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Synonyms

Exponential integrate-and-fire model, Izhikevich model, Leaky integrate-and-fire model, Quadratic
integrate-and-fire model

Definition

The integrate-and-fire (IF) model is a single-compartment model describing the subthreshold
dynamics of the neuron membrane potential V. The spiking dynamics is marked by a spiking
threshold, potential at which the neuron emits a spike. After spike emission, V is set at the neuron’s
reset potential. Subthreshold dynamics was initially designed to capture neuron’s passive membrane
properties, and its dynamics was given by a single first-order linear differential equation.

Variations around this model have been introduced to describe either spike-activated currents,
more complex subthreshold dynamics, or more realistic spike initiation dynamics. These models can
be two or three dimensional or include nonlinear terms. However, they are always designed to
describe the relevant mechanisms with a minimal set of variables and parameters which make them
suitable for large-scale simulations or detailed mathematical analysis.

Detailed Description

Leaky Integrate-and-Fire Model
The leaky integrate-and-fire (LIF) model was first introduced by Lapicque (1907) to describe
mathematically neuron firing times. It is based on the idea that neuron activity can be captured by
the dynamics of its membrane potential which evolves according to neuron inputs (synaptic or
current injection) and passive membrane properties (see, e.g., Eccles 1957). The main hypothesis of
the LIF model is that action potential threshold and shape are invariant from spike to spike, and thus
a precise description of the spike can be omitted and simply sketched by a spiking threshold. When
V reaches this threshold, a spike is emitted, after which V is set at the neuron’s resting membrane
potential. This simple spiking dynamics captures the nonlinear input–output relationship of neurons
and has been the subject of detailed mathematical analysis (Knight 1972; Tuckwell 1988).

Below spiking threshold, the membrane potential dynamics is described by the membrane passive
dynamics. The equivalent electrical circuit is sketched in Fig. 1a and its main parameters are the
following:

• Cm: the membrane capacitance
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• gL: the leak conductance (or equivalently its membrane resistance Rm ¼ 1/gL)
• EL: the resting membrane potential, which is the neuron membrane potential in the absence of

external stimulation

The standard equation describing the LIF model below threshold is then given by

Cm
dV

dt
¼ �gL V � ETð Þ þ I tð Þ (1)

where I(t) represents any external input (electrode, synaptic, etc.) to the neuron. Another common
form of Eq. 1 is

tm
dV

dt
¼ � V � ELð Þ þ RmI tð Þ (2)

where tm is the membrane time constant:

tm ¼ Cm

gL
¼ RmCm (3)

The first term on the right-hand side in Eqs. 1 or 2 is called the leak current. It pulls V toward its
resting membrane potential. With this term, the LIF model is the original leaky integrate-and-fire
model (also called forgetful IF). This term is sometimes neglected in which case the model is
a perfect integrator (simple integrate-and-fire model, SIF). The previous equations only describe the
subthreshold membrane potential dynamics. To capture neuron spiking mechanisms, the LIF model
is completed by a constant spiking threshold Vth, potential at which the LIF model is considered to
have emitted a spike. There is no detailed description of the actual spike shape. Following a spike,
the potential V is reset to a reset potential Vr. See Fig. 1b for an example of LIF membrane potential
trace.

a b

Fig. 1 Basis of the leaky integrate-and-fire (LIF) model. (a) Electrical RC circuit equivalent to the LIF model. (b)
Subthreshold (dashed line) and suprathreshold (full line) activation of a LIF model. LIF parameters: EL ¼ �65 mV,
tm ¼ 10 ms, Vr ¼ �70 mV, Vth ¼ �50 mV
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To take into account the finite width of real spikes and the neuron absolute refractory period, we
can add to the LIF model a refractory period tref. It is a period following each spike during which the
model is insensitive to external inputs. At the end of this period, V is reset at Vr.

Thanks to the simple form of its equation, assuming a constant input current I(t) ¼ I, the LIF
model trace can be exactly computed between spikes:

V tð Þ ¼ Vr þ RmI þ EL � Vrð Þ 1� e�
t
tm

� �
(4)

This shows that if the input current is large enough, RmI � Vth � EL, then the LIF model emits
a spike after a time T such that

V th ¼ Vr þ RmI þ EL � Vrð Þ 1� e�
T
tm

� �
(5)

Finally we obtain the LIF f-I curve, given by

f Ið Þ ¼ 1

tref þ tmln
RmI þ EL � Vr

RmI þ EL � V th

� � (6)

Note that the logarithmic shape of the f-I curve, close to rheobase (current threshold), is not typical
of f-I curves found with more detailed neuron model. Besides, this simple calculation in presence of
a constant external input should not mask the strong nonlinearity introduced in the model by its hard
spiking threshold making analytical computations more difficult as soon as more complex dynamics
are considered. However, the simplicity of the LIF model makes it useful in large-scale simulations
of neuronal networks.

Extensions of the LIF Model
The LIF model captures only subthreshold dynamics governed by passive membrane dynamics and
has an oversimplified spiking mechanisms which can sometimes generate rather unphysiological
behavior. Thus, many extensions of the model have been proposed to allow a description of
additional features found in real neurons. We will describe here three major classes of extension:

• Currents activated during spiking, like afterhyperpolarization currents leading to spike rate
adaptation

• Currents active below threshold which can generate resonant membrane properties
• More realistic spiking mechanisms allowing to better capture fast neuronal dynamics

As we will see, the common basis of all the extensions proposed for the LIF model is that they
were intended to use the smallest number of parameters and the simplest equation possible to capture
additional neuronal dynamics. The model proposed by Izhikevich (2003), gathering many of these
extensions, can thus describe most of known neuronal spiking pattern with a very small set of
parameters and first-order differential equations. It will be presented at the end of this section.

Spike-Activated Currents
In real neurons, spiking is induced by the strong activation of intrinsic sodium and potassium
currents. This leads to a large fluctuation of neuron membrane potential and transient changes of ion
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intracellular concentration. These effects can cause other voltage-activated or ion-activated (like
potassium-dependent) channels to be modulated during spiking. A common example is the activa-
tion during a spike of currents leading to spike rate adaptation. These types of currents are transiently
activated during a spike but are then slowly inactivated between spikes and tend to hyperpolarize the
neuron. The first version of such a current in a LIF model has been introduced by Treves (1993), and
its simplest mathematical description is given by

tm
dV

dt
¼ � V � ELð Þ þ Rm �Ia þ I tð Þð Þ (7)

ta
dIa
dt

¼ �Ia (8)

where the adapting current Ia is incremented by a positive constant ra at each spike. An example of
trace of an adapting LIF model is shown in Fig. 2. Note that the same formalism could be used to
describe facilitating currents, leading to afterdepolarization (ADP), by changing to positive sign in
front of Ia in Eq. 7. Other versions of the adapting current use a slowly decaying conductance ga and
then define Ia ¼ ga(V � Ea) where Ea is the reversal potential of the adapting current and has to be
lower than Vth in order to describe an hyperpolarizing current.

Subthreshold Voltage-Dependent Currents
In the previous section, the spike-activated current (or conductance) was not voltage-dependent
between spikes. However, most of real neurons express currents which are activated in a voltage-
dependent manner below the spike threshold and affect the neuron dynamics. An accurate descrip-
tion of this type of voltage-dependent currents generally requires to use the Hodgkin-Huxley

Fig. 2 Adaptation in a LIF model. Top: potential traces of a LIF model with (full line) and without (dashed line)
adaptation current. Bottom: buildup of the adaptation current during spiking. Note that after a transient increase at the
beginning of neuron firing, adaptation stabilizes. Adaptation parameters: ta ¼ 20 ms, ra ¼ 0.2 nA
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formalism. However, it is still possible to capture the most salient effects of such currents on the
neuron dynamics by restraining their analysis in a narrow voltage band (Izhikevich 2001; Richard-
son et al. 2003). For example, Richardson et al. (2003) showed that it is possible to linearize the full
conductance equation of voltage-dependent conductances around the neuron equilibrium potential
to obtain a linear system able to capture membrane potential subthreshold resonance. Adding
a standard LIF spiking threshold to the linearized model gives the generalized integrate-and-fire
(GIF) model. The standard equation of a GIF model is given by

tm
dV

dt
¼ � V � ELð Þ þ Rm �gxWx þ I tð Þð Þ (9)

tx
dWx

dt
¼ �Wx þ V � Exð Þ (10)

We emphasize that contrary to the current used to describe spike rate adaptation, hereWx depends
on V. Depending on the parameters gx and tx, this allows the system to have fixed points with
complex basis solutions like for the simple or damped harmonic oscillator. Such solutions can
capture resonant properties found in real neurons (Hutcheon and Yarom 2000). In Eq. 9 we had only
one additional conductance to the original LIF model, but some neuron with low and high resonant
frequencies may require two or more currents in order to capture their dynamics. Details on the
derivation of additional current parameters from the standard Hodgkin-Huxley equations can be
found in Richardson et al. (2003).

Spike Initiation Dynamics
In the standard LIF model, the spiking mechanism is sketched by a constant spiking threshold.
However, in real neurons, the action potential is initiated by a strong sodium current with a fast, but
not instantaneous, activation. Both mechanisms are similar when we are only interested in slow
neuron dynamics, but discrepancies can appear when looking at the response to fast-fluctuating
input, for example. Thus, extensions of the LIF model including a nonlinear term to model the
non-instantaneous activation of sodium current have been proposed. The general form of these
nonlinear integrate-and-fire (NLIF) models is given by

Cm
dV

dt
¼ gLc Vð Þ þ I tð Þ (11)

where c(V ) is a function which increases fast enough such that when V grows, it can diverge to
infinity in a finite time. In this case, the spike time is given by the time of divergence of V, and it is
then reset at potential Vr. It is no longer necessary to choose an arbitrary spike threshold, but for
numerical simulation, a spike cutoff has to be defined assuming infinity has been reached.

Using this equation, we can define two important quantities:

• The voltage threshold VTwhich is the highest steady-state voltage the neuron can sustain without
emitting a spike. If c is convex, it is defined by c0(VT ) ¼ 0.

• The spike shape factor DT which is proportional to the curvature radius of the neuron
current–voltage curve at its voltage threshold VT. It is defined by DT ¼ 1/c00(VT ).
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Two major classes of NLIF neurons have been used in the literature. The first one historically is
the quadratic integrate-and-fire (QIF) (Ermentrout and Kopell 1986; Ermentrout 1996), also known
as the theta model:

Cm
dV

dt
¼ gL

2DT
V � VTð Þ2 � I0 þ I tð Þ (12)

For an input current below I0, the model exhibits two fixed points: one stable and one unstable.
When the input current increases and reaches I0, the two fixed points merge and the neuron
membrane potential is destabilized through a Hopf bifurcation which is the classical type
I dynamics observed in many neuron models.

The second type of well-known NLIF neuron is the exponential integrate-and-fire model (EIF):

Cm
dV

dt
¼ �gL V � VTð Þ þ gLDTe

V�VT
DT þ I tð Þ (13)

Here the divergence function is exponential which leads to a spike initiation speed intermediate
between the instantaneous LIF spike and the rather slow QIF spike (see Fig. 3a). Fourcaud-Trocmé
et al. (2003) have shown that this model captures best the fast dynamics of standard Hodgkin-
Huxley-type models for cortical neurons, like the Wang-Buzsáki model (Wang and Buzśaki 1996).

a b

Fig. 3 Comparison of nonlinear IFmodels. Left: comparison of LIF, QIF, and EIF spiking initiation in response to the
same constant current input. We observe that the LIF neuron is very reactive and spikes as soon as it reaches the spiking
threshold Vth. The EIF model has a smooth but sharp spike, while the QIF model has the slowest spike. Right:
comparison of LIF, QIF, and EIF f-I curves. We observe that LIF f-I curve has a logarithmic initial portion which is
a consequence of its instantaneous spiking mechanism. QIF and EIF f-I curve initial portion have a square root shape,
which depends only on VT and DT. This shape is classically observed in type I neurons. Parameters: for all models,
Cm ¼ 1 nF, gL ¼ 0.1mS, EL ¼ �65 mV; LIF, left, Vth ¼ �60 mV, Vr ¼ �70 mV; LIF, right, Vth ¼ �63.4 mV,
Vr¼�80 mV, tref¼ 1.35 ms;QIF, VT¼�59.9 mV, DT¼ 3.48 mV, Vth ¼�30 mV, Vr¼�62.235 mV, I0¼�0.16 nA,
tref ¼ 0 ms; EIF, VT ¼ �59.9 mV, DT ¼ 3.48 mV, Vth ¼ �30 mV, Vr ¼ �68 mV, tref ¼ 1.7 ms
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Comprehensive IF Models

The three types of extensions presented previously describe distinct aspects of neuron dynamics but
are not exclusive. Some studies proposed to combine them in order to produce simple but realistic
neuron models. One of the simplest has been proposed by Izhikevich (2003). It is defined by

dV

dt
¼ 0:04V 2 þ 5V þ 140� U þ I tð Þ (14)

dU

dt
¼ a bV � Uð Þ (15)

Two additional parameters are the reset Vr ¼ c and the increase d of variable U after each spike.
Note that depending on the set of parameters a, b, c, d, it can include all LIF extensions previously
described. Using this model, Izhikevich has shown that most of the common recorded discharge
patterns could be reproduced (see Fig. 4).

A second comprehensive model is the adaptive integrate-and-fire model (Brette and Gerstner
2005). It is described by
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Fig. 4 Example of a comprehensive IF model. The model depicted in the upper equations includes subthreshold
dynamics, a spiking mechanisms inspired by the QIF model, and spike-dependent adaptation. All these dynamical
aspects depend only on two variables and four parameters. Careful choices of the parameters can lead to a great variety of
neuronal dynamics reminiscent of actual neuronal recordings (Electronic version of the figure and reproduction
permissions are freely available at www.izhikevich.com)
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Cm
dV

dt
¼ �gL V � VTð Þ þ gLDTe

V�VT
DT � wþ I tð Þ (16)

tw
dw

dt
¼ a V � ELð Þ � w

Again, the model must be completed by a reset Vr and the increment b of the adaptive current w at
each spike. This model is very similar to the model proposed by Izhikevich (2003) but its
subthreshold dynamics and spike initiation dynamics are closer to standard Hodgkin-Huxley
models. This facilitates the choice of the model parameters based on simple experimental measure-
ments (injection of current pulses, steps, and ramps; see Brette and Gerstner 2005 for details).

Cross-References

▶Capacitance, Membrane
▶Excitability: Types I, II, and III
▶Hodgkin-Huxley Model
▶Theta Neuron Model
▶Time Constant, Tau, in Neuronal Signaling
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