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Appedix C: Hodgkin-Huxley Equations 
 
        The Hodgkin-Huxley equations belong to conductance-based compartment model.  
Physiologically just like other cells, neurons are surrounded by double-lipid membranes 
separate cytoplasm from extracellular space.  Ion pumps maintain concentration gradients 
across membranes and thus electrical potential. The basic scheme of single compartment 
models is shown in Figure C.1-1 [1]. 
 

C.1 Conductance-based compartment model 
Neuronal cell membranes have been modeled as capacitors separating electric charge.  
The ion channels across the membrane act as conductance that allows ionic current flow 
between intracellular and extracellular space.  The transmembrane current flow perturbs 
electrical balance and may initiate action potentials.  The reverse potentials ENa, EK, and 
EL exist due to the concentration gradients of ions across the membrane maintained by 
ion pumps.  The current balance equation according to Kirchoff’s Law can be written as 
follows: 
 Na K L exCV I I I I= − − − +  (A.1) 

 

          
Figure C.1-1  The representation of compartment model 

 

C.2 Ion channels 
 
For Hodgkin-Huxley model, the types of channels considered include sodium, potassium, 
and leakage [3].  Each ion channel is selective to specific type of ion. Ionic current 
through ion channel is determined by the opening and closing of ion channels.  The 
gating variables represent the degree of opening of a certain ion channel and they follow 
first order kinetics with voltage-dependent rate constants α (V) and β (V).  The voltage 
dependence was determined experimentally and has been formulated into equations [2].  
The detailed model for each ion channel is described below.  With the system of ordinary 
differential equations (ODEs) fully defined, four variables with four equations, the ODEs 
can be integrated to get the response of membrane potential.  The resting membrane 
potential is approximately -65 mV. 
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Sodium channels are controlled by two gating variables: m and h, both of which depend 
on the membrane potential.  The activation variable m increases with membrane potential 
while inactivation variable decreases with it.  The dynamics of sodium channels are 
described in Eq. (A.2).  
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Potassium delayed-rectifier current flows through potassium channels which are 
controlled by one single gating variable n.  The variable n grows with respect to 
membrane voltage.  The overall dynamics of potassium channels are described in Eq. 
(A.3). 
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The leakage current, IL, approximates the passive properties of the cell has linear 
relationship with the membrane voltage. 
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C.3 Modulation by using building blocks in Simulink 
 
We used individual modules in Simulink to incorporate the dynamics of ionic channels 
into the hierarchical model.  Modulation can facilitate the reuse of the building blocks 
and make debugging simpler.  There are three levels of model complexity introduced as 
shown in Figure C.3-2.  The top one outlines the input and output signals.  The second 
level describes the ion channels as conductance and neuronal membrane as capacitor.  
The connections between building blocks with transfer functions embedded are drawn 
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based upon Hodgkin-Huxley equations.  The third level includes the detailed dynamics of 
both sodium and potassium channels.  There are two channel variables (h and m) 
controlling sodium channels and only one (n) influencing potassium channels.  
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Figure C.3-2  The hierarchical Simulink structure to implement Hodgkin-Huxley 
equations. (A) The main directory that takes the current injected as input and exports the 
excitatory postsynaptic current and membrane potential.  (B) The ion channels embedded 
in the conductance-based model.  (C) The detailed structure describing the dynamics of 
sodium channels.  (D) The detailed structure describing the dynamics of potassium 
channels  . 
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Figure C.3-3  The input current and output membrane potential based on Hodgkin-
Huxley equations.  (A) The response based on standard H-H model.  (B) The response 
based on hierarchical model implemented in Simulink. 
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C.4 Modification of H-H model 
 
The shapes of action potentials vary significantly, depending on the types and locations 
of neurons.  Although the output of Hodgkin-Huxley equations represents one major type 
of action potential, it cannot account for all the classes of action potential.  Therefore, 
various spiking models have been developed independently or based on the H-H 
equations.  To model the responses from various types of neuron, a precise simulation of 
action potentials initiated at the neurons of interest is necessary.  There are two aspects of 
H-H model that we modified for the modeling work of spike timing dependent plasticity.  
The first is the kinetics of potassium channels and the second is the depolarization after 
potential behavior. 
 

C.4.1 Change the kinetics of K channels 
 
The recovery rate of potassium channels is described by the two ion channel rate 
constants αn(V) and βn(V).   While αn(V) is the opening rate constant, βn(V) is the closing 
rate constant; both of them are voltage dependent.  The potassium current flow through 
rectifier potassium channels recovers the membrane potential from the hyperpolarization 
state.  Since different kinds of neurons demonstrate different length of the tail after action 
potential, to control the rate of the recovery, the values of αn(V) and βn(V) need to be 
adjusted.   As shown in Figure C.4.1-4, slow K channels result into long post action 
potential tail and fast K channel render swifter recovery.  For the classical H-H equations 
(fast K channel), the value pre voltage terms constant of αn(V) and βn(V) are 0.032 and 
0.5, respectively, based on Eq. (A.3).  As for slow K channel, those values are adjusted to 
0.15; for medium K channel, 0.32. 
 

 
Figure C.4.1-4  The output of Hodgkin-Huxley equations with different rates of 
potassium channel kinetics.  
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C.4.2 Introduce depolarization after potential 
Several types of neurons mentioned in the manuscript demonstrate depolarization after 
potential (DAP) behavior.  These neurons, at the repolarization stage, depolarize instead 
of hyperpolarize once reaching the resting potential, which is -65 mV according to H-H 
equations.  Therefore, the level of membrane potential does not drop below the steady 
state value.  To implement the introduction of DAP into H-H model, we decided to 
reverse the hyperpolarization part of the action potential whenever the membrane 
potential Vm is smaller than -65 mV.  The constant kDAP is added to control the degree of 
depolarization after potential.  The Matlab® codes to execute the algorithms are as follow 
and the comparison between the output of classical H-H model and that with DAP 
behavior is shown in Figure C.4.2-5.   
 
IF  Vm < -65 
  
   THEN Vm = -65 + kDAP * (-65 - Vm) 
  
ELSE 
  
   Vm = Vm 
  
END 
 

 
Figure C.4.2-5  The output of Hodgkin-Huxley equations with different degree of 
depolarization after potential (DAP). 
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