecessary since np.mean is the default. Pivot is 

essentially doing a groupby, applying the aggregation function as needed, 

and reorganizing the results into a new table format.
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Listing 5-1. Calculating the average inspection score per restaurant 

with pivot_table

>> df

     restaurant  location    date       score

     Diner       (4, 2)      02/18      90

     Pandas      (5, 4)      04/18      55

     Diner       (4, 2)      05/18      100

     Pandas      (5, 4)      01/18      76

>> df = df.pivot_table(

     values=['score'],

     index=["restaurant","location"],

     aggfunc=np.mean

)

>> df

                                score

     restaurant  location       

     Diner       (4, 2)         95

     Pandas      (5, 4)         66

There are a couple performance issues in Listing 5-1. Pivot table does 

not have an option to limit memory duplication so it creates an entirely new 

DataFrame each time it is used. If your DataFrame is quite large, this can be a 

big performance hit to your program. Internally, pivot table is grouping the data 

by unique restaurant and location combinations which takes time, particularly 

with a large amount of combinations. If this was being used as part of a data 

normalization step, it would be far better than if it was used many times 

throughout a program as part of data analysis. This is because the performance 

hit of uniquely grouping and copying all that memory would happen only once 

compared to it happening many times throughout the program. It is far better 

to normalize and orient a DataFrame once in such a way that it optimizes all 

the analysis you plan to perform on it than leave it in a somewhat unoptimized 
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raw form and have to re-orient it at each analysis step. Note, if instead the 
DataFrame was already uniquely grouped, we could run a groupby to calculate 
the average score like in Listing 5-2 which would be twice as fast. We’ll discuss 
the performance of groupby in depth in Chapter 7. It is very likely that other 
analysis needs the data grouped by unique restaurant, so the grouping in this 
example at the very least should be part of the normalization step, in which 
case it becomes unnecessary to use pivot table at all.

Listing 5-2. Calculating the average inspection score per restaurant 
with groupby

>> df
                            date        score
     restaurant  location
     Diner       (4, 2)     02/18       90
                            04/18       55
     Diner       (4, 2)     05/18       100
                            01/18       76
>> df = df[["score"]].groupby(["restaurant","location"]).mean()
>> df
     restaurant  location     score
     Diner       (4, 2)       95
     Pandas      (5, 4)       66

Pivot does the same thing as pivot table, but it does not allow you to 
aggregate data. Any columns and index value combinations that result 
in multiple values must be aggregated together when using pivot table. 
Pivot, on the other hand, simply throws a ValueError if it runs into such a 
scenario. Note in Listing 5-3 no combination of drug and date results in 
multiple values; however, in Listing 5-4, there are or would be multiple 
rows for the same drug and date; thus, Listing 5-4 throws a ValueError. 
So, a regrettable limitation of both pivot and pivot table is they do not 
output data where there are multiple values for an index and column 
combination. Pivot table forces you to aggregate the multiple values 

together or select one and pivot simply throws a ValueError.
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Listing 5-3. Re-orienting a DataFrame using pivot

>> df

     date           tumor_size      drug         dose

     02/18          90              01384        10

     02/25          80              01384        10

     03/07          65              01384        10

     03/21          60              01384        10

     02/18          30              01389        7

     02/25          20              01389        7

     03/07          25              01384        10

     03/21          25              01389        7

>> df.pivot(

     index="drug",

     columns="date",

     values="tumor_size"

)

     date    02/18    02/25    03/07     03/21

     drug

     01384   90        80       65         60

     01389   30        20       25         25

Listing 5-4. Pivot throws a ValueError when there are multiple 
values for the same column-index combination

>> df

     date          tumor_size    drug      dose

     02/18         90            01384     10

     02/25         80            01384     10

     03/07         65            01384     10

     03/21         60            01384     10

     02/18         30            01389     7

     02/25         20            01389     7

     03/07         25            01389     7

     03/21         25            01389     7
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>> df.pivot(

     index="drug",

     columns="date",

     values="tumor_size",

)

ValueError: Index contains duplicate entries, cannot reshape

Pivot is more performant than pivot table because it does not allow 

specification and generation of multi-level columns and multi-indexes. 

Thus, it does not have the overhead of generating and handling this 

more complex DataFrame format. Regardless of whether the resulting 

DataFrame is a multi-index or multi-level column DataFrame, pivot table 

still runs the various computations as if it is multi-level which adds a 

fair amount of overhead, up to six times more than pivot in some cases. 

While pivot will allow you to specify multiple values and create a multi- 

level column for them, it does not allow you to provide an explicit list of 

columns to generate multi-level columns or provide a list of indexes to 

generate multi-level indexes. Pivot table, on the other hand, supports this 

type of multi-level DataFrame. It also has some other nicety options like 

adding a subtotal of all rows and columns and dropping columns with 

NaNs. In summary, if you can get away with using pivot, you should, as it’s 

more performant than using pivot table.

 Stack and unstack
Stack and unstack reshape a DataFrame’s column level into an innermost 

index and vice versa. An example of this is shown in Listing 5-5 where each 

column is a restaurant health inspection, the value is the health inspection 

score, and the index represents the restaurant that was inspected. Stack 

is used to reshape the data so that the health inspection scores for each 
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restaurant occur across each row rather than each column. Note stack 

converts the column names across the top into column values which then 

are ultimately dropped from the DataFrame.

Listing 5-5. Reshaping a DataFrame so that each row represents an 

inspection using stack

>> df

                                      score

     inspection                       0    1

     restaurant  location

     Diner       (4, 2)               90   100

     Pandas      (5, 4)               55   76

>> df = df.stack().reset_index()

>> df

     restaurant  location   inspection  score

     Diner       (4, 2)      0          90

                             1          100

     Pandas      (5, 4)      0          55

                             1          76

>> df.drop(column=["inspection"], inplace=True)

>> df.set_index(["restaurant", "location"], inplace=True)

>> df

                           score

     restaurant  location

     Diner       (4, 2)     90

                            100

     Pandas      (5, 4)     55

                            76

You might recognize the shape of the original DataFrame in Listing 5-5  

from Listing 3-22. The shape of the DataFrame before it’s reshaped in 

Listing 5-5 is the orientation that was deemed the most optimal in the 
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“Choosing the right DataFrame” section at the end of Chapter 3. Listing 5-5 

shows how to convert from that optimal shape to the original non-optimal 

shape. Now let’s look at how we might take the original non-optimal 

shape and turn it into the optimal shape. Listing 5-6 adds a new column 

called inspection to the DataFrame whose values become the column 

names for the new DataFrame. We also are making use of a handy groupby 

aggregation function called cumcount that creates a row number for each 

row in each group.

Listing 5-6. Reshaping a DataFrame so that each column is an 

inspection using unstack

>> df

                             score

     restaurant  location

     Diner       (4, 2)      90

                             100

     Pandas      (5, 4)      55

                             76

>> df["inspection"] = df.groupby(

     ["restaurant", "location"]).cumcount()

>> df

                          inspection  score

     restaurant  location

     Diner       (4, 2)    0          90

                           1          100

     Pandas      (5, 4)    0          55

                           1          76

>> df.set_index("inspection", append=True, inplace=True)

>> df
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                                        score

     restaurant  location   inspection

     Diner        (4, 2)    0           90

                            1           100

     Pandas        (5, 4)   0           55

                            1           76

>> df = df.unstack()

>> df

                                        score

     inspection                         0    1

     restaurant  location

     Diner       (4, 2)                 90   100

     Pandas      (5, 4)                 55   76

So how performant are stack and unstack? They both duplicate memory 

as they are not inplace operations which can be costly and thus should really 

only be used in data normalization. They are, however, very unique in the 

way they can transform the data, so it is difficult to find a more performant 

alternative other than melt which is what we’ll explore in the next section.

 Melt
An example of using melt is shown in Listing 5-7. Note that this is very 

similar to the stack example. We are essentially doing what we did in 

approximately four lines with stack in one line in this example. While melt 

does the same thing as stack and a bit more, it does it in a slightly more 

performant way. This is mainly due to the slight overhead advantage it has in 

not calling into all the various data transformations at a high level, meaning 

rather than calling stack underneath, melt performs the lower- level data 

manipulations underneath stack directly, thus avoiding the middle code 

layers. If you compare a raw stack to melt, stack is about four times faster. 

The drawback of using stack is that it often requires other manipulation such 
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as setting an index, renaming columns, converting it back to a DataFrame, 

and so on. This means in some cases it’s more performant to just use melt.

Listing 5-7. Reshaping a DataFrame so that each row represents an 
inspection using melt

>> df
     restaurant  location    0    1
     Diner       (4, 2)      90   100
     Pandas      (5, 4)      55   76
>> df = df.melt(
     id_vars=["restaurant","location"],
     value_vars=[0,1],
     value_name="score").drop(columns="variable")

>> df
     restaurant  location      score
     Diner       (4, 2)        90
                               100
     Pandas      (5, 4)        55
                               76

 Transpose
Transpose is a useful trick. It simply turns the columns into rows and the 
rows into columns. In Listing 5-8, there is a list of patients who need to be 
treated for a certain disease and a table that provides a list of drugs used 
to treat the disease based on blood type. We need to add the list of drugs 
that can be used to treat the given patient into the patient table based on 
the patient’s blood type. The first step is to index both the patient list and 
the drug table by blood type, and then we can do a simple join to add the 
drug data into the patient list. Because the drug table is oriented such that 
the blood types are across the columns instead of the rows, we first do a 
transpose. Note when we do this, the index which is provided by default 
when creating the DataFrame turns into the columns and the columns 
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turn directly into the index. This means in Listing 5-8 we don’t explicitly 
have to set the index as the transpose already sets the index to the blood 

type for us.

Listing 5-8. Using a transpose to reshape a DataFrame

>> patient_list

                   id      history

     blood_type    

     0+            02394   hbp

     B+            02312   NaN

     0-            23409   lbp

>> drug_table

     index         0+   0-   A+   A-   B+   B-

     0             ADF  ADF  ACB  DCB  ACE  BAB

     1             GCB  RAB  DF   EFR       HEF

     2             RAB

>> drug_table = drug_table.transpose(copy=False)

>> drug_table

     blood_type   0     1      2

     0+           ADF   GCB    RAB

     0-           ADF   RAB

     A+           ACB   DF

     A-           DCB   EFR

     B+           ACE

     B-           BAB   HEF

>> patient_list.join(drug_table)

                     id       history    0      1      2

     blood_type

     0+               02394   hbp        ADF    GCB    RAB

     B+               02312   NaN               ACE

     0-               23409   lbp               ADF    RAB
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Transpose is one of the few DataFrame reshaping functions that has 

an option of not duplicating data if possible named copy. That being 

said, copy=False doesn’t necessarily mean the data is not duplicated, as 

we’ll explain in more detail in Chapter 9. Whether the data is duplicated 

or not depends on a multitude of factors which ultimately boil down to 

whether the new shape of the data can reuse the underlying NumPy arrays 

as is or whether new NumPy arrays must be created. Recall that NumPy 

arrays must all be the same type. This means if the DataFrame you are 

transposing has the same types for the rows and the columns, then it will 

likely be able to reuse the existing NumPy arrays. If not, it will have to 

duplicate memory and re-build them. This means transpose should really 

be used only when it’s absolutely necessary and ideally as part of a data 

normalization step.

The takeaway from looking at all these data transformation functions is 

data transformation is quite costly and in an ideal program should happen 

only during the normalization phase. It should be used sparingly during 

data analysis. Chances are that if you find yourself having to do a lot of 

transformations at each of the data analysis steps, you should re-think the 

orientation of your normalized DataFrame. In the next chapter, we’ll look 

at the apply method and explore when it should and should not be used as 

well as more performant alternatives.
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CHAPTER 6

The apply Method
apply is one of the most incorrectly used functions in pandas. Chances are 
if you are using it, you shouldn’t be. This is because apply “applies” the 
function to each row or each column in the data set effectively breaking 
one of the cardinal rules of using pandas: do not iterate over the data set. 
In this chapter, we’ll explore when apply is the right choice and present 
alternative solutions for when it’s not.

 When not to use apply
For those comfortable with basic programing features, iteration is a familiar 
way to manipulate data. We think to ourselves: I would like to run this 
operation on every row or every column, and thus apply looks very friendly. 
However, that way of organizing a problem is completely wrong in pandas. 
Much of the same principles used in working with relational databases can 
also be used when working in pandas. When you perform an operation 
on data in a database, you don’t do it one row at a time but rather define a 
range; the same is true in pandas. When operating on a data set, you define 
all the elements you wish to operate on and then provide the operation. In 
the simplest form, this might look like df[“col 1”] + df[“col 2”], and in a more 
complex case, this might look like df.where(100 > df >= 90, “A”).

pandas has many built-in functions for performing data computational 
operations. A comprehensive list is provided in the Appendix. These 
computations often directly translate to a NumPy function, operating in C, 
which makes these much more performant than their apply equivalents. 
They are accessible directly off the pandas DataFrame and also the pandas 

Series object (a column or row of a pandas DataFrame).
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A simple example of apply is illustrated in Listing 6-1. We pass it the 

sum function, specify the axis we want to apply the function to, and we get 

the sum of each row.

Listing 6-1. Example of using apply

>> df = pd.DataFrame([[4, 9],[6, 7]], columns=['A', 'B'])

>> df

        A  B

     0  4  9

     1  6  7

>> df.apply(np.sum, axis=1)

     0    13

     1    13

While the example in Listing 6-1 is simple and illustrates how to use 

apply, the use case in which it is used is very wrong. It’s a textbook example 

of when to not use apply as the np.sum function is a built-in off the 

DataFrame itself and thus the built-in should be used as it’s much more 

performant. But why is it so much more performant? Let’s explore that in 

more detail.

The answer to the question of why the built-in pandas sum is so much 

more performant than applying the NumPy sum to each row lies in where 

the iteration over the rows takes place. The following loop in Listing 6-2 is 

the underlying implementation of the pandas apply method.

Listing 6-2. Main loop in the pandas apply implementation

for i, v in enumerate(series_gen):

     results[i] = self.f(v)

     keys.append(v.name)
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As you can see in Listing 6-2, the looping over the rows takes place in 

Python. Here you can see the series_gen which is either the columns or the 

rows that the function to be applied (held in self.f ) will be applied to. This 

is in opposition to the built-in pandas sum function that simply passes an 

ndarray to be operated on to the NumPy sum function, which then iterates 

and sums the data in C and returns the resulting ndarray back to Python. 

This process of running the operation on the data in C instead of Python is 

known as vectorization. Essentially, vectorization is able to achieve a huge 

speedup over the alternative of running the operation in Python. For all 

the reasons covered in Chapter 3, looping and performing operations in 

C is much more performant than Python. However, the speedup doesn’t 

always come from just looping in C.

Vectorized operations allow you to apply a mathematical operation to 

a sequence of numbers. For example, if you want to add 4 to each element 

in an ndarray, you specify that using the syntax arr + 4. In the case of 

NumPy ufuncs (see the Appendix for a comprehensive list), they actually 

make use of specialized vector registers in the CPU itself. Vector registers 

are registers that can contain a series of values, and when an operation is 

performed on them, it is performed on each value in the register at once. 

So, what would have been a loop over an array of eight values and eight 

consecutive add instructions in the CPU becomes one add instruction 

operating on eight values in the CPU. As you can imagine, this leads 

to a huge speedup. Vectorization will also pad arrays of mismatched 

dimensions in order to make the dimensions match such that an operation 

can run. This process is known as broadcasting. When you add a new 

column in pandas via df[“new_col”] = 4, 4 is broadcast to have the same 

number of rows as all the other columns in the DataFrame. Similarly, 

aggregation functions like sum operate over a sequence of numbers using 

vectorization. What all of this boils down to is apply is not a vectorized 

operation—it loops in Python and should be avoided whenever possible.  

It becomes effectively the same thing as iterating over the rows and 

applying the function yourself as illustrated in Listing 6-3.
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Listing 6-3. Equivalent of apply implemented manually

results = [0]*len(df)

for i, v in df.itterrows():

     results[i] = v.sum()

df["sum"] = results

In fact, the performance of this custom implementation of apply 

illustrated in Listing 6-3 vs. Listing 6-1 where apply is used directly yields 

slightly better performance simply because there is less overhead to 

get to the guts of the operation when implementing this simple custom 

alternative.

How much slower is apply vs. using a built-in pandas operation though? 

Let’s look at some concrete examples and compare the performance. 

Comparing the performance of the apply example in Listing 6-1 to the 

alternative method in Listing 6-4 when performed on 100,000 rows, the 

apply function averages about 8.5 seconds compared to running the sum 

function directly off the pandas DataFrame which averages about 0.4 

milliseconds.

Listing 6-4. Alternative implementation of Listing 6-1

df.sum(axis=1)

Let’s look at another example. Say you have a data set with one column 

named A but that column has incomplete data and you wish to replace 

the values that are missing with the max of columns B and C. This could 

be implemented using apply as demonstrated in Listing 6-5, or this could 

be implemented in a much more performant way using the where method 

demonstrated in Listing 6-6.
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Listing 6-5. Replacing missing data using apply

def replace_missing(series):

     if np.isnan(series["A"]):

         series["A"] = max(series["B"], series["C"])

     return series

df = df.apply(replace_missing, axis=1)

Listing 6-6. Replacing missing data using the where method

df["A"].where(

     ~df["A"].isna(),

     df[["B", "C"]].max(axis=1),

     inplace=True,

)

The where method replaces falsey values with the value provided 

in the second parameter. This means, in Listing 6-6, all the NaN values 

are being replaced with the max of columns B and C. Note we are also 

specifying inplace=True so that this replace happens on the current 

DataFrame as opposed to creating a new DataFrame that would result in 

duplicated memory.

Let’s look at a trickier example in Listings 6-7 and 6-8. Suppose you 

have a DataFrame with two columns, fruit and order, and you want to drop 

all the data where the fruit is not present in the order for each row. pandas 

does have string operations including Series.str.find that will return True if 

a substring is present in a string for each value in a Series. However, it will 

only allow you to pass in a constant. In other words, you cannot specify a 

Series of substrings but only a single string value, so find will not work in 

this case. There is also no “in” check built into pandas that operates on 

two series objects, so although this is exactly what we want, pandas does 

not support it. This means we must implement some kind of customized 

solution ourselves, so let’s explore the performance of various options.
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Listing 6-7. Dropping rows whose order column does not contain 

the substring in the fruit column using apply

def test_fruit_in_order(series):

     if (series["fruit"].lower() in

          series["order"].lower()

     ):

          return series

     return np.nan

>> data = pd.DataFrame({

     "fruit": ["orange", "lemon", "mango"],

     "order": [

         "I'd like an orange",

         "Mango please.",

         "May I have a mango?",

     ],

})

          fruit     order

     0    orange    I'd like an orange

     1    lemon     Mango please.

     2    mango     May I have a mango?

>> data.apply(

     test_fruit_in_order,

     axis=1,

     result_type="reduce",

).dropna()

          fruit     order

     0    orange    I'd like an orange

     2    mango     May I have a mango?
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Listing 6-8. Solving Listing 6-7 using a list comprehension

mask = [fruit.lower() in order.lower()

     for (fruit, order) in data[["fruit", "order"]].values]

data = data[mask]

Using apply to solve this problem as in Listing 6-7 takes about 14 seconds 

on 100,000 rows, whereas using a list comprehension as in Listing 6-8 takes 

about 100 milliseconds. But why is a list comprehension so much faster than 

apply? Don’t they both loop in Python? List comprehensions are specially 

optimized loops within the Python interpreter. The bytecode that they 

translate into more closely resembles a loop written in C as they do not load a 

bunch of specialized Python list attributes. What follows is the bytecode for a 

for loop (Listing 6-9) vs. a list comprehension (Listing 6-10). Notice how much 

simpler and smaller the bytecode is for a list comprehension than for a for 

loop even though they are doing the same thing.

Listing 6-9. Bytecode translation of a simple for loop

def for_loop():
     l = []
     for x in range(5):
          l.append( x % 2 )

     0       0 BUILD_LIST               0
             2 STORE_FAST               0 (l)
     1       4 SETUP_LOOP               30 (to 36)
             6 LOAD_GLOBAL              0 (range)
             8 LOAD_CONST               1 (5)
            10 CALL_FUNCTION            1
            12 GET_ITER
       >>   14 FOR_ITER                 18 (to 34)
            16 STORE_FAST               1 (x)
     2      18 LOAD_FAST                0 (l)
            20 LOAD_METHOD              1 (append)
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            22 LOAD_FAST                1 (x)
            24 LOAD_CONST               2 (2)
            26 BINARY_MODULO
            28 CALL_METHOD              1
            30 POP_TOP
            32 JUMP_ABSOLUTE            14
       >>   34 POP_BLOCK
       >>   36 LOAD_CONST               0 (None)
            38 RETURN_VALUE             None

Listing 6-10. Bytecode translation of a list comprehension

def list_comprehension():
     l = [x % 2 for x in range(5)]

     0          0 LOAD_CONST                1
                2 LOAD_CONST                2
                4 MAKE_FUNCTION             0
                6 LOAD_GLOBAL               0 (range)
                8 LOAD_CONST                3 (5)
                10 CALL_FUNCTION            1
                12 GET_ITER
                14 CALL_FUNCTION            1
                16 STORE_FAST               0 (l)
                18 LOAD_CONST               0 (None)

                20 RETURN_VALUE             None

 When to use apply
So far, we’ve looked at some examples that don’t warrant the use of apply. 

Let’s take a look at one that does. Often the reality of working with data 

in the wild results in some much more complex scenarios. Say you want 

to calculate the percentile of score for each element in a DataFrame, the 

implementation of which is provided in Listing 6-11.
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Listing 6-11. Implementation of scipy.stats.percentileofscore

def percentileofscore(a, score):

     """

     Three-quarters of the given values lie below a given score:

     >>> stats.percentileofscore([1, 2, 3, 4], 3)

     75.0

     With multiple matches, note how the scores of the two

     matches, 0.6 and 0.8 respectively, are averaged:

     >>> stats.percentileofscore([1, 2, 3, 3, 4], 3)

     70.0

     """

     n = len(a)

     left = np.count_nonzero(a < score)

     right = np.count_nonzero(a <= score)

     pct = (right + left + (1 if right > left else 0)) * 50.0/n

     return pct

This means if we had the following input DataFrame, we would see the 

following output DataFrame after applying scipy.stats.percentileofscore 

using the pandas apply function (Listing 6-12).

Listing 6-12. Applying scipy.percentileofscore to each element in a 

DataFrame

>> from scipy import stats

>> data = pd.DataFrame(np.arange(20).reshape(4,5))

               0   1   2   3   4

           0   0   1   2   3   4

           1   5   6   7   8   9

           2   10  11  12  13  14

           3   15  16  17  18  19
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>> def apply_percentileofscore(series):

     return series.apply(

         lambda x:stats.percentileofscore(series,x)

     )

>> data.apply(apply_percentileofscore, axis=1)

               0     1     2     3      4

           0   20.0  40.0  60.0  80.0  100.0

           1   20.0  40.0  60.0  80.0  100.0

           2   20.0  40.0  60.0  80.0  100.0

           3   20.0  40.0  60.0  80.0  100.0

This is a fairly complicated use case and a very non-performant 

implementation since it calls the apply method twice for each row. 

Unfortunately, there is no built-in pandas function that matches the 

behavior of SciPy’s percentileofscore function being applied to each 

element like we need to do in this example. While we could do this 

calculation individually on the DataFrame one column at a time and 

piece the results back together, that would be a very cumbersome 

implementation. Listing 6-13 demonstrates this approach.

Listing 6-13. A more performant implementation of Listing 6-12

def percentileofscore(df):

     res_df = pd.DataFrame({})

     for col in df.columns:

         score = pd.DataFrame([df[col]]*5, index=df.columns).T

         left = df[df < score].count(axis=1)

         right = df[df <= score].count(axis=1)

         right_is_greater = (

             df[df <= score].count(axis=1)

             > df[df < score].count(axis=1)

         ).astype(int)
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         res_df[f'res{col}'] = (

             left + right + right_is_greater

             ) * 50.0 / len(df.columns)

     return res_df

percentileofscore(data)

Listing 6-13’s implementation results in better performance since we 

have eliminated one of the loops in Python (the loop over the rows) by 

doing pandas operations on all the rows at once. However, we were also 

forced to create a duplicate DataFrame where all columns are populated 

with the score in order to achieve these row-wise operations which 

results in undesirable memory overhead. Note we are also not reusing 

the implementation from SciPy but have re-implemented it using pandas 

operations, which is less than ideal for readability and increases the 

complexity and possibly the fragility of implementation. Fortunately, there 

is yet another way to implement this as we’ll discuss in the next section.

 Improving performance of apply using 
Cython
Taking a lesson from the previous example of a simple summation, if the 

pandas developers had provided this function for us off the DataFrame, 

it would have been implemented in C. So why don’t we just implement 

it in C ourselves? You might be saying to yourself, “I don’t know C—that 

sounds hard.” But, in fact, the Cython library makes it quite easy, and 

you don’t need to know C syntax to do it! Cython lets you write Python 

and compile it into C to be used as a C extension. First, we need to write 

our percentileofscore function that will operate on the entire DataFrame 

as shown in Listing 6-14. Then, compile it as shown in Listing 6-15, and 

finally we can use it as shown in Listing 6-16.
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Listing 6-14. A more performant implementation of Listing 6-12 

using Cython

from scipy.stats import percentileofscore as pctofscore

from copy import deepcopy

def percentileofscore(values):

     percentiles = [0]*len(values[0])

     num_rows = len(values)

     for row_index in range(num_rows):

         row_vals = values[row_index]

         for col_index, col_val in enumerate(row_vals):

             percentiles[col_index] = \

                 pctofscore(row_vals, col_val)

         values[row_index] = percentiles

Listing 6-15. setup.py for compiling Cython in Listing 6-14

import pyximport; pyximport.install(language_level=3)

from distutils.core import setup

from Cython.Build import cythonize

setup(

     ext_modules = cythonize("percentileofscore.pyx")

)

>> python setup.py build_ext --inplace

Listing 6-16. Using the compiled Cython function implemented in 

Listing 6-14

from percentileofscore import percentileofscore

percentileofscore(data.values)
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Note that the Cython function accepts values and not the full 

pandas DataFrame; this is because values is a two-dimensional array 

and something that is easily translatable into C, whereas the pandas 

DataFrame is a Python object and is not. Also note that the function 

modifies the data in place as opposed to returning a whole new two- 

dimensional array. This is a performance benefit as we do not have to 

allocate new memory for the new array, and once the data has been 

converted, we no longer need the original data set (at least in this 

particular case).

So how different is the performance of these approaches when 

run over 100,000 rows? Using apply in Listing 6-12 averages around 

58 seconds. Using pandas operations to effectively re-implement the 

SciPy equivalent as in Listing 6-13 averages around 24 seconds. The 

third approach of building a custom Cython function averages around 

4 seconds. There are also other advantages of going with the Cython 

approach other than performance. The SciPy function could be used 

as is and did not have to be re-implemented, so from an effort of 

implementation and readability perspective, it looks very appealing as 

well.

In conclusion, only when all other options have been exhausted 

should apply be used. It is equivalent in performance to iterrows and 

itercolumns and should be treated with the same level of precaution. In 

cases where apply needs to be used over a large data set and is causing a 

second or more slowdown, a customized Cython apply equivalent should 

be implemented instead so as to not degrade data analysis performance.
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CHAPTER 7

Groupby
Chances are at some point when working with data in pandas, you will 

need to do some sort of grouping and aggregation of data. This is what 

Groupby is for. It allows you to cluster your data into groups and run 

aggregated calculations on those groups.

 Using groupby correctly
When starting out, you may be inclined to do something like Listing 7-1 

where you cluster your data into groups, then loop over each group, and 

run some aggregate. This however results in terrible performance because 

just as we saw in Chapter 6, we are looping in Python and not in C. If 

instead you call the aggregate function directly off the groupby as in  

Listing 7-2, the groups will be passed into the aggregate function and the 

looping will occur in C.

Listing 7-1. Calculating total number of arrivals to each destination 

per year by looping over groups

>> arrivals_by_destination

                    number

     date    place

     2015    LON    10

     2015    BER    20

     2015    LON    5
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     2016    LON    10

     2016    BER    15

     2016    BER    10

>> groups = arrivals_by_destination.groupby(["date","place"])

>> for idx, grp in groups:

     arrivals_by_destination.loc[idx, "total"] = \

          grp["number"].sum()

>> arrivals_by_destination

                    number total

     date    place

     2015    LON    10     15

     2015    BER    20     20

     2015    LON    5      15

     2016    LON    10     10

     2016    BER    15     25

     2016    BER    10     25

Listing 7-2. Calculating total number of arrivals to each destination 

per year using groupby

>> arrivals_by_destination

                    number

     date    place

     2015    LON    10

     2015    BER    20

     2015    LON    5

     2016    LON    10

     2016    BER    15

     2016    BER    10

>> arrivals_by_destination["total"] = \

     arrivals_by_destination.groupby(["date","place"]).sum()

>> arrivals_by_destination
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                    number total

     date    place

     2015    LON    10     15

     2015    BER    20     20

     2015    LON    5      15

     2016    LON    10     10

     2016    BER    15     25

     2016    BER    10     25

The difference in performance between Listing 7-1 and Listing 7-2 is 

proportional to the number of groups. With just 8 groups, the performance 

of Listing 7-1 is twice as slow as Listing 7-2, and with 16 groups, it’s 

four times as slow. Note in both these examples, we are starting with a 

pre-indexed DataFrame. This means the groups have already been pre- 

computed so the groupby does not have to calculate all the groups again 

but just reuse the existing groups in the index. This is a huge timesaver, 

particularly if you are going to be doing a lot of groupby operations over 

the columns in the index.

You may encounter a groupby scenario where you need a custom 

function that isn’t built-in off the groupby object. This, however, is not the 

time to give in to looping. What you are implementing when you loop over 

the groups is the same performance as if you called apply on the groupby 

object itself and passed in your custom function. If you find yourself in a 

situation like this, consult Chapter 6 on apply and implement your custom 

function in Cython.

 Indexing
Working with a sorted index provides a substantial speedup when 

there are many different values in each index. You may encounter the 

warning “PerformanceWarning: indexing past lexsort depth may impact 

performance.” This is referring to the number of levels in an index that are 

sorted lexically or alphabetically.
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When accessing an unsorted index, pandas has O(n) performance 
since it has to search the entire index for the index value as is demonstrated 
in Figure 7-1. When accessing a sorted index, pandas has O(log(n)) 
performance as it uses binary search to find the index value such as in 
Figure 7-2. When the index is unique, it uses a hash lookup which has 
O(1) performance as in Figure 7-3. This can make a huge difference when 
n, the number of values in the index, is very large which is why unique 
indexes result in the fastest performance. It’s worth noting that just as is the 
case in Listing 7-2, a unique index cannot always be achieved, so the best 
performance we can get in those scenarios is with a sorted multi-index.

Figure 7-1. Unsorted index access O(n)

Figure 7-2. Sorted index access O(log(n))
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 Avoiding groupby
So far, we’ve explored how to get the best performance when running a 

groupby operation. Sometimes, however, the most performant option is to 

not use a groupby at all. If you find yourself having to do a lot of groupby 

operations on your DataFrame, you may consider re-orienting your 

DataFrame so that you don’t need to use groupby. Since groupby groups 

the data and then runs an aggregate function on each group of data, it is 

essentially doing a loop over the number of groups. Even though in the 

most performant case the groups are already pre-computed, the indexes 

are fast to access, and the looping is run at the C level, all of that still takes 

time. It’s much more performant in pandas to run simple row-wise or 

column-wise operations.

Let’s take a look at how we can reformat the DataFrame in Listing 7-3 

so that we can avoid using groupby. If we keep the index columns where 

they are but instead break out the multiple values for each index across the 

row, we can do two things to optimize this sum by groups operation. The 

first thing this does is eliminate the groupby sum operation and turn it into 

a simple sum across the columns. The second thing this does is make the 

indexes unique. Note we are taking on some additional memory overhead 

by doing this as the gaps in the data will be filled with zeros. Integers, 

however, take up little space even in a very large DataFrame so the overall 

performance speedup is worth the additional memory usage.

Figure 7-3. Unique index access O(1)

Chapter 7  Groupby



140

Listing 7-3. Calculating total number of arrivals to each destination 

without using groupby

>> arrivals_by_destination

     number          0      1

     date    place

     2015    BER    20      0

     2015    LON    10      5

     2016    BER    15      10

     2016    LON    10      0

>> arrivals_by_destination["total"] = \

     arrivals_by_destination.sum()

Listing 7-2 is approximately 8 times slower than Listing 7-3, whereas 

Listing 7-1 is 25 times slower. This is why it’s so important to carefully 

select the DataFrame format that best suits the operations you plan to 

perform on it. It can literally save you minutes of execution time.

We’ve looked at how to use groupby most efficiently, with pre-indexing 

and using an aggregate function directly off the groupby object instead 

of looping. We’ve also covered how to reformat your DataFrame so that 

you don’t need to use a groupby and can use a more performant row- or 

column-wise operation. Unfortunately, there isn’t one easy catch-all 

DataFrame format or groupby method that can be applied to all use cases. 

But you should now have an understanding and a repertoire of methods to 

help you solve your particular groupby problem in the most efficient and 

simplest way possible.
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CHAPTER 8

Performance 
Improvements Beyond 
pandas
You may have heard another pandas user mention using eval and query to 

speed up evaluation of expressions in pandas. While use of these functions 

can speed up evaluation of expressions, it cannot do it without the help 

of a very important library: NumExpr. Use of these functions without 

installing NumExpr can actually cause a performance hit. In order to 

understand how NumExpr is able to speed up calculations however, we 

need to take a deep dive into the architecture of a computer.

 Computer architecture
CPUs are broken up into multiple cores where each core has a dedicated 

cache. Each core evaluates one instruction at a time. These instructions are 

very basic compared to what you might see in a Python program. One line 

of Python is often broken up into many CPU instructions. Some examples 

include loading data such as storing an array value into a temporary 

variable when looping, jumping to a new instruction location such as 

when calling a function, and an evaluation expression such as adding two 

values together.
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In modern cores, the evaluation is split up into many phases. These 

multiple phases are called a pipeline, where each instruction evaluation is 

piped through a series of phases until the evaluation is complete. Modern Intel 

CPUs are typically broken up into about 15 pipeline phases. Figure 8- 1 shows 

an example of a simple five-phase pipeline processor. First, the instruction is 

fetched typically from a dedicated instruction cache, or if not present, it must 

be fetched from a farther cache or main memory. Then the instruction is 

decoded. In the decoding phase, each instruction has a particular numerical 

code that decodes to a certain type of instruction and results in certain 

behavior so the decode phase is responsible for decoding the instruction and 

gathering the data from the registers (you can think of these as a very small 

dedicated memory cache) to pass to the execution phase. In the execution 

phase, the instruction is actually run; this may mean two values are added 

together, or if it’s a load instruction, simply a memory address is passed to 

the next phase. Since an instruction may be a jump to a different memory 

location rather than a sequential location, part of the evaluation phase is also 

determining the next instruction to send through the pipeline. In the memory 

access phase, any data that needs to be loaded from memory into a register 

Figure 8-1. Five-phase pipeline architecture
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for an upcoming instruction is fetched and then loaded into a register in the 

writeback phase. This means that if you wish to add two values together, those 

values must first be loaded with a load instruction into two different registers 

before an add instruction can be run. So, the line of Python code in Listing 8-1 

consists of three instructions inside the CPU.

Listing 8-1. Converting a line of Python code into pseudo-code 

CPU instructions

a = b + c        load b

                 load c

                 add a, b, c

While the CPU instructions in Listing 8-1 may look similar to Python 

bytecode, it’s important to note that they are not the same. Remember 

that bytecode is run on the Python Virtual Machine, whereas CPU 

instructions are run on the CPU. While you can use the dis module (dis 

standing for disassembly) to output the bytecode and it may give you 

some idea of what the machine code might look like, it is not machine 

code. The Python Virtual Machine contains a giant switch statement 

that translates a bytecode instruction into a function call which then 

executes CPU instructions. So, while we may think of Python as being an 

interpreted language that runs bytecode instructions in a software virtual 

machine, the fact is at some point that add instruction makes its way to 

the CPU. Eventually that add becomes a series of CPU instructions that are 

shown in Listing 8-1.

It’s very common for the memory access phase of the instruction pipeline 

to take longer than all the other pipeline phases. Rather than making all the 

other pipeline phases as slow as the memory access phase or inserting NOPs 

(commonly called no ops or no operations), other instructions not dependent 

on the data being loaded are used to fill the time. This enables the processor 

to keep evaluating instructions even though one phase of the instruction may 

take hundreds of cycles to complete. Compilers also play a part in keeping the 
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processor busy during long instruction loads by re-ordering instructions so that 

instructions not dependent on a memory load occur between a memory load 

instruction and the next instruction that is dependent on that memory having 

loaded. In modern Intel processors, re-ordering can occur inside the CPU as 

well. Of course, sometimes there are no instructions to fill the gap and so NOPs 

are used as a last resort. This ensures that the core’s instruction throughput is still 

as close to one instruction per clock cycle (phase) as possible so that you don’t 

have to wait hundreds of cycles for a memory load to complete.

The takeaway here is in order to make efficient use of your CPU and get 

the highest instruction throughput possible you must make sure that your 

data is loaded before you use it and that you give it enough computations 

to do in between the data you are operating on and the next data you need.

So far, we’ve covered how the CPU operates on a low level to evaluate 

instructions and how it works to achieve the best performance possible; 

now let’s take a deeper look at the memory access phase and why it’s often a 

bottleneck. Figure 8-2 shows a typical cache architecture of a modern Intel 

CPU. Each core has a dedicated level 1 data, level 1 instruction, and a level 

2 cache. All cores share the level 3 cache and main memory. Each of these 

caches is placed farther and farther from the core on the board itself. While 

core speeds are closely correlated to transistor size and speed, memory 

speeds are correlated to how physically close they are to the core on the board.

Figure 8-2. Cache architecture
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When working with large data sets as is the expected use case in pandas, 

all of that data cannot be stored inside the cache. It typically takes about three 

clock cycles or instruction phases to access level 1 cache and at each level 

exponentially increases in latency. To access the level 3 cache, it takes about 

21 clock cycles, and if the data we wish to load is not in any of the caches and 

it has to go all the way to main memory to load it, it takes anywhere from 150 

to 400 clock cycles. At around 21 clock cycles, the performance hit incurred 

by accessing the level 3 cache will likely exceed the number of pipelines in 

our core. If we have to delay the instructions in our pipeline until the data 

is retrieved without re-ordering to pad the delay, that could stall our entire 

program for 21 clock cycles. 21 clock cycles of delay on a 4 GHz processor 

is about 5.25 ns. This might seem insignificant and it is if we only incur this 

delay a couple times in our program. However, keep in mind we are typically 

operating on megabytes of data in pandas, and since not all of that is going to 

fit in the caches, we will likely incur many performance hits like this. In fact, 

we’re even more likely to incur larger performance hits all the way out to main 

memory if running an operation over the entire data set.

Caches are generally designed for the best performance of the 

average case. In software this means things like looping over arrays which 

are sequential data structures. Because of this, when they have to load 

something into the cache, they load sequential blocks of memory at a 

time called cache lines. This helps to offset the performance hit of loading 

something into the cache. The idea is typically programs operate on 

sequential memory, so by loading the memory that follows the memory 

the core needs right now, it will save needing to load that memory later.

In order to make the most effective use of caching, data that is located 

sequentially or close together in memory should be repeatedly referred to in 

a short time span. Sequential data will result in less cache loads. Repeatedly 

referring to the same data in a short time span will prevent new data from 

bumping the older data out of the cache and causing a cache miss that will 

require the same data to be loaded into the cache again. Arrays, as we learned 

in Chapter 3, are sequential data types, meaning the first element occurs at 

Chapter 8  performanCe Improvements Beyond pandas



146

address A and the last element occurs at A plus the length of the array. When 

you create a bunch of objects in memory with many attributes that point to 

other objects and reference those attributes, each object has an address that 

is not sequential, and thus you will not be able to utilize your cache as you will 

be loading a bunch of different cache lines from a bunch of different memory 

locations. Figure 8-3 demonstrates these two types of memory accesses.

Figure 8-3. Sequential memory access vs. object attribute access  
over time

 How NumExpr improves performance
NumExpr improves performance of pandas by running calculations on 

subsets of the pandas DataFrame that are the size of the cache. Take the 

example ( A + B ) ∗ 3 where A and B are pandas DataFrames. Without 

NumExpr, each row of A + B would be added together, stored into a 

temporary structure, and then multiplied by 3. With NumExpr, the first n 

number of rows that fit inside the cache are added together and multiplied 
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by 3 before moving to the next n rows. In this way, NumExpr is able to 

reduce the number of memory loads and stores which we learned in the 

“Computer architecture” section were the bottlenecks of the CPU and thus 

a computer program. Listing 8-2 demonstrates this.

Note the cache in Listing 8-2 is three cache lines (enough to hold 64 rows 

of A, B, and C data). While this is much smaller than a real-world level 1 

cache which can generally hold around 128 cache lines, it simplifies the 

example. This means that after computing the result of A + B for 64 rows, the 

result must be stored back out to memory in order to make room for the next 

64 rows of A and B and their result. Note that by using NumExpr’s method 

of running the computation over cache-sized chunks, we have reduced 

the number of loads and the number of stores. Also note the example in 

Listing 8-2 is written as in-order pseudo-code CPU instructions (i.e., these 

are not the actual instructions that would execute inside the core, and 

they would most likely be re-ordered in the real world in order to offset the 

memory load delay as discussed in the “Computer architecture” section).

Listing 8-2. CPU pseudo-code instructions during evaluation of a 

pandas expression with and without NumExpr

# NumExpr is not installed.        # NumExpr is installed.

C = ( A + B ) * 3                  C = pd.eval("( A + B ) * 3")

load A[0:64]                       load A[0:64]

load B[0:64]                       load B[0:64]

add C[0], A[0], B[0]               add C[0], A[0], B[0]

                                   mult C[0], C[0], 3

add C[1], A[1], B[1]               add C[1], A[1], B[1]

                                   mult C[1], C[1], 3

.

.
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add C[63], A[63], B[63]           add C[63], A[63], B[63]

                                  mult C[63], C[63], 3

store C[0:64]                     store C[0:64]

load A[64:128]                    load A[64:128]

load B[64:128]                    load B[64:128]

add C[64], A[64], B[64]           add C[64], A[64], B[64]

                                  mult C[64], C[64], 3

add C[65], A[65], B[65]           add C[65], A[65], B[65]

                                  mult C[65], C[65], 3

.

.

add C[127], A[127], B[127]        add C[127], A[127], B[127]

                                  mult C[127], C[127], 3

store C[64:128]                   store C[64:128]

load C[0:64]

mult C[0], C[0], 3

mult C[1], C[1], 3

.

.

mult C[3], C[63], 3

store C[0:64]

load C[64:128]

mult C[64], C[64], 3

.

.

mult [127], C[127], 3

store C[64:128]

Note that in order to run an evaluation like this all at once on chunks  

of the pandas DataFrame(s), we must communicate to NumExpr the 

whole expression prior to computation. (A + B) ∗ 3 must be specified in 

such a way that NumExpr knows it can be combined together.  
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This is where query and eval come in.eval allows you to specify a complex 

expression as a string to signal NumExpr that it can be run on a chunk of 

the DataFrame(s) at a time. query is effectively another form of eval as it 

calls eval underneath.

Depending on the computation, the shape and size of the data, the 

operating system, and the hardware you are using, you may find that 

using NumExpr and eval actually results in a significant performance 

degradation. It’s always good to run a performance comparison before 

blindly combining computations into an eval or query. NumExpr really 

only works well for computations that exceed the size of the level 3 cache. 

Typically, this is greater than 256,000 array elements. As we’ve seen with 

other pandas functions, it also requires the data type and computation 

be easily translatable into C. So, for example, datetimes will not yield a 

performance improvement as they cannot be evaluated in NumExpr. 

It’s also worth noting that using NumExpr directly can be much more 

performant than using eval or query in pandas. Listing 8-3 demonstrates 

such an example.

Listing 8-3. An example where eval is slower than the typical 

pandas syntax with NumExpr

import pandas as pd

import numpy as np

import numexpr as ne

nrows, ncols = 1000000, 1

df1, df2, df3, df4 = [pd.DataFrame(

     np.random.randn(nrows, ncols)) for _ in range(4)]

# Calculate the sum using normal syntax.

df_sum1 = df1 + df2 + df3 + df4

# Calculate the sum using eval so that NumExpr optimizes it.

df_sum2 = pd.eval("df1 + df2 + df3 + df4")
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# Calculate the sum using NumExpr directly.

a1, a2, a3, a4 = (

      df1.to_numpy(), df2.to_numpy(),  

df3.to_numpy(), df4.to_numpy()

)

df_sum3 = ne.evaluate("a1 + a2 + a3 + a4")

The calculation of df_sum1 is twice as fast as df_sum2. This is generally 

the opposite of what we would expect as df_sum2 is being calculated using 

NumExpr. However, if we use NumExpr directly instead of going through 

pandas eval, we find that df_sum3 is about four times faster than df_sum1. 

This is due to the slowdown incurred inside the pandas eval function itself. 

Inside eval, it wraps up the environment into a dictionary of local and 

global variables and makes them accessible to NumExpr. This includes 

converting the DataFrames to NumPy arrays. All of this takes a significant 

amount of overhead. So much so that it actually ends up being slower than 

not using eval and NumExpr. Very often, as is the case here, it’s much faster 

to convert the DataFrames explicitly to NumPy arrays and call NumExpr 

explicitly on those converted DataFrames.

Now that we’ve looked at how NumExpr improves pandas 

performance of combined computations at the hardware level, let’s look 

at how another one of NumPy and NumExpr’s dependencies, BLAS, takes 

advantage of the hardware to optimize its computations.

 BLAS and LAPACK
NumPy uses Basic Linear Algebra Subprograms (BLAS) underneath to 

implement very performant linear algebra operations such as matrix 

multiplication and vector addition. These subprograms are typically 

written in assembly—a very low-level and performant language that 

closely resembles CPU instructions. The Linear Algebra Package (LAPACK) 

provides routines for solving linear equations. It is typically written in 

Fortran and, just like NumPy, calls into BLAS underneath. There are many 
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implementations of BLAS and LAPACK available such as the Netlib BLAS 

and LAPACK, OpenBLAS, Intel MKL, Atlas, BLIS, and so on, each with their 

own pros and cons. But, let’s explore more deeply how BLAS improves the 

performance of pandas operations.

BLAS optimizes matrix operations by using Single Instruction Multiple 

Data (SIMD) instructions that make use of vector registers in the hardware. 

All CPUs have registers that hold the data that a CPU instruction needs to 

operate on. Vector registers are just a special type of those registers. They 

allow storage of multiple pieces of data in a single register, and when an 

operation is run on the data, it is run on each piece of data in the register 

at once. The advantage of SIMD instructions is that you can load a bunch 

of data into a register and run the same operation on it concurrently rather 

than having to run the same operation on each element consecutively. By 

using a SIMD instruction, we reduce the number of CPU clock cycles that 

it takes to complete the computation. For example, if a vector register is 

able to hold four data elements, then we have reduced the number of clock 

cycles from four to one. This means if you have a dot product of y and x as 

in Listing 8-4, then you can specify it as a series of SIMD instructions as in 

Listing 8-5. Note the y and x data is first loaded into the vector registers r1 

and r2, and then the dot product is computed and stored in register r1.

Listing 8-4. Dot product

 

Listing 8-5. Dot product as SIMD pseudo-instruction

load vr2, Y1, Y2, Y3, Y4

load vr1, X1, X2, X3, X4

dot r1, vr2, vr1
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We’ve left out one important detail here which is that typically data 

can only be loaded into vector registers if it is sequential in memory. This 

poses a slight problem for most complex vector operations which typically 

happen on rows of one matrix and columns of another matrix or vice 

versa. BLAS is the opposite of Python in that its arrays are column majored 

instead of row majored. BLAS also does not have two-dimensional 

arrays—they are stored as a single-dimensional array. Listing 8-6 shows an 

example of a Python array and how it would be stored in BLAS.

Listing 8-6. Comparison of a matrix representation in Python vs. 

BLAS

Python                   BLAS

y = [[1, 2], [3, 4]]     y = [1, 3, 2, 4]

y[row][col]              y[col * num_cols + row]

So, going back to the dot product example in Listing 8-5, because 

these arrays are both represented as a single-dimensional array, despite 

one being a bunch of rows and the other being a bunch of columns, they 

both have contiguous memory addresses and so they both can be loaded 

into the vector registers. This issue of consecutive memory addresses only 

comes into play when working with more complex matrices and more 

complex operations, so let’s look at a more complex example.

There are many ways to perform a matrix multiply. One way, using dot 

product is shown in Figure 8-4. Taking the dot product of the first matrix’s 

row with the second matrix’s column will yield the value of a single 

element in the result of the matrix multiply.
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In Figure 8-4, we now run into a situation where loading a row of 

the first matrix into a vector register is not possible as the memory is not 

contiguous. Note, however, if we transpose the matrix so that the rows 

become the columns, then the memory is contiguous and we can load the 

row of the first matrix into a vector register.

But what happens if the matrix is very large? If we transposed a 1000 

by 1000 matrix, it would not all fit in the cache and it would result in huge 

delays when it had to go out to main memory to write and read the data. 

BLAS optimizes for this by breaking up the matrix data into blocks just like 

NumExpr. An example is shown in Figure 8-5. By doing this, BLAS is able to 

keep the transposed matrix all in the cache and also reuse that placeholder 

transpose buffer on each block. This is advantageous not just for keeping 

the transposed buffer in the cache but also because it doesn’t have to keep 

re-allocating a new buffer for each block. It simply overwrites the buffer of 

the previous block with the new transposed data for the current block.

Figure 8-4. Matrix multiplication using dot product

Figure 8-5. Breaking up a large matrix into blocks
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By breaking up the problem into blocks, BLAS is also able to take 

advantage of multiple cores. It can run each of the blocks on a different 

core which also saves time.

Another technique BLAS uses to speed up the computation is loop 

unrolling. This is when you convert a loop into a series of repeated 

instructions. Loop unrolling removes the need to predict branches and 

potentially incur a branch prediction penalty for mispredicting a branch. 

Recall that in the data pipeline instructions are loaded and processed 

potentially before the result of a conditional instruction check occurs. So, 

the hardware tries its best to correctly predict the result of that conditional 

and which branch will be taken before it knows for certain. Loop unrolling 

also avoids having to jump the instruction pointer to a new location in 

instruction memory which potentially avoids cache misses and having to 

go out to main memory to load instructions that aren’t in the instruction 

cache. It also avoids the conditional instruction check at the beginning of 

each iteration which saves CPU cycles. By unrolling a loop, you may also be 

able to re-order computations such that the computations that use the same 

memory are placed close together, thus reducing register load instructions.

In summary, BLAS uses a lot of techniques to improve performance 

of linear algebra operations: SIMD instructions, blocking, loop unrolling, 

threading, and so on. There are also many implementations of BLAS 

available, and choosing a more performant option for certain types of 

pandas programs may have a huge impact.

If you find yourself doing a lot of linear algebra operations with pandas, 

you may consider switching to a more performant BLAS implementation. 

np.config_show() will show you what BLAS implementation NumPy is 

currently using. The Netlib BLAS implementation does not fully support 

multiple cores and tends to be much less performant than the alternatives. 

Other implementations like OpenBLAS fully support multiple cores and 

are open source and freely available. As of Anaconda 2.5 or later, Intel MKL 

is the default BLAS library and, though proprietary and large, is highly 

optimized and available for free.
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By ensuring NumPy is using optimized dependencies NumExpr 

and BLAS, you can significantly improve performance of certain pandas 

operations. These libraries optimize operations to the particular hardware 

you are running on to ensure you are getting the best performance 

possible. But be mindful of when they will and will not boost performance. 

In the final chapter, we’ll look at the future of pandas 1.0 and beyond.
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CHAPTER 9

The Future of pandas
There are an increasing number of packages that are built on top of or 

compatible with pandas. Some of these like sklearn-pandas integrate 

with other packages like scikit-learn to utilize DataFrames for machine 

learning. Others, like Plotly, provide interactive plotting capabilities and 

online collaboration. pandas has recently made the push in the last couple 

years to branch out into other languages. There is now a pandas.js package 

and a ruby wrapper that enables ruby users to call into the Python pandas 

API. There is also a push to optimize data analysis at a more global scale 

using an up-and-coming LLVM called Weld. It takes an approach similar 

to NumExpr but on an even larger scale. The idea is to combine all the 

data analysis operations together lazily and only run them when an actual 

result is needed. This allows the operations to be optimized for parallel 

compute and loading of memory on a much grander scale.

 pandas 1.0
The pandas community has been feverishly working on pandas 1.0, the 

first big upgrade since the initial release of pandas. It addresses a lot of the 

shortcomings in previous versions.

pandas 1.0 adds a new pandas specific NA type. This new type will 

make null values consistent across all types of columns. As you may recall 

from Chapter 4, NaNs in pandas 0.25 must be stored as floats; they cannot 

be Booleans, integers, or strings. Previously, it was not possible to load 

a column with NaNs in it as an integer type—you had to convert it to an 
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integer after it was loaded. Now with pandas 1.0, it’s possible to load a 

column with NaNs as an integer type. Listing 9-1 is the same example 

presented earlier in the text in Listing 4-15; only now it’s making use of the 

new nullable integer type available in pandas 1.0. Note the memory usage 

of this new type takes up one more byte than is indicated by the data type. 

So, while the type is set to an Int16Dtype, each element actually takes up 

three bytes instead of two. The extra byte corresponds to a Boolean mask 

in the IntegerArray implementation which marks which values are NA.

Listing 9-1. Example of how pandas handles NaNs in the data in 1.0

>> data = io.StringIO(

     """

     id,age,height,weight

     129237,32,5.4,126

     123083,20,6.1,

     123087,25,4.5,unknown

     """

)

>> df = pd.read_csv(

     data.

     dtype={

         'id': np.int32,

         'age': np.int8,

         'height': np.float16,

         'weight': pd.Int16Dtype()},

     na_values=["unknown"],

     index_col=[0],

)

              age    height  weight

     id

     129237   32     5.4     126
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     123083   20     6.1     <NA>

     123087   25     4.5     <NA>

>> df.memory_usage(deep=True)

     Index     24

     age        3

     height     6

     weight     9

>> df.dtypes

     age       int8

     height    float16

     weight    Int16

>> df.index.dtype

     dtype('int64')

With the introduction of pd.NA and the addition of nullable Boolean 

arrays and a dedicated string data type, the null values can be consistently 

represented using the same type across all data types. This seemingly 

simple change also improves subtle inconsistencies across the API due to 

having an inconsistent null type, for example, Categorical.min now returns 

the expected minimum value instead of NaN as shown in Listing 9-2.

Listing 9-2. Behavior change of pandas 1.0 when computing the 

minimum of a Categorical

>> pd.Categorical([1, 3, 5, np.nan], ordered=True).min()

NaN

>> pd.Categorical([1, 3, 5, pd.NA], ordered=True).min() # 1.0

1

The introduction of a dedicated string data type (StringDtype) is also huge 

in itself. In pandas 0.25, strings were stored as objects which take up a lot of 

space and do not guarantee data consistency because an object can hold any 

type. With the new explicit StringDtype, it will take up less space, guarantee 
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consistency within the column, and also identify as a text type rather than 

lumping text values in with all values that are of the generic object container 

type. Listing 9-3 demonstrates how much less memory the new pandas string 

type uses. When using the new string type, each value takes up only 8 bytes, 

which is a huge decrease in memory compared to previous versions where 

each object value took up about 60 bytes.

Listing 9-3. Memory usage of the pandas 1.0 string type compared 

to using object in previous versions

>> data = io.StringIO(

     """

     id,name

     129237,Mary

     123083,Lacey

     123087,Bob

     """

)

>> # Load the data with pandas 0.25.3.

>> df = pd.read_csv(

     data,

     dtype={'id': np.int32},

     index_col=[0],

)

               name

     id

     129237   Mary

     123083   Lacy

     123083   Bob

>> df.memory_usage(deep=True)

     Index     24

     name      197
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>> df.dtypes

     name         object

>> # Load the data with pandas 1.0.

>> df = pd.read_csv(

     data,

     dtype={

         'id': np.int32,

         'name': pd.StringDtype()},

         index_col=[0],

)

              name

     id

     129237   Mary

     123083   Lacy

     123083   Bob

>> df.memory_usage(deep=True)

     Index     24

     name      24

>> df.dtypes

     name      string

Nullable Booleans are also a huge win for pandas users. Previously, 

Boolean columns could not have a nullable state; only True and False were 

allowed. This meant users had to use an integer representation or an object 

to represent a Boolean with a third NaN state, but now they can use the 

pandas BooleanArray type.

The introduction of the new types in pandas, namely, the nullable 

Boolean, pandas NA type, and dedicated string type, yields marked 

improvements to the pandas type casting in pandas 1.0. Now, integers, 

Booleans, and strings will be recognized and stored as smaller data types 

even when they contain null values. This is a huge win for performance 

and saving memory on load. Note that while these new types exist and are 
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inferred when creating pandas arrays, they are not inferred when creating 

DataFrames. You must explicitly specify the types for pandas to use them 

when creating pandas DataFrames. This is why in Listings 9-1 through 9-3 

the new pandas types were explicitly specified when loading data using 

read_csv. If the types were not explicitly specified, they would be inferred 

to be the same types as in previous versions of pandas.

Rolling apply methods also now support an engine argument that gives 

the option of using Numba instead of Cython. Numba converts the custom 

apply function into optimized compiled machine code similar to Cython, 

but for data sets with millions of rows and custom functions that operate 

on NumPy ndarrays, the pandas team found Numba to produce more 

optimized code than Cython. It only makes sense to use Numba, of course, 

when you are running the calculation a lot of times over and over again 

since Numba has the overhead of compiling the first time it is used.

There has been a lot of work to clean up the Categorical data type in 

pandas 1.0. As you may recall from Chapter 2, the Categorical data type 

is used to hold metadata with a unique set of values. Deprecations within 

the API have been removed, previous operations on the data type that did 

not return back a Categorical now do, and there is improved handling of 

null values. There are also performance improvements, for example, now, 

all the values passed into searchsorted are converted to the same data 

type before running a comparison. Listing 9-4 shows an example of using 

searchsorted on a Categorical. This operation in pandas 1.0 is about 24 

times faster than in previous versions.

Listing 9-4. Using searchsorted on Categorical

import pandas as pd

metadata = pd.Categorical(

     ['Mary'] * 100000 + ['Boby'] * 100000 + ['Joe'] * 100000

)

metadata.searchsorted(['Mary', 'Joe'])

Chapter 9  the Future oF pandas



163

There have also been a lot of refactors and bug fixes made to groupby. 

This used to be a complex bit of code to look at with a fair number of 

bugs, but there have been many improvements in pandas 1.0 including 

improved handling of null values, offering a selection by column name 

when axis is one, allowing multiple custom aggregate functions for the 

same column to match series groupby behavior, and many more.

The support of load and dump options for reading CSV data in pandas 

far exceeds options for other loaders. While supporting so many options 

leads to complicated code for developers, it is very nice for users. Some of 

the loaders have a nice balance of options, but some fall short in load and 

dump capabilities that could lead to performance speedup for users. As we 

saw in Chapter 3, read_sql is missing the ability to specify data types during 

load which can be fairly critical for performance. The CSV loader on the 

other hand has so many options, some of which can result in a performance 

slowdown if you aren’t careful. A lot of work has been done to address this 

and standardize the options for input and output data methods in pandas 1.0.  

For example, both read_json and read_csv are now able to parse and 

interpret Infinity, –Infinity, +Infinity, and NaNs as expected. In previous 

versions, read_json didn’t handle NaNs or Infinity strings, and read_csv 

didn’t cast Infinity strings as floats. The usecols parameter in read_excel has 

also been standardized to behave more like read_csv’s usecols parameter. 

Previously, usecols was allowed to be a single integer value, whereas now it’s 

a list of integer values just like read_csv.

There have been a lot of other subtle performance improvements to 

pandas 1.0 as well. We’ll look at a couple of them here just to give you some 

idea of what methods are being used to improve performance.

A regression in performance of the infer_type method was fixed in 

pandas 1.0. An if statement was moved down in the implementation to 

avoid a performance slowdown introduced by converting data types to 

objects when running an isnaobj comparison prematurely as shown in 

Figure 9-1.
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Another performance fix was made to the replace method which is used 

to replace values with a different value. Here, some additional code was 

inserted above the original to take advantage of some early exit conditions. 

If the list of values to replace is empty, simply return the original values or a 

copy of the original values if inplace is False. If there is only one valid value, 

replace that single value with the new value. The values were also converted 

to a list of valid values as opposed to being left as a list of values that may or 

may not even be legal for the given column. Note while it is not explicitly 

shown in Figure 9-2, the new to_replace list was also used in the final replace 

call. By doing so, this reduced the number of replaces that were needed 

and improved the overall performance over large data sets where several 

columns did not contain any of the values that were to be replaced.

Figure 9-1. A diff of the performance fix for infer_type
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The performance of comparing indexes for equality was also 

improved. This is another performance improvement that was made by 

adding the early exit condition shown in Figure 9-3. If the dimensions are 

not equivalent, then the indexes are determined to be not equivalent and 

the MultiIndex equality check exits early.

Figure 9-2. Additional code inserted above original replace logic to 
take advantage of early exit conditions

Figure 9-3. Additional code inserted into is MultiIndex check to take 
advantage of early exit conditions
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Improvements were also made to the is_monotonic check on an index. 
Previously, the result relied on the generation of cached values, but when 
the levels of an index are already individually sorted, is_lexsorted of codes 
can be used to determine monotonicity instead. Recall from Chapter 3 
that levels are the unique list of values within the index and codes hold the 
position of those values within the index. codes represent each value as 
an integer, and this integer is the index location of the value in the list of 
values. So, putting that all together, is_lexsorted is an O(n) algorithm which 
is operating on integers that represent the values, whereas the previous 
implementation was always operating on the index values directly in 
an O(nlog(n)) check, first sorting them using NumPy’s lexsort and then 
determining based on the sort result whether any of them were not in 
monotonic order. By using the already sorted integer representations of 
the values, we are able to more quickly determine monotonicity. Figure 9-4 

shows the change in bold.

Figure 9-4. Additional code inserted to improve performance of 
is_monotonic check
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There is talk from the pandas team of removing the inplace option from 

all pandas methods, and for that reason, they have generally recommended 

to not use it. The inplace option, contrary to what its name suggests, does 

not always operate inplace without duplicating memory. This typically 

happens as a result of pandas type inference where the operation results in 

a data type change, and thus the data has to be reconstructed with the new 

type. Listing 9-5 illustrates this example. When the NaN value is replaced 

with 0.0, the type is still a float and the value can be directly replaced in the 

NumPy array without having to create a new one and copy memory. When 

0.0 is replaced with the string null, the float64 type cannot hold a string 

and so the NumPy array must be rebuilt and the memory must be copied 

into a new array of type object. Both these operations were specified with 

inplace=True, yet the latter resulted in a memory copy because the type of 

the underlying data structure had to change.

Listing 9-5. An example of inplace=True copying rather than 
modifying the data

>> data = pd.DataFrame({"size":[np.nan,1.0,3.5]})
>> data.dtypes
     size     float64
>> id(data._data.blocks[0].values)
     4757583472
>> data.fillna(0.0, inplace=True)
>> data.dtypes
     size     float64
>> id(data._data.blocks[0].values)
     4757583472
>> data.replace(0.0, "null", inplace=True)
>> data.dtypes
     size     object
>> id(data._data.blocks[0].values)

     4757572464
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While attempting to not duplicate data is arguably better performance 

than always duplicating it, in an effort to shift users with as little pain as 

possible over to a world where inplace does not exist, the pandas team has 

recommended to not use inplace=True.

In the last couple years, the original author of pandas, Wes McKinney, 

has started working on a new project called Apache Arrow1 which he 

hopes will one day be the back end of pandas. It aims to fix a lot of the core 

issues of pandas including reducing the memory overhead and enabling 

lazy evaluations.

 Conclusion
Because of pandas’ diverse user base, it supports many different options 

and many different methods for doing the same thing. pandas’ API has 

a large and ever-expanding set of features and options which can be 

incredibly overwhelming and often lead users to implement things in 

a suboptimal way. It’s a difficult decision to make: limit the number of 

features and options such that users can’t do the wrong thing or provide 

a set of features so that users can find a way to do whatever they want. 

pandas has certainly erred on the side of the latter which makes it a very 

powerful tool and applicable to many different types of big data problems. 

And for those users who don’t care if their program takes a minute or an 

hour, it’s not an issue that they have used a suboptimal implementation. 

However, for users that do, it can be difficult to reason about and 

understand. Hopefully, this book has left you with a better understanding 

of how pandas works underneath and an intuition for which method to 

use during certain scenarios.

1 https://arrow.apache.org/
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In general, we’ve covered a few basic rules-to-code-by throughout 

this book which you should keep in mind as you implement your future 

pandas projects:

• Normalize your data at the same time as you load it if 

possible

• Explicitly specify your data types

• Avoid looping in Python

• Carefully select a DataFrame orientation that optimizes 

analysis

• Avoid operations that duplicate data

• Take advantage of Cython or faster custom 

implementations as needed

By following these basic rules-to-code-by and now with an intuition 

for how a given pandas operation will perform underneath, you should 

be able to select the most optimal implementation for your next pandas 

project.
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 APPENDIX

Useful Reference 
Tables
Table A-1. Conversion between NumPy and C types1

NumPy type C type Description

np.bool Bool Boolean (True or False) stored as a byte

np.byte signed char Platform-defined

np.ubyte unsigned char Platform-defined

np.short Short Platform-defined

np.ushort unsigned short Platform-defined

np.intc Int Platform-defined

np.uintc unsigned int Platform-defined

np.int_ Long Platform-defined

np.uint unsigned long Platform-defined

np.longlong long long Platform-defined

np.ulonglong unsigned long long Platform-defined

(continued)

1 https://docs.scipy.org/doc/numpy/user/basics.types.html

https://doi.org/10.1007/978-1-4842-5839-2
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Table A-1. (continued)

NumPy type C type Description

np.half / 

np.float16

N/A Half-precision float: sign bit, 5 bits exponent, 

10 bits mantissa

np.single Float Platform-defined single-precision float: 

typically sign bit, 8 bits exponent, 23 bits 

mantissa

np.double Double Platform-defined double-precision float: 

typically sign bit, 11 bits exponent, 52 bits 

mantissa

np.

longdouble

long double Platform-defined extended-precision float

np.csingle float complex Complex number, represented by two 

single-precision floats (real and imaginary 

components)

np.cdouble double complex Complex number, represented by two 

double-precision floats (real and imaginary 

components)

np.clong 

double

long double 

complex

Complex number, represented by two 

extended-precision floats (real and imaginary 

components)

np.int8 int8_t Byte (–128 to 127)

np.int16 int16_t Integer (–32768 to 32767)

np.int32 int32_t Integer (–2147483648 to 2147483647)

np.int64 int64_t Integer (–9223372036854775808 to 

9223372036854775807)

np.uint8 uint8_t Unsigned integer (0 to 255)

(continued)
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NumPy type C type Description

np.uint16 uint16_t Unsigned integer (0 to 65535)

np.uint32 uint32_t Unsigned integer (0 to 4294967295)

np.uint64 uint64_t Unsigned integer (0 to 

18446744073709551615)

np.intp intptr_t Integer used for indexing, typically the same 

as ssize_t

np.uintp uintptr_t Integer large enough to hold a pointer

np.float32 Float Platform-defined single-precision float: typically 

sign bit, 8 bits exponent, 23 bits mantissa

np.float64 / 

np.float_

Double Note that this matches the precision of the 

built-in Python float

np.complex64 float complex Complex number, represented by two 32-bit 

floats (real and imaginary components)

np.complex128 

/ np.complex_

double complex Note that this matches the precision of the 

built-in Python complex

Table A-1. (continued)

Table A-2. Common ufuncs for NumPy2

Ufuncs Description

add(x1, x2, /[, out, where, casting, order, …]) Add arguments element-wise

subtract(x1, x2, /[, out, where, casting, …]) Subtract arguments, element-wise

multiply(x1, x2, /[, out, where, casting, …]) Multiply arguments element-wise

(continued)

2 https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.
read_csv.html
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Ufuncs Description

divide(x1, x2, /[, out, where, casting, …]) Return a true division of the inputs, 

element-wise

logaddexp(x1, x2, /[, out, where, casting, …]) Logarithm of the sum of 

exponentiations of the inputs

logaddexp2(x1, x2, /[, out, where, casting, …]) Logarithm of the sum of 

exponentiations of the inputs in 

base 2

true_divide(x1, x2, /[, out, where, …]) Return a true division of the inputs, 

element-wise

floor_divide(x1, x2, /[, out, where, …]) Return the largest integer smaller 

or equal to the division of the inputs

negative(x, /[, out, where, casting, order, …]) Numerical negative, element-wise

positive(x, /[, out, where, casting, order, …]) Numerical positive, element-wise

power(x1, x2, /[, out, where, casting, …]) First array elements raised 

to powers from second array, 

element-wise

remainder(x1, x2, /[, out, where, casting, …]) Return element-wise remainder of 

division

mod(x1, x2, /[, out, where, casting, order, …]) Return element-wise remainder of 

division

fmod(x1, x2, /[, out, where, casting, …]) Return element-wise remainder of 

division

(continued)

Table A-2. (continued)
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Ufuncs Description

divmod(x1, x2[, out1, out2], / [[, out, …]) Return element-wise quotient and 

remainder simultaneously

absolute(x, /[, out, where, casting, order, …]) Calculate the absolute value 

element-wise

fabs(x, /[, out, where, casting, order, …]) Compute the absolute value 

element-wise

rint(x, /[, out, where, casting, order, …]) Round elements of the array to the 

nearest integer

sign(x, /[, out, where, casting, order, …]) Return an element-wise indication 

of the sign of a number

heaviside(x1, x2, /[, out, where, casting, …]) Compute the Heaviside step 

function

conj(x, /[, out, where, casting, order, …]) Return the complex conjugate, 

element-wise

conjugate(x, /[, out, where, casting, …]) Return the complex conjugate, 

element-wise

exp(x, /[, out, where, casting, order, …]) Calculate the exponential of all 

elements in the input array

exp2(x, /[, out, where, casting, order, …]) Calculate 2∗∗p for all p in the input 

array

log(x, /[, out, where, casting, order, …]) Natural logarithm, element-wise

log2(x, /[, out, where, casting, order, …]) Base 2 logarithm of x

Table A-2. (continued)

(continued)
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Ufuncs Description

log10(x, /[, out, where, casting, order, …]) Return the base 10 logarithm of the 

input array, element-wise

expm1(x, /[, out, where, casting, order, …]) Calculate exp(x) - 1 for all elements 

in the array

log1p(x, /[, out, where, casting, order, …]) Return the natural logarithm of one 

plus the input array, element-wise

sqrt(x, /[, out, where, casting, order, …]) Return the non-negative square 

root of an array, element-wise

square(x, /[, out, where, casting, order, …]) Return the element-wise square of 

the input

cbrt(x, /[, out, where, casting, order, …]) Return the cube root of an array, 

element-wise

reciprocal(x, /[, out, where, casting, …]) Return the reciprocal of the 

argument, element-wise

gcd(x1, x2, /[, out, where, casting, order, …]) Return the greatest common divisor 

of |x1| and |x2|

lcm(x1, x2, /[, out, where, casting, order, …]) Return the lowest common multiple 

of |x1| and |x2|

Table A-2. (continued)
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3 https://pandas.pydata.org/pandas-docs/stable/reference/frame.
html#computations-descriptive-stats

Table A-3. Values that are 

automatically converted to 

NaNs by read_csv3

‘’

NULL

-1.#IND

NaN

-NaN

#N/A

NA

#N/A N/A

n/a

#NA

1.#QNan

-1.#QNan

NaN

-NaN

Null

N/A

1.#IND
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Table A-4. Built-in DataFrame computation methods

Computation Description

DataFrame.abs(self) Return a Series/DataFrame with absolute 

numeric value of each element

DataFrame.all(self[, axis,  

bool_only, …])

Return whether all elements are True, 

potentially over an axis

DataFrame.any(self[, axis,  

bool_only, …])

Return whether any element is True, 

potentially over an axis

DataFrame.clip(self[, lower, upper, axis]) Trim values at input threshold(s)

DataFrame.corr(self[, method,  

min_periods])

Compute pairwise correlation of columns, 

excluding NA/null values

DataFrame.corrwith(self, other[,  

axis, …])

Compute pairwise correlation

DataFrame.count(self[, axis, level, …]) Count non-NA cells for each column or row

DataFrame.cov(self[, min_periods]) Compute pairwise covariance of columns, 

excluding NA/null values

DataFrame.cummax(self[, axis, skipna]) Return cumulative maximum over a 

DataFrame or Series axis

DataFrame.cummin(self[, axis, skipna]) Return cumulative minimum over a 

DataFrame or Series axis

DataFrame.cumprod(self[, axis, skipna]) Return cumulative product over a 

DataFrame or Series axis

DataFrame.cumsum(self[, axis, skipna]) Return cumulative sum over a DataFrame 

or Series axis

DataFrame.describe(self[,  

percentiles, …])

Generate descriptive statistics

(continued)
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Computation Description

DataFrame.diff(self[, periods, axis]) First discrete difference of element

DataFrame.eval(self, expr[, inplace]) evaluate a string describing operations on 

DataFrame columns

DataFrame.kurt(self[, axis, skipna,  

level, …])

Return unbiased kurtosis over requested 

axis

DataFrame.kurtosis(self[, axis,  

skipna, …])

Return unbiased kurtosis over requested 

axis

DataFrame.mad(self[, axis, skipna, 

level])

Return the mean absolute deviation of the 

values for the requested axis

DataFrame.max(self[, axis, skipna, 

level, …])

Return the maximum of the values for the 

requested axis

DataFrame.mean(self[, axis, skipna, 

level, …])

Return the mean of the values for the 

requested axis

DataFrame.median(self[, axis,  

skipna, …])

Return the median of the values for the 

requested axis

DataFrame.min(self[, axis, skipna,  

level, …])

Return the minimum of the values for the 

requested axis

DataFrame.mode(self[, axis, numeric_

only, …])

Get the mode(s) of each element along the 

selected axis

DataFrame.pct_change(self[,  

periods, …])

Percentage change between the current 

and a prior element

DataFrame.prod(self[, axis, skipna, 

level, …])

Return the product of the values for the 

requested axis

Table A-4. (continued)

(continued)
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Computation Description

DataFrame.product(self[, axis,  

skipna, …])

Return the product of the values for the 

requested axis

DataFrame.quantile(self[, q, axis, …]) Return values at the given quantile over 

requested axis

DataFrame.rank(self[, axis]) Compute numerical data ranks (1 through 

n) along axis

DataFrame.round(self[, decimals]) Round a DataFrame to a variable number 

of decimal places

DataFrame.sem(self[, axis, skipna, 

level, …])

Return unbiased standard error of the 

mean over requested axis

DataFrame.skew(self[, axis, skipna, 

level, …])

Return unbiased skew over requested axis

DataFrame.sum(self[, axis, skipna, 

level, …])

Return the sum of the values for the 

requested axis

DataFrame.std(self[, axis, skipna,  

level, …])

Return sample standard deviation over 

requested axis

DataFrame.var(self[, axis, skipna,  

level, …])

Return unbiased variance over requested 

axis

DataFrame.nunique(self[, axis, dropna]) Count distinct observations over requested 

axis

Table A-4. (continued)
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Anti-join method, 22
Apply method

Cython library, 131, 133
DataFrame
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implementation, 128, 130

definition, 121

B
Basic Linear Algebra Subprograms 

(BLAS), 150
dot product, 151, 153
library, 154
loop unrolling, 154
matrix comparison, 152
NumPy, 155
SIMD instruction, 151
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transposed matrix, 153

Big Data software, 31
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GitHub, 5
image prediction  

algorithms, 5
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Bytecode, 37
cache, 38
interpretation, 38
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C
Categorical variables, 50
Computer architecture

arrays, 145
bytecode instructions, 143
cache, 144, 145
clock cycles, 145
compilers, 143
evaluation phase, 142
execution phase, 142
five-stage pipeline, 142
memory access  

phase, 142
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temporary variable, 141
writeback phase, 143

CPython
BLAS, 48
bytecode, 37, 38
C extensions, 37
circular reference, 41, 42
deadlock, 45
deleting references, 41
dynamic typing, 38
garbage collector, 37
GIL, 37, 39
interpreters, 37
LAPACK, 48
lexical analyzer, 38
libraries, 48
lock, demonstration, 44
memory allocation, 47
multi-core computation, 46
multi-core CPUs, 45, 46
multi-threaded  

application, 42
ndarray, 47, 48
NumPy, 46
object’s reference count, 42
.pyc files, 38
race condition, 39, 40, 43
reference garbage collector 

technique, 40
self-managing niceties, 37
shared memory lock, 43
threading, 39
tokenizer, 38

traceback object, 41
variables, 40

cumcount function, 115
Cython library, 131

D
DataFrames

calculation, 61
computation methods, 178–180
concat method, 27, 28, 30
consideration/planning, 55
creation and access, 9–11
custom functions, 64
data processing, 56
dimension mismatch, 57
format, 64
join method, 25, 27
multi-index date  

column, 58, 60
multi-index multi-level  

column, 62
single-index, 56
unsigned 8-bit integer, 62

Data transformation, pandas
melt, 116, 117
pivot/pivot table, 109, 111, 113
stack/unstack, 113, 115, 116
transpose, 117, 119

Deadlock, 45
Dictionary, 34
Discoverability, 6
Duck typing, 69
Dynamic typing, 38
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E
exc_info variable, 41

F
Fetchall function, 107
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Garbage collector, 37
Global interpreter lock (GIL), 37
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operation, 139, 140
pre-indexed DataFrame, 137

I
iloc method, 11–14
Image prediction algorithms, 5
“is” property, 36
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Just-In-Time (JIT), 37

L
Linear Algebra Package  

(LAPACK), 48, 150
Loading data

creation/elimination, 66
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non-numeric values, 67

normalization/optimization 
capabilities, 65

pd.read_csv (see pd.read_csv 
loader)

read_json (see read_json loader)
read_sql (see read_sql_query 

loader)
loc method, 14–16

M
memory_map, 80
Merge method

anti-join, 23, 24
historical record, 20, 21
inner merge, 17
_merge column, 23
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Mutable tuple, 33

N
na_values parameter, 81
Non-performant solutions, 31
Normalizing data, 66
Not a Number (Nan) type, 2, 81
np.sum function, 122
nrows parameter, 77
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NumPy
C extensions, 3
C types, conversion, 171–176
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Object Relational  
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built-in string cache, 50
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DataFrames (see DataFrames)
datetime data structure, 49
integer type, 54
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multi-index DataFrame, 52
multi-index multi-level column 

DataFrame, 54
names, 54
NumPy, 49
operations, 50, 51
rules-to-code-by, 169
single-index DataFrame, 51
suboptimal implementation, 168

Pandas 1.0
Boolean arrays, 159, 161
Categorical.min, 159
comparing indexes, 165
DataFrames, 162

exit conditions, 165
groupby, 163
infer_type method, 163, 164
inplace=True, 167, 168
inplace option, 167
is_monotonic check, 166
memory usage, 160
NaNs, 157, 158
NA type, 157
nullable Booleans, 161
nullable integer type, 158
Numba, 162
NumPy’s lexsort, 166
read_sql, 163
rolling apply methods, 162
searchsorted, 162
string data type, 159
usecols parameter, 163
values, 164

pandas merge method, 22
Panel data, 2
Parsing performance metrics, 87
pd.read_csv loader

columns types, 75
converters parameter, 76
C parsing engine, 67, 68, 87
data by default, 84
date_parser parameter, 91
date-specific parameters, 90
datetime objects/handling 

Nans, 89
dayfirst parameter, 91
delimiter, 92
delim_whitespace parameter, 69
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dtype parameter, 74
duck typing, 69
eliminating columns, 70
escapechar parameter, 91
filepath_or_buffer, 69
float_precision parameter, 68
header/column names, 72
iterator parameter, 79, 80
memory mapping, 81
multi-index multi-level column 

DataFrame, 73
na_filter parameter, 82
Nans, 82
na_values, 81, 89
na_values/dtype, 85
non-comma-delimited data, 70
nrows parameter, 77–79
NumPy, 81
parse_dates parameter, 87
placeholder values, 85
Python parser–specific option, 68
Python standard library, 67
round-trip precision option, 68
sep parameter, 69
skipfooter parameter, 71, 72
skipinitialspace parameter, 69
skiprows parameter, 71
squeeze parameter, 73, 74
StringIO object, 69
tokenization, 87
unknown, 83
usecols parameter, 70
ValueError, 68
verbose parameter, 82

Programming language, 31
Python data structures

array of pointers, 32
built-in caching, 35
data array, 34
dictionary, 34, 35
hashed index array, 34
integer cache, 36
list, 33
memory addresses, 32, 33
metadata, 32
performance optimizations, 33
references/pointers, 36
scientific notation, 37
sets, 35
string cache, 36
string/integer cache, 35
tuples, 32

R
read_csv function, 69, 177
read_json loader

chunks, 98
columns option, 95
convert_dates parameter, 98
index option, 94
JSON, 100
pandas type inference, 99
parameter orient, 93
records, 94
split, 93
table option, 97
values option, 96
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read() method, 69
read_sql_query loader, 101
read_sql_table loader, 101

S
Single Instruction Multiple  

Data (SIMD), 151
skipfooter parameter, 71
Skiprows parameter, 71
Sorted index, 138
SQLAlchemy

custom loading code, 105
database table, 102
DataFrame, 105
datetime conversion, 105
docker-compose.yml  

file, 104
fetchall function, 107
loader code, 107
normalization process, 108

ORM, 102
pandas implementation, 107
parameterized  

expressions, 102
Postgres database, 103
query API, 104
vs. SQL string query, 102
TypeDecorator, 106

T
Threading, 39
Thread safe, 39
Tokenization, 87

U, V, W, X, Y, Z
ufuncs, 48, 173–176
Unique index, 139
Unsorted index, 138
usecols parameter, 70
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