
580.439 Course Notes: Nonlinear Dynamics and Hodgkin-Huxley Equations

Reading: Hille (3rd ed.), chapts 2,3; Koch and Segev (2nd ed.), chapt 7 (by Rinzel and Ermentrout).
For further reading, S.H. Strogatz, Nonlinear Dynamics and Chaos, Addison Wesley, 1994.

In these lectures introductory ideas of nonlinear dynamics are used to illustrate the
properties of membrane models based on the Hodgkin Huxley (HH) equations. The idea of reducing
a system to second order is introduced and applied to generate models that can be analyzed in the
phase plane.

Hodgkin-Huxley modeling

The basic membrane circuit is drawn
in Fig. 1. This circuit is appropriate for
simple membrane systems like the squid giant
axon or other axonal membranes, where only
two voltage-dependent channels are seen. In
the model there is a capacitor C, to represent
the membrane capacitance, a sodium
conductance GNa, potassium conductance GK,
and a leakage conductance G L . The
membrane potential V is the potential inside
the cell minus the potential outside and there
can be a current Iext injected into the cell from
an electrode or from other parts of the cell.
Consistent with the usual convention, currents are positive in the outward direction.

The model in Fig. 1 represents a patch of membrane, i.e. a small area of membrane which is
isopotential, meaning that the membrane potential V is constant across the patch. In the last part of
the course, we will consider more general models in which the voltage varies along the extent of the
cell. Patch models are appropriate for systems consisting of a large number of channels relatively
evenly dispersed across the patch. More specifically, two things are assumed: 1) the number of
channels is large enough that individual gating events are averaged out and the Na and K currents
are smooth population currents (see Figs. 3.16 and 3.17 in Hille); and 2) the channels are not
arranged in any way which allows special local interactions among small numbers of channels.
Such interactions most frequently occur between calcium channels and other channel types through
local calcium pools. In this model, the channels interact only through V.

The equations describing the patch in Fig. 1 were first developed by Hodgkin and Huxley
(HH, 1952). Conservation of current at the node on the inside of the cell gives:

C
dV

dt
I G V E G V E G V Eext Na Na K K L L= − − − − − −( ) ( ) ( )1 (1)

Fig. 1  Typical membrane circuit containing active Na
and K channels, a leakage channel and a membrane
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That is, the current through the capacitance is the externally applied current minus the currents
through the ion channels. C and GL are constants. GNa and GK are functions of membrane potential
and time, given the following HH equations:
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where GNa  and GK  are constants. Eqns. 2 were developed by HH to model the gating behavior of

the sodium and potassium channels. They depend on the functions x∞(V) and τx(V) (for x = m, h, or
n) which are functions of membrane potential only. The x∞(V) functions are the steady state values
of m, h, and n at a particular membrane potential and the τx(V) functions are the time constants with

which m, h, and n change in responses to changes in V. Figure 2 shows plots of these functions for
the original HH model. The full equations for the HH model are given in the appendix.

m3h  and n4 can be interpreted as the probability that a channel’s gate is open. The Na
channel has two sets of gates, activation gates, represented by m, and inactivation gates, represented
by h. The activation gates open and the inactivation gates close when the membrane depolarizes. In
Fig. 2, this is represented by the fact that m∞ increases and h∞ decreases with V. In the model, the Na
channel is assumed to have 3 m gates and 1 h gate; because all four gates must be open for the
channel to be open, the probability that a channel is open is m3h. The K channel has only a single
activation variable n and there are four of them, leading to the n4 expression.

Figure 3 shows the evolution of the parameters of the HH model during an action potential.
Explanations of the action potential based on this model are given in the references (Hille, chapter 2
and Johnston and Wu, chapter 6) and will not be repeated here. Instead, these notes focus on
developing an understanding of the properties of nonlinear systems like the HH equations using the
phase-plane approach from nonlinear dynamics.

Question 1. Assume that the membrane potential has been fixed at V0 for a long time. What
is the steady state value of m? At time 0, the membrane potential is stepped (voltage-clamped) to V1.

Fig. 2  Parameters of the
Hodgkin-Huxley model
for squid giant axon
membrane.
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Solve Eqn. 2 for m(t) for t>0; express the solution in terms of m V Vm∞ ( ) ( ) and τ . From this
solution, you should see that the behavior of the dx/dt equations is to cause the HH variables m, n,
and h to track the x∞ functions as they vary with membrane potential. Would your solution method
be valid if V were varying in time, as in the action potential?
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Question 2. There is a notch in the sodium current (INa) in the lower right plot of Fig. 3. It
occurs about the time the sodium conductance ( GNa) reaches its peak. Explain the origin of the
notch. Similarly, the shape of the potassium current waveform (IK) is different from the potassium
conductance waveform (GK). Explain why.

Question 3. HH considered m, h, and n to specify the fraction of gating elements that were
open in the two channel types. Each gating element could undergo transitions from closed to open
according to the following first-order kinetic scheme

C O
αx(V)

βx(V)
(3)

where C and O are closed and open states and α and β are voltage-dependent rate constants for the

opening and closing transitions, respectively. Derive expressions for x∞(V) and τx(V) in terms of

αx(V) and βx(V). The HH model is specified in terms of the rate constants αx(V) and βx(V) in the

appendix.

Question 4. Taking the four-gate model for the Na channel seriously, gives 24 or 16 possible
states for the Na channel (e.g. CCC-C, CCC-O, CCO-C, etc. where the first three symbols, to the
left of the dash, represent the states of the m gates and the fourth symbol, to the right of the dash,

Fig. 3  Time course of the important variables in the HH model for nerve action potentials during an action
potential. Shown are the membrane potential (upper left), the HH variables (lower left), the conductances
(upper right), and the membrane currents (lower right).
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represents the h gate). Write out all sixteen states and draw arrows between them to represent the
elementary transitions like Eqn. 3. Assume that only one of the four gates changes in each
transition, i.e. the likelihood of two gates switching simultaneously is ≈0. Many of these states are
equivalent (e.g. OCC-C, COC-C, and CCO-C). Collapse your state diagram and show that it is
equivalent to (4) below. Also show that this state model is equivalent to the HH model for the Na
channel in Eqn. 2.

C3 C2 C1 O

I3 I2 I1 I0

3αm(V)

βm(V)

2αm(V) αm(V)

2βm(V) 3βm(V)

3αm(V)

βm(V)

2αm(V) αm(V)

2βm(V) 3βm(V)

αh(V)βh(V) αh(V)βh(V) αh(V)βh(V) αh(V)βh(V)

HH models have now been derived for a large number of channels (see Yamada et al., 1998
for examples). Generally the form of the equations is similar to those of Eqn. 2. However, as the
detailed study of various channel systems has evolved, some of the features of the HH model have
been changed, for both the squid axon (e.g. Clay, 1998) and for other systems (Hille, chapters 18
and 19).

1. For an increasing number of channels, the kinetic scheme of Eqn. 4 has been found to be
inaccurate. More complex channel state models are needed and these can now be derived from
single channel recordings. This means that explicit differential equations for the state model
have to be written and these usually cannot be collapsed into the compact form of the HH
equations (Eqn. 2). This change in the model generally reflects subtle changes in the gating
behavior of channels.

2. The HH model assumes that the instantaneous current-voltage relationship of a channel is
linear, i.e. that Ix=Gx(V,t).(V-Ex). As discussed in the notes on channel permeation models, the
current-voltage relationship does not necessarily take this linear form. Usually a more accurate
instantaneous current voltage model is the Goldman-Hodgkin-Katz constant field equation:

I m h V
C e C
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p q inside
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1

(5)

where m and h are HH variables as in Eqn. 2 and Eqn. 5 is substituted for the linear current
voltage relationships in Eqn. 1. Equation 5 is most commonly used in modeling Ca++ channels,
because the large concentration ratio Cout/Cin leads to strong rectification. In these notes, the
linear form of the equation, i.e. Eqn. 1, will be used for simplicity of analysis.

State variable models and reduced-state models: the Morris-Lecar Equations

The state variables of the HH model are V, m, h, and n. These form the state vectorr
X V m h n T= [ , , , ]  and the differential equations (Eqns. 1 and 2)  can be written as follows:

(4)
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where, for example, f V m h n I G m h V E G n V E G V E CV ext Na Na K K L L( , , , ) ( ) ( ) ( )= − − − − − −[ ]3 4  and

f V m h n m V m Vm m( , , , ) ( ) ( )= −[ ]∞ τ .

Equation 6 is a four-dimensional nonlinear system. The methods of analysis that are applied
below work best when the system is two-dimensional, i.e. with only two state variables. This means
eliminating two differential equations from the HH system. Generally, this is done by taking
advantage of the fact that the time constants in the four differential equations that make up Eqn. 6
are quite different. For example, the time constants of the HH gating variables near the resting
potential are τm≈0.4 ms, τh≈8 ms, and τn≈5 ms (Fig. 2). The time constant of the membrane potential

equation varies over a range slightly larger than τm. Thus V and m are expected to fluctuate faster

than the other two state variables. The differences in time scale of the variables can be seen in the
left hand plots in Fig. 3, where V and m change rapidly in response to the depolarization and n and h
change slowly. An approximate system can be defined which has state variables V and m  with
n=n∞(V0) and h=h∞(V0), i.e. n and h are constant at their initial values. Such a system might be valid
for the first ms or two after a sudden depolarizing current is applied to a cell sitting at rest. Of
course, as soon as n and h begin to change, this system becomes invalid. Results using this method
to analyze the threshold of the HH model are described later.

Another way in which the HH equations
might be reduced is to assume that τm is so fast that m

changes essentially instantaneously to follow m∞(V),
i.e. that m(t)=m∞(V(t)). This eliminates the differen-
tial equation for dm/dt. Then either n  or h can be
assumed to be slow and set equal to x∞(V0) as above
to get down to two equations. These assumptions
produce an approximate system which is valid for
longer times than the m-V  system and can even
produce action potentials. Two examples of this
approach are discussed below. The extent to which
the assumption about m is true for the HH equations can be judged from Fig. 4 which compares the
actual trajectory of m during an action potential (solid line) with the trajectory of m∞ (dashed line).

Fig. 4  Comparison of m(t) (solid line) during an
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As expected from Eqn. 2, m∞ leads m. The approximation of holding either h or n constant can be
evaluated from the lower left plot in Fig. 3.

For the initial discussion of phase-plane analysis, a two-dimensional set of equations similar
to the reduced HH equations will be used. These are the Morris-Lecar equations (MLE) in the form
used by Rinzel and Ermentrout (1998). The membrane model of Fig. 1 is still appropriate, except
that the model contains a calcium channel instead of the sodium channel. The calcium activation
variable, m, is assumed to have a fast time constant, so that m=m∞(V) and the calcium conductance
is G G m VCa Ca= ∞( ) . There is no calcium inactivation variable, which is equivalent to assuming
that h is constant. The potassium channel has a single activation variable w, analogous to n, so the
state variable equations are as follows:

C
dV

dt
I G m V V E G w V E G V E
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The functional forms chosen for m∞, w∞, and τw have the same general shape as the analogous

parameters of the HH model and have the advantage that they are easy to compute. The parameter φ
in Eqn. 7 is a temperature factor, which can be used to change the relative time constants of V and
w. Experimentally, the time constants of channel gating (dw/dt) are more sensitive to changes in
temperature than the time constant of dV/dt.

The model will be used with two sets of parameters:

Parameter set #1 GCa=4.4 GK =8.0 GL =2.0 C=20
ECa=120 EK=-84 EL=-60 φ=0.04 (9)
V1=-1.2 V2=18  V3=2  V4=30

Parameter set #2 GCa=4.0 GK =8.0 GL =2.0 C=20
ECa=120 EK=-84 EL=-60 φ=0.0667 (10)
V1=-1.2 V2=18  V3=12  V4=17.4

Units are mV for potentials, mS/cm2 for conductance, µA/cm2 for current, and µFd/cm2 for

capacitance. Iext will be varied to simulate current input to the cell.
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The phase plane

Because Eqns 1 and 2 and Eqns 7 and 8 are nonlinear, it is not possible to obtain solutions
except by numerical simulation. However, considerable insight into the nature of the solutions can
be gotten using simulation and phase plane analysis. A phase plane, for an order 2 system like Eqn.
7, is a Cartesian plot with the state variables on the axes. Figure 5 shows an example for the MLE
with parameter set #1. There are several features in this plot, which will be described one by one.

At each point (V, w) in the plane, the velocity vector (dV/dt, dw/dt) can be computed from
Eqn. 7. The blue arrows show these velocity vectors on an evenly spaced grid in the plane. The
vectors point in the direction that the solutions to Eqn. 7 will move if the system’s state vector is
located at the tail of the arrow; the length is the speed of movement. A great deal about the nature of
the system’s behavior can be inferred from the arrows. Indeed, the process of simulation to obtain
solutions is basically computing these arrows on a sufficiently dense grid and then following the
arrows.

Fig. 5. Phase plane for the MLE with parameter set #1. The green dashed lines are the nullclines dw/dt=0 and
dV/dt=0. The blue arrows show the directions and flow velocities of trajectories at the points corresponding to
the tails of the arrows. The magenta solid lines are example trajectories for V0=-20 mV, -14 mV, -13.9 mV, and
–10 mV, respectively from left to right. The corresponding V versus time plots are shown in Fig. 6.
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The solid magenta lines show actual trajectories for the system from four initial points (the
x’s). That is, Eqns. 7 and 8 were solved numerically with the initial conditions V(0)=-20, -14, -13.9,
and –10 mV and w(0)=0.014915 (its value at the resting point). Plots of the resulting time functions
V(t) and w(t) are shown in Fig. 6 for two of the initial conditions (-14 and -13.9 mV). The magenta
trajectories in Fig. 5 are plots of w(t) versus V(t) with time t as a parameter. Time is not explicitly
marked on the trajectories and there is no necessary relationship between distance along the
trajectories and the passage of time. Notice in Fig. 2 that the trajectories follow the directions
predicted by the blue arrows. All four trajectories end up at the green dot (V=-61.2 mV, w=0.0149),
which is the resting state of the model.
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For initial values of V of –20 and –14 mV, the membrane potential decays directly back to
the resting value. This is illustrated by the solution in the left plot of Fig. 6, for –14 mV initial
condition. In the phase plane, the trajectories move to the left, back to the resting state (green dot).
For the larger initial values (-13.9 and –10 mV), the system produces an action potential, seen in the
right plot in Fig. 6. In that case, the trajectory in Fig. 5 moves to the right, eventually returning to
the rest state after circling the phase plane. Make sure you understand the relationship between the
time plots in Fig. 6 and the trajectories in Fig. 5.

Question 5.  The trajectories in Figs. 5 and 6 were computed from an initial value in which
the membrane potential was displaced from the rest potential horizontally, so that w did not change
from its value at rest. Show that this manipulation is equivalent to beginning the system at its
resting potential and injecting an impulse of current. That is, show that the following are equivalent
initial conditions for the MLE (where (V0, w0) is the resting point):

V V w w I t q t

V V q C w w I t
ext

ext

( ) ( ) ( ) ( )

( ) / ( ) ( )

0 0

0 0 0
0 0

0 0

= = =
= + = =

,        and       versus

,       and   

δ

It is worthwhile thinking about how the directions of flow in the phase plane, indicated by
the blue arrows in Fig. 5, come about. Consider first the arrows near the V-axis, where w≈0. Moving

Fig. 6.  Plots of membrane potential V (blue, left ordinates) and potassium activation w  (greeen, right ordinates)
versus time for two of the trajectories in Fig. 5 (the two beginning at the middle “x” near –14 mV). The initial
voltage value is given in the legend. The dashed lines show the values of V (blue) and w (green) at the resting state
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from left to right along the V-axis produces a strong increase in dV/dt, indicated by the increasing
length of the right-pointing horizontal component of the arrows. This increase results from the
increase in m∞(V) with V in the second term on the r.h.s. of the dV/dt portion of Eqn. 7 (remember
that (V-ECa) is negative), i.e. by the inward calcium current which depolarizes the cell. Moving
vertically anywhere in the phase plane, corresponding to increasing w, yields left-pointing arrows,
an effect caused by the third term on the r.h.s. of the dV/dt portion of Eqn. 7, corresponding to the
outward potassium current which hyperpolarizes the cell. The vertical components of the arrows
can be understood in terms of the dw/dt portion of Eqn. 7 and the w nullcline, described later.

A property of linear systems is that the amplitude of the solutions is linearly related to the
amplitude of the initial values. If a linear system is started from two initial conditions very near one
another, the solutions will also be very close together. Nonlinear systems do not necessarily behave
this way, as illustrated by the examples in Figs. 5 and 6. The MLE’s behavior varies quite strongly
with initial value in the range between –13.9 mV and-14 mV. This strong dependence on initial
conditions is one of several properties of nonlinear systems which differentiate them from linear
systems.

The behavior of the phase plane is controlled by the isoclines or nullclines. These are the
locus of points where the time derivatives of the state variables are zero, dV/dt=0 and dw/dt=0 for
the MLE. The MLE’s nullclines can be obtained from Eqn. 7 with some algebra:

dV

dt
w V

I G m V V E G V E

G V E

dw

dt
w V w V

V
ext Ca Ca L L

K K

w
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(11)

The nullclines wV(V) and ww(V) are plotted in Fig. 5 with dashed green lines. Note that the nullcline
for dV/dt=0 goes negative between –60 and –20 mV and is not plotted. The curve is continuous
across this range, however. The nullclines provide two kinds of information about the system:

1. Because a derivative is zero on a nullcline, the system is constrained to cross the nullclines
moving either horizontally (across the dw/dt=0 nullcline) or vertically (across the dV/dt=0
nullcline). This can be seen in Fig. 5 by the directions of the arrows and the trajectories near the
nullclines.

2. The system’s velocity changes direction across the nullclines. Thus, below the dV/dt nullcline,
the direction of flow along the V axis is positive, the blue arrows in Fig. 5 point to the right.
Above the dV/dt nullcline, the flow is to the left and the blue arrows point leftward. Similarly,
below the dw/dt nullcline, the flow is upward and above this nullcline, the flow is downward.

Note that the directions of flow near the nullclines can be misleading in nonlinear systems.
For example, in Fig. 5, one might imagine that the dividing line between trajectories that return
directly to the rest state and trajectories that produce action potentials would be the dV/dt=0
nullcline. That is, initial values to the left (and above) the nullcline should move to the left toward
the rest point and initial values to the right (and below) the nullcline should move to the right
toward an action potential. As the trajectories in Fig. 5 show, however, the actual transition from
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subthreshold behavior to action potentials occurs slightly to the right of the nullcline at about –14
mV. This occurs because the behavior of the system is determined by the relative size of the vertical
and horizontal motions; the vertical motion is larger than the horizontal motion near the nullcline,
where horizontal velocity is 0.

The green dot at about –60 mV is at the point where the two nullclines intersect. At this
point, both time derivatives are zero and so the system should not move if placed there; this point is
a rest state of the system. A point where all time derivatives are zero is called an equilibrium point.
In the case of nerve membrane systems, the resting potential of the neuron is an equilibrium point.
For parameters set #1, the equilbrium point of the MLE is globally attracting, meaning all
trajectories in the phase plane lead to it. This can be seen by examining the flows predicted by the
blue arrows.

There is an existence and uniqueness theorem for initial value problems involving
differential equations like Eqn. 6 or 7 (Strogatz, 1994, p. 149). The theorem says that if the
functions defining the time derivatives of the state variables (the right hand side of Eqns. 6 or 7) are
continuous and have continuous derivatives, then a unique solution exists over some finite time
interval. The fact that the solution is unique is important, because it implies that trajectories cannot
cross in the phase plane. If two trajectories were to cross at a point 

r
X0 , then that point would have

to be the initial value for two different solutions, in violation of the uniqueness theorem. Thus we
are guaranteed that trajectories cannot cross in the phase plane.

Question 6. Consider the following system:

dx

dt
x e

dy

dt
yy= + = −−      and     (12)

Draw a phase plane for this system, including nullclines and equilibrium points. Draw arrows to
indicate the general directions of flows (Strogatz, Fig. 6.1.3 and 6.1.4).

Limit cycle

Another kind of behavior emerges for the MLE if external current is applied. Fig. 7 shows
the phase plane and, in the insert at top right, the membrane potential versus time, when an external
current (Iext) of 95 µA/cm2 is applied.

The equilibrium point (green dot) still exists and is still a rest point of the system, but it is no
longer attracting. One of the trajectories shown in magenta in Fig. 7 begins very close to the
equilibrium point. As can be seen in the time waveform at upper right, the membrane potential
oscillates with an increasing amplitude and then breaks into a large oscillation which is repeated
exactly from cycle to cycle. This oscillation is called a limit cycle. The corresponding trajectory in
the phase plane spirals around the equilibrium point with an increasing amplitude and then meets
the limit cycle, which is the large closed curve in the plane. In this case, the limit cycle is the only
stable element in the phase plane and the system will always end up in exactly the same limit cycle,
regardless of the initial value. As an example, a second trajectory is shown in Fig. 7 beginning
outside the limit cycle; this trajectory moves toward the limit cycle and joins it just after the peak
membrane potential.
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A limit cycle is a second feature of nonlinear systems which is not observed in linear
systems. It is possible to have an oscillation like that shown in Fig. 7 in a linear system, but the
amplitude of the oscillation is linearly proportional to the initial value. In a nonlinear system the
limit cycles have a fixed amplitude, which is a characteristic of the system itself, and is not
determined by the initial values. In a linear system, the oscillation can have any size, depending on
the initial values. Of course a nonlinear system can have more than one limit cycle, but each limit
cycle will be an isolated curve like the one shown in Fig. 7. By an isolated curve, we mean a closed
curve which is not immediately adjacent to another limit cycle. Instead, trajectories slightly larger
or slightly smaller than a stable limit cycle will spiral into the limit cycle, as in Fig. 7.
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Fig. 7  Phase plane for the MLE with an external current Iext=95 µA/cm2. Two trajectories are shown, one beginning

near the equilibrium point (green dot at the intersection of the nullclines) and the second beginning at (0,0.14). The inset
at top shows the time waveform for the trajectory beginning near the equilibrium point.

Linearization around equilibrium points

An important difference in the behavior of the MLEs between Figs. 5 and 7 is that the
equilibrium point in Fig. 5 (with zero current) is attracting, i.e. trajectories flow into it, whereas the
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one in Fig. 7 is not attracting, trajectories flow away from it. In fact, a great deal can be learned
about the properties of nonlinear systems from their properties in the vicinity of equilibrium points.
The approach is to compute a linear approximation to the nonlinear system in the vicinity of an
equilibrium point. If the functions defining the time derivatives of the nonlinear system are
sufficiently smooth, then in some small neighborhood of the equilibrium point, the linear
approximation should behave like the nonlinear system.

Consider the nonlinear system at right. 
r
X  is the

system’s n-dimensional state vector. Eqn. 13 is exactly
analogous to Eqns. 6 or 7, for n=4 or n=2, respectively. The
functions fi(

r
X ) can be expanded in a Taylor series around any

point 
r
X0 ; the first terms of such an expansion are shown in

Eqn. 14. The notation X0i means the ith component of 
r
X0 .

If 
r
X0  is an equilibrium point, then f Xi ( )

r
0 =0 for all i,

from the definition of an equilibrium point, so that Eqn 14
simplifies to the linear equation in Eqn. 15. The matrix J of
partial derivatives is called the Jacobian matrix of the system.
Note that the Jacobian is a matrix of scalar constants.
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In the rightmost part of Eqn. 15 the vector 
r
x X X X X X Xn n

T= − − ⋅ ⋅ ⋅ −[ ]( ), ( ), ( )1 01 2 02 0          ,   is a

vector of small deviations of the state vector 
r
X  from the equilibrium point 

r
X0 . This is, the lower

case 
r
x  denotes the value of 

r
X  using the equilibrium point 

r
X0  as origin. Finally, note that 

r r˙ ˙X x= ,
because the time derivative of the constant terms in 

r
x  are zero. Thus the linearized system near the

equilibrium point 
r
X0  is

r r r r r
ẋ x x X X= = −J J     for           and  defined above0

Question 7.  Consider a second order system 
r r
ẋ x= J  with initial value 

r r
x x( )0 0= . Show (by

substitution) that the solutions of this equation take the form

r r r
x t A e e B e et t( ) = +λ λ1 2

1 2 (16)

where λ1 and λ2 are the eigenvalues of J and 
r r
e e1 2 and  are the eigenvectors of J. Explain how to

find the scalar constants A and B (hint: for λ1 ≠ λ2, the eigenvectors are linearly independent and

form a basis set for the phase plane R2).

Question 8. Write the solutions of the system 
r r
ẋ x= J , 

r r
x x( )0 0=  for

J J=
− −
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0 0     and          and for the same  with    

r r
x x (17)

Question 9.  Consider the system

˙

˙

x y x x

y x y

= − +
= −

3

(18)

Draw a phase plane for this system, including nullclines and equilibrium points. Compute the
linearized system around the equilibrium points, including the eigenvalues.

Properties of systems  linearized around an equilibrium point

The properties of the linearized system 
r r
ẋ x= J  near the equilibrium point can be determined

from the behavior of trajectories in the vicinity of the equilibrium point; it is sufficient to consider
what happens if the state vector is moved slightly away from the equilibrium point, i.e. to consider
an initial value problem for the system with initial value near the equilibrium point. The properties
of such a system are determined by the eigenvalues. There are five important cases, listed below.
The sketches at right show the nature of trajectories from initial values near the equilibrium point.
In these sketches, the equilibrium point is at the origin of the plot and the axes are in the directions
of the eigenvectors.
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1. Stable node: λ1 and λ2 both real and negative. In this case the exponentials in

Eqn. 16 both decay with time, so the trajectories move smoothly and
exponentially toward the equilibrium point. Such an equilibrium point is an
attractor for trajectories in its vicinity and may be an attractor for a large part
of the phase plane.

2. Unstable node: λ1 and λ2 both real and positive. In this case the exponentials

in Eqn. 16 both increase without bound, so the trajectories move away from
the equilibrium point. The system is stable if placed exactly on such an
equilibrium point, but any error will lead to a trajectory that moves away
from the equilibrium point.

3. Stable and unstable spiral: λ1 and λ2 both complex; complex

eigenvalues must occur in complex conjugate pairs. There are
two cases, a stable spiral occurs when the eigenvalues have a
negative real part and an unstable spiral occurs when the
eigenvalues have a positive real part. The solutions in this

case take the form Ae ttRe cos(Im )λ λ θ[ ] [ ] + . The cosine term

gives an oscillation at frequency Im[λ]/2π whose amplitude grows or shrinks according to the

exponential multiplier exp(Re[λ]t). The sign of Re[λ] determines which. In the phase plane,
such solutions will spiral around the equilibrium point, since there is a phase shift between the
time waveforms along 

r r
e e1 2 and . The equilibrium point in Fig. 5 is a stable spiral (the

exponential decay is faster than the period of the oscillation in this case, so the spiral is not
seen; this case is very similar to a stable node) and Fig. 7 is an unstable spiral.

4.  Saddle node: one real positive eigenvalue and one real negative eigenvalue.
The two exponential terms in Eqn. 16 now behave oppositely. One decays
exponentially, the other grows exponentially. In the figure at right, λ1 is

negative, so the trajectories decay toward the equilibrium point along the
direction of 

r
e1; λ 2 is positive, so the trajectories move away from the

equilibrium point along 
r
e2. Most trajectories follow a hyperbolic path, as

sketched for the four trajectories shown with a single arrowhead. However, there are four
trajectories which follow the directions of the eigenvectors 

r r
e e1 2 and  in the vicinity of the

equilibrium point. These are indicated by the double arrowheads in the sketch. These
trajectories are produced by initial conditions exactly on one of the eigenvectors, so that there is
only one term in Eqn. 16.

The trajectories drawn above continue outside the range of the linearized system. The
trajectories along the eigenvectors of a saddle node lead either to another equilibrium point or to a
limit cycle (they cannot lead to infinity in a HH-type system; to see why, consider the behavior of
the differential equations at 0, 1, EK and ENa see Question 12 below). In the larger nonlinear system,
they are called the unstable and stable manifolds, respectively, for the one leading away from and
the one leading toward the saddle node. For the larger nonlinear system, they separate the
trajectories of the system and can often serve as a true threshold, as described below.

e2

e1

e2

stable unstable

e1

e1

e2

e1

e2

e1

e2
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Figure 8 shows a
phase plane for the MLE
with the parameters of set
#2. The components of
the phase plane are
marked as in Fig. 5. Note
that there are now three
equi l ibr ium poin ts ,
marked by the green dots.
The one near –42 mV is a
stable node, the one near
–20 mV is a saddle node,
and the one near 4 mV is
an unstable spiral. The
stable and unstable
manifolds are shown as
the red trajectories with
double arrowheads. These
were computed as
follows: for the unstable
manifolds, the system was
started with initial conditions
near but not quite on the
saddle node. These trajectories were then computed directly in the usual way. One produced a
subthreshold return to the stable node and the second an action potential which also returned to the
stable node. The stable manifolds cannot be computed directly in this way, because there is no way
to find an initial value on a stable manifold at a distance from the equilibrium point. Instead, the
system was run in reverse time, i.e. the equations 

r r r r r˙ ( ) ( )x F x x x= − =  and  0 0  were solved. The only
place that time appears in the differential equation is in the time derivative on the left hand side, so
replacing t with –t changes the system only by reversing the sign of the time derivatives. With this
change, all trajectories reverse direction and now the stable manifolds become unstable (i.e. lead
away from the equilibrium point) and can be computed like any other trajectory.

Figure 9 shows four trajectories in the vicinity of the saddle node. This plot shows the same
phase plane as Fig. 8, except that the axis scale is magnified considerably. Only the stable node and
the saddle node are shown (green dots), along with the nullclines (green) and manifolds (red). The
magenta lines show four trajectories. Note how the trajectories follow the directions of the
manifolds. This is typical of a saddle node. An important aspect of a saddle node is that trajectories
cannot cross the manifolds, since the manifolds are themselves trajectories (the uniqueness
theorem). There are two important implications of this fact:

1. The stable manifold running vertically downward from the saddle node acts as a true threshold
for this system. This fact is apparent from Fig. 9. Consider trajectories from initial values (V1,
w1) consisting of a depolarized membrane potential V1 and a resting value of the potassium
channel state w1. Such initial conditions lie along a line to the right of the resting potential. The
two initial conditions marked with x’s in Fig. 9 are on opposite sides of the stable manifold.

Fig. 8  Phase plane for the MLE with the parameters of set 2. All components
are as for Fig. 5 except that the red lines are the stable and unstable manifolds.
Note that there are now three equilibrium points (green dots).
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One gives a subthreshold return of membrane potential to rest and one gives an action potential,
by following the rightward directed unstable manifold. In this case, initial values to the left of
the manifold, by however small an amount, give subthreshold responses and initial values to its
right give action potentials. Thus crossing the manifold is the condition for threshold in this
system. Furthermore, unlike the action potentials shown in Fig. 5 for parameter set #1, the peak
membrane potential of the action potential does not depend on the initial condition, because the
action potential trajectories fall very close to the unstable manifold.

2 You should be able to convince yourself, from Fig. 8 and Fig. 9, that there is no limit cycle in
this system. Because the membrane potential cannot cross any of the manifolds, there is no way
to construct a loop in this phase space that is consistent with the blue arrows.

In the discussion
above, it was assumed
that the system has two
non-identical eigenvalues.
When the eigenvalues are
real and equal or when the
eigenvalues are purely
imaginary, then the
linearized system turns
out frequently not to be a
good approximation to the
nonlinear system, even
very close to the equilibrium point. This situation does not arise in practice, but care should be taken
in cases where the eigenvalues are close to one of these degenerate cases. A more detailed
discussion of this point is given in Strogatz, pp. 150-155.

Question 10. Repeat Question 8 for the following system.

J =
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x (19)

In case the eigenvalues of this system are complex; show that the solutions take the form

Ae ttRe cos( Im )λ λ θ[ ] [ ] + (20)

Fig. 9  Same phase plane as Fig.
8 shown magnified in the
vicinity of the stable node and
the saddle node. Green and red
lines are nullclines and
manifolds as in Fig. 8. Magenta
lines are trajectories from four
initial values near the manifolds
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Question 11. Classify the equilibrium points for the system of Question 10 and sketch
trajectories in the phase plane for this system, based on the behavior of the equilibrium points.

The chapter by Rinzel and Ermentrout (Koch and Segev, 1998, chapt. 7) contains several
other interesting applications of phase-plane analysis to the MLE, including a very clear
demonstration of how bursting can be added to this system using a physiologically realistic
calcium-dependent potassium channel. In the following, phase plane analysis is applied to reduced
HH systems in order to illustrate other applications of the method.

Necessary and sufficient conditions for a limit cycle

In order to have a limit cycle, it is clear that the
direction of the arrows in the phase plane must point in a
circular flow. However, this qualitative statement is not
precise and it is not immediately clear why the circular
flow in Fig. 7 allows a limit cycle, but those in Figs. 5
and 8 do not. The idea of a “circular flow” can be made
slightly more rigorous for systems of order 2 with index
theory. The index of a closed curve C in the phase plane
is the cumulative change in the angle φ = tan-1( ˙ / ˙y x )

through one counterclockwise orbit of the curve, see Fig.
10A. φ is the angle, relative to the positive abscissa, of
the velocity vectors where they intersect the curve (blue
arrows). The angle is measured in units of 2π, so the

index takes on only integer values. For the case in Fig.
10A, the index is zero, because φ starts at an angle near

45˚, fluctuates in the positive and negative direction
through the orbit, but returns to its original angle without
making a complete turn in either direction. For a curve
surrounding a stable or unstable equilibrium point
(green dots in Fig. 10B), the index is +1 because in
either case, the arrow makes one full counterclockwise
revolution as the curve is orbited in the
counterclockwise direction. Finally, for a saddle node,
the index is –1, as in Fig. 1C.

The index of a curve in the phase plane has two
important properties:

1. If C is deformed into another closed curve C’ without passing through an equilibrium point, as
in Fig. 11, the index doesn’t change. This property can be understood as a consequence of the
fact that we assume a continuously differentiable vector field for the phase-plane velocity. As a
curve is deformed therefore, the index must also change in a continuous fashion, except at an
equilibrium point. However, the index can only take on integer values, so it cannot change as
the curve is deformed, except at equilibrium point.

y
.

x.

C

φ
Α

Β

C

Fig. 10.  Closed curves (black circles) in a
phase plane. Blue arrows are velocity vectors.
A. No equilibrium point. B. Stable (left) and
unstable equilibrium points (green dots). C
Saddle node.



18

2. The index of a curve is equal to the sum of the indices around all the equilibrium points
contained within the curve. This fact follows directly from property 1 and is illustrated in Fig.
11, which shows a curve C containing three equilibrium points (green dots). C is deformed into
C’ without crossing an equilibrium point, and therefore without changing its index. The index
of C’ is equal to the sum of the indices of the small circles around the equilibrium points plus
the indices of the straight line segments. Each pair of straight line segments can be brought as
close together as possible, so the index accumulated during transit in one direction along a line
is exactly compensated by the transit in the other direction. This leaves only the indices of the
three equilibrium points.

C

C’

A limit cycle is a closed curve in the phase plane. Its index must be +1, because the velocity
vectors must be tangent to the limit cycle at every point (note that it doesn’t matter which direction
the limit cycle runs, its index still must be +1). As a result, property 2 implies that a limit cycle must
contain a number of equilibrium points whose indices sum to +1. That is, a limit cycle must contain
an odd number of equilibrium points, with one more stable/unstable point than saddle node; for
example two stable or unstable equilibrium points plus a saddle node satisfy the condition. Note that
this is a necessary condition; a limit cycle does not necessarily exist in a phase plane which meets
this requirement (as in Figs. 5 and 8). For the phase plane of Fig. 8, the manifolds of the saddle
node are positioned in such a way that a limit cycle cannot exist, because there is no way to
complete a loop around one or three equilibrium points without crossing one of the manifolds. Limit
cycles can exist in systems with a saddle node, as in the example shown in Fig. 7.8 of Rinzel and
Ermentrout (1998).

A sufficient condition for a limit cycle
for order 2 systems (only) is provided by the
Poincaré-Bendixson Theorem.

Theorem:  Suppose that

1. R is a closed, bounded subset of the plane
(shaded at right);

2. dx dt f x
r r r

/ ( )=  i s  a  cont inuous ly
differentiable vector field on an open set
containing R;

3. R does not contain any equilibrium points;

Fig. 11.  Deforming
a closed curve C into
a second curve C ’
without crossing an
equilibrium point.

R

C
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4. There exists a trajectory C that is confined in R, in the sense that it starts in R and stays in R for
all time.

Then either C is a closed orbit (limit cycle) or it spirals toward a closed orbit as t → ∞ . In either
case R contains a closed orbit.

This theorem imagines a situation in which the trajectory of the system is confined within a space R
that is bounded on the outside, but also excludes a region in the inside, so that there can be an
equilibrium point inside C to satisfy the index criterion. If conditions can be set up such that the
velocity vectors point into the interior of R everywhere on both boundaries, then trajectories that are
within R must stay there. Because there are no equilibrium points in R, the trajectory cannot
approach a fixed position, which leaves only a limit cycle. The proof of this theorem is advanced;
references to the proof are given by Strogatz (1994, p. 204).

Question 12. Argue that HH type systems have a natural outer boundary for R set by [0,1]
along the HH variable axis (e.g. w in the MLE) and by the equilibrium potentials for the ions along
the V axis. Under what conditions can you show that an acceptable inner boundary can be set up
(Hint, consider the situation in Fig. 7)?

The Poincaré-Bendixson theorem can be applied to show that a limit cycle must exist in the
case of Fig. 7, for example.

Threshold behavior from the V-m reduced HH system

The following discussion is based on Fitzhugh’s (1960) analysis of the HH system in
reduced form. Consider first the conditions for threshold when a cell is depolarized by a brief
current injection. As in Figs. 5 and 9, this situation is modeled by using an initial condition in which
membrane potential is displaced away from the resting equilibrium point without changing the other
state variables. Figure 3 shows that the initial event in response to such a stimulus is a rapid increase
in m and V, with changes in h and n that occur more slowly. Thus it seems reasonable to replace the
full HH system with a reduced system consisting only of two state variables, V and m and hold h
and n constant at their resting values. Then the system becomes

C
dV

dt
I G m h V V E G n V V E G V E

dm

dt

m V m

V

ext Na R Na K R K L L

m

= − − − − − −

=
−

∞ ∞

∞

3 4( )( ) ( )( ) ( )

( )
( )τ

(21)

where VR means the membrane potential before the application of current, for example the resting
potential. Note that h and n are now held constant at their steady-state values at VR.

Consider first the behavior of the reduced system starting from the resting potential, -60 mV.
Figure 12 shows a phase plane for the (V, m) system with h=h∞(-60)=0.596 and n=n∞(-60)=0.318.
The conventions and color code are the same as for phase planes in previous figures. There are three
equilibrium points (green dots) in this system, a stable point at the resting potential (-60 mV,
labeled r), a saddle node just above the resting potential (-57.3 mV, labeled s) and another stable
point at depolarized potentials (+53.9 mV, not labeled). The manifolds associated with the saddle
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node are drawn in red. The expanded view at right shows the structure of the phase plane near the
resting potential and the saddle node.
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The stable manifold that extends downward from the saddle node acts as a threshold
separatrix, just as it did for the MLE system in Figs. 8 and 9. Trajectories beginning at membrane
potentials just to the left of and just to the right of this threshold (not shown) follow the unstable
manifolds, ending at one or the other stable equilibrium potential. The full system behaves
similarly, in that it has a sharp threshold in the same region. Thus, it seems reasonable to study
threshold behavior in the full model by assuming that threshold corresponds to crossing the stable
manifold in the reduced system. The similarity is qualitative, however, in that the threshold for
membrane potential displacement predicted by the reduced model (-56.75 mV) is somewhat
different from the threshold of the full model (-53.44 mV).

The behavior of the reduced system is
compared with the full system in Fig. 13,
which shows two trajectories in the (V, m)
phase plane. Both trajectories are from initial
values just above the relevant threshold; the
one from the reduced system (V-m sys, black)
follows the unstable manifold to the large-
depolarization equilibrium point, whereas the
other (H H , magenta) follows a slightly
different path to depolarized potentials and
then returns to the equilibrium point. Note that
the magenta trajectory is not the actual
trajectory of the system, which is a curve in 4-
dimensional space. Instead it is a projection of
that trajectory on the V-m plane. Of course, it
is not expected that the reduced system should
produce a full action potential, because to do
so requires either h or n or both. The purpose
of the reduced system is only to analyze the

Fig. 12. Phase plane for the reduced system with V and m as state variables. Expanded view shown at right.

Fig. 13. Comparison of trajectories of the reduced system
(black) and the full system (magenta) on the V-m phase
plane.  Both trajectories begin just above voltage-
displacement threshold.
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conditions for threshold, under the control of V and m.

Question 13. The magenta trajectory in Fig. 13 is inconsistent with the blue arrows. Explain
why.

The behavior of the reduced system depends on the values chosen for the state variables that
are held constant. Figure 14 shows the effect of the value of h on the threshold. Shown is the m
nullcline (long dashes) and the V nullcline (short dashes) for two values of h, as labeled. The effect
of h on the V nullcline can be seen from the equation for the V nullcline,

dV

dt
m V

I G n V V E G V E

G h V V EV
ext K R K L L

Na R Na

= ⇒ =
− − − −

−






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which is obtained by
solving Eqn. 21 for m with
dV/dt=0. As h decreases the
V nullcline moves vertically
upward. The result is to
move the saddle node to the
right along the m nullcline.
As the saddle moves, the
downward-pointing stable
manifold is dragged along.
Because that manifold is
the threshold separatrix, the
effect is to increase the
threshold. The horizontal
black line shows where the
thresholds are, at its
intersection with the stable
manifolds, and shows
clearly the increase in
threshold as h decreases.
This behavior in the phase
p l a n e  c o r r e s p o n d s
physiologically to the fact that as h decreases, sodium channels are inactivated and therefore
unavailable to participate in action potentials. The full model behaves qualitatively similarly, with
the threshold going from –53.44 mV for h(0)=.596 to –38.07 mV for h(0)=0.1.

Question 14. It is apparent from Fig. 12 that the near-threshold intersection region of the V
and m nullclines is very small. Argue from Eqn. 22 that by injecting positive current it is possible to
eliminate the intersection of the nullclines near the resting potential, so that the only equilibrium
point in the V-m plane is the one near +50 mV. (Hint: what is the sign of V-ENa?) How will the
reduced system behave in this case? What does the reduced system predict about the full system in
this situation?

Fig. 14.  Effect of varying h on the reduced system in the V-m phase plane.
0.596 is the value of h at the HH resting potential Note the change in the stable
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The V-m reduced system provides insight into the phenomenon of anode-break excitation,
seen in both the squid giant axon and the HH model. Figure 15 shows the phenomenon, in the full
model, at upper left. The membrane is hyperpolarized by a –2.8 µA/cm2 current injection over the

time period 0 to 40 ms (the heavy bar on the abscissa). When the current is turned off, the
membrane potential returns toward rest, but then overshoots the rest potential and fires an action
potential. Qualitatively, the anode-break effect can be explained by the fact that h increases and n
decreases during the maintained current injection, so that the membrane is more excitable at the end
of the current (time tend); the increase in h means more sodium channels are available for activation
and the decrease in n means that fewer potassium channels are open to stabilize the membrane.
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The phase planes at right in Fig. 15 show the reduced V-m system with n and h set at their
values just at the end of the hyperpolarization, i.e. at time tend in Fig. 15 (n is 0.272 instead of the
resting value of 0.318 and h is 0.695 instead of its resting value of 0.596). The effect of reducing n

Fig. 15.  Anode-break excitation.
Top left shows time waveforms
of membrane potential and the
HH variables for the full HH
model in response to a 40 ms
long –2.8 µA/cm2 current

injection (heavy black bar). At
right are V-m phase planes for the
instant just after the current is



23

and increasing h  is to move the dV/dt nullcline downward, eliminating the intersection of the
nullclines near the rest potential. As a result, there is now no stable equilibrium point in the reduced
system, except near +50 mV. The flows in the vicinity of rest potential are shown at lower right in
Fig. 15. The magenta line shows the trajectory of the reduced system through this region from an
initial condition at the values of V and m at the end of the hyperpolarization. The explanation for the
anode-break spike, in terms of the phase plane analysis, is that the stable equilibrium point at the
resting potential is abolished by the changes in n  and h  so the system undergoes a rapid
depolarization which leads to an action potential in the full system.

Bifurcation theory illustrated with the V-n reduced HH system

A reduced system similar to the MLE can be constructed from the HH equations by
eliminating m and h as state variables, leaving V and n. This approach was taken by Cannon and
collaborators (1993) in a model of certain muscle disorders linked to loss of inactivation in the
sodium channels in the muscle. The first assumption is that the time constant for m is fast, so that m
can be approximated by m∞(V). The second assumption is to set h to zero, which is a crude
approximation of the situation during the repolarization phase of the action potential, after about 2.5
ms in Fig. 3, when most sodium channels are inactivated. The muscle disorders studied by Cannon
et al. show a loss of repolarization, so this phase of the action potential was of primary interest in
their study. The model assumes that some sodium channels, a fraction f, have lost their inactivation
gates, so that their conductance is gated only by the activation gate m. The resulting model contains
only two state variables and resembles the MLE:
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Note that the sodium term assumes that f of the sodium channels do not inactivate and the remainder
are permanently inactivated. The functional form of m∞(V) and
n∞(V) used by Cannon et al. are the same as in the original HH
model, but the parameters are different. The parameters are listed
in the appendix. (Note that with these parameters, the behavior of
the model is qualitatively the same as published, but the
quantitative behavior, i.e. values of f at the bifurcation points, is
slightly different; presumably this difference reflects  some
difference in parameter values actually used by Cannon et al.
versus the ones gleaned from their paper.)

The reduced n-V model produces action potentials that are
qualitatively similar to the full HH model. Figure 16 shows a
comparison of the action potential and n(t) waveforms between the
full model (solid lines) and the reduced model (dashed lines) with
f=0.025.

Fig. 16.  Comparison of the
membrane potential (top) and n(t)
waveforms between the full
(dashed) and reduced (solid)
Cannon models (Fig. 9A of
Cannon et al, 1998)
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The phase-plane of the
reduced model is shown in
Fig. 17A for a range of values
of f. The V nullcline is shown
by the solid lines. As in the
MLE, the V nullcline has two
legs, a negative slope portion
below –80 mV which does not
vary as f  varies, and a convex
upward portion between about
–60 and +40 mV which is
quite sensitive to f. The n
nullcline is shown by the
dashed line. As before, this
nullcline is a plot of n∞(V) and
does not depend on f. There
are three equilibrium points in
the system, indicated by the
symbols. One, the rest
potential (r.p.), is stable, and
remains near –85 mV for all
values of f .  A second
equilibrium point is near –60
mV (open triangles); this point
moves with the V nullcline as f
changes. It is a saddle node
with a stable manifold that
serves as a threshold
separatrix, as in Fig. 8. The
manifolds are not shown, but
the stable threshold manifold
follows very closely the
dV/dt=0 nullcline in the
downward direction. A third
equilibrium point is near and
above –40 mV. It can be a stable (filled squares) or unstable (unfilled squares) spiral, depending on
f.

As f decreases, the upper two equilibrium points move toward one another along the dn/dt=0
nullcline until they coalesce into a single point for f =0.013 and disappear for smaller values. Note
that there is only one equilibrium point, the r.p., for the smallest value of f shown in Fig. 17A.

The bifurcation diagram in Fig. 17B summarizes the behavior of the system on a plot of the
membrane potential at the equilibrium points (ordinate) versus the value of f, which is the
bifurcation parameter in this case. In nonlinear dynamics, a bifurcation means a sudden change in
the qualitative behavior of a system with a small change in some parameter. The line marked stable
node shows the membrane potential at the r.p., which does not change with f; this point remains

Fig. 17.  A. Phase plane for the reduced Cannon et al. model with f  varying
from 0.01 to 0.1. Shown are nullclines; only the dV/dt=0 nullcline varies with f.
Symbols marking equilibrium points vary in shape according to eq. point type.
r.p. is equilibrium point at resting potential.  B. Bifurcation diagram for this
system. (modified from Fig. 10 of Cannon et al., 1998.)
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stable across the range of f. The sidewise parabola-like curve at higher membrane potentials plots
the positions of the other two equilibrium points. The lower branch of this curve, marked unstable
saddle, plots the potential of the saddle node; the upper branch plots the potential of the third
equilibrium point, which is either unstable or stable. The coalescence and vanishing of the upper
two equilibrium points is clearly shown as the left–hand end of this plot at f=0.013. The
disappearance of the upper two equilibrium points is called a saddle-node bifurcation; such a
bifurcation often has interesting consequences for systems. In this case, the effects are subtle, and a
more interesting example is shown in Fig. 7.5 of Rinzel and Ermentrout, 1998. Solid lines show
stable equilibrium points and dashed lines show unstable points, including saddles. The transition
from unstable to stable at f=0.048 is shown on the upper limb for the third equilibrium point.

The model shows a range of behaviors as f varies. For f very small, there is only one
equilibrium point at the resting potential and all trajectories decay to the resting potential, which is
globally attracting. The model behavior is similar to the MLE shown in Fig. 5.

For larger values of f, three equilibrium points exist; for f between 0.013 and 0.048, the
upper one (near –40 mV) is unstable (open squares in Fig. 17A, dashed line in Fig. 17B). The
saddle node’s manifolds are positioned as in Fig. 8; the stable manifold provides a threshold, as it
did for the MLE. The equilibrium point at the resting potential is still globally attracting. It is
possible to convince yourself of this last point without doing simulations. First, the equilibrium
point at r.p. is the only stable equilibrium point in the phase plane. Second, there cannot be a limit
cycle because, from index theory, it would have to cross one of the manifolds of the saddle node, as
for Fig. 8. Finally, the system cannot cross the outer boundary set by the equilibrium potentials and
[0,1] along the n dimension, as argued in Question 12. Thus there is no stable state of the system
other than the equilibrium point.

At f=0.048, the upper equilibrium point becomes a stable spiral; the eigenvalues of this
equilibrium point are a complex conjugate pair and their real part changes from positive to negative
at f=0.048. When the upper equilibrium point becomes stable, the behavior of the system changes in
an important fashion, which was the main subject of the paper by Cannon et al. because it resembles
the pathophysiology of the muscle disorder they were studying. Over a narrow range of f, there are
two stable states of the system with the structure shown in Fig. 18. The phase plane at left in Fig. 18
shows three equilibrium points (green dots), as in Fig. 17A. The nullclines and the manifolds of the
saddle are shown in green and red as before. Trajectories from three points in the phase plane are
plotted by the magenta, blue and brown curves. The corresponding time waveforms are shown in
the inset. The blue and brown trajectories correspond to action potentials that end up at the r.p.
equilibrium point, as before. However, the magenta trajectory produces and action potential that
does not repolarize to rest; instead, it oscillates around the third, now stable, equilibrium point (at
–32 mV), and eventually comes to rest there. The failure to repolarize, of course, occurs because the
sodium channels are not inactivating, so that the membrane potential is maintained in a depolarized
state by steady-state sodium currents. This can only occur when the fraction of non-inactivating
sodium channels exceeds about 0.048, i.e. at the bifurcation point where the third equilibrium point
becomes stable.

The phase plane is now divided into two regions: the area inside the curve plotted with the
dashed black line in Fig. 18 is the basin of attraction of the third equilibrium point. All trajectories
that begin inside this curve, like the magenta one, end up at the third equilibrium point. The rest of
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the phase plane is the basin of attraction of the resting equilibrium point, as before. Note that the
upper stable manifold of the saddle node (red manifold extending upward from the saddle node)
does not originate at the third equilibrium point, as it does at lower values of f (in exactly the same
way as in Fig. 8). It cannot do so, because that equilibrium point is now stable. Instead, it originates
in an unstable limit cycle corresponding to the black dashed curve.
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Up to now, only stable limit cycles have been considered. Stable limit cycles are curves into
which other trajectories move, as in Fig. 7. It is also possible for limit cycles to be unstable, in
which case trajectories diverge from them. Unstable limit cycles can be discovered by the trick of
reversing time in the simulation, as discussed in connection with Fig. 8. With reversed time, all
trajectories reverse direction, stable elements become unstable and vice-versa. The unstable limit
cycle in Fig. 18 (dashed black curve) was plotted in this way. This limit cycle, or unstable periodic
orbit, serves as a separator between the basins of attraction of the r.p. and the third equilibrium
point.

Question 15. Sketch the phase plane of Fig. 18 for the negative time system. In particular,
show what you think will happen to trajectories beginning at the three initial values marked with x’s
(i.e. the initial values of the magenta, blue, and brown trajectories).

Fig. 18.  Phase plane for the reduced model of Cannon et al. with f=0.062 and the parameters given in the appendix.
The color code is the same as in previous figures; trajectories from three initial values (x’s) are shown in magenta,
blue, and brown. The brown trajectory follows the unstable manifold of the saddle from the vicinity of the third
equilibrium point to the r.p. and cannot be seen because it is occluded by the manifold. The plot at right is an
expanded view of the phase plane near the third equilibrium point. The trajectories are very crowded just above this
equilibrium point, but the magenta curve is inside the boundary set by the dashed black curve and the blue, red, and
brown trajectories are outside it (the brown trajectory is hidden behind the red manifold). The inset at top center
shows the time waveforms corresponding to the three trajectories, using the same color code. Note that Cannon et al.
show the same behavior (their Fig. 11) for f=0.055.
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The unstable limit cycle comes into existence at the bifurcation when the third equilibrium
point becomes stable. As f increases, the size of the limit cycle increases. The extent of the limit
cycle along the V axis is plotted in Fig. 17B by the solid curve marked basin of attraction. The limit
cycle expands until it fills all the space between the stable and unstable manifolds of the saddle
node (it cannot grow further because trajectories cannot cross the manifolds). When the basin fills
the space between the manifolds (near f=0.056), another change in the properties of the system
occurs. The phase plane for a value of f beyond this point is shown in Fig. 19.
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The most dramatic change between Fig. 18 and Fig. 19 is the behavior of the manifolds. The
unstable manifold that emerges from the saddle in a rightward direction spirals around and
approaches the upper equilibrium point in Fig. 19, as opposed to continuing on to the r.p. as it did in
Fig. 18. The stable manifold that emerges from the saddle in an upward direction can no longer
originate in the unstable limit cycle, which ceased to exist when it reached the rightward unstable
manifold. Instead, it leads from outside the phase plane, as drawn. The arrangement of the
manifolds now means that there is no way for a suprathreshold trajectory to return to the r.p. That
is, if the membrane potential is displaced to the right of the threshold separatrix formed by the
downward stable manifold, it follows a trajectory (brown curve) which leads to the third
equilibrium point (near –31 mV), traveling along the unstable manifold. The time waveform is
shown in the inset; physiologically, this behavior means that, when depolarized, the cell fires an

Fig. 19.  Phase plane for the reduced model of Cannon et al. with f=0.065. The arrangements of the manifolds in
the vicinity of the third equilibrium point has changed so that the basin of attraction of the third equilibrium point
includes all suprathreshold action potential trajectories. The right plot shows a detail view near the third
equilibrium point. Four trajectories are shown: a subthreshold (purple) and suprathreshold (brown) displacement
from the r.p.; a trajectory originating between the manifolds (magenta); and a trajectory above and to the right of
the manifolds (blue). The magenta and brown trajectories merge with the unstable manifold and are hidden in the
right-hand plot. The time waveforms of three trajectories are shown in the inset. The short red line in the inset
shows the membrane potential at the threshold separatrix formed by the downward pointing stable manifold of
the saddle.
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action potential, then fails to repolarize, because of inadequate sodium inactivation, and ends up in a
permanent state of depolarization. This same behavior was observed in Fig. 18, but there it could be
evoked (magenta trajectory) only by starting within the unstable limit cycle in the phase plane, an
unphysiological situation.

Question 16. Once the membrane potential has moved to the third equilibrium point, it will
stay there permanently, unless an external stimulus is applied. What kind of stimulus can return the
system to the r.p.? This question has two parts: 1) What is the basin of attraction of the r.p.? (Hint,
consider the blue trajectory in Fig. 19.); and 2) How could you move the system from its third
equilibrium point into the r.p.’s basin of attraction?

Hopf bifurcation

There are several types of bifurcations, of which only the saddle-node variety has been
mentioned. A common bifurcation seen in HH systems is a Hopf bifurcation which occurs when the
eigenvalues of the linearization near an equilibrium point contain a complex conjugate pair. When
the real part of the conjugate pair moves from negative (stable spiral) to positive (unstable spiral),
the result is a Hopf bifurcation. The change from stable to unstable shown by the third eigenvalue in
the reduced Cannon system (at f=0.048) is an example of a Hopf bifurcation. This is not a
convenient example for discussion, because the typical bifurcation behavior (emergence of a limit
cycle) is actually shown by the negative-time system in this case (i.e. the emergence of the unstable
limit cycle). A detailed discussion of Hopf bifurcation can be found in Rinzel and Ermentrout
(discussion of Fig. 7.2) and in Strogatz (pp. 248-254).

Appendix: Parameters of the Hodgkin-Huxley model

The differential equations for the HH parameters m, n, and h are parameterized by rate
functions Αx(t) and Βx(t) where:
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The usual description of the HH equations, as in Eqn. 2, is in terms of functions like m∞(V) and
τm(V). With a little algebra, it can be shown that m∞=Am/(Am+Bm) and τm=1/(Am+Bm).

The parameters of Eqn. 23 along with the other parameters of the HH model are shown in
the table below. Two sets of parameters are given, the original HH set, for a resting potential of –60
mV, and a modified set used by Cannon et al. (1993). As mentioned, with the Cannon parameters
listed in the table, the bifurcation points of the reduced model are not quite the same as the values
given in the Cannon et al. paper. The qualitative behavior of the system is the same.
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Param.        HH        Cannon et al.                                Param.       HH      Cannon et al.               

GL 0.3 0.75 mS/cm2

GK 36 21.6 mS/cm2

GNa 120 150 mS/cm2

C 1 4 µFd/cm2

EL -87 * mV
EK -95.3 -72 mV
ENa 36.7 55 mV

αm 0.1 0.288 ms-1

βm 4 1.38 ms-1

Vαm -36 -46 mV

Vβm -60 -46 mV

Kαm 10 10 mV

Kβm 18 18 mV

αh 0.07 0.0081 ms-1

βh 1 4.38 ms-1

Vαh -60 -45 mV

Vβh -30 -45 mV

Kαh 20 14.7 mV

Kβh 10 9 mV

αn 0.01 0.0131 ms-1

βn 0.125 0.067 ms-1

Vαn -50 -40 mV

Vβn -60 -40 mV

Kαn 10 7 mV

Kβn 80 40 mV

*Adjusted to set the resting potential to –60 mV.

The HH parameters above are appropriate for a temperature of 6˚C. For different
temperatures, the Ax and Bx functions should be multiplied by a factor φ given by

φ = =−Q QT
10

6 3 10
10 3( . )/      where    
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