

PYTHON FOR
BIOINFORMATICS

SECOND EDITION

CHAPMAN & HALL/CRC
Mathematical and Computational Biology Series

Aims and scope:
This series aims to capture new developments and summarize what is known
over the entire spectrum of mathematical and computational biology and
medicine. It seeks to encourage the integration of mathematical, statistical,
and computational methods into biology by publishing a broad range of
textbooks, reference works, and handbooks. The titles included in the
series are meant to appeal to students, researchers, and professionals in the
mathematical, statistical and computational sciences, fundamental biology
and bioengineering, as well as interdisciplinary researchers involved in the
field. The inclusion of concrete examples and applications, and programming
techniques and examples, is highly encouraged.

Series Editors

N. F. Britton
Department of Mathematical Sciences
University of Bath

Xihong Lin
Department of Biostatistics
Harvard University

Nicola Mulder
University of Cape Town
South Africa

Maria Victoria Schneider
European Bioinformatics Institute

Mona Singh
Department of Computer Science
Princeton University

Anna Tramontano
Department of Physics
University of Rome La Sapienza

Proposals for the series should be submitted to one of the series editors above or directly to:
CRC Press, Taylor & Francis Group
3 Park Square, Milton Park
Abingdon, Oxfordshire OX14 4RN
UK

Published Titles

An Introduction to Systems Biology:
Design Principles of Biological Circuits
Uri Alon

Glycome Informatics: Methods and
Applications
Kiyoko F. Aoki-Kinoshita

Computational Systems Biology of
Cancer
Emmanuel Barillot, Laurence Calzone,
Philippe Hupé, Jean-Philippe Vert, and
Andrei Zinovyev

Python for Bioinformatics, Second Edition
Sebastian Bassi

Quantitative Biology: From Molecular to
Cellular Systems
Sebastian Bassi

Methods in Medical Informatics:
Fundamentals of Healthcare
Programming in Perl, Python, and Ruby
Jules J. Berman

Chromatin: Structure, Dynamics,
Regulation
Ralf Blossey

Computational Biology: A Statistical
Mechanics Perspective
Ralf Blossey

Game-Theoretical Models in Biology
Mark Broom and Jan Rychtá̌r

Computational and Visualization
Techniques for Structural Bioinformatics
Using Chimera
Forbes J. Burkowski

Structural Bioinformatics: An Algorithmic
Approach
Forbes J. Burkowski

Spatial Ecology
Stephen Cantrell, Chris Cosner, and
Shigui Ruan

Cell Mechanics: From Single Scale-
Based Models to Multiscale Modeling
Arnaud Chauvière, Luigi Preziosi,
and Claude Verdier

Bayesian Phylogenetics: Methods,
Algorithms, and Applications
Ming-Hui Chen, Lynn Kuo, and Paul O. Lewis

Statistical Methods for QTL Mapping
Zehua Chen

An Introduction to Physical Oncology:
How Mechanistic Mathematical
Modeling Can Improve Cancer Therapy
Outcomes
Vittorio Cristini, Eugene J. Koay,
and Zhihui Wang

Normal Mode Analysis: Theory and
Applications to Biological and Chemical
Systems
Qiang Cui and Ivet Bahar

Kinetic Modelling in Systems Biology
Oleg Demin and Igor Goryanin

Data Analysis Tools for DNA Microarrays
Sorin Draghici

Statistics and Data Analysis for
Microarrays Using R and Bioconductor,
Second Edition
Sorin Drăghici

Computational Neuroscience:
A Comprehensive Approach
Jianfeng Feng

Biological Sequence Analysis Using
the SeqAn C++ Library
Andreas Gogol-Döring and Knut Reinert

Gene Expression Studies Using
Affymetrix Microarrays
Hinrich Göhlmann and Willem Talloen

Handbook of Hidden Markov Models
in Bioinformatics
Martin Gollery

Meta-analysis and Combining
Information in Genetics and Genomics
Rudy Guerra and Darlene R. Goldstein

Differential Equations and Mathematical
Biology, Second Edition
D.S. Jones, M.J. Plank, and B.D. Sleeman

Knowledge Discovery in Proteomics
Igor Jurisica and Dennis Wigle

Introduction to Proteins: Structure,
Function, and Motion
Amit Kessel and Nir Ben-Tal

RNA-seq Data Analysis: A Practical
Approach
Eija Korpelainen, Jarno Tuimala,
Panu Somervuo, Mikael Huss, and Garry Wong

Introduction to Mathematical Oncology
Yang Kuang, John D. Nagy, and
Steffen E. Eikenberry

Biological Computation
Ehud Lamm and Ron Unger

Optimal Control Applied to Biological
Models
Suzanne Lenhart and John T. Workman

Clustering in Bioinformatics and Drug
Discovery
John D. MacCuish and Norah E. MacCuish

Spatiotemporal Patterns in Ecology
and Epidemiology: Theory, Models,
and Simulation
Horst Malchow, Sergei V. Petrovskii, and
Ezio Venturino

Stochastic Dynamics for Systems
Biology
Christian Mazza and Michel Benaïm

Statistical Modeling and Machine
Learning for Molecular Biology
Alan M. Moses

Engineering Genetic Circuits
Chris J. Myers

Pattern Discovery in Bioinformatics:
Theory & Algorithms
Laxmi Parida

Exactly Solvable Models of Biological
Invasion
Sergei V. Petrovskii and Bai-Lian Li

Computational Hydrodynamics of
Capsules and Biological Cells
C. Pozrikidis

Modeling and Simulation of Capsules
and Biological Cells
C. Pozrikidis

Cancer Modelling and Simulation
Luigi Preziosi

Introduction to Bio-Ontologies
Peter N. Robinson and Sebastian Bauer

Dynamics of Biological Systems
Michael Small

Genome Annotation
Jung Soh, Paul M.K. Gordon, and
Christoph W. Sensen

Niche Modeling: Predictions from
Statistical Distributions
David Stockwell

Algorithms for Next-Generation
Sequencing
Wing-Kin Sung

Algorithms in Bioinformatics: A Practical
Introduction
Wing-Kin Sung

Introduction to Bioinformatics
Anna Tramontano

The Ten Most Wanted Solutions in
Protein Bioinformatics
Anna Tramontano

Combinatorial Pattern Matching
Algorithms in Computational Biology
Using Perl and R
Gabriel Valiente

Managing Your Biological Data with
Python
Allegra Via, Kristian Rother, and
Anna Tramontano

Cancer Systems Biology
Edwin Wang

Stochastic Modelling for Systems
Biology, Second Edition
Darren J. Wilkinson

Big Data Analysis for Bioinformatics and
Biomedical Discoveries
Shui Qing Ye

Bioinformatics: A Practical Approach
Shui Qing Ye

Introduction to Computational
Proteomics
Golan Yona

Published Titles (continued)

PYTHON FOR
BIOINFORMATICS

SEBASTIAN BASSI

SECOND EDITION

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2018 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20170626

International Standard Book Number-13: 978-1-1380-3526-3 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity
of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized
in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying,
microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Library of Congress Cataloging-in-Publication Data

Names: Bassi, Sebastian, author.
Title: Python for bioinformatics / Sebastian Bassi.
Description: Second edition. | Boca Raton : CRC Press, 2017. | Series:
Chapman & Hall/CRC mathematical and computational biology | Includes
bibliographical references and index.
Identifiers: LCCN 2017014460| ISBN 9781138035263 (pbk. : alk. paper) |
ISBN 9781138094376 (hardback : alk. paper) | ISBN 9781315268743 (ebook) |
ISBN 9781351976961 (ebook) | ISBN 9781351976954 (ebook) |
ISBN 9781351976947 (ebook)
Subjects: LCSH: Bioinformatics. | Python (Computer program language)
Classification: LCC QH324.2 .B387 2017 | DDC 570.285--dc23
LC record available at https://lccn.loc.gov/2017014460

MATLAB• is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the
accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB• software or related products
does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular
use of the MATLAB• software.

www.copyright.com
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com
https://lccn.loc.gov/2017014460
http://www.copyright.com/

Contents

List of Figures xvii

List of Tables xxi

Preface to the First Edition xxiii

Preface to the Second Edition xxv

Acknowledgments xxix

Section I Programming

Chapter 1 � Introduction 3

1.1 WHO SHOULD READ THIS BOOK 3

1.1.1 What the Reader Should Already Know 4

1.2 USING THIS BOOK 4

1.2.1 Typographical Conventions 4

1.2.2 Python Versions 5

1.2.3 Code Style 5

1.2.4 Get the Most from This Book without Reading It All 6

1.2.5 Online Resources Related to This Book 7

1.3 WHY LEARN TO PROGRAM? 7

1.4 BASIC PROGRAMMING CONCEPTS 8

1.4.1 What Is a Program? 8

1.5 WHY PYTHON? 10

1.5.1 Main Features of Python 10

1.5.2 Comparing Python with Other Languages 11

1.5.3 How Is It Used? 14

1.5.4 Who Uses Python? 15

1.5.5 Flavors of Python 15

1.5.6 Special Python Distributions 16

1.6 ADDITIONAL RESOURCES 17

vii

viii � Contents

Chapter 2 � First Steps with Python 19

2.1 INSTALLING PYTHON 20

2.1.1 Learn Python by Using It 20

2.1.2 Install Python Locally 20

2.1.3 Using Python Online 21

2.1.4 Testing Python 22

2.1.5 First Use 22

2.2 INTERACTIVE MODE 23

2.2.1 Baby Steps 23

2.2.2 Basic Input and Output 23

2.2.3 More on the Interactive Mode 24

2.2.4 Mathematical Operations 26

2.2.5 Exit from the Python Shell 27

2.3 BATCH MODE 27

2.3.1 Comments 29

2.3.2 Indentation 30

2.4 CHOOSING AN EDITOR 32

2.4.1 Sublime Text 32

2.4.2 Atom 33

2.4.3 PyCharm 34

2.4.4 Spyder IDE 35

2.4.5 Final Words about Editors 36

2.5 OTHER TOOLS 36

2.6 ADDITIONAL RESOURCES 37

2.7 SELF-EVALUATION 37

Chapter 3 � Basic Programming: Data Types 39

3.1 STRINGS 40

3.1.1 Strings Are Sequences of Unicode Characters 41

3.1.2 String Manipulation 42

3.1.3 Methods Associated with Strings 42

3.2 LISTS 44

3.2.1 Accessing List Elements 45

3.2.2 List with Multiple Repeated Items 45

3.2.3 List Comprehension 46

3.2.4 Modifying Lists 47

Contents � ix

3.2.5 Copying a List 49

3.3 TUPLES 49

3.3.1 Tuples Are Immutable Lists 49

3.4 COMMON PROPERTIES OF THE SEQUENCES 51

3.5 DICTIONARIES 54

3.5.1 Mapping: Calling Each Value by a Name 54

3.5.2 Operating with Dictionaries 56

3.6 SETS 59

3.6.1 Unordered Collection of Objects 59

3.6.2 Set Operations 60

3.6.3 Shared Operations with Other Data Types 62

3.6.4 Immutable Set: Frozenset 63

3.7 NAMING OBJECTS 63

3.8 ASSIGNING A VALUE TO A VARIABLE VERSUS BINDING A NAME

TO AN OBJECT 64

3.9 ADDITIONAL RESOURCES 67

3.10 SELF-EVALUATION 68

Chapter 4 � Programming: Flow Control 69

4.1 IF-ELSE 69

4.1.1 Pass Statement 74

4.2 FOR LOOP 75

4.3 WHILE LOOP 77

4.4 BREAK: BREAKING THE LOOP 78

4.5 WRAPPING IT UP 80

4.5.1 Estimate the Net Charge of a Protein 80

4.5.2 Search for a Low-Degeneration Zone 81

4.6 ADDITIONAL RESOURCES 83

4.7 SELF-EVALUATION 83

Chapter 5 � Handling Files 85

5.1 READING FILES 86

5.1.1 Example of File Handling 87

5.2 WRITING FILES 89

5.2.1 File Reading and Writing Examples 90

5.3 CSV FILES 90

x � Contents

5.4 PICKLE: STORING AND RETRIEVING THE CONTENTS OF VARI-

ABLES 94

5.5 JSON FILES 96

5.6 FILE HANDLING: OS, OS.PATH, SHUTIL, AND PATH.PY MODULE 98

5.6.1 path.py Module 100

5.6.2 Consolidate Multiple DNA Sequences into One FASTA File 102

5.7 ADDITIONAL RESOURCES 102

5.8 SELF-EVALUATION 103

Chapter 6 � Code Modularizing 105

6.1 INTRODUCTION TO CODE MODULARIZING 105

6.2 FUNCTIONS 106

6.2.1 Standard Way to Make Python Code Modular 106

6.2.2 Function Parameter Options 110

6.2.3 Generators 113

6.3 MODULES AND PACKAGES 114

6.3.1 Using Modules 115

6.3.2 Packages 116

6.3.3 Installing Third-Party Modules 117

6.3.4 Virtualenv: Isolated Python Environments 119

6.3.5 Conda: Anaconda Virtual Environment 121

6.3.6 Creating Modules 124

6.3.7 Testing Modules 125

6.4 ADDITIONAL RESOURCES 127

6.5 SELF-EVALUATION 128

Chapter 7 � Error Handling 129

7.1 INTRODUCTION TO ERROR HANDLING 129

7.1.1 Try and Except 131

7.1.2 Exception Types 134

7.1.3 Triggering Exceptions 135

7.2 CREATING CUSTOMIZED EXCEPTIONS 136

7.3 ADDITIONAL RESOURCES 137

7.4 SELF-EVALUATION 138

Chapter 8 � Introduction to Object Orienting Programming (OOP) 139

8.1 OBJECT PARADIGM AND PYTHON 139

Contents � xi

8.2 EXPLORING THE JARGON 140

8.3 CREATING CLASSES 142

8.4 INHERITANCE 145

8.5 SPECIAL METHODS 149

8.5.1 Create a New Data Type Using a Built-in Data Type 154

8.6 MAKING OUR CODE PRIVATE 154

8.7 ADDITIONAL RESOURCES 155

8.8 SELF-EVALUATION 156

Chapter 9 � Introduction to Biopython 157

9.1 WHAT IS BIOPYTHON? 158

9.1.1 Project Organization 158

9.2 INSTALLING BIOPYTHON 159

9.3 BIOPYTHON COMPONENTS 162

9.3.1 Alphabet 162

9.3.2 Seq 163

9.3.3 MutableSeq 165

9.3.4 SeqRecord 166

9.3.5 Align 167

9.3.6 AlignIO 169

9.3.7 ClustalW 171

9.3.8 SeqIO 173

9.3.9 AlignIO 176

9.3.10 BLAST 177

9.3.11 Biological Related Data 187

9.3.12 Entrez 190

9.3.13 PDB 194

9.3.14 PROSITE 196

9.3.15 Restriction 197

9.3.16 SeqUtils 200

9.3.17 Sequencing 202

9.3.18 SwissProt 205

9.4 CONCLUSION 207

9.5 ADDITIONAL RESOURCES 207

9.6 SELF-EVALUATION 209

xii � Contents

Section II Advanced Topics

Chapter 10 � Web Applications 213

10.1 INTRODUCTION TO PYTHON ON THE WEB 213

10.2 CGI IN PYTHON 214

10.2.1 Configuring a Web Server for CGI 215

10.2.2 Testing the Server with Our Script 215

10.2.3 Web Program to Calculate the Net Charge of a Protein
(CGI version) 219

10.3 WSGI 221

10.3.1 Bottle: A Python Web Framework for WSGI 222

10.3.2 Installing Bottle 223

10.3.3 Minimal Bottle Application 223

10.3.4 Bottle Components 224

10.3.5 Web Program to Calculate the Net Charge of a Protein
(Bottle Version) 229

10.3.6 Installing a WSGI Program in Apache 232

10.4 ALTERNATIVE OPTIONS FOR MAKING PYTHON-BASED DYNAMIC

WEB SITES 232

10.5 SOME WORDS ABOUT SCRIPT SECURITY 232

10.6 WHERE TO HOST PYTHON PROGRAMS 234

10.7 ADDITIONAL RESOURCES 235

10.8 SELF-EVALUATION 236

Chapter 11 � XML 237

11.1 INTRODUCTION TO XML 237

11.2 STRUCTURE OF AN XML DOCUMENT 241

11.3 METHODS TO ACCESS DATA INSIDE AN XML DOCUMENT 246

11.3.1 SAX: cElementTree Iterparse 246

11.4 SUMMARY 251

11.5 ADDITIONAL RESOURCES 252

11.6 SELF-EVALUATION 252

Chapter 12 � Python and Databases 255

12.1 INTRODUCTION TO DATABASES 256

12.1.1 Database Management: RDBMS 257

12.1.2 Components of a Relational Database 258

Contents � xiii

12.1.3 Database Data Types 260

12.2 CONNECTING TO A DATABASE 261

12.3 CREATING A MYSQL DATABASE 262

12.3.1 Creating Tables 263

12.3.2 Loading a Table 264

12.4 PLANNING AHEAD 266

12.4.1 PythonU: Sample Database 266

12.5 SELECT: QUERYING A DATABASE 269

12.5.1 Building a Query 271

12.5.2 Updating a Database 273

12.5.3 Deleting a Record from a Database 273

12.6 ACCESSING A DATABASE FROM PYTHON 274

12.6.1 PyMySQL Module 274

12.6.2 Establishing the Connection 274

12.6.3 Executing the Query from Python 275

12.7 SQLITE 276

12.8 NOSQL DATABASES: MONGODB 278

12.8.1 Using MongoDB with PyMongo 278

12.9 ADDITIONAL RESOURCES 282

12.10 SELF-EVALUATION 284

Chapter 13 � Regular Expressions 285

13.1 INTRODUCTION TO REGULAR EXPRESSIONS (REGEX) 285

13.1.1 REGEX Syntax 286

13.2 THE RE MODULE 287

13.2.1 Compiling a Pattern 290

13.2.2 REGEX Examples 292

13.2.3 Pattern Replace 294

13.3 REGEX IN BIOINFORMATICS 294

13.3.1 Cleaning Up a Sequence 296

13.4 ADDITIONAL RESOURCES 297

13.5 SELF-EVALUATION 298

Chapter 14 � Graphics in Python 299

14.1 INTRODUCTION TO BOKEH 299

14.2 INSTALLING BOKEH 299

14.3 USING BOKEH 301

xiv � Contents

14.3.1 A Simple X-Y Plot 303

14.3.2 Two Data Series Plot 304

14.3.3 A Scatter Plot 306

14.3.4 A Heatmap 308

14.3.5 A Chord Diagram 309

Section III Python Recipes with Commented Source Code

Chapter 15 � Sequence Manipulation in Batch 315

15.1 PROBLEM DESCRIPTION 315

15.2 PROBLEM ONE: CREATE A FASTA FILE WITH RANDOM SE-

QUENCES 315

15.2.1 Commented Source Code 315

15.3 PROBLEM TWO: FILTER NOT EMPTY SEQUENCES FROM A

FASTA FILE 316

15.3.1 Commented Source Code 317

15.4 PROBLEM THREE: MODIFY EVERY RECORD OF A FASTA FILE 319

15.4.1 Commented Source Code 320

Chapter 16 � Web Application for Filtering Vector Contamination 321

16.1 PROBLEM DESCRIPTION 321

16.1.1 Commented Source Code 322

16.2 ADDITIONAL RESOURCES 326

Chapter 17 � Searching for PCR Primers Using Primer3 329

17.1 PROBLEM DESCRIPTION 329

17.2 PRIMER DESIGN FLANKING A VARIABLE LENGTH REGION 330

17.2.1 Commented Source Code 331

17.3 PRIMER DESIGN FLANKING A VARIABLE LENGTH REGION,

WITH BIOPYTHON 332

17.4 ADDITIONAL RESOURCES 333

Chapter 18 � Calculating Melting Temperature from a Set of Primers 335

18.1 PROBLEM DESCRIPTION 335

18.1.1 Commented Source Code 336

18.2 ADDITIONAL RESOURCES 336

Chapter 19 � Filtering Out Specific Fields from a GenBank File 339

19.1 EXTRACTING SELECTED PROTEIN SEQUENCES 339

Contents � xv

19.1.1 Commented Source Code 339

19.2 EXTRACTING THE UPSTREAM REGION OF SELECTED PRO-

TEINS 340

19.2.1 Commented Source Code 340

19.3 ADDITIONAL RESOURCES 341

Chapter 20 � Inferring Splicing Sites 343

20.1 PROBLEM DESCRIPTION 343

20.1.1 Infer Splicing Sites with Commented Source Code 345

20.1.2 Sample Run of Estimate Intron Program 347

Chapter 21 � Web Server for Multiple Alignment 349

21.1 PROBLEM DESCRIPTION 349

21.1.1 Web Interface: Front-End. HTML Code 349

21.1.2 Web Interface: Server-Side Script. Commented Source Code 351

21.2 ADDITIONAL RESOURCES 353

Chapter 22 � Drawing Marker Positions Using Data Stored in a Database 355

22.1 PROBLEM DESCRIPTION 355

22.1.1 Preliminary Work on the Data 355

22.1.2 MongoDB Version with Commented Source Code 358

Section IV Appendices

Appendix A � Collaborative Development: Version Control with GitHub 365

A.1 INTRODUCTION TO VERSION CONTROL 366

A.2 VERSION YOUR CODE 367

A.3 SHARE YOUR CODE 375

A.4 CONTRIBUTE TO OTHER PROJECTS 381

A.5 CONCLUSION 382

A.6 METHODS 384

A.7 ADDITIONAL RESOURCES 384

Appendix B � Install a Bottle App in PythonAnywhere 385

B.1 PYTHONANYWHERE 385

B.1.1 What Is PythonAnywhere 385

B.1.2 Installing a Web App in PythonAnywhere 385

xvi � Contents

Appendix C � Scientific Python Cheat Sheet 393

C.1 PURE PYTHON 394

C.2 VIRTUALENV 400

C.3 CONDA 402

C.4 IPYTHON 403

C.5 NUMPY 405

C.6 MATPLOTLIB 410

C.7 SCIPY 412

C.8 PANDAS 413

Index 417

List of Figures

2.1 Anaconda install in macOS. 21

2.2 Anaconda Python interactive terminal. 23

2.3 PyCharm Edu welcome screen. 35

3.1 Intersection. 60

3.2 Union. 61

3.3 Difference. 61

3.4 Symmetric difference. 62

3.5 Case 1. 65

3.6 Case 2. 66

5.1 Excel formatted spreadsheet called sampledata.xlsx. 93

8.1 IUPAC nucleic acid notation table. 147

9.1 Anatomy of a BLAST result. 181

10.1 Our first CGI. 216

10.2 CGI accessed from local disk instead from a web server. 217

10.3 greeting.html: A very simple form. 217

10.4 Output of CGI program that processes greeting.html. 218

10.5 Form protcharge.html ready to be submitted. 220

10.6 Net charge CGI result. 222

10.7 Hello World program made in Bottle, as seen in a browser. 224

10.8 Form for the web app to calculate the net charge of a protein. 229

11.1 Screenshot of XML viewer. 244

11.2 Codebeautify, a web based XML viewer. 245

12.1 Screenshot of PhpMyAdmin. 258

12.2 Creating a new database using phpMyAdmin. 262

12.3 Creating a new table using phpMyAdmin. 264

xvii

xviii � LIST OF FIGURES

12.4 View of the Student table. 266

12.5 An intentionally faulty “Grades” table. 267

12.6 A better “Grades” table. 267

12.7 Courses table: A lookup table. 268

12.8 Modified “Grades” table. 268

12.9 Screenshot of SQLite manager. 277

12.10 View from a MongoDB cloud provider. 281

14.1 A circle with Bokeh. 302

14.2 Four circles with Bokeh. 303

14.3 A simple plot with Bokeh. 305

14.4 A two data series plot with Bokeh. 306

14.5 Scatter plot graphics. 308

14.6 A heatmap out of a microarray experiment. 310

14.7 A chord diagram. 312

16.1 HTML form for sequence filtering. 327

16.2 HTML form for sequence filtering. 328

21.1 Muscle Web interface. 350

22.1 Product of Listing 22.2, using the demo dataset (NODBDEMO). 356

A.1 The git add/commit process. 369

A.2 Working with a local repository. 370

A.3 Working with both a local and remote repository as a single user. 379

A.4 Contributing to open source projects. 383

B.1 “Consoles” tab. 386

B.2 The “Web” tab. 386

B.3 Upgrading domain type option. 387

B.4 Select a web framework screen, select Bottle. 388

B.5 Select a Python and Bottle version. 389

B.6 Form to enter the path of the web app. 390

B.7 The sample web app is ready to use. 390

B.8 The “File” tab. 391

B.9 Form to create a new directory in PythonAnywhere. 391

B.10 View and upload files into your account. 391

LIST OF FIGURES � xix

B.11 Front-end of the program to calculate charge of a protein using
Bottle and hosted in PythonAnywhere. 392

http://taylorandfrancis.com

List of Tables

2.1 Arithmetic-Style Operators 26

3.1 Common List Operations 48

3.2 Methods Associated with Dictionaries 58

9.1 Sequence and Alignment Formats 175

9.2 Blast programs 178

9.3 eUtils 191

10.1 Frameworks for Web Development 233

12.1 Students in Python University 259

12.2 Table with primary key 260

12.3 MySQL Data Types 261

13.1 REGEX Special Sequences 287

A.1 Resources 367

xxi

http://taylorandfrancis.com

Preface to the First Edition

This book is a result of the experience accumulated during several years of working
for an agricultural biotechnology company. As a genomic database curator, I gave
support to staff scientists with a broad range of bioinformatics needs. Some of them
just wanted to automate the same procedure they were already doing by hand, while
others would come to me with biological problems to ask if there were bioinformat-
ics solutions. Most cases had one thing in common: Programming knowledge was
necessary for finding a solution to the problem. The main purpose of this book is to
help those scientists who want to solve their biological problems by helping them
to understand the basics of programming. To this end, I have attempted to avoid
taking for granted any programming-related concepts. The chosen language for this
task is Python.

Python is an easy-to-learn computer language that is gaining traction among
scientists. This is likely because it is easy to use, yet powerful enough to accomplish
most programming goals. With Python the reader can start doing real programming
very quickly. Journals such as Computing in Science and Engineering, Briefings
in Bioinformatics, and PLOS Computational Biology have published introductory
articles about Python. Scientists are using Python for molecular visualization, ge-
nomic annotation, data manipulation, and countless other applications.

In the particular case of the life sciences, the development of Python has been
very important; the best exponent is the Biopython package. For this reason, Section
II is devoted to Biopython. Anyhow, I don’t claim that Biopython is the solution to
every biology problem in the world. Sometimes a simple custom-made solution may
better fit the problem at hand. There are other packages like BioNEB and CoreBio
that the reader may want to try.

The book begins from the very basic, with Section I (“Programming”), teaching
the reader the principles of programming. From the very beginning, I place a special
emphasis on practice, since I believe that programming is something that is best
learned by doing. That is why there are code fragments spread over the book. The
reader is expected to experiment with them, and attempt to internalize them. There
are also some spare comparisons with other languages; they are included only when
doing so enlightens the current topic. I believe that most language comparisons do
more harm than good when teaching a new language. They introduce information
that is incomprehensible and irrelevant for most readers.

In an attempt to keep the interest of the reader, most examples are somehow
related to biology. In spite of that, these examples can be followed even if the reader
doesn’t have any specific knowledge in that field.

To reinforce the practical nature of this book, and also to use as reference

xxiii

xxiv � Preface to the First Edition

material, Section IV is called “Python Recipes with Commented Source Code.”
These programs can be used as is, but are intended to be used as a basis for other
projects. Readers may find that some examples are very simple; they do their job
without too many bells and whistles. This is intentional. The main reason for this
is to illustrate a particular aspect of the application without distracting the reader
with unnecessary features, as well as to avoid discouraging the reader with complex
programs. There will always be time to add features and customizations once the
basics have been learned.

The title of Section III (“Advanced Topics”) may seem intimidating, but in
this case, advanced doesn’t necessarily mean difficult. Eventually, everyone will
use the chapters in this section [especially relational database management system
—RDBMS— and XML]. An important part of the bioinformatics work is building
and querying databases, which is why I consider knowing a RDBMS like MySQL
to be a relevant part of the bioinformatics skill set. Integrating data from different
sources is one of tasks most frequently performed in bioinformatics. The tool of
choice for this task is XML. This standard is becoming a widely used platform for
data interchange between applications. Python has several XML parsers and we
explain most of them in this book.

Appendix B, “Selected Papers,” provides introductory level papers on Python.
Although there is some overlapping of subjects, this was done to show several points
of view of the same subject.

Researchers are not the only ones for whom this book will be beneficial. It has
also been structured to be used as a university textbook. Students can use it for
programming classes, especially in the new bioinformatics majors.

Preface to the Second

Edition

The first edition of Python for Bioinformatics was written in 2008 and published
in 2009. Even after eight years, the lessons in this book are still valuable. This is
quite an accomplishment in a field that evolves at such a fast pace. In spite of its
usefulness, the book is showing its age and would greatly benefit from a second
edition.

The predominant Python version is 3.6, although Python 2.7 is still in use in
production systems. Since there are incompatibilities between these versions, lot of
effort was made to make all code in the book Python 3 compatible.

Not only has the software changed in these past eight years, but enterprise atti-
tude and support toward Open Source Software in general and Python in particular
has changed dramatically. There are also new computing paradigms that can’t be
ignored such as collaborative development and cloud computing.

In the original book, Chapter 14 was called “Collaborative Development: Version
Control” and was based on Bazaar, a software that follows the currently used
distributed development workflow but is not what is being used by most developers
today. By far the most software development is done with Git at GitHub. This
chapter was rewritten to focus on current practices.

Web development is another area that changed significantly. Although this is
not a book about web development, the chapter “Web Applications” now reflects
current usage of long-running processes and frameworks instead of CGI/WSGI and
middleware-based applications. Frameworks were discussed as a side note in this
chapter, but now the chapter is based around a framework (Bottle) and leave the
old method as a historical footnote.

In databases, the NoSQL gained lot of traction, from being a bullet point in
the first edition, now has its own section using MongoDB, and a Python recipe
was changed to use this NoSQL database.

Graphical libraries have improved since 2009, and there are great quality com-
peting graphic libraries available for Python. There is a whole chapter devoted to
Bokeh, a free interactive visualization library.

Another change that is reflected in this book is the usage of Anaconda and
Jupyter Notebooks (with all code in a cloud notebook provided by Microsoft
Azure1).

1See https://notebooks.azure.com/py4bio/libraries/py3.us

xxv

https://notebooks.azure.com/py4bio/libraries/py3.us

xxvi � Preface to the Second Edition

Regarding source code, there is a GitHub repository at https://github.com/
Serulab/Py4Bio where you can download all the code and sample files used in this
book.

There are corrections in every chapter. Sometimes there were actual mistakes,
but most of the corrections were related to the Python 3 upgrade and in keeping
with current good practices. Regarding corrections, I expect that this book may
need corrections, so I made a web page where the readers can get updates. Please
take a look at http://py3.us and subscribe to the low volume mailing list while
at it.

Apart from software evolution and paradigms shifts, I also gained development
experience and changed my views on pedagogical matters. During these years I
worked in a genome sequencing project at an international consortium and as a
senior software developer in an NYSE listed company (Globant). In the last 5 years
I worked for several well-known clients such as Salesforce and National Geographic.
I am currently working at PLOS (Public Library of Science).

By request of MATLAB, I include their contact information:
MATLAB ® is a registered trademark of The MathWorks, Inc. For product

information please contact: The MathWorks, Inc. 3 Apple Hill Drive Natick, MA,
01760-2098 USA Tel: 508-647-7000 Fax: 508-647-7001 E-mail: info@mathworks.com
Web: www.mathworks.com

Regarding the logo of Biopython, that is used in the cover, here it is usage
license (this covers all Biopython files, including its logo):

Biopython is currently released under the "Biopython License Agreement"
(given in full below). Unless stated otherwise in individual file headers, all Biopy-
thon’s files are under the "Biopython License Agreement".

Some files are explicitly dual licensed under your choice of the "Biopython Li-
cense Agreement" or the "BSD 3-Clause License" (both given in full below). This
is with the intention of later offering all of Biopython under this dual licensing
approach.

Biopython License Agreement

Permission to use, copy, modify, and distribute this software and its documenta-
tion with or without modifications and for any purpose and without fee is hereby
granted, provided that any copyright notices appear in all copies and that both
those copyright notices and this permission notice appear in supporting documen-
tation, and that the names of the contributors or copyright holders not be used in
advertising or publicity pertaining to distribution of the software without specific
prior permission.

THE CONTRIBUTORS AND COPYRIGHT HOLDERS OF THIS SOFT-
WARE DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFT-
WARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL THE CONTRIBUTORS OR COPY-
RIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING

https://github.com/Serulab/Py4Bio
http://py3.us
www.mathworks.com
mailto:info@mathworks.com
https://github.com/Serulab/Py4Bio

Preface to the Second Edition � xxvii

FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

BSD 3-Clause License

Copyright (c) 1999-2017, The Biopython Contributors All rights reserved.
Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer. Redistributions in binary form must repro-
duce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution. Nei-
ther the name of the copyright holder nor the names of its contributors may be
used to endorse or promote products derived from this software without specific
prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPY-
RIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPY-
RIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDI-
RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTI-
TUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (IN-
CLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

http://taylorandfrancis.com

Acknowledgments

A project such as this book couldn’t be done by just one person. For this reason,
there is a long list of people who deserve my thanks. In spite of the fact that the
average reader doesn’t care about the names, and at the risk of leaving someone out,
I would like to acknowledge the following people: my wife Virginia Gonzalez (Vicky)
and my son Maximo Bassi, who had to contend with my virtual absence during
more than a year. Vicky also assisted me in uncountable ways during manuscript
preparation. My parents and professors taught me important lessons. My family
(Oscar, Graciela, and Ramiro) helped me with the English copyediting, along with
Hugo and Lucas Bejar. Vicky, Griselda, and Eugenio also helped by providing a
development abstraction layer, which is needed for writers and developers.

I would like to thank the people in the local Python community (http://www.
python.org.ar): Facundo Batista, Lucio Torre, Gabriel Genellina, John Lenton,
Alejandro J. Cura, Manuel Kaufmann, Gabriel Patiño, Alejandro Weil, Marcelo
Fernandez, Ariel Rossanigo, Mariano Draghi, and Buanzo. I would choose Python
again just for this great community. I also thank the people at Biopython: Jeffrey
Chang, Brad Chapman, Peter Cock, Michiel de Hoon, and Iddo Friedberg. Peter
Cock is specially thanked for his comments on the Biopython chapter. I also thank
Shashi Kumar and Pablo Di Napoli who helped me with the LATEX2ε issues, and
Sunil Nair who believed in me from the first moment. Also people at Globant
who trusted in me, like Guido Barosio, Josefina Chausovsky, Lucas Campos, Pablo
Brenner and Guibert Englebienne. Globant co-workers such as Pedro Mourelle,
Chris DeBlois, Rodrigo Obi-Wan Iloro, Carlos Del Rio and Alejandro Valle. People
at PLOS, Jeffrey Gray and Nick Peterson.

xxix

http://www.python.org.ar
http://www.python.org.ar

http://taylorandfrancis.com

I
Programming

1

http://taylorandfrancis.com

C H A P T E R 1

Introduction

CONTENTS

1.1 Who Should Read This Book . 3
1.1.1 What the Reader Should Already Know . 4

1.2 Using this Book . 4
1.2.1 Typographical Conventions . 4
1.2.2 Python Versions . 5
1.2.3 Code Style . 5
1.2.4 Get the Most from This Book without Reading It All 6
1.2.5 Online Resources Related to This Book . 7

1.3 Why Learn to Program? . 7
1.4 Basic Programming Concepts . 8

1.4.1 What Is a Program? . 8
1.5 Why Python? . 10

1.5.1 Main Features of Python . 10
1.5.2 Comparing Python with Other Languages . 11
Readability . 12
Speed . 13
1.5.3 How Is It Used? . 14
1.5.4 Who Uses Python? . 15
1.5.5 Flavors of Python . 15
1.5.6 Special Python Distributions . 16

1.6 Additional Resources . 17

The most effective way to do it, is to do it.

Amelia Earhart

1.1 WHO SHOULD READ THIS BOOK

This book is for the life science researcher who wants to learn how to program.
He/she may have previous exposure to computer programming, but this is not
necessary to understand this book (although it surely helps).

This book is designed to be useful to several separate but related audiences,
students, graduates, postdocs, and staff scientists, since all of them can benefit
from knowing how to program.

3

4 � Python for Bioinformatics

Exposing students to programming at early stages in their career helps to boost
their creativity and logical thinking, and both skills can be applied in research. In
order to ease the learning process for students, all subjects are introduced with the
minimal prerequisites. There are also questions at the end of each chapter. They
can be used for self-assessing how much you’ve learned. The answers are available
to teachers in a separate guide.

Graduates and staff scientists having actual programming needs should find its
several real-world examples and abundant reference material extremely valuable.

1.1.1 What the Reader Should Already Know

Since this book is called Python for Bioinformatics, it has been written with the
following assumptions in mind:

• No programming knowledge is assumed, but the reader is required to have
minimum computer proficiency to be able to use a text editor and handle basic
tasks in your operating system (OS). Since Python is multi-platform, most
instructions from this book will apply to the most common operating systems
(Windows, macOS and Linux); when there is a command or a procedure that
applies only to a specific OS, it will be clearly noted.

• The reader should be working (or at least planning to work) with bioinfor-
matics tools. Even low-scale handmade jobs, such as using the NCBI BLAST
to ID a sequence, aligning proteins, primer searching, or estimating a phy-
logenetic tree will be useful to follow the examples. The more familiar the
reader is with bioinformatics, the better he will be able to apply the concepts
learned in this book.

1.2 USING THIS BOOK

1.2.1 Typographical Conventions

There are some typographical conventions I have tried to use in a uniform way
throughout the book. They should aid readability and were chosen to tell apart
user-made names (or variables) from language keywords. This comes in handy when
learning a new computer language.

Bold: Objects provided by Python and by third-party modules. With this no-
tation it should be clear that round is part of the language and not a user-defined
name. Bold is also used to highlight parts of the text. There is no way to confuse
one bold usage with the other.

Mono-spaced font: User declared variables, code, and filenames. For example:
sequence = ’MRVLLVALALLALAASATS’.

Italics: In commands, it is used to denote a variable that can take different
values. For example, in len(iterable), “iterable” can take different values. Used in

Introduction � 5

text, it marks a new word or concept. For example “One such fundamental data
structure is a dictionary.”

The content of lines starting with $ (dollar sign) are meant to be typed in your
operating system console (also called command prompt in Windows or terminal
in macOS).
←֓ : Break line. Some lines are longer than the available space in a printed

page, so this symbol is inserted to mean that what is on the next line in the page
represents the same line on the computer screen. Inside code, the symbol used is
<=.

1.2.2 Python Versions

The current version of Python at this moment is 3.6.1. There is a 2.7.12 version that
is maintained1 because there are still a sizable number of applications in production
using the 2.7 branch. Versions 3.x and 2.x are slightly different, at the point of
being incompatible. Python 3 is more efficient than Python 2 in many aspects.
Large websites such as Instagram migrated from Python 2.7 to Python 3.6 to save
in CPU and memory consumption by up to 30%. This book uses Python 3.6.

The only scenario where you may need to use Python 2.7, apart from mainte-
nance of old code, is when there is no availability of a specific library for Python
3. In this case, before starting a project in Python 2.7, try to search for a replace-
ment library. For example, you want to connect with a MySQL database and you
are told to use MySQLdb, since this package is not Python 3 compatible; instead
of using Python 2.7, use mysqlclient or mysql-connector-python, both works
with Python 3.

1.2.3 Code Style

Python source code that appears in this book is presented as listings. Each line of
these listings is numbered. These numbers are not intended to be typed; they are
used to reference each line in the text. You don’t need to copy the code from the
book, since it can be downloaded from the GitHub repository at https://github.
com/Serulab/Py4Bio.

Code can be formatted in several ways and still be valid to the Python inter-
preter. This following code is syntactically correct:

def GetAverage(X):

avG=sum(X)/len(X)

" Calculate the average "

return avG

Also this one:

1Python 2.7.x has an end-of-life date in 2020. There will be no Python 2.8. For more information
see https://www.python.org/dev/peps/pep-0373/.

https://github.com/Serulab/Py4Bio
https://www.python.org/dev/peps/pep-0373/
https://github.com/Serulab/Py4Bio

6 � Python for Bioinformatics

def get_average(items):

""" Calculate the average

"""

average = sum(items) / len(items)

return average

The former code sample follows most accepted coding styles for Python.2

Throughout the book you will find mostly code formatted as the second sample.
Some code in the book will not follow accepted coding styles for the following
reasons:

• There are some instances where the most didactic way to show a particular
piece of code conflicts with the style guide. On those few occasions, I choose
to deviate from the style guide in favor of clarity.

• Due to size limitation in a printed book, some names were shortened and
other minor drifts from the coding styles have been introduced.

• To show that there is more than one way to write the same code. Coding
style is a guideline, and enforcement is not made at a language level, so some
programmers don’t follow it thoroughly. You should be able to read “bad”
code, since sooner or later you will have to read other people’s code.

1.2.4 Get the Most from This Book without Reading It All

• If you want to learn how to program, read the first section, from Chapter
1 to Chapter 8. The Regular Expressions (REGEX) chapter (Chapter 13) can
be skipped if you don’t need to deal with REGEX.

• If you know Python and just want to know about Biopython, read first
Chapter 9 (from page 158 to page 209). It is about Biopython modules and
functions. Then try to follow programs found in Section III (from page 315
to page 363).

• There are three appendixes that can be read in an independent way. Appendix
A (Collaborative Development: Version Control with GitHub) reproduces a
paper called “A Quick Introduction to Version Control with Git and GitHub.”
Appendix B shows how to install a web application using Python Anywhere.
Appendix C is a reference material that can be used as a cheat sheet when
you need a quick answer without having to read a chapter.

2The official Python style guide is located at https://www.python.org/dev/peps/pep-0008,
and a more easy-to-read style guide is located at http://docs.python-guide.org/en/latest/

writing/style.

https://www.python.org/dev/peps/pep-0008
http://docs.python-guide.org/en/latest/writing/style
http://docs.python-guide.org/en/latest/writing/style

Introduction � 7

1.2.5 Online Resources Related to This Book

The book website is at http://py3.us. In this site you will find errata, a mail-
ing list to keep updated about Python and links to source code repositories. Re-
garding source code, the official source code repository of this book is at GitHub
(https://github.com/Serulab/Py4Bio). From this site you can inspect online
or download all the code used in this book. To download all scripts, go to the
“Clone or download” green button and press it. If you have Git installed in
your machine (and know how to use it3), clone the repository using this ad-
dress: git@github.com:Serulab/Py4Bio.git. Another alternative is to click on
“Download ZIP”. Once you have the repository in your machine, go to the code

folder, where there are a set of folders, each one has the scripts related to the
chapter. Each script in the book has a name and this corresponds with the file-
name. There is another folder called notebooks, and it contains Jupyter note-
books that can be run locally. For more information on how to run a Jupyter
notebook, please see http://jupyter-notebook-beginner-guide.readthedocs.

io/en/latest/execute.html.
Another online resource are the Jupyter Notebooks available at Microsoft Azure

Notebook website (https://notebooks.azure.com/py4bio/libraries/py3.us).
The same notebooks that are in the book repository, can be used online in this site.

1.3 WHY LEARN TO PROGRAM?

Many of the tasks that a researcher performs with his or her computer are repetitive:
Collect data from a Web page, convert files from one format to another, execute or
interpret hundreds of BLAST results, primer design, look for restriction enzymes,
etc. In many cases it is evident that these are tasks that can be performed with a
computer, with less effort on our part and without the possibility of errors caused
by tiredness or distractions.

An important consideration when you’re evaluating whether or not to create a
program is the apparent time lost in the definition and formulation of the problem,
implementing it with code, and then debugging it (correcting errors). It is incorrect
to consider problem definition and evaluation as a waste of time. It is generally at
this precise point in the process where we understand thoroughly the problem that
we face. It is common that during the attempt to formulate a problem, we realize
that many of our initial assumptions were mistaken. It also helps us to detect when
it is necessary to restart the planning process. When this happens, it is better that
it happens at the planning stage than when we are in the middle of the project. In
these cases, the planning of the program represents time saved. Another advantage
to take into account is that the time that is invested to create a program once is
compensated by the speed with which the tasks are performed every time we run
it.

3In Appendix A there is a tutorial on how to use GitHub

http://py3.us
https://github.com/Serulab/Py4Bio
http://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/execute.html
mailto:git@github.com
http://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/execute.html
https://notebooks.azure.com/py4bio/libraries/py3.us

8 � Python for Bioinformatics

Not only can it automate the procedures that we do manually, but it will also
be able to do things that would otherwise not be possible.

Sometimes it is not very clear if a particular task can be done by a program.
Reading a book such as this one (including the examples) will help you identify
which tasks are feasible to automate with software and which ones are better done
manually.

1.4 BASIC PROGRAMMING CONCEPTS

Before installing Python, let’s review some programming fundamentals. If you have
some previous programming experience, you may want to skip this section and jump
straight to Chapter 2 “Installing Python.” This section introduces basic concepts
such as instructions, data types, variables, and some other related terminology that
is used throughout this book.

1.4.1 What Is a Program?

Computers only know what you tell them. The way to tell them to do something
is by a program. A program is a set of ordered instructions designed to command
the computer to do something. The word “ordered” is there because is not enough
to declare what to do, but the actual order of directions should also be stated.4

A program is often characterized as a recipe. A typical recipe consists of a
list of ingredients followed by step-by-step instructions on how to prepare a dish.
This analogy is reflected in several programming websites and tutorials with the
words “recipe” and “cookbook.” A laboratory protocol is another useful analogy. A
protocol is defined as a “predefined written procedural method in the design and
implementation of experiments.”

Here is a typical protocol, followed almost every day in several molecular labo-
ratories:

Listing 1.1: Protocol for Lambda DNA digestion

Restriction Digestion of Lambda DNA

Materials

5.0 mcL Lambda DNA (0.1 g/L)

2.5 mcL 10x buffer

16.5 mcL H2O

1.0 mcL EcoRI

4There are declarative languages that state what the program should accomplish, rather than
describing how to accomplish it. Most computer languages (Python included) are imperative instead
of declarative.

Introduction � 9

Procedure

Incubate the reagents at 37°C for 1 hr.

Add 2.5 mcL loading dye and incubate for another 15 minutes.

Load 20 mcL of the digestion mixture onto a minigel

There are at least two components of a protocol: materials or ingredients, and
procedures. A procedure provides specific order like incubate, add, mix, load and
many others. The same goes for a computer program. The programmer gives specific
order to the computer: print, read, write, add, multiply, round, and others.

While protocol procedures correlate with program instructions, materials are
the data. In protocols, procedures are applied to materials: Mix 2.5 µL of buffer
with 5 µL of Lambda DNA and 16.5 µL of H20, load 20 µL onto a minigel. In a
program, instructions are applied to data: print the text string “Hello”, add two
integer numbers, round a float number.

As a protocol can we written in different languages (like English, Spanish, or
French), there are different languages to program a computer. In science, English is
the de facto language. Due to historical, commercial and practical reasons, there is
no such equivalent in computer science. There are several languages, each with its
own strong points and weakness. For reasons that will make sense shortly, Python
was the computer language chosen for this book.

Let’s see a simple Python program:

Listing 1.2: sample.py: Sample Python Program

1 seq_1 = ’Hello,’

2 seq_2 = ’ you!’

3 total = seq_1 + seq_2

4 seq_size = len(total)

5 print(seq_size)

Note: The numbers at the beginning of the each line are for reference only,
they are not meant to be typed.

This small program can be read as “Name the string Hello, as seq_1. Name
the string you! as seq_2. Add the strings named seq_1 and seq_2 and call the
result as total. Get the length of the string called total and name this value as
seq_size. Print the value of seq_size.” This program prints the number 11.

As shown, there are different types of data (often called “data types” or just
“types”). Numbers (integers or float), text string, and other data types are covered
in Chapter 3. In print(seq_size), the instruction is print and seq_size is the
name of the data. Data is often represented as variables. A variable is a name
that stands for a value that may vary during program execution. With variables,
a programmer can represent a generic command like “round n” instead of “round
2.9.” This way he can take into account a non-fixed (hence variable) value. When

10 � Python for Bioinformatics

the program is executed, “n” should take a specific value since there is no way to
“round n.” This can be done by assigning a value to a variable or by binding a name
to a value.5 The difference between “assign a value to a variable” and “bind a name
to a value” is explained in detail in Chapter 3 (from page 64). In any case, it is
expressed as:

variable_name = value

Note that this is not an equality as seen in mathematics. In an equality,
terms can be interchanged, but in programming, the term on the right (value)
takes the name of the term on the left (variable_name). For example,

seq_1 = ’Hello’

After this assignment, the variable seq_1 can be used, like,

print(seq_1)

This is translated as “print out the value called seq_1”. This command returns
“Hello” because this is the value of this variable.

1.5 WHY PYTHON?

Let’s have a look at some Python features worth pointing out.

1.5.1 Main Features of Python

• Readability: When we talk about readability, we refer as much to the original
programmer as any other person interested in understanding the code. It is
not an uncommon occurrence for someone to write some code then return
to it a month later and find it difficult to understand. Sometimes Python is
called a “human-readable language.”

• Built-in features: Python comes with “batteries included.” It has a rich and
versatile standard library that is immediately available, without the user hav-
ing to download separate packages. With Python you can, with few lines, read
and write XML and JSON files, parse and generate email messages, extract
files from a zip archive, open a URL as if were a file, and many other possi-
bilities that in other languages, it would require a third-party library.

• Availability of third-party modules for a broad spectrum of activities. Data
visualization6 and plotting, PDF generation, bioinformatics analysis,7 image

5In Python the latter form is used.
6MatPlotLib (http://matplotlib.org/) and Bokeh http://bokeh.pydata.org/en/latest/

are the most used.
7Biopython library to make your own bioinformatics applications (http://biopython.org/).

http://matplotlib.org/
http://bokeh.pydata.org/en/latest/
http://biopython.org/

Introduction � 11

processing,8 machine learning,9 game development, interface with popular
databases,10 and application software are only a handful of examples of mod-
ules that can be installed to extend Python functionality.

• High-level built-in data structures: Dictionaries, sets, lists, tuples, and others.
These are very useful to model real-world data. Third-party modules such as
NumPy and SciPy can also extend the structures to kd-trees, n-dimensional
arrays, matrix operations, time-series, image objects, and more.

• Multiparadigm: Python can be used as a “classic” procedural language or as
“modern” object-oriented programming (OOP) language. Most programmers
start writing code in a procedural way and when they need to, they upgrade
to OOP. Python doesn’t force programmers to write OOP code when they
just want to write a simple script.

• Extensibility: If the built-in methods and available third-party modules are
not enough for your needs, you can easily extend Python, even in other pro-
gramming languages. There are some applications written mostly in Python
but with a processor demanding routine in C or FORTRAN. Python can also
be extended by connecting it to specialized high-level languages like R or
MATLAB11.

• Open source: Python has a liberal open source license that makes it freely
usable and distributable, even for commercial use.

• Cross platform: A program made in Python can be run under any computer
that has a Python interpreter. This way, a program made under Windows 10
can run unmodified in Linux or OSX. Python interpreters are available for
most computer and operating systems, and even some devices with embedded
computers like the Raspberry Pi.

• Thriving community: Python is nowadays the programming language to use
for scientists and researchers.12 This translates into more libraries for your
projects and people you can go to for support.

1.5.2 Comparing Python with Other Languages

You may be wondering why you should use Python, and not more well-known
languages like Java, PHP, or C++. It is a good question. A programming language

8Scikit-image paper: http://peerj.com/articles/453
9scikit-learn website: http://scikit-learn.org/stable/

10https://wiki.python.org/moin/DatabaseProgramming
11MATLAB® is a registered trademark of The MathWorks, Inc. For product information please

contact: The MathWorks, Inc. 3 Apple Hill Drive Natick, MA, 01760-2098 USA. Tel: 508-647-7000.
Fax: 508-647-7001. E-mail: info@mathworks.com. Web: www.mathworks.com.

12http://www.nature.com/news/programming-pick-up-python-1.16833

http://peerj.com/articles/453
http://scikit-learn.org/stable/
https://wiki.python.org/moin/DatabaseProgramming
www.mathworks.com
http://www.nature.com/news/programming-pick-up-python-1.16833
mailto:info@mathworks.com

12 � Python for Bioinformatics

can be regarded as a tool, and choosing the best tool for the job makes a lot of
sense.

Readability

Nonprofessional programmers tend to value the learning curve as much as the leg-
ibility of the code (both aspects are tightly related).

A simple “hello world” program in Python looks like this:

print("Hello world!")

Compare it with the equivalent code in Java:

public class Hello

{

public static void main(String[] args) {

System.out.printf("Hello world!");

}

}

Let’s see a code sample in C language. The following program reads a file
(input.txt) and copies its contents into another file (output.txt):

#include <stdio.h>

int main(int argc, char **argv) {

FILE *in, *out;

int c;

in = fopen("input.txt", "r");

out = fopen("output.txt", "w");

while ((c = fgetc(in)) != EOF) {

fputc(c, out);

}

fclose(out);

fclose(in);

}

The same program in Python is shorter and easier to read:

with open("input.txt") as input_file:

with open("output.txt") as output_file:

output_file.writelines(in)

Let’s see a Perl program that calculates the average of a series of numbers:

Introduction � 13

sub avg(@_) {

$sum += $_ foreach @_;

return $sum / @_ unless @_ == 0;

return 0;

}

print avg((1..5))."\n";

The equivalent program in Python is:

def avg(data):

if len(data)==0:

return 0

else:

return sum(data)/len(data)

print(avg([1,2,3,4,5]))

The purpose of this Python program could be almost fully understood by just
knowing English.

Python is designed to be a highly readable language.13 The use of English key-
words, and the use of spaces to limit code blocks and its internal logic (indentation),
contribute to this end. It’s possible to write hard-to-read code in Python, but it
requires a deliberate effort to obfuscate the code.14

Speed

Another criterion to consider when choosing a programming language is execution
speed. In the early days of computer programming, computers were so slow that
some differences due to language implementation were very significant. It could take
a week for a program to be executed in an interpreted language, while the same
code in a compiled language could be executed in a day. This performance difference
between interpreted and compiled languages still has the same proportion, but it
is less relevant. This is because a program that took a week to run, now takes less
than ten seconds, while the compiled one takes about one second. Although the
difference seems important (at least one order of magnitude), it is not so relevant
if we consider the time it takes to develop it.

This does not mean that execution speed does not need to be considered. A 10X
speed difference can be crucial in some high-performance computing operations.
Sometimes a lot of improvements can be achieved by writing optimized code. If the
code is written with speed optimization in mind, it is possible to obtain results quite

13Other languages are regarded as “write only,” since once written it is very difficult to understand
it.

14A simple print ’Hello World’ program could be written, if you are so inclined, as
print ”.join([chr((L>=65 and L<=122) and (((((L>=97) and (L-96) or (L-64))-
1)+13)%26+((L>=97) and 97 or 65)) or L) for L in [ord(C) for C in ’Uryyb Jbeyq!’]])
(py3.us/1).

14 � Python for Bioinformatics

similar to the ones that could be obtained in a compiled language. In the cases where
the programmer is not satisfied with the speed obtained by Python, it is possible
to link to an external library written in another language (like C or Fortran). This
way, we can get the best of both worlds: the ease of Python programming with the
speed of a compiled language.

1.5.3 How Is It Used?

Python has a wide range of applications. From cell phones to web servers, there
are thousands of Python applications in the most diverse fields. There is Python
code powering Wikipedia robots, helping design next generation special effects at
Industrial Light & Magic,15 embedded in D-link modems and routers,16 and it is
the scripting language of the OpenOffice suite17.

Some languages are strong in one niche (like PHP for web applications, Java for
desktop programs), but Python can’t be typecast easily.

With a single code base, Python desktop applications run with a native look
and feel on multiple platforms. Well-known examples of this category include the
BitTorrent p2p client/server, Calibre, an Ebook manager, Sage Math (a math-
ematics software system), the Dropbox client, and more.

As a language for building web applications, Python can be found in high traffic
sites like Reddit, NationalGeographic, Instagram, and NASA. There are specialized
software for building web sites (called webframeworks) in Python like Django,
Web2Py, Pyramid, Flask, and Bottle.

From system administration to data analysis, Python provides a broad range of
tools to this end:

• Generic Operating System Services (os, io, time, curses)

• File and Directory Access (os.path, glob, tempfile, shutil)

• Data Compression and Archiving (zipfile, gzip, bz2)

• Interprocess Communication and Networking (subprocess, socket, ssl)

• Internet (email, mimetools, rfc822, cgi, urllib)

• String Services (string, re, codecs, unicodedata)

Python is gaining momentum as the default computer language for the scien-
tific community. There are several libraries oriented toward scientific users, such as
SciPy18 and Anaconda.19 Both distributions integrate modules for linear algebra,

15https://www.python.org/about/success/ilm/
16https://www.python.org/about/success/dlink/
17http://wiki.services.openoffice.org/wiki/Python
18https://www.scipy.org
19https://www.continuum.io/anaconda-overview

https://www.python.org/about/success/ilm/
https://www.python.org/about/success/dlink/
http://wiki.services.openoffice.org/wiki/Python
https://www.scipy.org
https://www.continuum.io/anaconda-overview

Introduction � 15

signal processing, optimization, statistics, genetic algorithms, interpolation, ODE
solvers, special functions, etc.

Python has support for parallel programming with pyMPI and 2D/3D scientific
data plotting.

Python is known to be used in wide and diverse fields like engineering, electron-
ics, astronomy, biology, paleomagnetism, geography, and many more.

1.5.4 Who Uses Python?

Python is used by several companies, from small and unknown shops up to big
players in their fields like Google, National Geographic, Disney, NASA, NYSE, and
many more.

It is one of the four “official languages” of Google among Java, C++ and Go.
They have web sites made in Python, stand-alone programs and even hosting so-
lutions.20 As a confirmation that Google is taking Python seriously, in December
2005 they hired Guido van Rossum, the creator of Python. It may not be Google’s
main language, but this shows that they are a strong supporter of it.

Even Microsoft, a company not known for their support of open source pro-
grams, developed a version of Python to run their “.Net” platform (IronPython)
and also developed a the Python Tools for Visual Studio,21 a Free, open source
plugin that turns Visual Studio into a Python IDE.

Many well-known Linux distributions already use Python in their key tools.
Ubuntu Linux “prefers the community to contribute work in Python.” Python is so
tightly integrated into Linux that some distributions won’t run without a working
copy of Python.

1.5.5 Flavors of Python

Although in this book I refer to Python as a programming language, Python is
actually a language definition. What we use most of the time is a specific imple-
mentation, CPython, that is the Python language definition implemented in C.
Since this implementation is the most used, we just call Python to the CPython
implementation.

The most relevant Python implementations are: CPython, PyPy,22 Stackless,23

Jython24 and IronPython.25 This book will focus on the standard Python version
(CPython), but it is worth knowing about the different versions.

• CPython: The most used Python version, so the terms CPython and Python
are used interchangeably. It is made mostly in C (with some modules made

20https://cloud.google.com/appengine/
21https://www.visualstudio.com/vs/python/
22http://codespeak.net/pypy/dist/pypy/doc/home.html
23http://www.stackless.com
24http://www.jython.org/Project
25http://ironpython.net

https://cloud.google.com/appengine/
https://www.visualstudio.com/vs/python/
http://codespeak.net/pypy/dist/pypy/doc/home.html
http://www.stackless.com
http://www.jython.org/Project
http://ironpython.net

16 � Python for Bioinformatics

in Python) and is the version that is available from the official Python Web
site (http://www.python.org).

• PyPy: A Python version made in Python. It was conceived to allow program-
mers to experiment with the language in a flexible way (to change Python
code without knowing C). It is mostly an experimental platform.

• Stackless: Another experimental Python implementation. The aim of this im-
plementation doesn’t focus on flexibility like PyPy; instead, it provides ad-
vanced features not available in the “standard” Python version. This is done in
order to overcome some design decisions taken early in Python development
history. Stackless allows custom-designed Python application to scale better
than CPython counterparts. This implementation is being used in the EVE
Online massively multi-player online game, Civilization IV, Second Life, and
Twisted.

• Jython: A Python version written in Java. It works in a JVM (Java Virtual
Machine). One application of Jython is to add the Jython libraries to their
Java system to allow users to add functionality to the application. A very
well known learning 3D programming environment (Alice26) uses Jython to
let the users program their own scripts.

• IronPython: Python version adapted by Microsoft to run on “.Net” and
“.Mono” platform. .Net is a technology that competes with Java regarding
“write once, runs everywhere.”

1.5.6 Special Python Distributions

Apart from Python implementations, there are some special adaptations of the
original CPython that are packaged for specific purposes. They are called Python
bundles or distributions. Most of them brings to the table 3rd party software such as
editors, visualization modules and the Jupyter Notebook. This is a web application
that allows you to create and share documents that contain live code, equations,
visualizations and explanatory text. Here is a list of most useful distributions27:

• ActivePython:28 Aimed at enterprise users, ActiveState provides a precom-
piled, supported, quality-assured Python distribution that makes it easy for
corporations to comply with policy requirements to have supported open
source products. From a technical standpoint it offers all modern Python
versions with most used external modules already pre-installed. It also has its
own package management and external modules repository (PyPM29)

26Alice is available for free at http://www.alice.org.
27For a complete list of Python implementations and distributions see https://www.python.

org/download/alternatives
28http://www.activestate.com/activepython
29https://code.activestate.com/pypm/

http://www.alice.org
https://www.python.org/download/alternatives
http://www.activestate.com/activepython
https://code.activestate.com/pypm/
http://www.python.org
https://www.python.org/download/alternatives

Introduction � 17

• Enthought Canopy:30 Another all-in-one Python solution. Includes over
450 core scientific analytic and Python packages, like NumPy, SciPy, IPython,
2D and 3D visualization, database adapters, and others. Also includes a Code
Editor with Jupyter Notebook Support. It has some add ons such a graphical
package manager that notifies you of updates, installs with one click and
helps you roll back package versions. Everything is available as a single-click
installer for the three major operating systems. This bundle is suitable for
scientific users, and it is made by the same people who made NumPy and
SciPy. There are different licenses like a free academic one, and various paid
commercial enterprise licenses.

• WinPython:31 It defines itself as a free open-source portable distribution
of the Python programming language for Windows 7/8/10 and scientific and
educational usage. Also includes packages suitable for scientists, data scien-
tists, and education (NumPy, SciPy, Sympy, Matplotlib, Pandas, pyqtgraph,
etc.). Uses Spyder (Scientific PYthon Development EnviRonment) as the de-
fault editor and it is portable in the sense the user can move the WinPython
directory and all settings are kept. You can have multiples copies of isolated
and self-consistent WinPython installations.

• Anaconda:32 A Python and R distribution for scientific computing. Includes
over 720 packages for data preparation, data analysis, data visualization, ma-
chine learning, and interactive data science. It shares the objective and user
type with Enthought Canopy. Also comes with Spyder as the default code
editor. It has several products that differentiates it from other Python dis-
tribution, like Repository, Accelerate, Scale, Mosaic, Notebooks and Fusion.
Most of these services are available only to the expensive subscriptions. If
you don’t use any of these services you still get an excellent all-in-one Python
distribution. Continuum, the company behind Anaconda is a institutional
partner of Project Jupyter, which means that they support the development
of Jupyter Notebook, a web application to run Python code in a browser.

You may be wondering which one to use (or just use the standard “plain vanilla”
Python). There is no single and correct answer to this question, since it will depend
on your needs, work habits, budget, and personal preferences. Personally I tend
to use the standard Python in servers and Anaconda in the computers I use for
software development.

1.6 ADDITIONAL RESOURCES

• Interactive notebooks: Sharing the code. Interactive notebooks: Sharing the
code. The free IPython notebook makes data analysis easier to record, under-

30https://www.enthought.com/products/canopy/
31http://winpython.github.io/
32https://www.continuum.io/anaconda-overview

https://www.enthought.com/products/canopy/
http://winpython.github.io/
https://www.continuum.io/anaconda-overview

18 � Python for Bioinformatics

stand and reproduce. Helen Shen. Nature 515, 151–152 (06 November 2014)
doi:10.1038/515151a
https://goo.gl/HfBJ12

• Python for feature film:
http://dgovil.com/blog/2016/11/30/python-for-feature-film/

• Alternative Python implementations:
https://www.python.org/download/alternatives/

• IPython: an interactive computing environment.
http://ipython.org/

• bpython: A fancy interface to the Python interpreter for Unix-like operating
systems:
https://www.bpython-interpreter.org

• Python history, a blog by Guido van Rossum:
http://python-history.blogspot.com

https://goo.gl/HfBJ12
http://dgovil.com/blog/2016/11/30/python-for-feature-film/
https://www.python.org/download/alternatives/
http://ipython.org/
https://www.bpython-interpreter.org
http://python-history.blogspot.com

C H A P T E R 2

First Steps with Python

CONTENTS

2.1 Installing Python . 20
2.1.1 Learn Python by Using It . 20
2.1.2 Install Python Locally . 20
Installing Anaconda . 20
2.1.3 Using Python Online . 21
2.1.4 Testing Python . 22
2.1.5 First Use . 22

2.2 Interactive Mode . 23
2.2.1 Baby Steps . 23
2.2.2 Basic Input and Output . 23
Output: Print . 23
Input: input . 24
2.2.3 More on the Interactive Mode . 24
2.2.4 Mathematical Operations . 26
Division . 27
2.2.5 Exit from the Python Shell . 27

2.3 Batch Mode . 27
2.3.1 Comments . 29
2.3.2 Indentation . 30

2.4 Choosing an Editor . 32
2.4.1 Sublime Text . 32
2.4.2 Atom . 33
2.4.3 PyCharm . 34
2.4.4 Spyder IDE . 35
2.4.5 Final Words about Editors . 36

2.5 Other Tools . 36
2.6 Additional Resources . 37
2.7 Self-Evaluation . 37

The journey of a thousand miles begins with one step.

Lao Tzu

19

20 � Python for Bioinformatics

2.1 INSTALLING PYTHON

2.1.1 Learn Python by Using It

This section shows how to install Python to start running your own programs.
Learning by doing is the most efficient way of learning. It is better than just pas-
sively reading a book (even this book). You will find “Python interactive mode”
very rewarding in this sense, since it can answer your questions faster than a book
or a search engine. As a bonus, the answers you get from the Python interactive
mode are definitive.

For these reasons I suggest installing Python before continuing to read this
book.

2.1.2 Install Python Locally

Python is pre-installed in macOS and most Linux distributions. In Windows you
have to download the Windows x86-64 web-based installer from the Python
download page (https://www.python.org/downloads/windows/) and then install
it. Installation is pretty straightforward if you are used to installing Windows pro-
grams. You should double-click the installer file and run the Python Install Wizard.
Accept the default settings and you will have Python installed in a few minutes
without hassle.

Remember that as an alternative to the official installer, you can download
and install one of the Python distributions mentioned on page 16. My personal
preference at this moment is the Anaconda distribution, but you don’t need to
install Anaconda to follow this book, any Python distribution will do it.

Installing Anaconda

The following instruction is common for macOS and Windows (see Linux instal-
lation in the next paragraph). Download the graphical installer1 appropriate for
your OS and double click on it.2 It will show an installer with the title “Welcome
to the Anaconda 3 installer.” Press Continue in the Introduction, Read Me and
License. In Destination Select press Continue if you want to install it only for the
current user. The next step is pressing Install. The installation will take some
minutes and you will see a screen like the one in figure 2.1. In macOS, when you
close the installer you are offered to move the installer to the trash, doing this will
delete only the installer.

To install Anaconda in Linux, download the Linux version from https://

www.continuum.io/downloads#linux, you will get a file with a name similar to
Anaconda3-4.3.1-Linux-x86_64.sh. In a terminal, run

$ bash Anaconda3-4.3.1-Linux-x86_64.sh

1https://www.continuum.io/downloads
2If using Mac, the macOS version must be 10.12.3 (Sierra) or later.

https://www.python.org/downloads/windows/
https://www.continuum.io/downloads#linux
https://www.continuum.io/downloads
https://www.continuum.io/downloads#linux

First Steps with Python � 21

Figure 2.1 Anaconda install in macOS.

and follow the instructions. If you answer “yes” to the last question, your default
Python will be the Anaconda Python. Note that this change will take into effect
when you open a new terminal.

2.1.3 Using Python Online

Another way to try Python for learning or even for running programs is by using an
online service. PythonAnywhere (https://www.pythonanywhere.com) is a service
that allows you to run different versions of Python. You will need a browser and an
Internet connection. PythonAnywhere provides a free service for running Python
scripts online. They have several plans from $5/month with unlimited Python or
Bash consoles, a subdomain to host a web application, 1 Gb of storage, databases
and more.3 Their free “Beginner” service is good enough for exploration and learn-
ing.

Another service that is worth trying is Microsoft Azure Notebooks. It is in
preview state at this moment (June 2017) but I’ve been using it for some months
and it seems stable enough to recommend it4. This is not a service where you

3For more information on PythonAnywhere plans, please see https://www.pythonanywhere.

com/pricing.
4You can try the code in the book in this platform at https://notebooks.azure.com/py4bio/

libraries/py3.us. The link is also in book web page (http://py3.us)

https://www.pythonanywhere.com
https://www.pythonanywhere.com/pricing
https://notebooks.azure.com/py4bio/libraries/py3.us
https://www.pythonanywhere.com/pricing
https://notebooks.azure.com/py4bio/libraries/py3.us
http://py3.us

22 � Python for Bioinformatics

access to a Python console to type away any Python command, but it uses “Jupyter
Notebook”, which is a web application that looks like a webpage with live code.
This won’t replace a developer environment but can be used for learning and for
presentations. Another web service where you can run simple Python programs
(like those featured in the first five chapters of this book) is Rep.it (https://repl.
it/languages/python3).

2.1.4 Testing Python

Once Python is installed, you should make sure it works. On Windows, double-click
on the Python icon. Linux and macOS5 users could open a terminal and then type
python.

You should see a screen like this one:6

Python 3.6.0 |Anaconda 4.3.1 (64-bit)| (Dec 23 2016, 12:22:00)

[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

This is the Python console7 and it is used for programming in interactive mode.
This mode will be explained in the next section.

2.1.5 First Use

There are two ways to use Python: interactive and batch mode. These methods are
complementary and they are used with different purposes. Interactive mode allows
the programmer to get an immediate answer to each instruction. In batch mode,
instructions are stored in one or more files and then executed. Interactive mode is
used mostly for small tests while most programs are run in batch mode.

Interactive mode can be invoked by executing python or within some Python ed-
itors like Spyder, PyCharm, IDLE and others. It also can be used online at sites like
https://repl.it/languages/python3 or https://www.pythonanywhere.com/. I
recommend installing Python in you own machine rather than using it online.8

If using Anaconda, run the Anaconda Navigator9 and choose QTConsole; in
this case, Python interactive mode will look like this in Figure 2.2.

If you are not using Anaconda, from your terminal or command prompt, type
python.

5In macOS the terminal is located under the Applications/Utilities folder.
6This output could vary from system to system depending on Python version, base operating

system, and options set during compilation.
7The technical name is REPL, from Read–Eval–Print Loop, but most people call it Python

interpreter, Python shell or Python terminal
8If you are in a machine without Admin or root rights and can’t install Python, the online

option is a good alternative.
9Look for the Anaconda Navigator icon or run in from the command line with

anaconda-navigator.

https://repl.it/languages/python3
https://repl.it/languages/python3
https://www.pythonanywhere.com/
https://repl.it/languages/python3

First Steps with Python � 23

Figure 2.2 Anaconda Python interactive terminal.

Let’s learn some Python basics using the interactive mode.

2.2 INTERACTIVE MODE

2.2.1 Baby Steps

The following code shows how to command the interpreter to print the string “Hello
world!”10

>>> print(’Hello World!’)

Hello World!

Note the three greater-than characters (>>>); this is the Python prompt of the
interactive mode. It is already there, you don’t need to type it. This means that
Python is ready to execute commands or evaluate expressions.

2.2.2 Basic Input and Output

Output: Print

From Python 3, print is a function. A function is a reusable code that can perform
a specific task. Each function may receive one or more values called parameters.
In the case of print("Hello World!"), the name of the function is print and the
parameter is the string "Hello World!". We will see functions with some detail
in Chapter 6.

The print function can receive several elements:

>>> print(’Hello’, ’World!’)

10There is a tradition among programmers to show how a language works by printing the string
“Hello world”. Python programmers are not immune to this custom. See what happens when you
type this statement in the interactive mode: import __hello__.

24 � Python for Bioinformatics

Hello World!

By default it prints all string separated with a whitespace, but you can change
the the separator with a parameter named sep:

>>> print(’Hello’, ’World!’, sep=’;’)

Hello;World!

Redirect the output to a file:

>>> print("Hello","World!", sep=",", file=filehandle)

We will see how to handle files in Chapter 6.
To change the end on the output, use parameter end. Changing the end of the

output in this case adds two carrier returns (or enter):

>>> print("Hello", "World!", sep=";", end=’\n\n’)

Hello;World!

Input: input

To input data in a running program you can use input. The following command
takes a string of data from the user and returns it to a variable called name. In the
following code, after typing the string, the variable is entered and the content of
the variable is displayed:

>>> name = input("Enter your name: ")

Enter your name: Seba

>>> name

’Seba’

Most of the time you will not use the input function since there are more
practical ways to enter data, like reading it from a file, from a web page or from
the output of another program.

2.2.3 More on the Interactive Mode

Interactive mode can be used as a calculator:

>>> 1+1

2

When ‘+’ is used on strings, it returns a concatenation:

First Steps with Python � 25

>>> ’1’+’1’

’11’

>>> "A string of " + ’characters’

’A string of characters’

Note that single (’) and double (") quotes can be used in an indistinct way, as
long as they are used with consistency. That is, if a string definition is started with
one type of quote, it must be finished with the same kind of quote.11

Different data types can’t be added:

>>> ’The answer is ’ + 42

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: must be str, not int

Only elements of the same type can be added. To convert this into a sum of
strings, the number must be converted into a string; this is done with the str()
function:

>>> ’The answer is ’ + str(42)

’The answer is 42’

The same result can be archived with “String Formatting Operations”:12

>>> ’The answer is {0}’.format(42)

’The answer is 42’

Note that the opposite transformation (from string to integer instead of from
integer to string) can be done with the int() function:

>>> 1 + ’1’

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: ’int’ and ’str’

>>> 1 + int(’1’)

2

You can assign names to any Python element, and then refer to them later:

>>> number = 42

>>> ’The answer is {0}’.format(number)

’The answer is 42’

11In Chapter 3 there is a detailed description of strings.
12For more information, read PEP-3101 at (http://www.python.org/dev/peps/pep-3101).

http://www.python.org/dev/peps/pep-3101

26 � Python for Bioinformatics

TABLE 2.1 Arithmetic-Style Operators

Symbol Description

+ Addition
- Subtraction
* Multiplication
/ Division
** Exponentiation
% Modulus (remainder)

Names should contain only letters, numbers, and underscores (_), but they can’t
start with numbers. In other programming languages names are called variables.

A command worth noting is dir(), it tells the names available in the current
environment. Try:

>>> dir()

[’__builtins__’, ’__doc__’, ’__loader__’, ’__name__’, <=

’__package__’, ’__spec__’, ’number’]

Names with the form __name__ are specials and will be discussed later, but
see that all variable names you defined are there.

2.2.4 Mathematical Operations

Any standard mathematical operation can be done in the Python shell:

>>> 12*2

24

>>> 30/3

10.0

>>> 2**8/2+100

228.0

Double star (**) stands for “elevated to the power of” and the inverted slash
(/) is the division operation. So this expression means: 28 : 2 + 100. In Table 2.1
there is a list of arithmetic-style operators supported by Python.

Note that the operator precedence is the same as used in math. An easy way to
remember precedence order is with the acronym PEMDAS:

P Parentheses have the highest precedence and are used to set the order of ex-
pression evaluation. This is why 2 * (3-2) yields 2 and (3-1) ** (4-1) yields 8.
Parentheses can also be used to make expressions easier to read.

E Exponentiation is the second in order, so 2**2+1 is 5 and not 8.

MD Multiplication and Division share the same precedence. 2*2-1 yields 3 instead
of 2.

First Steps with Python � 27

AS Addition and Subtraction also share the same (latest) order of precedence.

Last but not least, operators with the same precedence are evaluated from left
to right. So 60/6*10 yields 100 and not 1.

Division

There are currently two division operators. The standard one, / is called true
division and returns the mathematical result of the division:13

>>> 10/4

2.5

There is also //, which is called floor division, it returns the integer part of
the division:

>>> 10//4

2

2.2.5 Exit from the Python Shell

To exit from the Python shell, in MacOS or Linux, use CRTL-D (that is, press
Control and D simultaneously). In Windows, press CTRL-Z and Enter. Another
alternative, that works in any operating system, is to use the exit() function:

$ python

Python 3.5.1 |Anaconda 2.4.1 (64-bit)| (Dec 7 2015, 11:16:01)

[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> exit()

$

2.3 BATCH MODE

Although the interactive interpreter is very useful, most nontrivial programs are
stored in files. The code used in an interactive session can be accessed only when
the session is active. Each time that an interactive session is closed, all typed code
is gone. In order to have code persistence, programs are stored in text files. When a
program is executed from such a text file, rather than line by line in an interactive
interpreter, it is called batch mode. These are regular text files usually with the
“.py” extension. These files can be generated with any standard text editor.14

13In Python 2.x the division symbol (/) is used to return the integer part of the division.
14Any text editor can be used for Python programming, but it is highly advisable to use a

specialized text editor instead of a generic one. At the end of this chapter there is a section devoted
to choosing an editor.

28 � Python for Bioinformatics

An optional feature of Python scripts under a Unix-like system is a first line
with the path to the Python interpreter. If the Python interpreter is located at
/usr/bin/python (a typical location in Linux), the first line will be:

#!/usr/bin/python

This is called shebang and it is a Unix convention that allows the operating
system to know what the interpreter is for the program and this interpreter can
be executed without the user having to explicitly invoke the python interpreter.15

Invoking a Python program without this line causes the operating system to try to
execute the program as a shell script.

Let’s suppose that you have this very simple program:

Listing 2.1: hello.py: A “Hello World!” program

1 print("Hello World!")

Remember not to type the number at the beginning, it is there only for reference.
This program will work from the command line only if it is called as an argument
of the Python interpreter:

$ python hello.py

Hello World!

But if you want to run it as a standalone program, you will see something like
this:

$./hello.py

./hello.py: line 1: syntax error near unexpected token <=

‘’Hello world!’’

./hello.py: line 1: ‘print(’Hello world!’)’

This error message is sent by the shell when trying to execute the program as
a system script (without invoking Python). It can be avoided by editing the first
line of the program:

Listing 2.2: hello2.py: Hello World! with shebang

1 #!/usr/bin/python

2 print("Hello World!")

This version works as it were an executable binary file:16

15You can specify an interpreter path to select a particular Python version when there is more
than one version installed.

16In Linux and macOS you have to make sure that the file has executable permission, which is
done with chmod a+x hello.py.

First Steps with Python � 29

$./hello2.py

Hello World!

If you want to invoke the first available Python interpreter instead of a spefic
interpreter, use #!/usr/bin/env python. Use the path to a specific Python in-
terpreter only when you want to run your program with a particular version (like
/usr/bin/python2.7).

In Windows, this line is ignored since the interpreter is launched according to
the file extension (.py).

Python can also be executed from within the text editor, provided that the
editor has this functionality. In most editor you can launch a program with the F5
key.

Another special comment that is usually found in Python code is the “encoding
comment.” This line defines the character encoding for the rest of the document
and it takes this form:

-*- coding: ENCODING -*-

Where ENCODING may be, for example, ascii, latin1, 8859-1, UTF-8 and oth-
ers. So an encoding line for a source code with characters encoding in UTF-8 will
have this line:

-*- coding: UTF-8 -*-

Without encoding comment, Python’s parser will assume UTF-8 (or ASCII in
Python prior to version 3).

2.3.1 Comments

If you tried this program in any editor with syntax coloring capabilities, you may
have noted that the first line (#!/usr/bin/python) has a different color. That is
due to the use of the “#” symbol. This character has special significance for Python.
It is used to identify lines that aren’t executed by the interpreter. As a result, these
lines are called “comments.” Comments don’t add functionality to the program but
help the developer or other readers of the code. Let’s rewrite the previous code with
a comment:

Listing 2.3: Hello World! with comments

#!/usr/bin/env python

The next line prints the string "Hello World!"

print("Hello World!")

The comment in this particular code is rather pointless since there is no doubt
about the function of “print.” In other programs there is code that is not so easy to

30 � Python for Bioinformatics

understand and where a comment can improve code readability. It is customary to
put the comments before the code you are referring to. Comments are made mostly
to help someone else to understand our code, but they can be useful even for the
same programmer who sees the code sometime after writing and doesn’t remember
the purpose of a routine.

Comments can also be used to disable part of the code (this is called “comment-
out” in programming jargon). This is usually done for debugging purposes. When
trying alternative codes to accomplish a task, it is better to have an inactive part
of the code until you are sure which code you will use. It is easier to uncomment
an inactive code than retype something that was deleted. This is such a common
task that all Python editors have tools to comment-out or to uncomment an entire
block of texts.17

Tip: Extensions in Python.
Python files have the .py extension, but you could also find other extensions that
are related to Python:

• py: Standard Python files.

• pyc: “Compiled” Python files. When you import a Python module for the
first time, it gets compiled into byte code, so the next time it starts faster.
Compile can be forced from Python with the compile_dir function in the
compileall module. Note that .pyc files load faster but do not run faster.

• pyo: “Optimized” code. This is generated by running the Python interpreter
with the -o flag. Don’t be fooled with the name, most code will run at same
speed even with the -o flag enabled.

• pyw: It is a standard Python file with an extension that makes Windows
execute them with pythonw.exe instead of python.exe. Pythonw.exe doesn’t
launch the DOS console, so it is preferred for graphical programs under Win-
dows.

2.3.2 Indentation

One of the first things that stands out to software developers about Python is its
code indentation system. Non-programmers must be wondering at this point what
is indentation of the source code. Here is some C code that is not indented:

if (attr == -1){while (x<5){

printf("Waiting...\n");wait(1);

17In the Python default editor (IDLE) this tool is under the Format menu.

First Steps with Python � 31

x = x+1;}printf("Everything is OK\n");}

else {printf("There is an error\n");}

The indented version of the same program portion (or “code snippet”):

if (attr == -1) {

while (x<5) {

printf("Waiting...\n");

wait(1);

x = x+1;}

printf("Everything is OK\n");}

else {

printf("There is an error\n");}

Even without knowing C we can say that the second program is more readable
than the first one. In a programming language like C or Java, code blocks that are
executed as an entity, are separated with braces. This way the interpreter knows
that, for example, printf("Everything is OK\n"); is within the if structure but
not within while. The logical relations between the elements are clearer in an
indented program than one without indentation. Inspect the following code snippet
in Python, where there are no braces but there are code blocks that are defined by
indentation.

if attr==-1:

while x<5:

print("Waiting...")

wait(1)

x = x + 1

print("Everything is OK")

else

print("There is an error")

It is not important at this time if you don’t understand this program. The
purpose of this example is to show one of the most striking aspects of language.
This is considered an advantage because when the structure of the code is clear
enough, there will be less chance to introduce coding mistakes. Some say that it is
annoying having to maintain the code this way, but this is not the case. Most text
editors deal with code indentation in an automatic way so there is no burden on the
programmer. Another criticism to the mandatory indentation is the deep nesting
of the code; some statements are placed at the far right. There are programming
tools to avoid writing code with too many levels of indentation (such as writing
modular code). Using these tools appropriately is a desired skill to have and it is
independent of the programming language that you use.18 Forcing the programmer

18Linus Torvalds, the creator of the Linux kernel, has said, “If you need more than 3 levels of
indentation, you’re screwed anyway, and should fix your program.”

32 � Python for Bioinformatics

to use indentation is a feature that goes along with one aspect of Python’s design
philosophy: Readability counts.19 As Oliver Fromme wrote in “Python: Myths about
Indentation”:20 “Python forces you to use indentation that you would have used
anyway, unless you wanted to obfuscate the structure of the program.”

2.4 CHOOSING AN EDITOR

In principle, any text editor can be used to program in Python. Nothing prevents
you programming in Notepad (if you are so inclined) or any lightweight text editor,
although there is a lot to gain by using an editor designed for Python programming.

Choosing an editor is not a trivial matter; in fact it is a matter of controversy
among software developers to the point of leading to “editor wars.”21. It may not
be something worth fighting for, but choosing the best editor for your needs could
boost your productivity.

Following is a short review of popular editors used by Python developers.

2.4.1 Sublime Text

Sublime Text22 is arguably one of the most used text editors. After using it a
couple of hours is easy to understand why. It is lean, fast and powerful, features
not easily found in the same program. The user interface (UI) is minimalist but
not frustrating. The default color palette used for syntax highlight is pleasing to
the eye. It has several nice features than once you get used to, you don’t want to
switch to another editor without those features. Some prominent features:

• Minimap: There is an overview of the whole document in the right side of
the editor, and the developer can scroll on it and inspect the large portions
of code quickly.

• Fast global search: A common problem for developers working with a large
code base is text searching in all project files. Instead of resorting to command
line utilities like find and grep, there is an option to do it in a fast and intuitive
way without leaving the editor.

• Performance: Sublime text is fast by all accounts (start-up time, zero la-
tency). Even when opening large files, the editor won’t drag you down.

• Column selection: This allows us to select portions of text in column form,
and after selecting a column, multiple insertion points will appear so you can
enter text in multiple positions at once.

19Please see http://www.python.org/dev/peps/pep-0020 for more information on the guiding
principles for Python’s design.

20http://www.secnetix.de/~olli/Python/block_indentation.hawk.
21See https://en.wikipedia.org/wiki/Editor_war.
22Available at https://www.sublimetext.com.

http://www.python.org/dev/peps/pep-0020
http://www.secnetix.de/~olli/Python/block_indentation.hawk
https://en.wikipedia.org/wiki/Editor_war
https://www.sublimetext.com

First Steps with Python � 33

• Extensible: By using plugins you can extend editor functionality to suit
your needs. There is a plugin called Package Control23 that allows the user
to search, download and install other plugins without leaving Sublime. Plugin
are written in Python, which also explains why this editor is popular within
Python developers.

• Truly multplatform: Sublime looks the same on all three major platforms.
Some key shortcuts will change in order to follow each operating system UI
guidelines.

In most aspects, Sublime is the best text editor for software development. Al-
though it has a problem that may be a deal breaker for some or just a annoyance
for others: Sublime is closed source software and a commercial license is needed to
use it. If you can pay the license ($70 at the moment) and don’t have problem with
closed source software, this may be the ideal multi-purpose text editor.

2.4.2 Atom

Atom is a text editor made by the people at GibHub.24 The idea behind this editor is
to make a product convenient as Sublime and TextMate, but extensible and flexibly
like Emacs and Vim. At first Atom looks like Sublime. This is not by chance; their
creators copied Sublime UI in order to attract its users. Apart from the UI, most of
the functionality and shortcuts are kept, so the transition should be easy. There are
some differences, like the underlying technology. While the Sublime core is made in
C++ with Python as an extension language, Atom is based on Chromium (the open
source version of Google Crome). The speed difference is noticeable. Atom is slower,
so it is not advisable to use it with old or underpowered machines. The advantage
of using Chromium is that the editor can be customized easily with JavaScript,
HTML, and CSS. This makes Atom an excellent editor for web developers. Since
Atom is made by GitHub, it has some Git integration not seen in other editors25.

• Smart autocompletion: Autocompletion in interpreted languages like
Python are not perfect, but Atom does a good job offering adequate options
while you type.

• Modular design: It comes with basic functionality and then install packages
from the settings page. The package selection (more than 6200) is very similar
to Sublime, and most used packages are already ported to Atom. Apart from
packages, there are themes to control look and feel, and with more that 2100
themes at this moment you won’t get bored.

23Download Package Control from https://packagecontrol.io.
24https://atom.io
25You can access to some of the most common Git operations without

leaving Atom. For more information, read http://blog.atom.io/2017/05/16/

git-and-github-integration-comes-to-atom.html.

https://packagecontrol.io
https://atom.io
http://blog.atom.io/2017/05/16/git-and-github-integration-comes-to-atom.html
http://blog.atom.io/2017/05/16/git-and-github-integration-comes-to-atom.html

34 � Python for Bioinformatics

• Open Source: You can access the source code on GitHub and be part of the
developer community. In this case, open source also means free. Development
is sponsored by GitHub.

• Truly multiplatform: As with Sublime, it looks the same on all three major
platforms.

Atom is the best alternative if you can’t or don’t want to pay for the Sublime
license. It is not perfect. The speed in a lot of cases is an issue. With large document,
it eats RAM in a way that may slow down your computer at to the point of being
unresponsive. Without any doubt, Atom is worth trying, test it with your hardware
and settings to see if it sluggish.

2.4.3 PyCharm

This is a Python editor used mostly in commercial/professional settings. There is
a new “educational” version.26 It advertises itself as a “Free, Easy & Professional
Tool to Learn Programming with Python.” This edition is free and has support
for course creation and distribution, so it comes with a library of courses and you
may also access material created by another users. I didn’t use it to learn Python,
so I can’t tell if it is suitable for this purpose, but as an advanced user I found
that this educational aspect doesn’t affect my normal developer workflow, in fact,
it help me by displaying tips each time there was some room for improvement.
This educational edition does not support different web development technologies,
remote development capabilities or additional languages.

These features are included in PyCharm:

• Intelligent Python Assistance: Smart code completion, code inspections,
on-the-fly error highlighting and quick fixes, along with automated code refac-
torings. This last point is much appreciated by professionals, while the error
highlighting is useful for novices. For example if you import a module and
don’t use through the file, it is marked in gray. If you call a method that
doesn’t exist, it is highlighted in yellow.

• Scientific Tools: Integrates with Jupyter Notebook, has an interactive
Python console, and supports Anaconda as well as multiple scientific packages
including matplotlib and NumPy.

• Built-in Developer Tools: A huge collection of tools out of the box: an
integrated debugger and test runner, Python profiler, a built-in terminal, and
integration with major VCS and built-in database tools.

• Web Development Frameworks: Web Development Frameworks: Py-
Charm offers great framework-specific support for modern web development

26Available at https://www.jetbrains.com/pycharm-edu

https://www.jetbrains.com/pycharm-edu

First Steps with Python � 35

Figure 2.3 PyCharm Edu welcome screen.

frameworks such as Django, Flask, Google App Engine, Pyramid, and web2py.
Pro edition only.

2.4.4 Spyder IDE

Spyder IDE is an open source cross-platform IDE for scientific programming. It
is included with the Anaconda distribution, but can be downloaded and used as
a standalone editor. It also supports plugins, although the selection of plugins are
not as big as Sublime and Atom. In part this is not an issue because Spyder is a
Python IDE so it doesn’t need plugins the way Sublime and Atom do in order to
have Python functions. Even if it is a Python IDE, it is not limited to Python; it
supports several languages such as C, C++, and Fortran (because its origin as a
development platform for science).

It includes most of the features of PyCharm (code completion works really
well) so in a way is a good alternative. When you highlight a word, it automatically
highlights all instances of that word. The interactive console support both Python
and IPython (a better interactive console). In my experience it is not so stable;
sometimes the process running in the console get deattached from the code in the
editor and you must restart the IDE.

Availability: Spyder IDE comes package inside Anaconda and WinPython. So
if you use any of these Python distributions, you already have Spyder IDE. If you
want to install Spyder without installing a Python distribution, you can install it
using PIP:

36 � Python for Bioinformatics

pip install spyder

If you are using Conda, you can run it from the Conda Navigator or from the
command line:

conda install spyder

2.4.5 Final Words about Editors

There is no editor that is unquestionably better than all others in all areas. As
multipurpose editors, Sublime and Atom are good choices. If you are comfortable
with closed source software, Sublime is the best choice (provided you can pay the
license fee). As an alternative, Atom provides most benefits of Sublime if you have
a powerful machine.

As Python-specific editors, both Spyder and PyCharm have everything you may
need for Python programming. Both IDEs come with integrated terminal emulation
that comes handy when debugging (and that may be a considerable amount of
time). They also play well with Anaconda Python distribution, in fact, Spyder is
part of Anaconda.

All mentioned editors work with Windows, but if you are a Windows developer
you may consider Visual Studio, which started supporting Python recently.27 It is
so new that there is not much feedback on how it performs, but Windows developers
are feeling at home with this product.

I am not going to recommend a particular editor as I consider this a personal
choice. My recommendation is that you try all that you can and choose the one that
best fits your needs. I use Atom for general purpose file editing (this book is made
in LATEX using Atom with a plugin that helps LATEX editing), but for Python I
tend to use PyCharm Edu.

2.5 OTHER TOOLS

Besides code editors, developers tend to use other tools that helps them do their
work. Although you may not need them at the beginning of your learning process,
it’s worth mentioning some useful tool you may use along your way.

• Jupyter Notebook (http://jupyter.org): A web application that runs
locally and allows you to create and share documents that contain Python
code that can be run inside the web page. Besides equations, it can show text
and interactive graphics. All code in this book is also available in this format.
For more information see the book web page at http:py3.us.

• Kite (https://kite.com): It defines itself as “The smart copilot for program-
mers”. It is an utility that integrates into your code editor and provides code

27See https://www.visualstudio.com/vs/python/.

http://jupyter.org
https://kite.com
https://www.visualstudio.com/vs/python/
http:py3.us

First Steps with Python � 37

completions based on the most used options in the web, documentation and
examples. See their presentation video in their web page. Currently available
for Windows and macOS, Linux is “almost done” at the time of writing.

• QuantifiedCode (https://QuantifiedCode.com): An online tool that
reads your code from your software repository and display comments and
very useful hints about your code. This is not a free service,

• Pylint (https://www.pylint.org): A command line utility that analyses
your code and outputs comments on how to improve it. It checks if the code
follows the Python style guide, it detects errors and duplicated code that
could be refactored. .

• Pylama (https://github.com/klen/pylama): Wraps several tools, like
Pylint and others, to provide source code analysis. It is not a user friendly
software, but it is powerful.

• ptpython (https://github.com/jonathanslenders/ptpython): A re-
placement for the Python interactive interpreter (or REPL). It adds syntax
highlighting, multiline editing and autocompletion to the Python terminal.

2.6 ADDITIONAL RESOURCES

• Using the Python Interpreter.
https://docs.python.org/3/tutorial/interpreter.html

• IPython: An interactive computing environment.
http://ipython.org/

• PyFormat: Format values in strings using format() and %.
https://pyformat.info

• Wikipedia article: “Comparison of text editors.”
http://en.wikipedia.org/wiki/Comparison_of_text_editors

• Python Anywhere: “Host, run, and code Python in the cloud!”
https://www.pythonanywhere.com

• Repl.it: An online Python interpreter that allows code sharing.
https://repl.it/languages/python3

2.7 SELF-EVALUATION

1. Define: Program, instruction, and variable.

2. What is the difference between Python and cPython?

https://QuantifiedCode.com
https://www.pylint.org
https://github.com/klen/pylama
https://github.com/jonathanslenders/ptpython
https://docs.python.org/3/tutorial/interpreter.html
http://ipython.org/
https://pyformat.info
http://en.wikipedia.org/wiki/Comparison_of_text_editors
https://www.pythonanywhere.com
https://repl.it/languages/python3

38 � Python for Bioinformatics

3. Name some Python implementations.

4. What is the advantage of having both single and double quotes?

5. What is format()?

6. What is an RPEL?

7. When would you use batch mode instead of the interactive shell?

8. What is indentation? Why is it mandatory in Python?

9. What is a comment in a source code?

10. Is there a valid reason to comment out working source code?

11. What is a “shebang”?

12. What is an “encoding comment.” and when should you use it?

C H A P T E R 3

Basic Programming: Data

Types

CONTENTS

3.1 Strings . 40
3.1.1 Strings Are Sequences of Unicode Characters 41
3.1.2 String Manipulation . 42
3.1.3 Methods Associated with Strings . 42

3.2 Lists . 44
3.2.1 Accessing List Elements . 45
3.2.2 List with Multiple Repeated Items . 45
3.2.3 List Comprehension . 46
3.2.4 Modifying Lists . 47
Adding . 47
Removing . 47
3.2.5 Copying a List . 49

3.3 Tuples . 49
3.3.1 Tuples Are Immutable Lists . 49

3.4 Common Properties of the Sequences . 51
Indexing . 51
Slicing . 52
Membership Test . 53
Concatenation . 53
len, max, and min . 53
Turn a Sequence into a List . 54

3.5 Dictionaries . 54
3.5.1 Mapping: Calling Each Value by a Name . 54
3.5.2 Operating with Dictionaries . 56
Dictionaries Are Made of Keys and Values . 56
Query Dictionary Values . 57
Erasing Elements . 58

3.6 Sets . 59
3.6.1 Unordered Collection of Objects . 59
Creating a Set . 59
3.6.2 Set Operations . 60
Intersection . 60
Union . 60

39

40 � Python for Bioinformatics

Difference . 61
Symmetric Difference . 62
3.6.3 Shared Operations with Other Data Types . 62
Maximum, Minimum, and Length . 62
Converting a Set into a List . 62
3.6.4 Immutable Set: Frozenset . 63

3.7 Naming Objects . 63
3.8 Assigning a Value to a Variable versus Binding a Name to an Object 64
3.9 Additional Resources . 67
3.10 Self-Evaluation . 68

As mentioned in the previous chapter, some data structures are shared between
different computer languages, but some of them are language specific. That is why
data types somehow define a computer language. Python has its own characteristic
data types.

One such fundamental data structure is a sequence. Inside a sequence, the el-
ements have a sequential order. For example the string, which is an ordered se-
quence of characters. Other sequences are lists and tuples.1 Although fundamental
differences exist between these types of sequences, they share common properties.
Sequence elements have an order, can be indexed, can be sliced, and can be iterated.
Don’t worry if you don’t understand some of these terms. Just keep on reading.
We’ll see all these points during this chapter.

Apart from sequences, there are also unordered data types: dictionaries and sets.
A dictionary2 stores relationships between a key and a value, while a set is just an
unordered collection of values. The next pages are focused on ordered (string, list,
and tuple) and unordered types (dictionary and set).

3.1 STRINGS

A string is a sequence of symbols delimited by a single quote (’), double quotes
("), triple single quotes (” ’), or triple double quotes ("""). Therefore, the following
strings are equivalent:

"This is a string in Python"

’This is a string in Python’

’’’This is a string in Python’’’

"""This is a string in Python"""

It may seem a little bit redundant to have so many ways to delimit a string.

1There are more sequence types not covered in this book. For more information on other sequence
types see Additional Resources at the end of the chapter.

2Also classified as a mapping data type.

Basic Programming: Data Types � 41

The advantage of having both single (’) and double (") quote delimiters is that we
can insert a single quote in a string delimited for double quote, and vice versa:

"A single quote (’) inside a double quote"

’Here we have "double quotes" inside single quotes’

The important thing to remember is that if we begin a string with a type of
quote, we must finish it with the same type of quote. The following string is not
valid:

>>> "Mixing quote types leads to the dark side’

File "<stdin>", line 1

"Mixing quote types leads to the dark side’

^

SyntaxError: EOL while scanning single-quoted string

Note: EOL stands for end-of-line.
Regarding strings enclosed by triple quotes, we can use them to indicate multi-

line strings (also known as a block string):

"""Hi! I’m a

multiline

string"""

The character ’\n’ represents an end-of-line (EOL) character. Therefore, the
code above could be written in one line as:

"Hi! I’m a\nmultiline\n string"

You can use triple quotation marks to build and format a string just like you’d
expect to see it displayed. There are other uses for triple quoted strings such as
documentation.

3.1.1 Strings Are Sequences of Unicode Characters

Since Python 3, all string sequences are Unicode characters by default. So this is a
valid string:

>>> ’In Python 3, strings are Unicode: こんにちは 世界’

’In Python 3, strings are Unicode: こんにちは 世界’

If you are wondering about Unicode, it is an industry standard that “provides
the basis for processing, storage and interchange of text data in any language in all
modern software.”3 Since Python 3 has built-in support for Unicode, you just use
it without the need to do explicit declarations or conversions. However, you may
need to take some precautions when reading or writing data from or to external
sources.

3Taken from the Unicode FAQ at http://www.unicode.org/faq/basic_q.html.

http://www.unicode.org/faq/basic_q.html

42 � Python for Bioinformatics

3.1.2 String Manipulation

Strings are immutable. Once a string is created, it can’t be modified. If you need
to change a string, what you can do is to make a derived string. This is done using
the string as a parameter in a function and then gets the returned value. In the
following example there is a string that represents an amino-acid sequence and it
is called signal_peptide:

>>> signal_peptide = ’MASKATLLLAFTLLFATCIA’

To get a lower-case version of the string, use the method lower():

>>> signal_peptide.lower()

’maskatlllaftllfatcia’

Despite having obtained the lower-case string, the original string has not been
modified:

>>> signal_peptide

’MASKATLLLAFTLLFATCIA’

If we want this new lower case string to have the same name as the previous
one, we need to assign it:

>>> signal_peptide = signal_peptide.lower()

>>> signal_peptide

’maskatlllaftllfatcia’

The net effect is like we modified the string. It’s time to see some methods
associated with strings.

3.1.3 Methods Associated with Strings

replace(old,new[,count]): Allows us to replace a portion of a string (old) with
another (new). If the optional argument count is used, only the first count occur-
rences of old will be replaced:

>>> dna_seq = ’GCTAGTAATGTG’

>>> m_rna_seq = dna_seq.replace(’T’,’U’)

>>> m_rna_seq

’GCUAGUAAUGUG’

count(sub[, start[, end]]): Counts how many times the substring sub appears,
between the start and end positions (if available). Let’s see how it can be used to
calculate the CG content4 of a sequence:

4CG content is the amount of cytosine and guanine in a DNA sequence. CG content is related
to the DNA melting temperature and other physical properties.

Basic Programming: Data Types � 43

>>> dna_seq

’GCTAGTAATGTG’

>>> c = dna_seq.count("C")

>>> g = dna_seq.count("G")

>>> (c+g)/len(dna_seq)*100

41.66666666666667

find(sub[,start[,end]]): Returns the position of the substring sub, between the
start and end positions (if available). If the substring is not found in the string,
this method returns the value -1:

>>> m_rna_seq

’GCUAGUAAUGUG’

>>> m_rna_seq.find(’AUG’)

7

>>> m_rna_seq.find(’GGG’)

-1

index(sub[,start[,end]]): Works like find(). The difference is that index will
raise a ValueError exception when the substring is not found. This method is
recommended over find() because the value -1 could be interpreted as a valid value,
while a ValueError returned by index() can’t be taken as a valid value.

split([sep [,maxsplit]]): Separates the “words” of a string and returns them
in a list. If a separator (sep) is not specified, the default separator will be a white
space:

>>> ’This string has words separated by spaces’.split()

[’This’, ’string’, ’has’, ’words’, ’separated’, ’by’, ’spaces’]

When white space is not the data separator, we have to specify a custom sepa-
rator:

>>> "Alex Doe,5555-2333,nobody@example.com".split()

[’Alex’, ’Doe,5555-2333,nobody@example.com’]

In this case the separator is a comma (“,”), so we have to state it explicitly:

>>> "Alex Doe,5555-2333,nobody@example.com".split(",")

[’Alex Doe’, ’5555-2333’, ’nobody@example.com’]

Bioinformatics Application: Parsing BLAST Files.
One of the most used bioinformatics programs is NCBI-BLAST (this program

is reviewed from page 177).

mailto:nobody@example.com"
mailto:nobody@example.com
mailto:nobody@example.com"
mailto:nobody@example.com

44 � Python for Bioinformatics

The BLAST standalone executable can generate output as a “tab separated file”
(by using the argument -m 8). This output file can be parsed by using split(’\t’).

The inverse function of split() is join():
join(seq): Joins the sequence using a string as a “glue character”:

’;’.join([’Alex Doe’, ’5555-2333’, ’nobody@example.com’])

’Alex Doe;5555-2333;nobody@example.com’

To join a sequence without any glue character, use empty quotes (""):

>>> ’’.join([’A’,’C’,’A’,’T’])

’ACAT’

For a complete description of string methods, see help(str) in the console.

3.2 LISTS

Lists are one of the most versatile object types in Python. A list is an ordered col-
lection of objects. It is represented by elements separated by commas and enclosed
between square brackets.

We already have seen a list as a result of applying the split() function:

>>> ’Alex Doe,5555-2333,hi@example.com’.split(’,’)

[’Alex Doe’, ’5555-2333’, ’hi@example.com’]

This is a three-element list, ’Alex Doe’, ’5555-2333’, and ’hi@example.com’, all
of them strings.

The next code shows how to define and name a list:

>>> first_list = [1, 2, 3, 4, 5]

This is a list with five elements. In this case, all the elements are of the same
type (integer). A list can hold different kinds of elements:

>>> other_list = [1, ’two’, 3, 4, ’last’]

A list can even contain another list:

>>> nested_list = [1, ’two’, first_list, 4, ’last’]

>>> nested_list

[1, ’two’, [1, 2, 3, 4, 5], 4, ’last’]

An empty list is defined with empty brackets:

>>> empty_list = []

>>> empty_list

[]

An empty list doesn’t have any use as is, but sometimes we may want to define
an empty list to add elements at a later time.

mailto:nobody@example.com
mailto:nobody@example.com
mailto:hi@example.com
mailto:hi@example.com
mailto:hi@example.com

Basic Programming: Data Types � 45

3.2.1 Accessing List Elements

As other sequence data types, you cat get list elements by an index starting at zero.

>>> first_list = [1, 2, 3, 4, 5]

>>> first_list[0]

1

>>> first_list[1]

2

Negative numbers are used to access lists from the right:

>>> first_list = [1, 2, 3, 4, 5]

>>> first_list[-1]

5

>>> first_list[-4]

2

Another way of obtaining lists is by turning a non-list object into a list by using
the built-in function list():

>>> aseq = "atggctaggc"

>>> list(aseq)

[’a’, ’t’, ’g’, ’g’, ’c’, ’t’, ’a’, ’g’, ’g’, ’c’]

3.2.2 List with Multiple Repeated Items

If you want to initialize a list with the same item repeated multiple times, you can
use the * operator like this:

>>> samples = [’red’] * 5

>>> samples

[’red’, ’red’, ’red’, ’red’, ’red’]

This can be used to pre-populate a list with empty values and can be useful when
working with big lists and the number of elements is known beforehand. Defining
a list with a fixed size is more efficient than creating an empty list and expanding
it as needed:

>>> samples = [None] * 5

>>> samples

[None, None, None, None, None]

46 � Python for Bioinformatics

3.2.3 List Comprehension

There is another way to define a list. A list can be created from another list.
As in mathematics where you can define a set by enumerating all its elements
(enumeration) or by describing properties shared by its members (comprehension),
in Python a list can be created by both methods.

A set defined by enumeration,

A = {0, 1, 2, 3, 4, 5}

.
A list defined by enumeration in Python,

>>> a = [0, 1, 2, 3, 4, 5]

A set defined by comprehension,

B = {3 ∗ x/x ∈ A}

.
This is equivalent to

B = {0, 3, 6, 9, 12, 15}

.
A list defined by comprehension in Python,

>>> [3*x for x in a]

[0, 3, 6, 9, 12, 15]

Any Python function or method can be used to define a list by comprehension.
For example from a list of strings, let’s make a list with the same elements but
without trailing and leading white spaces:

>>> animals = [’ King Kong’, ’ Godzilla ’, ’Gamera ’]

>>> [x.strip() for x in animals]

[’King Kong’, ’Godzilla’, ’Gamera’]

We can add a conditional statement (if) to narrow the result set:

>>> animals = [’ King Kong’, ’ Godzilla ’, ’Gamera ’]

>>> [x.strip() for x in animals if ’i’ in x]

[’King kong’, ’Godzilla’]

Basic Programming: Data Types � 47

3.2.4 Modifying Lists

Unlike strings, lists can be modified5 by adding, removing, or changing their ele-
ments:

Adding

There are three ways to add elements into a list: append, insert, and extend.
append(element): Adds an element at the end of the list.

>>> first_list.append(99)

>>> first_list

[1, 2, 3, 4, 5, 99]

insert(position,element): Inserts the element element at the position posi-
tion.

>>> first_list.insert(2,50)

>>> first_list

[1, 2, 50, 3, 4, 5, 99]

extend(list): Extends a list by adding a list to the end of the original list.

>>> first_list.extend([6,7,8])

>>> first_list

[1, 2, 50, 3, 4, 5, 99, 6, 7, 8]

This is the same as using the + symbol:

>>> [1,2,3]+[4,5]

[1, 2, 3, 4, 5]

Removing

There are three ways to remove elements from a list.
pop([index]): Removes the element in the index position and returns it to the

point where it was called. Without parameters, it returns the last element.

>>> first_list

[1, 2, 50, 3, 4, 5, 99, 6, 7, 8]

>>> first_list.pop()

8

>>> first_list.pop(2)

50

>>> first_list

[1, 2, 3, 4, 5, 99, 6, 7]

5Lists are called “mutables” in Python jargon.

48 � Python for Bioinformatics

TABLE 3.1 Common List Operations

Properties Description

l.append(x) Adds the x element to list s
l.count(x) Counts how many times x is in s
l.index(x) Returns the location of x in list s
l.remove(x) Removes the element x from list s
l.reverse() Reverses list s
l.sort() Sorts list s

remove(element): Removes the element specified in the parameter. In the
case where there is more than one copy of the same object in the list, it removes
the first one, counting from the left. Unlike pop(), this function does not return
anything.

>>> first_list.remove(99)

>>> first_list

[1, 2, 3, 4, 5, 6, 7]

Trying to remove a nonexistent element raises an error:6

>>> first_list

[1, 2, 3, 4, 5, 6, 7]

>>> first_list.remove(10)

Traceback (most recent call last):

File "<stdin>", line 1, in ?

ValueError: list.remove(x): x not in list

Another way of removing an element of a list is using the command del, for
what:

del first_list[0]

This has a similar effect to:

first_list.pop(0)

with the difference that pop() returns the extracted element to where it was
called, while del just deletes it.7

Table 3.1 summarizes other properties of lists.

6In Chapter 7 there is a more detailed description of exceptions.
7The object is not deleted. What actually happens is that the reference between the object and

its name is lost. For the programmer, this action has the same effect as if it were deleted (it is not
possible to gain access to the object). Eventually, the “Python garbage collector” will eliminate it
in a transparent and automatic way.

Basic Programming: Data Types � 49

3.2.5 Copying a List

Copying a list can be tricky. In the following code we try to copy the list a into b,
but when I modify b by removing an element, this element is also removed from a:

>>> a = [1, 2, 3]

>>> b = a

>>> b.pop()

3

>>> a

[1, 2]

As seen, “=” doesn’t copy the values, it copies a reference to the original object.8

To copy a list you must use the copy method in the copy module:

>>> import copy

>>> a = [1, 2, 3]

>>> b = copy.copy(a)

>>> b.pop()

3

>>> a

[1, 2, 3]

There is a way to accomplish the same without using the copy module:

>>> a = [1, 2, 3]

>>> b = a[:]

>>> b.pop()

3

>>> a

[1, 2, 3]

3.3 TUPLES

3.3.1 Tuples Are Immutable Lists

A tuple is a collection of ordered objects with the characteristic that once cre-
ated, it cannot be modified. That is why they are referred to as “immutable lists.”
Python objects can be divided into mutable and immutable. As the name implies,
immutable objects cannot be modified after they are created. You can easily tell
a tuple from a list because the tuple’s elements are enclosed between parentheses
instead of square brackets:

>>> point = (23, 56, 11)

8For a detailed review of what is going on under the hood, please see page 64.

50 � Python for Bioinformatics

point is a tuple with three elements (23, 56, and 11).
When the tuple has only one element, you should use a trailing comma:

lone_element_tuple = (5,)

This is done to sort the ambiguity of having (5) that means 5 (number five)
since parentheses around an expression are ignored. With the trailing comma and
parentheses the Python interpreter can tell that it is a tuple and not an expression.

You are not allowed to add or to remove elements from a tuple:

>>> point.append(3)

Traceback (most recent call last):

File "<stdin>", line 1, in ?

AttributeError: ’tuple’ object has no attribute ’append’

>>> point.pop()

Traceback (most recent call last):

File "<stdin>", line 1, in ?

AttributeError: ’tuple’ object has no attribute ’pop’

In a certain way, a tuple is like a limited list (limited in the sense that we cannot
modify it). So what are tuples good for? Why not just use a list instead?

There is a conceptual difference between the data types stored as a tuple and
the data stored as a list. Lists should hold a variable quantity of objects of the
same data type. A list containing the file names of all the files in a directory can be
stored in a list. They are all of the same type (string), and the number of elements
in the list changes according to each directory. The element ordering inside this list
is not relevant.

On the other hand, a typical example of a tuple is a coordinate system. In a
three-dimensional coordinate system, each point is referred to by a three-element
tuple (x, y, z). The number of elements for each tuple does not change (since
there are always three coordinates), and each position is important since each point
corresponds to a specific axis.

We can say the same thing regarding the elements that are returned from a
function or a dictionary key.9 Another advantage of the tuple is it can be used to
make safer code - the information we don’t want to change stays “write-protected”
in an immutable tuple.

Tuples takes less memory than lists. When working with big datasets, this can
be significant. Also the speed of operations involving tuples are faster than that of
lists. While this may be true in specific cases, this fact alone shouldn’t be a major
consideration when choosing between a list or a tuple.

9This will make sense after seeing functions and dictionaries.

Basic Programming: Data Types � 51

3.4 COMMON PROPERTIES OF THE SEQUENCES

Since sequences share common properties, let’s see them together. You can apply
these properties to lists, tuples, and strings.

Indexing

Indexing was discussed when covering lists, but for the sake of completeness, it is
also covered here. Since the elements in the sequences are ordered, we can gain
access to any element through an index that begins at zero:

>>> point = (23, 56, 11)

>>> point[0]

23

>>> point[1]

56

>>> sequence = ’MRVLLVALALLALAASATS’

>>> sequence[0]

’M’

>>> sequence[5]

’V’

>>> parameters = [’UniGene’, ’dna’, ’Mm.248907’, 5]

>>> parameters[2]

’Mm.248907’

We can also access the elements of a sequence from the right by using negative
numbers:

>>> point[-1]

11

>>> point[-2]

56

>>> my_sequence[-2]

’T’

>>> my_sequence[-4]

’S’

>>> my_sequence[-1]

5

To access an element that is inside a sequence, which is itself inside another
sequence, you need to use another index:

>>> seqdata = (’MRVLLVALALLA’, 12, ’5FE9EEE8EE2DC2C7’)

>>> seqdata[0][5]

’V’

52 � Python for Bioinformatics

The first index (0) indicates we’re accessing the first element of seqdata.
The second index (5) refers to the 6th element (’V’) of the first element
(’MRVLLVALALLA’)

Slicing

You can select a portion of a sequence using slice notation. Slicing consists of using
two indexes separated by a colon (:). These indexes represent a position in the
existing space between the elements. The string “Python” can be represented as,

+---+---+---+---+---+---+

| P | y | t | h | o | n |

+---+---+---+---+---+---+

0 1 2 3 4 5 6

>>> my_sequence="Python"

>>> my_sequence[0:2]

’Py’

When omitting the first sub-index, the index value defaults to the first position
(0):

>>> my_sequence[:2]

’Py’

On the other hand, when the second sub-index is omitted, the index value
defaults to the last position (-1):

>>> my_sequence = "Python"

>>> my_sequence[4:6]

’on’

>>> my_sequence[4:]

’on’

There is a third, optional index to skip positions (step argument):

>>> my_sequence[1:5]

’ytho’

>>> my_sequence[1:5:2]

’yh’

A step with a negative number is used to count backwards. So -1 (in the third
position) can be used to invert a sequence:

>>> my_sequence[::-1]

’nohtyP’

Note that slicing always returns another sequence.

Basic Programming: Data Types � 53

Membership Test

You can verify whether an element belongs to a sequence, using the in keyword:10

>>> point = (23, 56, 11)

>>> 11 in point

True

>>> my_sequence = ’MRVLLVALALLALAASATS’

>>> ’X’ in my_sequence

False

Concatenation

You can concatenate two or more sequences of the same class using the “+” sign:

>>> point = (23, 56, 11)

>>> point2 = (2, 6, 7)

>>> point + point2

(23, 56, 11, 2, 6, 7)

>>> dna_seq = ’ATGCTAGACGTCCTCAGATAGCCG’

>>> tata_box = ’TATAAA’

>>> tata_box + dna_seq

’TATAAAATGCTAGACGTCCTCAGATAGCCG’

Sequences of different types can’t be concatenated:

>>> point + tata_box

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: can only concatenate tuple (not "str") to tuple

len, max, and min

len() returns the length (the number of items) of a sequence:

>>> point = (23, 56, 11)

>>> len(point)

3

>>> my_sequence = ’MRVLLVALALLALAASATS’

>>> len(my_sequence)

19

max() and min() applied over a sequence of numbers return, as expected, the
maximum and the minimum value:

10Note that the in keyword was used on page 59

54 � Python for Bioinformatics

>>> point

(23, 56, 11)

>>> max(point)

56

>>> min(point)

11

max() and min() applied to strings return a character according to the maxi-
mum or minimum value of its ASCII code:

>>> my_sequence = ’MRVLLVALALLALAASATS’

>>> max(my_sequence)

’V’

>>> min(my_sequence)

’A’

Turn a Sequence into a List

To convert a sequence (like a tuple or a string) into a list, use the list() method:

>>> tata_box = ’TATAAA’

>>> list(tata_box)

[’T’, ’A’, ’T’, ’A’, ’A’, ’A’]

Using a list provides us with methods to indirectly modify a string. Since lists,
unlike strings, are mutable, we can convert a string to a list, modify this list and
then convert it back into a string (with str()).11 This process is not efficient, so I
suggest that whenever possible, use string properties to obtain another string.

3.5 DICTIONARIES

3.5.1 Mapping: Calling Each Value by a Name

Dictionaries are a special data type not present in all programming languages. The
main characteristic of a dictionary is that it stores arbitrary indexed unordered
data types.

This example shows us why this data type is called a dictionary:

>>> iupac = {’A’:’Ala’,’C’:’Cys’,’E’:’Glu’}

>>> print(’C stands for the amino acid {0}’.format(iupac[’C’]))

C stands for the amino acid Cys

11By using the method join() as it was described on page 44.

Basic Programming: Data Types � 55

iupac is the name of a dictionary with three elements. It was defined by enclos-
ing is key:value pairs between curly brackets ({}).

This dictionary works as a translation table that allows us to translate between
the one-letter amino acid code to a three-letter code. Every element consists of a
pair key:value. The key is the index used to retrieve the value:

>>> iupac[’E’]

’Glu’

Not every object can be used as a dictionary key. Only immutable objects like
strings, tuples and numbers can be used as keys. If the tuple contains any mutable
object, it cannot be used as a key.

A dictionary can also be created from a sequence with dict:

>>> rgb = [(’red’,’ff0000’), (’green’,’00ff00’), (’blue’,’0000ff’)]

>>> colors_d = dict(rgb)

>>> colors_d

{’red’: ’ff0000’, ’blue’: ’0000ff’, ’green’: ’00ff00’}

dict also accepts name=value pairs in the keyword argument list:

>>> rgb = dict(red=’ff0000’, green=’00ff00’, blue=’0000ff’)

>>> rgb

{’blue’: ’0000ff’, ’green’: ’00ff00’, ’red’: ’ff0000’}

Another way to initialize a dictionary is to create an empty dictionary and add
elements as needed:

>>> rgb = {}

>>> rgb[’red’] = ’ff0000’

>>> rgb[’green’] = ’00ff00’

>>> rgb

{’green’: ’00ff00’, ’red’: ’ff0000’}

len(), returns the number of elements in the dictionary:

>>> len(iupac)

3

To add values to a dictionary,

>>> iupac[’S’] = ’Ser’

>>> len(iupac)

4

56 � Python for Bioinformatics

Dictionaries are unordered because they don’t keep track of the order of their
elements. When you request to see the contents of the dictionary, you may or may
not get the elements in the same order as they were entered:

>>> iupac = {’A’:’Ala’,’C’:’Cys’,’E’:’Glu’}

>>> iupac

{’E’: ’Glu’, ’C’: ’Cys’, ’A’: ’Ala’}

When entering a new element, it is not inserted at a particular place (like the
end):

>>> iupac[’X’] = ’Xaa’

>>> iupac

{’E’: ’Glu’, ’X’: ’Xaa’, ’C’: ’Cys’, ’A’: ’Ala’}

Don’t rely on a dictionary to keep track of element order. If you need an ordered
dictionary, you must use OrderedDict12:

>>> from collections import OrderedDict

>>> d = OrderedDict()

>>> d[’a’] = ’A’

>>> d[’b’] = ’B’

>>> d[’c’] = ’C’

>>> d

OrderedDict([(’a’, ’A’), (’b’, ’B’), (’c’, ’C’)])

For more information on OrderedDict, see PEP-372 at https://www.python.

org/dev/peps/pep-0372.
Built-in data types as those found in this chapter are enough for most users,

but for more advanced uses there is a third-party module for dealing with ordered
content: SortedContainers13 . Check it out when you need a fast and memory
optimized solution for sorted containers when dealing with large amounts of data.

3.5.2 Operating with Dictionaries

As lists, dictionaries have their own methods.

Dictionaries Are Made of Keys and Values

To get the keys or values of a dictionary, there are methods like keys() and val-
ues():

12In Python 3.6, dictionaries are ordered, but this is considered an implementation detail and
should not be relied upon. This may change in Python 3.7, so please use OrderedDict if you want
to keep order.

13http://www.grantjenks.com/docs/sortedcontainers/

https://www.python.org/dev/peps/pep-0372
http://www.grantjenks.com/docs/sortedcontainers/
https://www.python.org/dev/peps/pep-0372

Basic Programming: Data Types � 57

>>> iupac

{’E’: ’Glu’, ’X’: ’Xaa’, ’C’: ’Cys’, ’A’: ’Ala’}

>>> iupac.keys()

dict_keys([’E’, ’X’, ’C’, ’A’])

>>> iupac.values()

dict_values([’Glu’, ’Xaa’, ’Cys’, ’Ala’])

Note that these methods do not return a list (that was their behavior before
Python 3), but they return a special object called dictionary views. This object
shows you the current keys or values, so if it changes in the dictionary, it will change
in the dictionary view:

>>> iupac.values()

dict_values([’Glu’, ’Xaa’, ’Cys’, ’Ala’])

>>> iupac.keys()

dict_keys([’E’, ’X’, ’C’, ’A’])

>>> iupac_keys = iupac.keys()

>>> iupac_vals = iupac.values()

>>> iupac.pop(’X’)

’Xaa’

>>> iupac_keys

dict_keys([’E’, ’A’, ’C’])

>>> iupac_vals

dict_values([’Glu’, ’Cys’, ’Ala’])

This can be useful when you need the keys or values in multiple parts of your
program without the need of recalculating the keys or values each time they are
used.

Another way of accessing the elements of a dictionary is by using items(),
which returns a dictionary view with a tuple for every key/value pair:

>>> iupac = {’E’: ’Glu’, ’X’: ’Xaa’, ’C’: ’Cys’, ’A’: ’Ala’}

>>> iupac.items()

dict_items([(’E’, ’Glu’), (’A’, ’Ala’), (’C’, ’Cys’), (’X’, ’Xaa’)])

Query Dictionary Values

To query a value from a dictionary without the risk of invoking an exception, use
get(k,x). K is the key of the element to extract, while x is the element that will
be returned in case k is not found as a key of the dictionary.

>>> iupac = {’E’: ’Glu’, ’X’: ’Xaa’, ’C’: ’Cys’, ’A’: ’Ala’}

>>> iupac.get(’A’,’No translation available’)

’Ala’

>>> iupac.get(’Z’,’No translation available’)

’No translation available’

58 � Python for Bioinformatics

TABLE 3.2 Methods Associated with Dictionaries

Properties
Description

len(d) Number of elements of d
d[k] The element from d that has a k key
d[k] = v Set d[k] to v
del d[k] Remove d[k] from d
d.clear() Remove all items from d
d.copy() Copy d
k in d True if d has a key k, else False
k not in d Equivalent to not k in d
d.has_key(k) Equivalent to k in d, use that form in new

code
d.items() A copy of d ’s list of (key, value) pairs
d.keys() A copy of d ’s list of keys
d.update([b]) Updates (and overwrites) key/value pairs

from b
d.fromkeys(seq[,
value])

Creates a new dictionary with keys from seq
and values set to value

d.values() A copy of d ’s list of values
d.get(k[, x]) a[k] if k in d, else x
d.setdefault(k[, x]) a[k] if k in d, else x (also setting it)
d.pop(k[, x]) d[k] if k in d, else x (and remove k)
d.popitem() Remove and return an arbitrary (key, value)

pair

If you omit x, and there is no k key in the dictionary, the method returns None.

>>> iupac.get(’Z’)

None

Erasing Elements

To erase elements from a dictionary, use the del instruction:

>>> iupac = {’E’: ’Glu’, ’X’: ’Xaa’, ’C’: ’Cys’, ’A’: ’Ala’}

>>> del iupac[’A’]

>>> iupac

{’C’: ’Cys’, ’X’: ’Xaa’, ’E’: ’Glu’}

Table 3.2 summarizes the properties of dictionaries.

Basic Programming: Data Types � 59

3.6 SETS

3.6.1 Unordered Collection of Objects

This type of data is also not commonly found in other programming languages. A
set is a structure frequently found in mathematics. It is similar to a list, with two
outstanding differences: its elements do not preserve an implied order and every
element is unique.

The most common uses of sets are membership testing, duplicate removal, and
the application of mathematical operations: intersections, unions, differences, and
symmetrical differences.

Creating a Set

Sets are created with the instruction set():

>>> first_set = {’CP0140.1’,’XJ8113.5’,’EF3616.3’}

It is also possible to create an empty set and then add the elements as needed:

>>> first_set = set()

>>> first_set.add(’CP0140.1’)

>>> first_set.add(’XJ8113.5’)

>>> first_set.add(’EF3616.3’)

>>> first_set

{’CP0140.1’,’XJ8113.5’,’EF3616.3’}

You can also define a set by comprehension, as in list comprehension (see page
46):

>>> {2*x for x in [1,2,3]}

{2, 4, 6}

Since a set does not accept repeated elements, there is no effect when you try
to add an element that is already in the set:

>>> first_set.add(’CP0140.1’)

>>> first_set

{’CP0140.1’,’XJ8113.5’,’EF3616.3’}

In the case of set comprehension:

>>> {2*x for x in [1,1,2,2,3,3]}

{2, 4, 6}

This property can be used to remove duplicated elements from a list:

>>> uniques = {2,2,3,4,5,3}

>>> uniques

{2, 3, 4, 5}

60 � Python for Bioinformatics

Figure 3.1 Intersection.

3.6.2 Set Operations

Intersection

To get the common elements in two sets (as shown in Figure 3.1), use the operator
intersection():

>>> first_set = {’CP0140.1’,’XJ8113.5’,’EF3616.3’}

>>> other_set = {’EF3616.3’}

>>> common = first_set.intersection(other_set)

>>> common

{’EF3616.3’}

It is equivalent to &:

>>> common = first_set & other_set

>>> common

{’EF3616.3’}

Union

The union of two (or more) sets is the operator union (as seen in Figure 3.2) and
its abbreviated form is |:

>>> first_set = {’CP0140.1’,’XJ8113.5’,’EF3616.3’}

>>> other_set = {’AB7416.2’}

>>> first_set.union(other_set)

{’CP0140.1’, ’XJ8113.5’, ’EF3616.3’, ’AB7416.2’}

>>> first_set | other_set

{’CP0140.1’, ’XJ8113.5’, ’EF3616.3’, ’AB7416.2’}

Basic Programming: Data Types � 61

Figure 3.2 Union.

Figure 3.3 Difference.

Difference

A difference is the resulting set of elements that belongs to one set but not to the
other (See Figure 3.3). Its shorthand is −:

>>> first_set.difference(other_set)

{’CP0140.1’, ’XJ8113.5’, ’EF3616.3’}

>>> first_set - other_set

{’CP0140.1’, ’XJ8113.5’, ’EF3616.3’}

>>> other_set - first_set

{’AB7416.2’}

62 � Python for Bioinformatics

Figure 3.4 Symmetric difference.

Symmetric Difference

A symmetric difference refers to those elements that are not a part of the intersec-
tion (see Figure 3.4); its operator is symmetric_difference and it is shortened
as ^:

>>> first_set.symmetric_difference(other_set)

{’CP0140.1’, ’XJ8113.5’, ’EF3616.3’, ’AB7416.2’}

>>> first_set ^ other_set

set([’EF3616.2’, ’CP0140.1’, ’CP0140.2’, ’EF3616.1’])

3.6.3 Shared Operations with Other Data Types

Maximum, Minimum, and Length

Sets share some properties with sequences, such as max, min, len, in, etc. As we
can expect, these properties work in the same way.

Converting a Set into a List

As with strings, sets can be turned into lists with the function list():

>>> first_set

{’CP0140.1’, ’XJ8113.5’, ’EF3616.3’}

>>> list(first_set)

[’CP0140.1’, ’XJ8113.5’, ’EF3616.3’]

Type help(set()) in the console to see all methods associated with sets.

Basic Programming: Data Types � 63

3.6.4 Immutable Set: Frozenset

Frozenset is the immutable version of set. Its contents cannot be changed, so meth-
ods like add() and remove() are not available. It is generated with the frozenset
object that takes an iterable as input:

>>> fs = frozenset([’a’,’b’])

>>> fs

frozenset({’a’, ’b’})

>>> fs.remove(’a’)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AttributeError: ’frozenset’ object has no attribute ’remove’

>>> fs.add(’c’)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AttributeError: ’frozenset’ object has no attribute ’add’

Since frozensets are immutable, they can be used as a dictionary key.

3.7 NAMING OBJECTS

Valid names should contain letters, numbers, and underscores (_), but they can’t
start with numbers. They also can’t be “language reserved words” such as:

False class finally is return

None continue for lambda try

True def from nonlocal while

and del global not with

as elif if or yield

asser else import pass

break except in raise

Here is a sample of invalid names, with an explanation in a comment:

>>> 23crm = "1" # Start with a number

>>> 23 = "1" # Start with a number

>>> Var? = "value" # Has an invalid character (?).

>>> $five = 5 # Has an invalid character ($)

>>> for = 123 # Has a reserved word

>>> if = "data" # Has a reserved word

We’ve seen several name assignments up to this point:

>>> my_sequence = ’MRVLLVALALLALAASATS’

>>> first_list = [1,2,3,4,5]

64 � Python for Bioinformatics

>>> d= {1:’a’,2:’b’,3:’c’}

>>> k = d.keys()

>>> point = (23,56,11)

>>> first_set = {’CP0140.1’,’XJ8113.5’,’EF3616.3’}

>>> fs = frozenset([’a’,’b’])

Those are valid names. There are also naming conventions that must be fol-
lowed to improve code readability. These conventions are part the Python Style
Guide.14 According to this guide, names should be lowercase, with words separated
by underscores as necessary to improve readability.

3.8 ASSIGNING A VALUE TO A VARIABLE VERSUS BINDING A NAME TO

AN OBJECT

The following statement can be thought of as a variable assignment:

>>> a = 3

>>> b = [1,2,a]

Also this one:

>>> b = [1,2,a]

Translated into English, they mean: “Let the variable a have a value of 3” and
“Let the variable b have a list with three elements: 1, 2, and a (that has the value
3).”

Printing b seems to confirm both statements:

>>> b

[1, 2, 3]

So by changing the value of a, the value of b should also change:

>>> a = 5

>>> b

[1, 2, 3]

What happened here? If you know another programming language, you may
think that “Python is storing the value instead of the reference to the value.” That
is not exactly the case, so I urge you to keep on reading.

The following statements seem to work in a different way:

>>> c = [1, 2, 3]

>>> d = [5, 6, c]

14Available at https://www.python.org/dev/peps/pep-0008

https://www.python.org/dev/peps/pep-0008

Basic Programming: Data Types � 65

Figure 3.5 Case 1.

Translated into English, they mean: “Let the variable c be a list with three
elements: 1, 2 and 3” and “Let the variable d be a list with three elements: 5, 6, and
c (that is a list with three elements: 1, 2, and 3).”

This can be confirmed by printing both variables:

>>> c

[1, 2, 3]

>>> d

[5, 6, [1, 2, 3]]

Let’s change the value of c to see what happens with d:

>>> c.pop()

3

>>> c

[1, 2]

>>> d

[5, 6, [1, 2]]

In this case, changing one variable, does change the other variable. This seems
like an inconsistent behavior. If we think of all these variable assignments as a
binding names with objects, what seems inconsistent starts to make sense. Try
following the next explanation using Figure 3.5.

>>> a = 3

>>> b = [1, 2, a]

66 � Python for Bioinformatics

Figure 3.6 Case 2.

Translated into English, they mean: “Let the object 3 be called a” and “Let the
list with three elements (1, 2 and a) be called b.”

Printing b seems to confirm both statements:

>>> b

[1, 2, 3]

Then we create a new object (5) and name it a. So the previous reference (a=3)
is destroyed (this is represented by a cross in the arrow from a to 3). The name a

is not bound to 3 anymore, now a is bound to 5. What about b?

>>> a = 5

>>> b

[1, 2, 3]

Since the third position in the list called b was not altered, b remains unmodified.
We only changed the binding between a and 3.

The next sample case can also be explained by taking into account that there is
no variable assignments in Python, but names that bind objects. In this case you
should follow Figure 3.6.

>>> c = [1, 2, 3]

>>> d = [5, 6, c]

Translated into English, they mean, “Let the list with three elements: 1, 2 and 3
be called c” and “Let the list with three elements: 5, 6 and c (which is the name of a

Basic Programming: Data Types � 67

list of three elements: 1, 2 and 3) be called d.” This can be confirmed by requesting
the contents or both names:

>>> c

[1, 2, 3]

>>> d

[5, 6, [1, 2, 3]]

In the next step, modify the list called c by removing the last element and see
what happens with d:

>>> c.pop()

3

>>> print c

[1, 2]

>>> print d

[5, 6, [1, 2]]

This time, c was modified (and not just a relationship). Since the actual value
of c was altered, this is reflected every time it is called. See Figure 3.6 in case of
doubt.

Even if names are bound to objects and there is no variable assignment in
Python, force of habit is strong and most texts (even this book) use the terms
variables and names interchangeably.

3.9 ADDITIONAL RESOURCES

• Learn to program using python: variables and identifiers.
http://www.developer.com/lang/other/article.php/626321

• Python 101—Introduction to Python.
http://ascii-world.wikidot.com/python-101

• Beginning Python for bioinformatics.
http://www.onlamp.com/pub/a/python/2002/10/17/biopython.html

• Text Processing Services.
https://docs.python.org/3/library/text.html

• Python 3 Unicode HOWTO.
https://docs.python.org/3/howto/unicode.html

• Adding a built-in set object type.
http://www.python.org/dev/peps/pep-0218/

• Python built-in types.
https://docs.python.org/3/library/stdtypes.html

http://www.developer.com/lang/other/article.php/626321
http://ascii-world.wikidot.com/python-101
http://www.onlamp.com/pub/a/python/2002/10/17/biopython.html
https://docs.python.org/3/library/text.html
https://docs.python.org/3/howto/unicode.html
http://www.python.org/dev/peps/pep-0218/
https://docs.python.org/3/library/stdtypes.html

68 � Python for Bioinformatics

• Revamping dict.keys(), .values(), and .items().
http://www.python.org/dev/peps/pep-3106/

• Python dictionaries with recursive dot notation access.
https://github.com/cdgriffith/Box

3.10 SELF-EVALUATION

1. Which are the principal data types in Python?

2. What is the difference between a list and a tuple? When would you use each
one?

3. What is a set and when would you use it?

4. How do you test if an element is inside a list?

5. What is a dictionary?

6. What data type can be used as a key in a dictionary?

7. What is a “dictionary view”?

8. Can you iterate over an unordered sequence?

9. Sort the data types below according to the following criteria:

• Mutable–immutable

• Sorted–unsorted

• Sequence–mapping

Data types to sort: lists, tuples, dictionaries, sets, strings.

10. What is the difference between a set and a frozenset?

11. How do you convert any iterable data type into a list?

12. How do you create a dictionary from a list?

13. How do you create a list from a dictionary?

http://www.python.org/dev/peps/pep-3106/
https://github.com/cdgriffith/Box

C H A P T E R 4

Programming: Flow Control

CONTENTS

4.1 If-Else . 69
4.1.1 Pass Statement . 74

4.2 For Loop . 75
4.3 While Loop . 77
4.4 Break: Breaking the Loop . 78
4.5 Wrapping It Up . 80

4.5.1 Estimate the Net Charge of a Protein . 80
4.5.2 Search for a Low-Degeneration Zone . 81
First Version . 81
Version with While . 82
Version without List of Subchains . 82

4.6 Additional Resources . 83
4.7 Self-Evaluation . 83

In order to be able to do something useful, programs must have some mechanism
to manage how and when instructions are executed. In the same way that traffic
lights control vehicular flow in a street, flow control structures direct that a code
portion is executed at a given time.

Python has only three flow control structures. There is one conditional and two
iteration structures. A conditional structure (if) determines, after an expression
evaluation, whether a block of code is executed or not. Iteration structures (for
and while) allow multiple executions of the same code portion. How many times
is the code associated with an iteration structure executed? A for cycle executes
a code block many times as elements are available in a specified iterable element,
while the code under a while cycle is executed until a given condition turns false.1

4.1 IF-ELSE

The most classic control structure is the conditional one. It acts upon the result of
an evaluation. If you know any other computer language, chances are that you are
familiar with if-else.

1This is equivalent to saying that the condition is executed while the condition is true.

69

70 � Python for Bioinformatics

If evaluates an expression. If the expression is true, the block of code just after
the if clause is executed. Otherwise, the block under else is executed.

A basic schema of an if-else condition,

if EXPRESSION:

BLOCK1

else:

BLOCK2

EXPRESSION must be an expression that returns True or False. Like all
comparison operators: x < y (less than), x > y (greater than), x == y (equal to),
x! = y (not equal to), x <= y (less than or equal to), x >= y (greater than or
equal to).

Let’s see an example:

Listing 4.1: ifelse1.py: Basic if-else sample

1 height = float(input(’What is height? (in meters): ’))

2 if height > 1.40:

3 print(’You can get in’)

4 else:

5 print(’This ride is not for you’)

Program output,

What is height? (in meters): 1.80

You can get in

Tip: About the code in this book.

You don’t have to type the code in Listing 4.1 (or any other from this book).
It is available to download from its GitHub repository at https://github.com/

Serulab/Py4Bio. It also can be used online at Microsoft Azure Notebooks (https:
//notebooks.azure.com/library/py3.us). Both links are also available at the
book’s website (http://py3.us/).

Try to execute the code (either locally or online) rather than just read it from
this book.

https://github.com/Serulab/Py4Bio
https://github.com/Serulab/Py4Bio
https://notebooks.azure.com/library/py3.us
https://notebooks.azure.com/library/py3.us
http://py3.us/

Programming: Flow Control � 71

Another example,

Listing 4.2: ifelse2.py: if-else in action

1 three_letter_code = {’A’:’Ala’,’N’:’Asn’,’D’:’Asp’,’C’:’Cys’}

2 aa = input(’Enter one letter: ’)

3 if aa in three_letter_code:

4 print(’The three letter code for {0} is {1}’.format(aa,

5 three_letter_code[aa]))

6 else:

7 print(’Sorry, I don’t have it in my dictionary’)

Program output,

Enter one letter: A

The three letter code for A is: Ala

To evaluate more than one condition, use elif :

if EXPRESSION1:

BLOCK1

elif EXPRESSION2:

BLOCK2

elif EXPRESSION3:

BLOCK3

else:

BLOCK4

You can use as many elif as conditions you want to evaluate. Take into account
that once a condition is evaluated as true, the remaining conditions are not checked.

The following program evaluates more than one condition using elif :

Listing 4.3: elif1.py: Using elif

1 dna = input(’Enter your primer sequence: ’)

2 seqsize = len(dna)

3 if seqsize < 10:

4 print(’The primer must have at least ten nucleotides’)

5 elif seqsize < 25:

6 print(’This size is OK’)

7 else:

8 print(’The primer is too long’)

This program (elif1.py) asks for a string with a DNA sequence entered with
the keyboard at runtime. This sequence is called dna. In line 2 its size is calculated

72 � Python for Bioinformatics

and this result is bound to the name seqsize. In line 3 there is an evaluation. If seqsize
is lower than ten, the message “The primer must have at least ten nucleotides” is
printed. The program flows goes to the end of this if statement, without evaluating
any other condition in this if statement. But if it is not true (for example, if the
sequence length was 15), it would execute the next condition and its associated
block in case that condition is evaluated as true. If the sequence length were of a
value greater than 10, the program would skip line 4 (the block of code associated
with the first condition) and would evaluate the expression in line 5. If this condition
is met, it will print “This size is OK”. If there is no expression that evaluates as
true, the else block is executed.

Tip: What Is True?
Remember that the statement after the if condition is executed only when the
expression is evaluated as True. So the questions “What is True?” (and “What is
False?”) are relevant.

What is True?:

• Nonempty data structures (lists, dictionaries, tuples, strings, sets). Empty
data structures count as False.

• 0 and None count as False (while other values count as True).

• Keyword True is True and False is False.

If you have a doubt if an expression is True or False, use bool():

>>> bool(1==’1’)

False

Conditionals can be nested:

Listing 4.4: nested.py: Nested if

1 dna = raw_input(’Enter your DNA sequence: ’)

2 seqsize = len(dna)

3 if seqsize < 10:

4 print(’Your primer must have at least ten nucleotides’)

5 if seqsize == 0:

6 print(’You must enter something!’)

7 elif seqsize < 25:

8 print(’This size is OK’)

9 else:

10 print(’Your primer is too long’)

In line 5 there is a condition inside another.

Programming: Flow Control � 73

Note the double equal sign (“==”) instead of the single equal. Double equal is
used to compare values, while the equal sign is used to assign values:

>>> answer=42

>>> answer

42

>>> answer==3

False

>>> answer==42

True

The nested if introduced in Listing 4.4, can be avoided:

Listing 4.5: elif2.py: Nested if

1 dna = raw_input(’Enter your DNA sequence: ’)

2 seqsize = len(dna)

3 if seqsize == 0:

4 print(’You must enter something!’)

5 elif 0 < seqsize < 10:

6 print(’Your primer must have at least ten nucleotides’)

7 elif seqsize < 25:

8 print(’This size is OK’)

9 else:

10 print(’Your primer is too long’)

See how the expression is evaluated in line 5. This leads us to think about
inserting multiple statements in one if, like in Listing 4.6:

Listing 4.6: multiplepart.py: Multiple part condition

1 x = ’N/A’

2 if x != ’N/A’ and 5 < float(x) < 20:

3 print(’OK’)

4 else:

5 print(’Not OK’)

This expression is evaluated from left to right. If one part of the expression is
false, the following parts are not evaluated. Since x=’N/A’, the program will print
’Not OK’ (because the first condition is false). Look what happens when the same
expression is written in reverse order.

74 � Python for Bioinformatics

This listing (multiplepart2.py),

Listing 4.7: multiplepart2.py: Multiple part condition, inverted

1 x = ’N/A’

2 if 5 < float(x) < 20 and x != ’N/A’:

3 print(’OK’)

4 else:

5 print(’Not OK’)

returns:

Traceback (most recent call last):

File "<pyshell#2>", line 1, in <module>

if 5 < float(x) < 20 and x != ’N/A’:

ValueError: could not convert string to float: ’N/A’

The ValueError is returned because the string ’N/A’ can’t be converted to
float. In Listing 4.7, x is also evaluated as ’N/A’, but there is no ValueError
because this part of the expression is skipped before evaluation.

4.1.1 Pass Statement

Sometimes there is no need for an alternative choice in an if statement. In this
case you just can avoid using else:

if EXPRESSION:

BLOCK

Rest of the program...

To make the same code more readable, Python provides the pass statement.
This statement is like a placeholder; it has no other purpose than to put something
when a statement is required syntactically. The following code produces the same
output as the former code:

if CONDITION:

BLOCK

else:

pass

Rest of the program...

Advanced Tip: Conditional Expressions.
Sometimes comes in handy: the availability of a special syntax to write an if con-
dition in one line

expression1 if condition else expression2

This line will take the value of expression1, if condition is true; otherwise, it will
take the value of expression2.

Programming: Flow Control � 75

This syntax allows us to write:

>>> total = 5

>>> items = 2

>>> print(’Average = {0}’.format(total/items if items != 0 else ’N/A’))

Average = 2.5

instead of,

>>> total = 5

>>> items = 2

>>> if items != 0:

... print(’Average = {0}’.format(total/items))

... else:

... print(’Average = N/A’)

...

Average = 2.5

4.2 FOR LOOP

This control structure allows code to be repeatedly executed while keeping a variable
with the value of an iterable object.2 The generic form of a for loop is,

for VAR in ITERABLE:

BLOCK

For example:

for each_item in some_list:

Do something with each_item

print(each_item)

Note the colon at the end of the first line. This is mandatory. As the indentation
of the block of code the colon is part of the for loop. This structure results in the
repetition of BLOCK as many times as elements are in the iterable object. On
each iteration, V AR takes the value of the current element in ITERABLE. In
the following code, for walks through a list (bases) with four elements. On each
iteration, x takes the value of one of the elements in the list.

>>> bases = [’C’, ’T’, ’G’, ’A’]

>>> for x in bases:

... print(x)

...

2The most common iterable objects are lists, tuples, strings, and dictionaries. Files and custom-
made objects can also be iterable.

76 � Python for Bioinformatics

C

T

G

A

To know the position on the iterable you are iterating, the method enumerate
will return the index of the iterable along with the value.

>>> bases = [’C’, ’T’, ’G’, ’A’]

>>> for n, x in enumerate(bases):

... print(n, x)

...

0 C

1 T

2 G

3 A

In other languages, the for loop is used to allow a block of code to run a number
of times while changing a counter variable. This behavior can be reproduced in
Python by iterating over a list of numbers:

>>> for n in [0, 1, 2, 3, 4]:

... print(n)

...

0

1

2

3

4

Another alternative to iterate thought a list of numbers, is to generate them with
the built-in function3 range(n). This function returns an iterable object. Which
each time you call it, returns a number, from 0 to the first parameter entered in
the function minus one (that is, n-1).

>>> for x in range(4):

... print(x)

...

0

1

2

3

3All built-in functions are described in https://docs.python.org/3.6/library/functions.

html.

https://docs.python.org/3.6/library/functions.html
https://docs.python.org/3.6/library/functions.html

Programming: Flow Control � 77

The following code calculates the molecular weight of a protein based on its
individual amino acids.4 Since the amino acid is stored in a string, the program will
walk through each letter by using for.

Listing 4.8: protwfor.py: Using for to figure the weight of a protein

1 prot_seq = input(’Enter your protein sequence: ’)

2 prot_weight = {’A’:89, ’V’:117, ’L’:131, ’I’:131, ’P’:115,

3 ’F’:165, ’W’:204, ’M’:149, ’G’:75, ’S’:105,

4 ’C’:121, ’T’:119, ’Y’:181, ’N’:132, ’Q’:146,

5 ’D’:133, ’E’:147, ’K’:146, ’R’:174, ’H’:155}

6 total_weight = 0

7 for aa in prot_seq:

8 total_weight = total_weight + prot_weight.get(aa.upper(), 0)

9 total_weight = total_weight - (18 * (len(prot_seq) - 1))

10 print(’The net weight is: {0}’.format(total_weight))

Code explanation: On the first line the user is requested to enter a protein
sequence (for example, MKTFVLHIFIFALVAF). The string returned by input is named
protseq. From line 2 to 5, a dictionary (protweight) with the aminoa acid weights
is initialized. A for loop is used in line 7 to iterate over each element in protseq.
In each iteration, aa takes a value from an element from protseq. This value is
used to search in the protweight dictionary. After the cycle, totalW will end up
with the sum of the weight of all amino acids. In line 9 there is a correction due
to the fact that each bond involves the loss of a water molecule (with molecular
weight of 18). The last line prints out the net weight.

4.3 WHILE LOOP

A loop is very similar to for since it also executes a code portion in a repeated way.
In this case there is no iteration over an object, so this loop doesn’t end when the
iteration object is traversed, but when a given condition is not true.

Model of while loop:

while EXPRESSION:

BLOCK

It is very important to take into account that there should be an instruction
inside the block to make the while condition false. Otherwise, we could enter into
an infinite loop.

4Amino acids are the building blocks of the proteins. Each amino acid (represented by a single
letter) has an individual weight. Since each amino acid bond releases a water molecule (with a
weight of 18 iu), the weight of all the water molecules released is subtracted from the total.

78 � Python for Bioinformatics

>>> a = 10

>>> while a < 40:

... print(a)

... a += 10

...

10

20

30

A way to exit from a while loop is using break. In this case the loop is broken
without evaluating the loop condition. break is often used in conjunction with a
condition that is always true:

>>> a = 10

>>> while True:

... if a < 40:

... print(a)

... else:

... break

... a += 10

...

10

20

30

This is done to ensure the block inside the loop is executed at least once. In
other languages there is a separate loop type for these cases (do while), but it is
not present in Python.5

4.4 BREAK: BREAKING THE LOOP

break is used to escape from a loop structure. We’ve just seen a usage example
with while, but it can also be used under for.

It is not easy at first to realize where using a break statement actually makes
sense.

Take, for example, Listing 4.9:

Listing 4.9: seachinlist.py: Searching a value in a list of tuples

1 color_code = [(’red’, 1), (’green’, 2), (’blue’, 3), (’black’, 4)]

2 name = ’blue’

3 for color_pair in color_code:

4 if name == color_pair[0]:

5A proposal to add this structure to Python was rejected in 2013.

Programming: Flow Control � 79

5 code = color_pair[1]

6 print(code)

In this code there is a for loop to iterate over color_code list. For each element,
that is, for each tuple, it checks for the first element. When it matches our query
(name), the program stores the associated code in code.

So the output of this program is “3.”
The problem with this program is that the whole sequence is walked over, even

if we don’t need to. In this case, the condition in line 4 is evaluated once per each
element in color_code when it is clear that once the match is positive there is no
need to keep on testing. You can save some time and processing power by breaking
the loop just after the positive match:

Listing 4.10: seachinlist2.py: Searching a value in a list of tuples

1 color_code = [(’red’,1), (’green’,2), (’blue’,3), (’black’,4)]

2 name = ’blue’

3 for color_pair in color_code:

4 if name == color_pair[0]:

5 code = color_pair[1]

6 break

7 print(code)

This code is identical to Listing 4.9 with the exception of the break statement
in line 6. The output is the same as before, but this time you don’t waste CPU
cycles iterating over a sequence once the element is found. The time saved in this
example is negligible, but if the program has to do it several times over a big list
or file (you can also iterate over a file), break can speed it up in a significant way.

The use of break can be avoided, but the resulting code is not legible as in
Listing 4.10:

Listing 4.11: seachinlist3.py: Searching a value in a list of tuples

1 color_code = [(’red’,1), (’green’,2), (’blue’,3), (’black’,4)]

2 name = ’blue’

3 i = 0

4 while name != color_code[i][0]:

5 i += 1

6 code = color_code[i][1]

7 print(code)

In a case like this, with a list that can easily fit in memory, it is a better idea
to create a dictionary and query it:

80 � Python for Bioinformatics

Listing 4.12: seachindict.py: Searching a value in a list of tuples using a dictio-
nary

1 color_code = [(’red’,1), (’green’,2), (’blue’,3), (’black’,4)]

2 name = ’blue’

3 color_code_d = dict(color_code)

4 print(color_code[name])

4.5 WRAPPING IT UP

Now we will combine if, for, while and the data type seen up to this point. Here
I present some small programs made with the tools we’ve just learned:

4.5.1 Estimate the Net Charge of a Protein

At a fixed pH, it is possible to calculate the net charge of a protein summing the
charge of its individual amino acids. This is an approximation since it doesn’t take
into account if the amino acids are exposed or buried in the protein structure.
This program also fails to take into account the fact that cysteine adds charge
only when it is not part of a disulfide bridge. Since it is an approximate value the
obtained values should be regarded as an estimation. Here is the first version of
protnetcharge.py:

Listing 4.13: protnetcharge.py: Net charge of a protein

1 prot_seq = input(’Enter protein sequence: ’).upper()

2 charge = -0.002

3 aa_charge = {’C’:-.045,’D’:-.999,’E’:-.998,’H’:.091,

4 ’K’:1,’R’:1,’Y’:-.001}

5 for aa in prot_seq:

6 if aa in aa_charge:

7 charge += aa_charge[aa]

8 print(charge)

The if statement in line 6 can be avoided with get():

Listing 4.14: protnetcharge2.py: Net charge of a protein using get

1 prot_seq = input(’Enter protein sequence: ’).upper()

2 charge = -0.002

3 aa_charge = {’C’:-.045,’D’:-.999,’E’:-.998,’H’:.091,

4 ’K’:1,’R’:1,’Y’:-.001}

5 for aa in prot_seq:

Programming: Flow Control � 81

7 charge += aa_charge.get(’aa’, 0)

8 print(charge)

4.5.2 Search for a Low-Degeneration Zone

To find PCR primers, it is better to use a DNA region with less degeneration (or
more conservation). This give us a better chance to find the target sequence. The
aim of this program is to search for this region. Since a PCR primer has about 16
nucleotides, to give room for the primer design, the search space should be at least
45 nucleotides long. We should find a 15 amino acid region in the input sequence.
15–amino acids provides a search region of 45 nucleotides (3 nucleotides per amino
acid).

Each amino acid is encoded by a determined number of codons. For example,
valine (V) can be encoded by four different codons (GTT, GTA, GTC, GTG), while
tryptophan (W) is encoded only by one codon (TGG). Hence a region rich in valines
will have more variability than a region with lots of tryptophan.

A program that finds a low-degeneration region:

First Version

Listing 4.15: lowdeg.py: Search for a low degeneration zone

1 prot_seq = input(’Protein sequence: ’).upper()

2 prot_deg = {’A’:4, ’C’:2, ’D’:2, ’E’:2, ’F’:2, ’G’:4,

3 ’H’:2, ’I’:3, ’K’:2, ’L’:6, ’M’:1, ’N’:2,

4 ’P’:4, ’Q’:2, ’R’:6, ’S’:6, ’T’:4, ’V’:4,

5 ’W’:1, ’Y’:2}

6 segs_values = []

7 for aa in range(len(prot_seq)):

8 segment = prot_seq[aa:aa + 15]

9 degen = 0

10 if len(segment)==15:

11 for x in segment:

12 degen += prot_deg.get(x, 3.05)

13 segs_values.append(degen)

14 min_value = min(segs_values)

15 minpos = segs_values.index(min_value)

16 print(prot_seq[minpos:minpos + 15])

Code explanation: Takes a string (prot_seq) entered by the user. The pro-
gram uses a dictionary (prot_deg) to store the NUMBER of codons that corre-
sponds to each amino acid. From line 7 to 9, we generate sliding windows of length
15. For each 15 amino acid segments, the number of codons is evaluated, then we

82 � Python for Bioinformatics

select the segment with less degeneration (line 14). Note that in line 10 there is a
check of the size of segment, since when the sequence of prot_seq slides away, the
subchain has less than 15 amino acids.

Version with While

Listing 4.16: lowdeg2.py: Searching for a low-degeneration zone; version with
while

1 prot_seq = input(’Protein sequence: ’).upper()

2 prot_deg = {’A’:4, ’C’:2, ’D’:2, ’E’:2, ’F’:2, ’G’:4,

3 ’H’:2, ’I’:3, ’K’:2, ’L’:6, ’M’:1, ’N’:2,

4 ’P’:4, ’Q’:2, ’R’:6, ’S’:6, ’T’:4, ’V’:4,

5 ’W’:1, ’Y’:2}

6 segs_values = []

7 segs_seqs = []

8 segment = prot_seq[:15]

9 a = 0

10 while len(segment)==15:

11 degen = 0

12 for x in segment:

13 degen += prot_deg.get(x, 3.05)

14 segs_values.append(degen)

15 segs_seqs.append(segment)

16 a += 1

17 segment = prot_seq[a:a+15]

18 print(segs_seqs[segs_values.index(min(segs_values))])

Code explanation: This version doesn’t use a for to walk over prot_seq;
instead, it uses while. Code will be executed as long as the sliding window is inside
prot_seq.

Version without List of Subchains

Listing 4.17: lowdeg3.py: Searching for a low-degeneration zone without sub-
chains

1 prot_seq = input(’Protein sequence: ’).upper()

2 prot_deg = {’A’:4, ’C’:2, ’D’:2, ’E’:2, ’F’:2, ’G’:4,

3 ’H’:2, ’I’:3, ’K’:2, ’L’:6, ’M’:1, ’N’:2,

4 ’P’:4, ’Q’:2, ’R’:6, ’S’:6, ’T’:4, ’V’:4,

5 ’W’:1, ’Y’:2}

6 degen_tmp = max(prot_deg.values()) * 15

Programming: Flow Control � 83

7 for n in range(len(prot_seq) - 15):

8 degen = 0

9 for x in prot_seq[n:n + 15]:

10 degen += prot_deg.get(x, 3.05)

11 if degen <= degen_tmp:

12 degen_tmp = degen

13 seq = prot_seq[n:n + 15]

print(seq)

Code explanation: In this case every degeneration value is compared with the
last one (line 10), and if the current value is lower, it is stored. Note that the first
time a degeneration value is evaluated, there is no value to compare it with. This
problem is sorted in line 6 where a maximum theoretical value is provided.

4.6 ADDITIONAL RESOURCES

• Python tutorial: More control flow tools.
https://docs.python.org/3.6/tutorial/controlflow.html

• Python programming: Flow control.
http://en.wikibooks.org/wiki/Python_Programming/Flow_control

• Python Basics: Understanding The Flow Control Statements.
https://goo.gl/ss6uNh

• Python in a Nutshell, Second Edition. By Alex Martelli. Chapter 4.
Excerpt at http://www.devshed.com/c/a/Python/The-Python-Language

• Python break, continue and pass Statements.
http://www.tutorialspoint.com/python/python_loop_control.htm

4.7 SELF-EVALUATION

1. What is a control structure?

2. How many control structures does Python have? Name them.

3. When would you use for and when would you use while?

4. Some languages have a do while control structure. How can you get a similar
function in Python?

5. Explain when you would use pass and when you would use break.

6. In line 6 of Listing 4.16, the condition under the while can be changed from
len(ProtSeq[i : i+ 15]) == 15 to i < (len(ProtSeq)− 7). Why?

https://docs.python.org/3.6/tutorial/controlflow.html
http://en.wikibooks.org/wiki/Python_Programming/Flow_control
https://goo.gl/ss6uNh
http://www.devshed.com/c/a/Python/The-Python-Language
http://www.tutorialspoint.com/python/python_loop_control.htm

84 � Python for Bioinformatics

7. Make a program that outputs all possible IP addresses, that is, from 0.0.0.0
to 255.255.255.255.

8. Make a program to solve a linear equation with two variables. The equation
must have this form:

a1.x+ a2.y = a3
b1.x+ b2.y = b3

The program must ask for a1, a2, a3, b1, b2, and b3 and return the value of x
and y.

9. Make a program to check if a given number is a palindrome (that is, it remains
the same when its digits are reversed, like 404).

10. Make a program to convert Fahrenheit temperature to Celsius and write the
result with only one decimal value. Use this formula to make the conversion:
Tc = (5/9) ∗ (Tf − 32)

11. Make a program that converts everything you type into Leetspeak, using the
following equivalence: 0 for O, 1 for I (or L), 2 for Z (or R), 3 for E, 4 for A,
5 for S, 6 for G (or B), 7 for T (or L), 8 for B, and 9 for P (or G and Q). So
“Hello world!” is rendered as “H3770 w02ld!”

12. Given two words, the program must determine if they rhyme or not. For this
question “rhyme” means that the last three letters are the same, like wizard
and lizard.

13. Given a protein sequence in the one-letter code, calculate the percentage of
methionine (M) and cysteine (C). For example, from MFKFASAVILCLVAASSTQA

the result must be 10% (1 M and 1 C over 20 amino acids).

14. Make a program like Listing 4.17 but without using a predefined maximum
value.

C H A P T E R 5

Handling Files

CONTENTS

5.1 Reading Files . 86
5.1.1 Example of File Handling . 87

5.2 Writing Files . 89
5.2.1 File Reading and Writing Examples . 90

5.3 CSV Files . 90
More Functions from the CSV Module . 92

5.4 Pickle: Storing and Retrieving the Contents of Variables 94
5.5 JSON Files . 96
5.6 File Handling: os, os.path, shutil, and path.py Module 98

5.6.1 path.py Module . 100
5.6.2 Consolidate Multiple DNA Sequences into One FASTA File . . . 102

5.7 Additional Resources . 102
5.8 Self-Evaluation . 103

Reading and saving files are an important part of most programs. This chapter
shows how to read and write any text file. For the purposes of this book, “reading a
text file” is the process of entering the data from a file into a program. The process
of determining the syntactic structure of an expression to retrieve a specific part
for further analysis is called parsing.

Take, for example, a file like this:

1867864656,1,BOT,[T/C],0009803928,Homo sapiens

1867864658,10,BOT,[A/T],0021792978,Homo sapiens

1867864660,100,BOT,[A/G],0069608915,Homo sapiens

On each line, there are different data units delimited by commas (often called
data points). When the file is read, Python will recognize each line as one string,
so there is the need of an extra step to recognize each of the six data points on
it. This step is parsing. The parsing step depends on the format of the data, so
there is no universal method for text parsing. This chapter shows on page 90 how
to parse data separated by a special character such as a comma, a semicolon or
the tab character (commonly called CSV files). There are other suitable formats
for data interchange such as JSON and XML, and both will be covered.

85

86 � Python for Bioinformatics

5.1 READING FILES

Reading a file is a three-step process in Python:

1. Open the file: There is a built-in function called open that creates a filehan-
dle. This filehandle is used to refer to the file during the file’s lifetime. The
open function takes two parameters: name of the file and opening mode. The
file name is a string with the file name, in most cases including the system
path. When the system path is included, this absolute path is used by the
program. In case you enter just the file name (without any path), a relative
path is assumed.1 The second parameter has the following valid parameters:
“r” to read, “w” to write, and “a” to append data at the end of a file. The
default value is “r.” If you want to open a file for both read and write, use
“r+”.

Using open create a file handle to read a file:

>>> file_handle = open(’readme.txt’, ’r’)

As you can see here, file_handle is not the file, but a reference to it:.

>>> file_handle

<_io.TextIOWrapper name=’readme.txt’ mode=’r’ encoding=’UTF-8’>

2. Read the file: Once the file is opened, we can read its contents. The file handle
has several methods to read a file; here are the most used:

read(n) :Reads n bytes from the file. Without parameters, it reads the whole
file.2

readline() :Returns a string with only one line from the file, including ’\n’
as an end of line marker. When it reaches the end of the file, it returns
an empty string.

readlines() :Returns a list where each element is a string with a line from
the file.

Reading a file called seqA.fas with read():

>>> file_handle = open(’seqA.fas’, ’r’)

>>> file_handle.read()

>O00626|HUMAN Small inducible cytokine A22.

1Use os.getcwd() in case you need to know the current path.
2Due to the amount of memory it could take, it is not advisable to read the whole file in this

way, unless you are sure of the file size. To process big files, there are better strategies like reading
one line at a time.

Handling Files � 87

MARLQTALLVVLVLLAVALQATEAGPYGANMEDSVCCRDYVRYRLPLRVVKHFYWTSDS<=

CPRPGVVLLTFRDKEICADPR

VPWVKMILNKLSQ

3. Close the file. Once we are done with the file, we close it by using:
filehandle.close(). If we don’t close it, Python will close it after program
execution. However in most cases is better to close the file as soon as it is
not needed because the number of open files is a limited resource. A way to
ensure the file will be closed is to use with. Instead of:

file_handle = open(’readme.txt’, ’r’)

do something with the file

file_handle.read()

file_handle.close()

Do this:

with open(’readme.txt’, ’r’) as file_handle:

do something with the file

file_handle.read()

from here on, the file is closed

5.1.1 Example of File Handling

Let’s suppose we have a file called seqA.fas that contains:3

>O00626|HUMAN Small inducible cytokine A22.

MARLQTALLVVLVLLAVALQATEAGPYGANMEDSVCCRDYVRYRLPLRVVKHFYWTSDS<=

CPRPGVVLLTFRDKEICADPR

VPWVKMILNKLSQ

From this file we need the name and the sequence. A first approach is to read
the file with read():

>>> with open(’seqA.fas’, ’r’) as file_handle:

... file_handle.read()

...

’>O00626|HUMAN Small inducible cytokineA22.\nMARLQTALLVVLVL<=

LAVALQATEAGPYGANMEDSVCCRDYVRYRLPLRVVKHFYWTSDSCPRPGVVLLTFRDK<=

EICADPR\nVPWVKMILNKLSQ\n’

3This is a FASTA file with one entry. The first line have a > followed by sequence name and
description. The following lines has the sequence (DNA or amino acids). For more information on
FASTA files, please see http://www.ncbi.nlm.nih.gov/BLAST/fasta.shtml.

http://www.ncbi.nlm.nih.gov/BLAST/fasta.shtml

88 � Python for Bioinformatics

In this case my goal is to have two variables, one with the sequence name and
the other with the sequence itself. In Listing 5.1 we can see a way to do it using
read():

Listing 5.1: firstread.py: First try to read a FASTA file

1 with open(’seqA.fas’) as fh:

2 my_file = fh.read()

3 name = my_file.split(’\n’)[0][1:]

4 sequence = ’’.join(my_file.split(’\n’)[1:])

5 print(’The name is : {0}’.format(name))

6 print(’The sequence is: {0}’.format(sequence))

The first line opens the file in read mode and creates a file handle that we call
fh. On line two, the whole file is read with read() and the resulting string is stored
in system memory with the name my_file. The next step is to separate the names
from the sequences. Since the name is after the “>” symbol and before the ’\n’, this
information can be used to get the data we want (line 3). The sequence is obtained
by joining the elements resulting from splitting the my_file string, but without the
first element.

The problem with this code is that it uses the read() function to read all the
file at once. This is a potential problem if there is not enough memory available to
accommodate the file’s contents. This is why it is better to use readline() to loop
through the lines in a file object.

Listing 5.2: fastaRead.py: Reads FASTA file, sequentially

1 sequence = ’’

2 with open(’seqA.fas’) as fh:

3 name = fh.readline()[1:-1]

4 for line in fh:

5 sequence += line.replace(’\n’,’’)

6 print(’The name is : {0}’.format(name))

7 print(’The sequence is: {0}’.format(sequence))

Code explanation: This program adds to our protein net charge calculation
program (Listing 4.14) the ability to use as input data, a FASTA format sequence,
instead of entering it manually. In line 3 we grab the first line with readline() to
retrieve the sequence name (O00626|HUMAN Small inducible cytokineA22.) and
call it name. The formula for x in filehandle (line 4) is the most efficient way to
iterate through all the lines of a file.

Listing 5.3: netchargefile.py: Calculate the net charge, reading the input from
a file

Handling Files � 89

1 sequence = ’’

2 charge = -0.002

3 aa_charge = {’C’:-.045, ’D’:-.999, ’E’:-.998, ’H’:.091,

4 ’K’:1, ’R’:1, ’Y’:-.001}

5 with open(’prot.fas’) as fh:

6 fh.readline()

7 for line in fh:

8 sequence += line[:-1].upper()

9 for aa in sequence:

10 charge += aa_charge.get(aa,0)

11 print(charge)

Code explanation: The code is essentially the same as that in Listing 4.14,
with the difference in how the protein data is read; instead of using input, the data
is read from a file (lines 5 to 8), such as in Listing 5.2. Note that in line 6 we read
the first line and the returned value is not stored, because it is the header and not
needed for net charge estimation. When the program starts iterating the file from
line 7, it starts from the second line.

5.2 WRITING FILES

Writing a file is very similar to reading it. Steps 1 and 3 are similar. The change is
at the second state. Let’s have a look at the entire process anyway:

1. Open the file. This is similar to opening a file for reading, only it is necessary
to take into consideration the use of the open mode that corresponds to the
operation that we are going to do. To create a new file, use “w” as the open
mode. To append data to the end of the file, use “a.”

Creating a file handle for a new file:

>>> fh = open(’newfile.txt’,’w’)

Creating a new file handle to append information to a file:

>>> fh = open(’error.log’,’a’)

2. Write data to the file. The method to write data to a file is called write(). It
accepts as a parameter a string, which will be written to the file represented
by the file handle on which the function will be applied. Schematically: file-
handle.write(string). Take into consideration that write does not add line
feeds, which must be added as needed.

3. Close the file in the same way as done previously: filehandle.close(). As
with reading files, you can use with to open a file for writing and close it in
an implicit but safe way. See Listing 5.4.

90 � Python for Bioinformatics

5.2.1 File Reading and Writing Examples

The code that follows will save the numbers from 1 to 5 to a file, each one on a
separate line. Between each number the respective line feeds are indicated.

Listing 5.4: Newfile.py: Write numbers to a file.

1 with open(’numbers.txt’,’w’) as fh:

2 fh.write(’1\n2\n3\n4\n5’)

The program in Listing 5.3 can be modified to write the result to a file, instead
of displaying it on the screen:

Listing 5.5: nettofile.py Net charge calculation, saving results in a file

1 sequence = ’’

2 charge = -0.002

3 aa_charge = {’C’:-.045, ’D’:-.999, ’E’:-.998, ’H’:.091,

4 ’K’:1, ’R’:1, ’Y’:-.001}

5 with open(’prot.fas’) as fh:

6 next(fh)

7 for line in fh:

8 sequence += line[:-1].upper()

9 for aa in sequence:

10 charge += aa_charge.get(aa, 0)

12 with open(’out.txt’,’w’) as file_out:

13 file_out.write(str(charge))

Code explanation: The code is similar to Listing 5.3, with the addition of the
functionality on the two final lines (12 and 13) to write the result to the file.

5.3 CSV FILES

While doing data processing work, it’s very common to run into a file type called
CSV. CSV stands for “Comma Separated Values.” These are files where the data
are separated by commas, although sometimes other separators are used (such as
colons, tabs, etc.). Another feature of this text file format in particular is that each
line represents a separate record. All spreadsheets can be read and written in this
file format, which helps to explain their popularity. Take, for example, the following
file (B1.csv):

MarkerID,LenAmp,MotifAmpForSeq

TKO001,119,AG(12)

TKO002,255,TC(16)

Handling Files � 91

TKO003,121,AG(5)

TKO004,220,AG(9)

TKO005,238,TC(17)

The line contains a description of each field. Like the information it stores, the
descriptions are also separated by commas. The following lines contain the data,
following the same order of the description. To get the average of the value in the
second column, we can do something like this:

Listing 5.6: csvwocsv.py: Reading data from a CSV file

1 total_len = 0

2 with open(’B1.csv’) as fh:

3 next(fh)

4 for n, line in enumerate(fh):

5 data = line.split(’,’)

6 total_len += int(data[1])

7 print(total_len/n)

Code explanation: This is a program that walks through a file, like Listing
5.5, but this time the method split() is used to split components of each line. In
line 6 the sum of the second field (LenAmp) is stored (this field has the length of
the sequence).

These files are so popular that Python has a module to deal with them: csv.

Listing 5.7: csv1.py: Reading data from a CSV file, using csv module

1 import csv

2 total_len=0

3 lines = csv.reader(open(’B1.csv’))

4 next(lines)

5 for n, line in enumerate(lines):

6 total_len += int(line[1])

7 print(total_len / n)

Code explanation: This program is very similar to the previous one with the
difference being that the use of the csv module allows us access to the contents of
each line without having to use the split method.

One way of using the csv module is to convert the object returned by the reader
method to a list. Doing this, we generate something similar to a matrix from a csv
file, with one line of code:

>>> data = list(csv.reader(open(’B1.csv’)))

>>> data[0][2]

92 � Python for Bioinformatics

’MotifAmpForSeq’

>>> data[1][1]

’119’

>>> data[1][2]

’AG(12)’

>>> data[3][0]

’TKO003’

This way we have a two-dimensional array of the type name[row, column]. Tak-
ing this into consideration we can rewrite the program from Listing 5.7:

More Functions from the CSV Module

The field delimiter is changed with the delimiter attribute. By default it is “,”, but
any string can be used to delimit the fields:

rows = csv.reader(open(’/etc/passwd’), delimiter=’:’)

For some files it is better to specify the CSV “dialect” that we are interested
in. This is important because not all csv files have the same structure. CSV is
not a formal standard, so each vendor may introduce some variation. These subtle
differences that may spoil our data processing. In some cases the data is enclosed
between quotations, in others the quotations are reserved for text data only. For
the csv files generated by Excel, we have the Excel “dialect”:

rows = csv.reader(open(’data.csv’), dialect=’excel’)

Additionally there is a dialect for Excel csv files that uses a “tab” instead of the
comma to separate data. If we aren’t sure of the dialect that our code will have to
handle, the csv module has a class that tries to guess it: Sniffer():

dialect = csv.Sniffer().sniff(open(’data.csv’).read())

rows = csv.reader(open(’data.csv’), dialect=dialect)

There are more methods available in the csv module. To find out more about it, I
recommend the module documentation at https://docs.python.org/3/library/
csv.html and the PEP-305 (https://www.python.org/dev/peps/pep-0305/), an
old but still valid document.

CSV files are very handy, but they can’t represent hierarchical data so other
formats are used to store data, such as JSON and XML. Both are covered in this
book.

https://docs.python.org/3/library/csv.html
https://www.python.org/dev/peps/pep-0305/
https://docs.python.org/3/library/csv.html

Handling Files � 93

Figure 5.1 Excel formatted spreadsheet called sampledata.xlsx.

Tip: Reading and Writing Excel Files.

The csv module allows you to read Excel files, provided that the file is converted
first to csv. This step can be avoided with a third-party module called xlrd. This
module can be installed with pip or conda (see page 117 for detailed information
on how to install external packages).

Listing 5.8 retrieves data from an Excel file called sampledata.xlsx (see Figure
5.3). We want to make a dictionary (iedb) out of column A (keys) and Column C
(values), so this program walks over both columns and completes the dictionary:

Listing 5.8: excel1.py: Reading an xlsx file with xlrd

1 import xlrd

2 iedb = {}

3 book = xlrd.open_workbook(’../../samples/sampledata.xlsx’)

4 sh = book.sheet_by_index(0)

5 for row_index in range(1, sh.nrows): #skips fist line.

6 iedb[int(sh.cell_value(rowx=row_index, colx=0))] = \

7 sh.cell_value(rowx=row_index, colx=2)

8 print(iedb)

excel1.py returns a dictionary like this:

94 � Python for Bioinformatics

{6273: ’CGAELNHFL’, 14101: ’ERYLKDQQL’, 22030: ’GRFKLIVLY’, <=

25569: ’IDFPKTFGW’, 26070: ’IFFPKTFGW’, 26790: ’IKFPKTFGW’, <=

27049: ’ILFPKTFGW’, 27636: ’INFPKTFGW’, 28419: ’IRYPKTFGW’, <=

33140: ’KRGILTLKY’, 33170: ’KRKKAYADF’}

Note that this is a sample output, the actual output is larger but was cut for
brevity. Compare this output with Figure 5.3.

To write Excel files, you can use xlwt, which works in a similar fashion to xlrd.
Listing 5.9 writes list1 and list2 in column A and B using xlwt.

Listing 5.9: excel2.py: Write an XLS file with xlwt

1 import xlwt

2 list1 = [1,2,3,4,5]

3 list2 = [234,267,281,301,331]

4 wb = xlwt.Workbook()

5 ws = wb.add_sheet(’First sheet’)

6 ws.write(0,0,’Column A’)

7 ws.write(0,1,’Column B’)

8 i = 1

9 for x,y in zip(list1,list2): #Walk two list at the same time.

10 ws.write(i,0,x) # Row, Column, Data.

11 ws.write(i,1,y)

12 i += 1

13 wb.save(’mynewfile.xls’)

For sample usage of pyExcelerator, see Listing 18.2 on page 336.

5.4 PICKLE: STORING AND RETRIEVING THE CONTENTS OF VARI-

ABLES

All variables created during the lifetime of a program are temporarily stored in
memory and disappear when the program terminates. Python provides a module
to store and retrieve from disk or any other media the contents of these variables:
The Pickle4 module. pickle serializes any Python data structure into a byte stream.
This byte stream can be saved to disk or sent over the network. At the other end,
pickle can transform the byte stream into an object with the original internal
structure. The following script generates a dictionary (sp_dict) and saves it into
a file (named spdict.data) so it is available from another program.

4Pickle has other features than those described in this book; in order to have a more exten-
sive view of what pickle has to offer, see https://docs.python.org/3/library/pickle.html#

module-pickle.

https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/library/pickle.html#module-pickle

Handling Files � 95

Listing 5.10: picklesample.py: Basic pickle sample

1 import pickle

2 sp_dict = {’one’:’uno’, ’two’:’dos’, ’three’:’tres’}

3 with open(’spdict.data’, ’wb’) as fh:

4 pickle.dump(sp_dict, fh)

With pickle.dump(), the dictionary sp_dict is saved to the file referenced by
the file handle (fh). pickle.dump() accepts four parameters. The first parameter
is the object you want to store. The second is the file-like object where you want
to store your object. A third argument (not used in the example) is the proto-
col, is a integer number that represents the way in which the information will be
encoded. When no protocol is specified (as in this case), it defaults to 3 which is
a binary backward-incompatible protocol designed for Python 3. For more infor-
mation on pickle protocols, see Infobox Protocols for Pickle. The fourth parameter
(fix_imports) when set to True and protocol less than 3 is used for getting back-
ward compatibility for Python 2.

Data stored in spdict.data can be retrieved with pickle.load():

>>> import pickle

>>> pickle.load(open(’spdict.data’,’rb’))

{’one’:’uno’, ’two’:’dos’, ’three’:’tres’}

The load method requires the file handle of the object we want to pick up.
Note that in both cases (dump and load) I am using b (for binary) for opening

the file because the default protocol that I am using writes a binary file. If you
don’t open the file as binary, Python will try to convert it to Unicode and will fail.

Protocols for Pickle
Here is a list of five different protocols that can be used for pickling. The higher the
protocol used, the more recent the version of Python needed to read the produced
pickle.

1. 0 is the original “human-readable” protocol and is backward compatible with
earlier versions of Python.

2. 1 is an old binary format that is also compatible with earlier versions of
Python.

3. 2 provides much more efficient pickling of new-style classes.

4. 3 is the default protocol in Python 3. It has explicit support for byte objects
and cannot be unpickled by Python 2.x. This is the recommended protocol
when compatibility with other Python 3 versions is required.

96 � Python for Bioinformatics

5. 4 from Python 3.4. It adds support for very large objects, pickling more kinds
of objects, and some data format optimizations5.

Warning Never unpickle data received from an untrusted source because the
pickle module is not secure against erroneous or maliciously constructed data.

5.5 JSON FILES

JSON (JavaScript Object Notation) is a human-readable data interchange format
inspired by JavaScript that is used widely used in web related applications. You can
convert a dictionary, a list, or almost any kind of data into a JSON object and then
store or transmit this object over the network. Not all objects can be converted to
JSON, since some objects are Python specific and not available in other computer
languages. For example you can’t convert a set into a JSON. Why would you use a
less capable serializer like JSON when you have pickle? Because you need to share
data and want this data to be available for any computer language. If you share
a pickle object you are forcing the receiver to use Python. So why not use CVS
which is also very popular? CVS is good for columnar data, but not for nested and
dictionary-like data. To share data that holds some complex relationship and want
it to be available to any programming language, it is better to use JSON.

This is an example of a JSON file:

{

"contactPoint":{

"fn":"PREUSCH, PETER\u00a0",

"hasEmail":"mailto:preuschp@nigms.nih.gov"

},

"description":"<p>The Protein Data Bank (PDB) archive is the

single worldwide repository of information about the 3D

structures of large biological molecules, including proteins

and nucleic acids found in all organisms</p>\n",

"identifier":"d9f3932a-9c55-41b3-ad3a-0b4e18ee4752",

"keyword":[

"national-institutes-of-health-nih"

],

"language":[

"en"

],

"license":"http://opendefinition.org/licenses/odc-odbl/",

"modified":"2016-07-18",

"programCode":[

"009:000"

5Refer to PEP 3154 for information about improvements brought by protocol 4.

http://opendefinition.org/licenses/odc-odbl/
mailto:preuschp@nigms.nih.gov"

Handling Files � 97

],

"publisher":{

"@type":"org:Organization",

"name":"National Institutes of Health (NIH)"

},

"title":"Protein Data Bank (PDB)"

}

JSON shares the same interface as pickle, that is, you can read and write in
a similar way.

>>> import json

>>> sp_dict = {’one’:’uno’, ’two’:’dos’, ’three’:’tres’}

>>> with open(’spdict.json’, ’w’) as fh:

... json.dump(sp_dict, fh)

The saved file looks like this:

{’three’: ’tres’, ’one’: ’uno’, ’two’: ’dos’}

To retrieve the dictionary out of a JSON file:

>>> import json

>>> with open(’spdict.json’) as fh:

... sp_dict = json.load(fh)

After running the previous code, the dictionary sp_dict has the original content:

>>> sp_d

{’three’: ’tres’, ’one’: ’uno’, ’two’: ’dos’}

Note that JSON can’t serialize sets and other specific Python objects:

>>> json.dump({1,2,3,4,3,2,7}, open(’test.json’,’wb’))

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "python3.5/json/__init__.py", line 178, in dump

for chunk in iterable:

File "python3.5/json/encoder.py", line 436, in _iterencode

o = _default(o)

File "python3.5/json/encoder.py", line 180, in default

raise TypeError(repr(o) + " is not JSON serializable")

TypeError: {1, 2, 3, 4, 7} is not JSON serializable

Here is a list of serializable objects: int, float, str, list, dict, True, False, and
None.

98 � Python for Bioinformatics

5.6 FILE HANDLING: OS, OS.PATH, SHUTIL, AND PATH.PY MODULE

There are more actions with files besides reading and writing. Copy, move, delete,
list, change directory, set file properties, and others can be done with os, shutil,
and path.py modules.

The os module handles an interface with the Operating System. Let’s see some
important methods provided by this module:

getcwd(): Return a string representing the current working directory.

>>> import os

>>> os.getcwd()

’/home/sb’

chdir(path): Change the current working directory to a given path.

>>> os.getcwd()

’/home/sb’

>>> os.chdir(’docs’)

>>> os.getcwd()

’/home/sb/docs’

>>> os.chdir(’..’)

>>> os.getcwd()

’/home/sb’

listdir(dir): Return a list containing the names of the entries in the direc-
tory. To know if a name returned from listdir is a file or a directory, use either
os.path.isdir() or os.path.isfile().

>>> os.listdir(’/home/sb/bioinfo/seqs’)

[’readme.txt’, ’ms115.ab1’,’.atom’, ’projects’, ’.bash_history’]

path.isfile(string) and path.isdir(string): Check if the string passed as an
argument is a file or a directory. Returns True or False.

>>> os.path.isfile(’/home/sb’)

False

>>> os.path.isdir(’/home/sb’)

True

remove(file): Remove a file. The file should exist and you should have write
permission on it.

>>> os.remove(’/home/sb/bioinfo/seqs/ms115.ab1’)

rename(source, destination): Rename the file or directory source to desti-
nation.

Handling Files � 99

>>> os.rename(’/home/sb/seqs/readme.txt’,’/home/sb/Readme’)

mkdir(path): Create a directory named path.

>>> os.mkdir(’/home/sb/processed-seqs’)

Inside os module resides the path module. It contains methods related with
path manipulation.

path.join(directory1,directory2,...): Join two or more path name compo-
nents, inserting the operating system path separator as needed. In Windows it will
add "\", while in Linux and macOS it will insert "/". path.join will not check if
the created path is valid.

>>> os.path.join(os.getcwd(), ’images’)

’/home/images’

path.exists(path): Checks if a given path exists.

>>> os.path.exists(os.path.join(os.getcwd(), ’images’))

False

path.split(path): Returns a tuple splitting the file or directory name at the
end and the rest of the path.

>>> os.path.split(’/home/sb/seqs/ms2333.ab1’)

(’/home/sb/seqs’, ’ms2333.ab1’)

path.splitext(path): Splits out the extension of a file. It returns a tuple with
the dotted extension and the original parameter up to the dot.

>>> os.path.splitext(’/home/sb/seqs/ms2333.ab1’)

(’/home/sb/seqs/ms2333’, ’.ab1’)

Other file-related operations like copying and removal can be found in the shutil
module:

The most important functions are copy, copy2, and copytree.
copy(source,destination): Copy the file source to destination.
copy2(source,destination): Copies also the last access time and last modification

(like the Unix command cp -p).
copytree(source,destination): Recursively copy an entire directory tree from the

source directory to a destination directory that must not already exist.
For more information on shutil, see the documentation on http://docs.

python.org/lib/module-shutil.html (or with help(shutil) on the Python
shell).

http://docs.python.org/lib/module-shutil.html
http://docs.python.org/lib/module-shutil.html

100 � Python for Bioinformatics

5.6.1 path.py Module

There is an external module called path.py that acts as a wrapper for os.path.
This module allows you to do most of same tasks as all other modules but with an
easier to use programming interface. Since is an external module, it is not available
with the regular Python installation (unless you have a Python distro like Anaconda
that comes with this and other external modules). If you need to install path.py,
use pip:

pip install path.py

Collecting path.py

Using cached path.py-9.0-py2.py3-none-any.whl

Installing collected packages: path.py

Successfully installed path.py

>>> import path

>>>

If there is no import error, path.py was installed successfully. For more infor-
mation on installing third-party modules, please see page 117.

Here are some things that can be done with path.py. These examples assume
the following directory structure:

/home

-- /sb

-- xx.py

-- /py4bio

-- ch1.pdf

-- ch1.tex

-- ch2.pdf

-- ch2.tex

-- /imgs

-- fig1.png

-- fig2.png

• Create a new file: Create a Path object and call the touch method. This will
generate a new file if the string you used to generate the Path object doesn’t
correspond with any file.

>>> from path import Path

>>> f = Path(’/home/sb/newfile.text’)

>>> f.touch()

• Check if a path object is a file or a directory (isfile()):

Handling Files � 101

>>> f.isfile()

True

• Get the name, extension, and parent directory (ext, name and parent):

>>> f = Path(’/home/sb/xx.py’)

>>> f.ext

’.py’

>>> f.name

Path(’xx.py’)

>>> f.parent

Path(’/home/sb’)

>>> f.parent.parent

Path(’/home’)

• Get all files and directories in a directory (files() and dirs()):

>>> d = Path(’/home/sb/py4bio’)

>>> d.files()

[Path(’/home/sb/py4bio/ch1.tex’), Path(’/home/sb/py4bio/ch2.pdf’),

Path(’/home/sb/py4bio/ch2.tex’), Path(’/home/sb/py4bio/ch1.pdf’)]

>>> d.dirs()

[Path(’/home/sb/py4bio/imgs’)]

You can also apply filters:

>>> d.files(’*.pdf’)

[Path(’/home/sb/py4bio/ch2.pdf’), Path(’/home/sb/py4bio/ch1.pdf’)]

• Walk over all files in a directory (including files inside directories found in the
parent directory), using walk():

d = Path(’/home/sb/py4bio’)

for f in d.walk():

if f.isfile():

print(f)

which will return:

102 � Python for Bioinformatics

/home/sb/py4bio/ch1.tex

/home/sb/py4bio/imgs/fig1.png

/home/sb/py4bio/imgs/fig3.png

/home/sb/py4bio/imgs/fig4.png

/home/sb/py4bio/imgs/fig2.png

/home/sb/py4bio/ch2.pdf

/home/sb/py4bio/ch2.tex

/home/sb/py4bio/ch1.pdf

5.6.2 Consolidate Multiple DNA Sequences into One FASTA File

The following program assumes that we have a directory (bioinfo/seqs/) with
several DNA sequences in FASTA format and we want to consolidate them in a
single FASTA file called outfile.fasta. This file can be used, for example, as an
input file for a BLAST run.

Listing 5.11: consolidate.py: Consolidating several files in one

1 from path import Path

2 d = Path(’bioinfo/seqs/’)

3 with open(’outfile.fasta’, ’w’) as f_out:

4 for file_name in d.walk(’*.fasta’):

5 with open(file_name) as f_in:

6 data = f_in.read()

7 f_out.write(data)

Code explanation: The program defines a Path with the directory
bioinfo/seqs/. In line 3 we open a file (outfile.fasta) to save the contents
of all the sequences. From line 4 we start walking over every file matching the
*.fasta pattern. For each file we open it, read the content (line 6) and write it to
outfile.fasta (line 7). There is no need to close any open file because they are
inside a with statement.

5.7 ADDITIONAL RESOURCES

• File and directory access.
https://docs.python.org/3/library/filesys.html

• Generate temporary files and directories.
https://docs.python.org/3/library/tempfile.html

• CSV file API.
http://www.python.org/dev/peps/pep-0305/

https://docs.python.org/3/library/filesys.html
https://docs.python.org/3/library/tempfile.html
http://www.python.org/dev/peps/pep-0305/

Handling Files � 103

• Tad, a program to view and analyze CSV data.
http://tadviewer.com

• Working with Excel files in Python.
http://www.python-excel.org

• The “with” statement.
http://www.python.org/dev/peps/pep-0343/

• JSON formatter.
https://jsonformatter.curiousconcept.com/

• Py YAML.
http://pyyaml.org/

5.8 SELF-EVALUATION

1. What is the difference between “w” and “a” modes if both allow you to write
files?

2. Why we must close all files that are no longer in use?

3. Why we open files using with?

4. Make a program that asks a name, and then writes it to a file called
MyName.txt.

5. Is it possible to parse csv files without csv module? If so, how is it done?

6. Why is it not recommended to read a file using read()?

7. What is the most efficient way to walk through a file line by line?

8. What is Pickle in Python?

9. Explain what is JSON and what limitation it has with respect to Pickle.

10. Make a program that reads all the numbers from the second column of an
Excel file and prints the average of these values.

http://tadviewer.com
http://www.python-excel.org
http://www.python.org/dev/peps/pep-0343/
https://jsonformatter.curiousconcept.com/
http://pyyaml.org/

http://taylorandfrancis.com

C H A P T E R 6

Code Modularizing

CONTENTS

6.1 Introduction to Code Modularizing . 105
6.2 Functions . 106

6.2.1 Standard Way to Make Python Code Modular 106
Function Scope . 108
6.2.2 Function Parameter Options . 110
Placement of Arguments . 110
Arguments with Default Values . 111
Undetermined Numbers of Arguments . 111
Undetermined Number of Keyword Arguments . 112
6.2.3 Generators . 113
Creating a Generator . 114

6.3 Modules and Packages . 114
6.3.1 Using Modules . 115
6.3.2 Packages . 116
6.3.3 Installing Third-Party Modules . 117
Pip Is the Preferred Method . 117
Using System Package Management . 118
Copying to PYTHONPATH . 119
6.3.4 Virtualenv: Isolated Python Environments . 119
6.3.5 Conda: Anaconda Virtual Environment . 121
Manually Build and Install . 124
6.3.6 Creating Modules . 124
6.3.7 Testing Modules . 125
Doctest, Testing Modules in an Automatic Way . 125

6.4 Additional Resources . 127
6.5 Self-Evaluation . 128

6.1 INTRODUCTION TO CODE MODULARIZING

With what we have seen so far, we have an interesting portfolio of resources for
Python programming.1 We can read files, do some data processing, and store its

1If you are interested in applying what you have learned so far, I recommend the exercises in
this page: https://github.com/karan/Projects.

105

https://github.com/karan/Projects

106 � Python for Bioinformatics

results. Although programs made so far are very short, it is easy to imagine that
they could grow to a size that may be difficult to manage.

There are several resources that can be used to modularize source code in a way
that we may end up with a small program that calls pre-made code blocks. This
approach favors code re-usability and readability. Both features also help mainte-
nance, since you have to debug only one code implementation, regardless of how
many times this code is used. As an additional advantage, it helps to improve per-
formance, since any optimization on a modularized code benefits all the code that
calls it.

For some authors, code modularizing is “The Greatest Invention in Computer
Science”2. I don’t know if this is the “greatest invention” or not, but certainly it
is a fundamental concept that you can’t live without if you plan to do any serious
programming.

Python provides several ways to modularize the source code: functions, modules,
packages, and classes. This chapter covers all of them, with the exception of classes,
which have their own chapter.

6.2 FUNCTIONS

6.2.1 Standard Way to Make Python Code Modular

Functions are the traditional way to modularize code. A function takes values (called
arguments or parameters), executes some operation based on them and returns a
value. We have already seen several Python built-in functions.3 For example len(),
first mentioned on page 9, takes an iterable as parameter and returns a number:

>>> len(’Hello’)

5

Let’s see how to make our own functions. The general syntax of a function is:

def function_name(argument1, argument2, ...):

""" Optional Function description (Docstring) """

... FUNCTION CODE ...

return DATA

The code in Listing 4.14 can be rewritten as a function:

Listing 6.1: netchargefn: Function to calculate the net charge of a protein

2Read the Steve McConnell column at http://www.stevemcconnell.com/ieeesoftware/bp16.
htm.

3A list of all available functions in Python is available at: https://docs.python.org/3/

library/functions.html.

http://www.stevemcconnell.com/ieeesoftware/bp16.htm
https://docs.python.org/3/library/functions.html
http://www.stevemcconnell.com/ieeesoftware/bp16.htm
https://docs.python.org/3/library/functions.html

Code Modularizing � 107

1 def protcharge(aa_seq):

2 """Returns the net charge of a protein sequence"""

3 protseq = aa_seq.upper()

4 charge = -0.002

5 aa_charge = {’C’:-.045, ’D’:-.999, ’E’:-.998, ’H’:.091,

6 ’K’:1, ’R’:1, ’Y’:-.001}

7 for aa in protseq:

8 charge += aa_charge.get(aa,0)

9 return charge

To “use” the function, it must be called with the parameter:

>>> protcharge(’EEARGPLRGKGDQKSAVSQKPRSRGILH’)

4.094

If we forget to pass the parameter, or if we pass an incorrect number of param-
eters, we get an error:

>>> protcharge()

Traceback (most recent call last):

File "<pyshell#3>", line 1, in <module>

protcharge()

TypeError: protcharge() takes exactly 1 argument (0 given)

In this example, the function returns a number (of float type). If we want it to
return more than one value, we can make it return a list or a tuple.4 The function
protcharge (coded in Listing 6.1) could be modified to return, besides the net charge,
the proportion of charged amino acids:

Listing 6.2: netchargefn: Function that returns two values

1 def charge_and_prop(aa_seq):

2 """ Returns the net charge of a protein sequence

3 and proportion of charged amino acids

4 """

5 protseq = aa_seq.upper()

6 charge = -0.002

7 cp = 0

8 aa_charge = {’C’:-.045, ’D’:-.999, ’E’:-.998, ’H’:.091,

9 ’K’:1, ’R’:1, ’Y’:-.001}

10 for aa in protseq:

4It makes more sense to return a tuple instead of a list since for a given function there is a fixed
number of parameters returned.

108 � Python for Bioinformatics

11 charge += aa_charge.get(aa,0)

12 if aa in aa_charge:

13 cp += 1

14 prop = 100.*cp/len(aa_seq)

15 return (charge,prop)

If we call the function with the same parameters of the last example, we get
another result:

>>> charge_and_prop(’EEARGPLRGKGDQKSAVSQKPRSRGILH’)

(4.0940000000000003, 39.285714285714285)

Use an index to get one value:

>>> charge_and_prop(’EEARGPLRGKGDQKSAVSQKPRSRGILH’)[1]

39.285714285714285

All functions return something. A function can be used to “do something” in-
stead of returning a value. In this case the value returned is None. For example, the
following function stores the contents of a list in a text file:5

Listing 6.3: convertlist.py: Converts a list into a text file

1 def save_list(input_list, file_name):

2 """A list (input_list) is saved in a file (file_name)"""

3 with open(file_name, ’w’) as fh:

4 for item in input_list:

5 fh.write(’{0}\n’.format(item))

6 return None

The return None statement is optional. The function will return None with-
out it, but Python developers prefer explicit statements than implicit assumptions.

Since Python 3, Listing 6.3 can be written with the print function. Just replace
line 5 for print(item, file=fh). The “for loop” in line 4 can be avoided by using
a property not seen yet. Listing 6.6 on page 112 shows an alternative without the
loop.

Function Scope

Variables declared inside a function are valid only inside the function. That means,
if you try to access to a variable from outside the function, Python won’t find it.
To access the contents of a function variable from outside the function, the variable
must be returned to the main program by using the return statement. In the
following example, the variable y, defined inside the duplicate function, can’t be
used outside the function:

5For a way to save all kinds of Python data structures, see Pickle on page 94.

Code Modularizing � 109

>>> def duplicate(x):

... y = 1

... print(’y = {0}’.format(y))

... return(2*x)

...

>>> duplicate(5)

y = 1

10

>>> y

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name ’y’ is not defined

In this case, the scope of y is inside the duplicate function. We can say that
the function provides a namespace where the name y “lives.”

If the name is called inside the function but it is not defined there, Python will
look for it outside the function; if it can’t find it there, will return a NameError.
Note that there is an order of preference when looking for names. First in the scope
it was called, and then outside until reaching the global scope:

>>> def duplicate(x):

... print(’y = {0}’.format(y))

... return(2*x)

...

>>> duplicate(5)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 2, in duplicate

NameError: name ’y’ is not defined

If the name is defined in the parent scope, it will find it:

>>> y = 3

>>> def duplicate(x):

... print(’y = {0}’.format(y))

... return(2*x)

...

>>> duplicate(5)

y = 3

10

If the name is defined in the namespace provided by the function and outside,
Python will use the first available name, that is, the one inside the function:

110 � Python for Bioinformatics

>>> y = 3

>>> def duplicate(x):

... y = 1

... print(’y = {0}’.format(y))

... return(2*x)

...

>>> duplicate(5)

y = 1

10

It can be specified inside a function that a variable is of global type, so its
life won’t be confined to the place it was defined. It is not a good idea to use
global variables, since they can be modified at unexpected places. Another problem
related to global variables is that Python has to keep track of its value for the entire
runtime so it is not memory efficient.

>>> def test(x):

... global z

... z = 10

... print(’z = {0}’.format(z))

... return x*2

...

>>> z = 1

>>> test(4)

z = 10

8

>>> z

10

6.2.2 Function Parameter Options

Placement of Arguments

Up to this point the arguments were put in the same order as originally defined.
The function savelist can be called this way:

save_list([1,2,3], ’list.txt’).
If we flip the order of the arguments (save_list(’temp.txt’,[1,2,3])) we

get an error message:

save_list(’list.txt’, [1,2,3])

Traceback (most recent call last):

File "<ipython-input-5-fe7756f18e74>", line 1, in <module>

save_list(’list.txt’, [1,2,3,4,5])

Code Modularizing � 111

File "save_list1.py", line 10, in save_list

with open(file_name, ’w’) as fh:

TypeError: invalid file: [1, 2, 3, 4, 5]

This TypeError occurs because this function expects a list as the first param-
eter and a string as a second parameter. To call the function with the parameters
in a different order than was originally defined, the parameter must be named when
calling the function:

>>> savelist(file_name=’list.txt’, input_list=[1,2,3])

By using variable names the order of parameters is irrelevant.

Arguments with Default Values

Python allows default values in the arguments. This is done by entering the default
value in the function definition:

def name(arg1=default_value, arg2=default_value, ...):

For example the function save_list, which saves the contents of a list to a file,
may have a default file name:

Listing 6.4: list2textdefault.py: Function with a default parameter

1 def save_list(input_list, file_name=’temp.txt’):

2 """A list (input_list) is saved in a file (file_name)"""

3 with open(file_name, ’w’) as fh:

4 for item in input_list:

5 fh.write(’{0}\n’.format(item))

6 return None

Now the function can be called with only one parameter:

>>> save_list([’MS233’,’MS772’,’MS120’,’MS93’,’MS912’])

Undetermined Numbers of Arguments

Functions can have variable numbers of arguments if the final parameter is preceded
by a “*”. Any excess arguments will be assigned to the last parameter as a tuple:

Listing 6.5: getaverage.py: Function to calculate the average of values entered
as parameters

112 � Python for Bioinformatics

1 def average(*numbers):

2 if len(numbers)==0:

3 return None

4 else:

5 total = sum(numbers)

6 return total / len(numbers)

In this way the average function can be called with an undetermined number
of arguments:

>>> average(2,3,4,3,2)

2.8

>>> average(2,3,4,3,2,1,8,10)

4.125

There is another use of the asterisk (*) in Python. From Python 3 a variable
preceded by “*” becomes a list, which contains any items from the corresponding
sequence that aren’t assigned to variable names.6 This property is used here (line
5 in Listing 6.6) to avoid using a loop to walk over all elements of L:

Listing 6.6: list2text2.py: Converts a list into a text file, using print and *

1 def save_list(input_list, file_name=’temp.txt’):

2 """A list (input_list) is saved to a file (file_name)"""

3 with open(file_name, ’w’) as fh:

4 print(*input_list, sep=’\n’, file=fh)

5 return None

Undetermined Number of Keyword Arguments

The functions can also accept an arbitrary number of arguments with keywords. In
this case we use the final parameter preceded by “**” (two asterisks). The excess
arguments are passed to the function as a dictionary:

Listing 6.7: list2text2.py: Function that accepts a variable number of argu-
ments

1 def commandline(name, **parameters):

2 line = ’’

3 for item in parameters:

4 line += ’ -{0} {1}’.format(item, parameters[item])

5 return name + line

6This is explained in detail in PEP-3132 (http://www.python.org/dev/peps/pep-3132) and
this Stackoverflow post: http://stackoverflow.com/questions/6967632.

http://www.python.org/dev/peps/pep-3132
http://stackoverflow.com/questions/6967632

Code Modularizing � 113

This function can be called with a variable number of keyword parameters:

>>> commandline(’formatdb’, t=’Caseins’, i=’indata.fas’)

’formatdb -t Caseins -i indata.fas’

>>> commandline(’formatdb’, t=’Caseins’, i=’indata.fas’, p=’F’)

’formatdb -t Caseins -p F -i indata.fas’

Tip: Some Words about Docstrings.

Functions can have a text string immediately following the function definition.
This line (or lines) is called “docstring.” Listing 6.6 in page 112 has a one-line
docstring.

These lines are used for online help, automatic documentation generation sys-
tems, and for anyone who cares to read the source code. You can write any-
thing inside a docstring, but there are written guidelines to standardize the struc-
ture of a docstring. Please refer to PEP-257 (http://www.python.org/dev/peps/
pep-0257) for more information on Docstring format conventions.

Not only functions can have docstrings; modules and classes are expected to
have its documentation as the first statement.

6.2.3 Generators

Generators are a special kind of function. Functions perform some action using
variables in its local namespace. These variables are deleted after the function is
executed. This process occurs each time a function is called. To avoid this, there
is a special kind of function called a generator. When a generator is executed, its
internal state is kept, so the next time it is invoked, the values of the variables can
be accessed. Sometimes they are called resumable functions. This is used to avoid
returning a huge object (like a big list, tuple, etc.) at once.

Take for example a function that reads records from a file and returns a data
structure with data from this file. If the file is too big (like several times the available
memory), the resulting data structure may not fit in memory. A solution to this
problem is to modify the function to return one record at a time. A function can’t
do that because it doesn’t keep a state, so each time it is executed, it has to process
all the data again. Generator are functions that can keep their internal state.
They introduce a new keyword: yield. When a yield EXPRESSION statement
is found, it returns (or yields) EXPRESSION back to where it was called (as a
function) but keeps track of its internal values, so next time it is called, it resumes
operation with the values as it had before yielding the value.

http://www.python.org/dev/peps/pep-0257
http://www.python.org/dev/peps/pep-0257

114 � Python for Bioinformatics

Creating a Generator

Listing 6.8 has a function (all_primes()) that returns all prime numbers available
up to a given value. It returns them all together in a list:

Listing 6.8: allprimes.py: Function that returns all prime numbers up to a given
value

1 def is_prime(n):

2 """Returns True is n is prime, False if not"""

3 for i in range(2,n-1):

4 if n%i == 0:

5 return False

6 return True

7

8 def all_primes(n):

9 primes = []

10 for number in range(1,n):

11 if isprime(number):

12 primes.append(number)

13 return p

Function all_primes() from Listing 6.8 can be replaced with generator
g_all_primes():

Listing 6.9: allprimesg.py: Generator that replaces putn() in code 6.8.

1 def g_all_primes(n):

2 for number in range(1,n):

3 if is_prime(number):

4 yield number

Note that code in Listing 6.9 doesn’t use a list, since there is no need for it
because it yields one result at a time. Both functions can be used to walk over the
results, but all_primes() generates a list, while g_all_primes() doesn’t.

6.3 MODULES AND PACKAGES

A module is a file with function definitions, constants, or any type of object that
you can use from other modules or from your main program. Modules also provide
namespaces, so two functions may be given the same name provided that they are
defined in different modules. The name of the module is taken from the name of
the file. If the module filename is my_module.py, the module name is my_module.

Code Modularizing � 115

6.3.1 Using Modules

To access the contents of a module, use import. Usually import is issued at the
beginning of the program. It is not mandatory to place the imports at the beginning
of the file, but it must be placed before calling any of the elements of the module.
It is customary, however, to place the import statement at the beginning of the
program. There are many ways to use import. The most used form is by calling a
module by its name. To call the built-in module os, use,

>>> import os

When a module is imported for the first time, its contents are executed. If the
module is imported more than once, the successive imports will not have any effect.
This gives us the assurance that we can put an import statement inside a function
and not worry if it is called repeatedly.

Once a module is imported, to access a function or a variable, use the name of
the module as a prefix:

>>> os.getcwd()

’/mnt/hda2’

>>> os.sep

’/’

It is also possible to import from a module only a required function. This way
we can call it without having to use the name of the module as a prefix.

>>> from os import getcwd

>>> getcwd()

’/mnt/hda2’

To import all the contents of a module, use the “*” operator (asterisk):

>>> from os import *

>>> getcwd()

’/mnt/hda2’

>>> sep

’/’

Warning: Don’t use the from module import * unless you know what you
are doing. The problem with importing all the elements of the module is that it
may produce conflicts with the names already defined in the main program (or
defined in other modules and imported the same way). In Python programming
standards, wildcard imports are equivalent to the dark side of the force. They’re
quicker, easier, and more seductive, but dangerous.

It is also possible to import a module using a different name:

116 � Python for Bioinformatics

>>> import xml.etree.ElementTree as et

>>> tree = et.parse(’/home/sb/bioinfo/smallUniprot.xml’)

Don’t worry if you don’t know what xml.etree.ElementTree is, we will look at
this in the XML chapter, but from this moment, take into account that this entire
name (xml.etree.ElementTree) is called “ET.”

6.3.2 Packages

A package is a group of modules with some characteristics in common. They are
directories with the modules or other directories inside. Also contains a special file
named __init__.py. This file indicates that the directory it contains is a Python
package and can be imported as a module.

Bio/ Top-level package

__init__.py Initialize the sound package

Align/ Subpackage for Alignment related software

__init__.py

AlignInfo.py

Alphabet/ Subpackage for amino-acid alphabets

__init__.py

IUPAC.py

Reduced.py

Blast/ Subpackage for Blast parsers

__init__.py

Applications.py

NCBIStandalone.py

NCBIWWW.py

NCBIXML.py

ParseBlastTable.py

Record.py

The __init__.py files are required to make Python treat the directories as
containing packages. In most cases, __init__.py is an empty file, but it can also
execute initialization code for the package.

Users of the package can import individual modules from the package, for ex-
ample:

import Bio.Blast.Applications

Even if there are differences between modules and packages, both terms are used
interchangeably.

Code Modularizing � 117

6.3.3 Installing Third-Party Modules

Python comes with several modules (built-in modules). These modules are bun-
dled with Python so they are ready to use as soon as you have a working Python
interpreter.7

There are also third-party modules that extend Python functionality, as men-
tioned on page 11. Installation can be as easy as copying a single file to a specific
location up to executing several programs in a predetermined order. It depends on
the complexity of the modules. Modules range from one file to several files spanned
in multiple directories that interact with other programs; in this case it is called
a package. So there is no unique way to install every external module available to
Python.

Pip Is the Preferred Method

Most packages support pip installation. pip is the native way to install Python
packages and is the preferred method.8 For this kind of installation you need pip
and setuptools. Most likely you already have them installed (as it comes with
Python 3.4 binaries), if not; install it with:

sudo apt install python-pip

Note that in Ubuntu the package is called python3-pip.
Then upgrade it to the latest version.
On Linux or macOS:

$ pip install -U pip setuptools

In Ubuntu the command is:

$ pip3 install -U pip setuptools

On Windows:

$ python -m pip install -U pip setuptools

Once installed and updated, Python modules can be installed with:

$ pip install MODULE_NAME

For example, to install xlrd, a package to read Excel files:

7Check http://docs.python.org/library/index.html for a complete description of the
Python Standard Library including built-in modules.

8There is another method called easy_install that was featured in the first edition of this
book, but pip has more features so easy_install was removed from this book. To compare both
systems, please check https://packaging.python.org/pip_easy_install/.

http://docs.python.org/library/index.html
https://packaging.python.org/pip_easy_install/

118 � Python for Bioinformatics

$ pip install xlrd

Collecting xlrd-1.0.0

Downloading xlrd-1.0.0.tar.gz

Building wheels for collected packages: xlrd

Running setup.py bdist_wheel for xlrd ... done

Stored in directory: /home/sb/.cache/pip/wheels/55/e2/c6f97024749<=

ea24f67400fb4c55eab7f2b49cbf39379805ef5

Successfully built xlrd

Installing collected packages: xlrd

Successfully installed xlrd-1.0.0

You need a working Internet connection for the above command to run. Pip
will retrieve the package from the PyPi repository at https://pypi.python.org.
To find out what packages are available to install using pip, see the list in https:

//pypi.python.org/pypi?%3Aaction=browse.
Another caveat to take into account is who will use the installed package. To

make the package available for all Python users on the machine, you must be an
administrator user or install it with sudo:

$ sudo pip install xlrd

But the preferred method of installation is as a user and inside a virtual envi-
ronment (see page 119).

Using System Package Management

Some Python modules can be installed as any other program you install in your
computer, such as double-clicking in an installer (Windows/macOS) or using the
system package management like apt-get in Ubuntu.

The advantage of using system package management is that you can keep track
of installed Python modules the same way you keep track of every other software
in your system. Upgrades and uninstallations are easier and without nasty con-
sequences such as orphan files or broken installations. This method also has its
drawbacks, like a gap between current package version and the version available
in your Linux distribution repository. Some modules develop at a fast pace, some-
times so fast that package managers can’t keep up to date. For example, Ubuntu
users who want to install Biopython using apt-get, at time of writing, are limited to
version 1.66 when 1.69 is the last version available at Biopython website. Another
problem is that in some systems you need administration rights to use package man-
agement. Windows installers do not provide all required software and do not search
for it in an automatic way so you may need to install some prerequisite software
before running the installer. The main problem involving package management is
that sometimes the required package is not available. For all these reasons, this is
not the recommended way to install new packages.

https://pypi.python.org
https://pypi.python.org/pypi?%3Aaction=browse
https://pypi.python.org/pypi?%3Aaction=browse

Code Modularizing � 119

Copying to PYTHONPATH

This is not the most frequent module installation procedure, but it is mentioned
first because it is very simple. Just copy the module where Python searches for
modules. Where does Python search for modules? There are three places:

• In the same directory where the program that will call the module is located.

• In the same directory where the Python executable is located. This directory
is different on each operating system.9

• In a directory created especially for our modules. In this case, it must be
specified in the environment variable PYTHONPATH or in the variable
sys.path. This final variable lists all the paths where Python should look for
a module. To add a directory to sys.path, you should modify it as you would
do with any list, using the append method:

>>> import sys

>>> sys.path

[’/usr/lib/python3.5’, ’/usr/lib/python3.5/plat-x86_64-<=

linux-gnu’, ’/usr/lib/python3.5/lib-dynload’, ’/usr/loc<=

al/lib/python3.5/dist-packages’, ’/usr/lib/python3/dist<=

-packages’]

>>> sys.path.append(’/home/sb/MyPyModules’)

6.3.4 Virtualenv: Isolated Python Environments

virtualenv is a program that creates isolated Python environments. Each environ-
ment created with virtualenv has its own set of external (third-party) modules.
This allows you to have multiple independent projects each in its own environment,
so there is no conflict with incompatible dependences. A project may require a mod-
ule in version X and another project may need the same module but in version Y.
Since you can’t install two different versions of the same module in the same Python
installation, you need a way to isolate each installation. This is what virtualenv
provides. When should you use virtualenv? Short answer: Always. Long answer:
Each time you start working with a new project, it is better to have a dedicated
Python environment. This also has the benefit of being able to reproduce the setup
for a particular program in another machine when needed. If you have Python3.6 or
greater, you don’t need virtualenv as a stand alone program, since it is included
with Python.

With a Python version previous to 3.6, install virtualenv using pip:

9On Windows, it is usually found at C:\program files\Python, while on Linux it is found at
/usr/bin/python. To find the path to the Python executable in *nix, use which python.

120 � Python for Bioinformatics

pip install virtualenv

Note that in Windows pip may be located in the Scripts directory.
Once installed, a virtualenv is created this way:

$ virtualenv <DIRECTORY>

If you have Python 3.6 or greater, you don’t need to install virtualenv, to
create a new virtual environment with Python 3.6 or greater. Instead, just do:

python3 -m venv <DIRECTORY>

Example with an older version of Python:

$ virtualenv bioinfo

Using base prefix ’/usr’

New python executable in /home/sb/bioinfo/bin/python3

Also creating executable in /home/sb/bioinfo/bin/python

Installing setuptools, pip, wheel...done.

$

or with Python 3.6:

python3 -m venv bioinfo

This will generate a bioinfo directory inside the current directory.
Once created, it is time to activate it. macOS and Linux:

$ source <DIRECTORY>/bin/activate

In the previous example, the activation command would be:

$ source bioinfo/bin/activate

Note that in Windows, the virtual environment is activated this way:

<DIRECTORY>\Scripts\activate

After activating the virtual environment, the prompt will change to:

(bioinfo)$

This is used to indicate that the virtualenv is activated and every package you
install from that point will be available only inside this virtualenv.

To install a package, proceed in the same way as before (by using pip) but inside
the environment, for example:

Code Modularizing � 121

(bioinfo)$ pip install xlrd

This way, the xlrd package will be available only in the bioinfo environment
and will not interfere with any other Python installation.

Once you are done working with the virtual environment, you should deactivate
it to return to your standard prompt:

(bioinfo)$ deactivate

$

In windows:

(bioinfo)> \path\to\env\bin\deactivate.bat

>

6.3.5 Conda: Anaconda Virtual Environment

If you are using Anaconda Python distribution, you should use conda create
instead of virtualenv. If you are using the regular Python, just skip this section.

To create the new environment, use this command:

$ conda create -n NAME

Where NAME is the name you want to use for the new environment, if you want
to use bioinfo, the command is:

$ conda create -n bioinfo

Fetching package metadata

.Solving package specifications: .

Package plan for installation in environment /home/sb/anaconda3/<=

envs/bioinfo:

The following empty environments will be CREATED:

/home/sb/anaconda3/envs/bioinfo

Proceed ([y]/n)?

#

To activate this environment, use:

> source activate bioinfo

#

To deactivate this environment, use:

> source deactivate bioinfo

#

122 � Python for Bioinformatics

To activate the environment, type:

$ source activate bioinfo

(bioinfo) $

As in the virtualenv environment, everything you install inside this environ-
ment will be local to the environment and won’t affect any other Python installation.
To install a package in the active environment, the preferred way is to use conda

install. To install the pillow package:

(bioinfo) $ conda install pillow

If the package is not available in the conda repository, you can use pip

install:

(bioinfo)$ pip install beautifulsoup4

My advice is to use conda when working with Anaconda and pip if you use
the standard Python distribution.10

Conda also allows you to create a virtual environment and install packages in
one command. Just add the package name after the conda create command:

$ conda create -n excelprocessing xlrd

Fetching package metadata

Solving package specifications:

Package plan for installation in environment /sb/anaconda3/envs/exc<=

elprocessing:

The following packages will be downloaded:

package | build

---------------------------|-----------------

python-3.6.0 | 0 16.3 MB

setuptools-27.2.0 | py36_0 523 KB

wheel-0.29.0 | py36_0 88 KB

xlrd-1.0.0 | py36_0 185 KB

pip-9.0.1 | py36_1 1.7 MB

--

Total: 18.8 MB

The following NEW packages will be INSTALLED:

10See the article at this site for more information: https://goo.gl/Ki8zks.

https://goo.gl/Ki8zks

Code Modularizing � 123

openssl: 1.0.2j-0

pip: 9.0.1-py36_1

python: 3.6.0-0

readline: 6.2-2

setuptools: 27.2.0-py36_0

sqlite: 3.13.0-0

tk: 8.5.18-0

wheel: 0.29.0-py36_0

xlrd: 1.0.0-py36_0

xz: 5.2.2-1

zlib: 1.2.8-3

Proceed ([y]/n)? y

Fetching packages ...

python-3.6.0-0 100% |#####################| Time: 0:00:01 10.99 MB/s

setuptools-27. 100% |#####################| Time: 0:00:00 5.72 MB/s

(...)

Extracting packages ...

[COMPLETE]|##| 100%

Linking packages ...

[COMPLETE]|##| 100%

#

To activate this environment, use:

> source activate excelprocessing

#

To deactivate this environment, use:

> source deactivate excelprocessing

#

Activate and check that the package is installed:

$ source activate excelprocessing

(excelprocessing) $ python

Python 3.6.0 |Continuum Analytics, Inc.| (Dec 23 2016, 12:22:00)

[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import xlrd

>>>

To see all installed environments (name and path), run conda info –envs:

$ conda info --envs

conda environments:

#

124 � Python for Bioinformatics

AEML /home/sb/anaconda3/envs/AEML

bioinfo /home/sb/anaconda3/envs/bioinfo

biopy1 /home/sb/anaconda3/envs/biopy1

excelprocessing /home/sb/anaconda3/envs/excelprocessing

py4bio /home/sbassi/anaconda3/envs/py4bio

root * /home/sbassi/anaconda3

The asterisk (*) shows the active environment.
Using virtualenv (or conda if using Anaconda) is so important that there will

be multiple references in this book on how to use it.

Manually Build and Install

If you can’t use system packages and don’t want to (or can’t) use pip, there is always
a manual way to install packages. Download the module files (usually in “.tar.gz”
format), unpack them and look for a setup.py file. In most cases, installing it is a
matter of running:

python setup.py install

If there are any problems, see the README file. In fact, it is advisable to check the
README file before trying to install the program (who does that?). In most cases the
problem arises from missing dependencies (like you need module X to run module
Y), that you will have to fulfill. That is why it is better to install Python modules
with pip or with your system package management.

6.3.6 Creating Modules

To create a module, you have to create a file and save it with the “.py” extension.
It should be saved in a directory where the Python interpreter searches for it, like
those in the PYTHONPATH variable (see page 119 for more information).

For example, store the function save_list in a module and call it utils. For
this, create the file utils.py with the following contents:

utils.py file

def save_list(input_list, file_name=’temp.txt’):

"""A list (input_list) is saved to a file (file_name)"""

with open(file_name, ’w’) as fh:

print(*input_list, sep=’\n’, file=fh)

return None

This way, this function (save_list) can be used from any program, provided
that this file is saved in a location accessible from Python:

>>> import utils

>>> utils.save_list([1,2,3])

Code Modularizing � 125

6.3.7 Testing Modules

A good programming practice involves the creation of tests to verify the correct
functioning of your code.

As the modules are designed to be used from within a program, these tests
must be executed only when called from the command line. This way, tests will not
interfere with the normal operation of the program.

To achieve this, we need to be able to differentiate when code is being executed
as a standalone program and when it is executed as a module from another program.
When the code is executed as a program, the variable __name__ takes the value
"__main__". As a result, the way to incorporate test code is by doing it after
verifying that the program executes independently.

if __name__ == ’__main__’:

#Do something

This type of test is usually included at the end of a module. In Listing 6.10
(page 125) we can see a test in action.

Python provides a module that facilitates the task of testing that our code works
as we expect. This module is called doctest.

Doctest, Testing Modules in an Automatic Way

Doctest is a module that searches for pieces of Python code inside a docstring. This
code is executed as if it were an interactive Python session. The module tests if this
code works exactly as shown in the docstring or in an external file.

In Listing 6.10 we have is_prime(), a function that checks if a given number
(n) is prime. Let’s see how we can incorporate a test unit and run it:

Listing 6.10: prime5.py: Module with doctest

1 def is_prime(n):

2 """ Check if n is a prime number.

3 Sample usage:

4 >>> is_prime(0)

5 False

6 >>> is_prime(1)

7 True

8 >>> is_prime(2)

9 True

10 >>> is_prime(3)

11 True

12 >>> is_prime(4)

13 False

14 >>> is_prime(5)

126 � Python for Bioinformatics

15 True

16 """

17

18 if n <= 0:

19 # This is only for numbers > 0.

20 return False

21 for x in range(2, n):

22 if n%x == 0:

23 return False

24 return True

25

26 def _test():

27 import doctest

28 doctest.testmod()

29

30 if __name__ == ’__main__’:

31 _test()

Code explanation: The is_prime(n) function is defined from line 1 to 24,
but the actual functionality starts at line 18. Up to this line, there are some tests.
These tests are not executed if the program is called from another program, which
is checked in line 30. If the program is executed as a standalone program, all test
are run:

$ python prime5.py

$

There is no output. That is, no news is good news. Let’s see what happens when
we change line 21 to “for x in range(1,n):”:

In this case, the test fails:

$ python prime5.py

**

File "./prime5.py", line 10, in __main__.is_prime

Failed example:

is_prime(2)

Expected:

True

Got:

False

**

File "./prime5.py", line 12, in __main__.is_prime

Failed example:

is_prime(3)

Code Modularizing � 127

Expected:

True

Got:

False

**

File "./prime5.py", line 16, in __main__.is_prime

Failed example:

is_prime(5)

Expected:

True

Got:

False

**

1 items had failures:

3 of 6 in __main__.is_prime

Test Failed 3 failures.

Testing is so important that there is a methodology called test-driven develop-
ment. It proposes to design a test for every function before starting to write code.
Testing may not be perceived as a primary need for a program, but one cannot be
certain that a function works unless one tests it. Testing is also useful to make sure
that a change in the code has no unintended consequences.

Python has extensive support for software testing (with modules doctest and
unittest), but this is out of the scope of this book. For more information on testing,
see “Additional Resources.”

6.4 ADDITIONAL RESOURCES

• Modules, the Python tutorial.
http://docs.python.org/tutorial/modules.html

• Default parameter values in Python, by Fredrik Lundh.
http://effbot.org/zone/default-values.htm

• Python library reference. Unittest API.
https://docs.python.org/3.6/library/unittest.html

• Installing Python modules.
http://docs.python.org/install/index.html

• PIP.
https://pip.pypa.io/en/stable/

• Extreme programming. Wikipedia article.
http://en.wikipedia.org/wiki/Extreme_Programming

http://docs.python.org/tutorial/modules.html
http://effbot.org/zone/default-values.htm
https://docs.python.org/3.6/library/unittest.html
http://docs.python.org/install/index.html
https://pip.pypa.io/en/stable/
http://en.wikipedia.org/wiki/Extreme_Programming

128 � Python for Bioinformatics

6.5 SELF-EVALUATION

1. What is a function?

2. How many values can return a function?

3. Can a function be called without any parameters?

4. What is a docstring and why is it related to functions and modules?

5. Does every function need to know in advance how many parameters it will
receive?

6. Write a generator function.

7. Why must all optional arguments in a function be placed at the end in the
function call?

8. What is a module?

9. Why are modules invoked at the beginning of the program?

10. How do you import all contents of a module? Is this procedure advisable?

11. How can you test if your code is being executed as a standalone program or
called as a module?

12. What is virtualenv and when would you use it?

C H A P T E R 7

Error Handling

CONTENTS

7.1 Introduction to Error Handling . 129
7.1.1 Try and Except . 131
7.1.2 Exception Types . 134
How to Respond to Different Exceptions . 134
7.1.3 Triggering Exceptions . 135

7.2 Creating Customized Exceptions . 136
All Exceptions Derive from Exception Class . 137

7.3 Additional Resources . 137
7.4 Self-Evaluation . 138

You can make it foolproof, but you can’t make it damnfoolproof.

Naeser’s law

7.1 INTRODUCTION TO ERROR HANDLING

A program rarely works as expected, at least on the first try.
Traditionally a developer would choose between one of these two strategies

when faced with runtime program errors. The problem is ignored or each condition
is verified where an error may occur and then he or she would write code in con-
sequence. The first option, which is very popular, is not advisable if we want our
program to be used by anyone besides ourselves. The second option, which is also
known as LBYL (Look Before You Leap), is time consuming and may make code
unreadable. Let’s have a look at an example of each strategy.

The following program reads a file (myfile.csv) separated by tabs and looks for
a number that is found in the first column of the first line. This value is multiplied
by 0.2 and that result is written to another file (otherfile.csv).

This version does not check for any types of errors and limits itself to its core
functionality.

Listing 7.1: wotest.py: Program with no error checking

1 with open(’myfile.csv’) as fh:

2 line = fh.readline()

129

130 � Python for Bioinformatics

3 value = line.split(’\t’)[0]

4 with open(’other.txt’,"w") as fw:

5 fw.write(str(int(value)*.2))

This program may do its job provided that there are no unexpected events.
What does “unexpected events” mean in this context? The first line is prone to
error. For example, it may be trying to open a file that doesn’t exist. In this case,
when the program runs it will immediately stop after executing the first line and
the user will face an error:

Traceback (most recent call last):

File "wotest.py", line 1, in <module>

with open(’myfile.csv’) as fh:

FileNotFoundError: [Errno 2] No such file or directory: ’myfile.csv’

This is a problem because the program stops, and it is not professional to show
the end user a system error.

This program can fail in various places. There may be no tabs in the file, there
may be letters instead of numbers, and we may not have the write permissions in
the directory where we intend to write the output file.

That is what happens when the file exists but there are no tabs inside.

Traceback (most recent call last):

File "wotest.py", line 6, in <module>

fw.write(str(int(value)*.2))

ValueError: invalid literal for int() with base 10: ’12,dsa\n’

The result is similar to the previous one. It causes the program to stop and the
interpreter shows us another error message. This way we may continue with all the
blocks of code that are prone to the failure.

Let’s look at the strategy of checking each condition likely to generate an error
in order to prevent its occurrence (LBYL).

Listing 7.2: LBYL.py: Error handling LBYL version

1 import os

2 iname = input("Enter input filename: ")

3 oname = input("Enter output filename: ")

4 if os.path.exists(iname):

5 with open(iname) as fh:

6 line = fh.readline()

7 if "\t" in line:

8 value = line.split(’\t’)[0]

9 if os.access(oname, os.W_OK) == 0:

Error Handling � 131

10 with open(oname, ’w’) as fw:

11 if value.isdigit():

12 fw.write(str(int(value)*.2))

13 else:

14 print("Can’t be converted to int")

15 else:

16 print("Output file is not writable")

17 else:

18 print("There is no TAB. Check the input file")

19 else:

20 print("The file doesn’t exist")

This program considers almost all the possible errors. If the file that the user
enters does not exist, the program will not have an abnormal termination. Instead,
it will display an error message designed by the programmer that would allow the
user to reenter the name of the input file.

The disadvantage of this option is that the code is both difficult to read and
maintain because the error checking is mixed with its processing and with the main
objective of the program. It is for this reason that new programming languages
have included a specific system for the control of exceptional conditions. Contrary
to LBYL, this strategy is known as EAFP (it’s easier to ask forgiveness than
permission). With Python, the statements try, except, else y finally are used.

7.1.1 Try and Except

try delimits the code that we want to execute, while except delimits the code that
will be executed if there is an error in the code under the try block. Errors detected
during execution are called exceptions. Let’s look at the general outline:

try:

code block 1

...some error prone code...

except:

code block 2

...do something with the error...

[else:

code block 3

...to do when there is no error...

finally:

code block 4

#...some clean up code...]

This code will first try to execute the code in block 1. If the code is executed
without problems, the flow of execution continues through the code in block 3 and
finally through block 4. In case the code in block 1 produces an error (or raises an

132 � Python for Bioinformatics

exception according to the jargon), the code in block 2 will be executed and then
the code in block 4. The idea behind this mechanism is to put the block of code
that we believe may produce an error (block 1), inside the try clause. The code
that is triggered when there is an exception is placed in the except block. This
code (code block 2) deals with the exception, or in another words, it handles the
exception. Error messages are what the user gets when exceptions are not handled:

>>> 0/0

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ZeroDivisionError: division by zero

Optionally, it is possible to add the statement else, which will be executed
only if the code inside try (code block 1) executes successfully. Note that the code
below else can be placed in the try block because it would have the same effect (it
would execute if there are no errors). The block inside try should contain only the
code that may raise an exception, while we would have to leave in the block inside
else the instructions that should be executed when the instructions inside try are
executed without error. Note that, code inside finally is always executed.

For instance:

try:

print(0/0)

except:

print("Houston, we have a problem...")

The result is:

Houston, we have a problem...

The first thing that we take note of is that neither else nor finally is included
as they are optional statements. In this case, the statement print(0/0) raises an
exception. This exception is “caught” by the code inside except. This way we make
sure that even after an error, the program will flow in a predictable way.

In this code, exception handling is applied to code Listing 7.2:

Listing 7.3: exception.py: Similar to 7.2 but with exception handling.

1 try:

2 iname = input("Enter input filename: ")

3 oname = input("Enter output filename: ")

4 with open(iname) as fh:

5 line = fh.readline()

6 if ’\t’ in line:

7 value = line.split(’\t’)[0]

Error Handling � 133

8 with open(oname, ’w’) as fw:

9 fw.write(str(int(value)*.2))

10 except NameError:

11 print("There is no TAB. Check the input file")

12 except FileNotFoundError:

13 print("File not exist")

14 except PermissionError:

15 print("Can’t write to outfile.")

16 except ValueError:

17 print("The value can’t be converted to int")

18 else:

19 print("Thank you!. Everything went OK.")

At first look it is noticeable that this code is easier to follow than the previous
version (7.2). At least the code logic is separated from the error handling. From
line 10 is where the exception handling begins. According to the type of exception,
it is the code that will be executed below. We will see how to distinguish between
the different types of exceptions later.

Listing 7.3 is an introductory example of how to apply exception handling to
Listing 7.1, and not a definitive guide of how to handle exceptions.

Listing 7.4: nested.py: Code with nested exceptions

1 iname = input("Enter input filename: ")

2 oname = input("Enter output filename: ")

3 try:

4 with open(iname) as fh:

5 line = fh.readline()

6 except FileNotFoundError:

7 print("File not exist")

8 if ’\t’ in line:

9 value = line.split(’\t’)[0]

10 try:

11 with open(oname, ’w’) as fw:

12 fw.write(str(int(value)*.2))

13 except NameError:

14 print("There is no TAB. Check the input file")

15 except PermissionError:

16 print("Can’t write to outfile.")

17 except ValueError:

18 print("The value can’t be converted to int")

19 else:

20 print("Thank you!. Everything went OK.")

134 � Python for Bioinformatics

We’ve seen in general terms how the try/except clause works, and now we can
go a little deeper to discuss the types of exceptions.

7.1.2 Exception Types

Exceptions can be individualized. A nonexistent variable and mixing incompatible
data types are not the same type of error. The first exception is of the NameError
type, while the second is of the TypeError type. A complete list of exceptions can
be found in https://docs.python.org/3.6/library/exceptions.html.

How to Respond to Different Exceptions

It is possible to handle an error generically using except without a parameter:

d = {"A":"Adenine","C":"Cisteine","T":"Timine","G":"Guanine"}

try:

print d[input("Enter letter: ")]

except:

print("No such nucleotide")

Just because we may be able to respond generically to all errors doesn’t mean
that it is a good idea. This makes debugging our code difficult because an unan-
ticipated error can pass unnoticed. This code will return a “No such nucleotide”
for any type of error. If we introduce an EOF signal (end of file, CONTROL-D in
some terminals), the program will output “No such nucleotide”. It is useful to dis-
tinguish between the different types of abnormal events, and react in consequence.
For example to differentiate an EOF from a nonexistent dictionary key:

d = {"A":"Adenine", "C":"Cisteine", "T":"Timine", "G":"Guanine"}

try:

print(d[input("Enter letter: ")])

except EOFError:

print("Good bye!")

except KeyError:

print("No such nucleotide")

This way, the program prints “No such nucleotide” when the user enters a key
that does not exist in d dictionary and “Good bye!” when it gets an EOF.

To get information about the exception that is currently being handled, use
sys.exc_info():

Listing 7.5: sysexc.py: Using sys.exc_info()

1 import sys

https://docs.python.org/3.6/library/exceptions.html

Error Handling � 135

2

3 try:

4 0/0

5 except:

6 a,b,c = sys.exc_info()

7 print(’Error name: {0}’.format(a.__name__))

8 print(’Message: {0}’.format(b))

9 print(’Error in line: {}’.format(c.tb_lineno))

This program prints:

Error name: ZeroDivisionError

Message: integer division or modulo by zero

Error in line: 4

Listing 7.6: sysexc2.py: Another use of sys.exc_info()

1 import sys

2

3 try:

4 x = open(’random_filename’)

5 except:

6 a, b = sys.exc_info()[:2]

7 print(’Error name: {}’.format(a.__name__))

8 print(’Error code: {}’.format(b.args[0]))

9 print(’Error message: {}’.format(b.args[1]))

This program prints:

Error name: FileNotFoundError

Error code: 2

Error message: No such file or directory

7.1.3 Triggering Exceptions

Exceptions can be activated manually using raise, without the need to wait for
them to occur. You may be wondering why you would want to trigger an exception.
An appropriately raised exception may be more helpful to the programmer or to
the user than an exception that is fired in an uncontrolled way. This is especially
true when debugging programs.

This is better understood with an example. The avg function that follows,
calculates the average of a sequence of numbers:

def avg(numbers):

return sum(numbers)/len(numbers)

136 � Python for Bioinformatics

A function of this type will have problems with an empty list:

>>> avg([])

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 2, in avg

ZeroDivisionError: division by zero

The issue with this error message is that it does not tell us that it was caused
by the empty list, but says that it was provoked but trying to divide by zero. By
knowing how the function works, one can deduce that an empty list causes this
error. However, it would be more interesting if this error points this out, without
having to know the internal structure of the function. For this we can raise an error
by ourselves.

def avg(numbers):

if not numbers:

raise ValueError("Please enter at least one element")

return sum(numbers)/len(numbers)

In this case, the error type is closer to the actual problem.

>>> avg([])

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 3, in avg

ValueError: Please enter at least one element

We could have avoided the error if we printed a string without raising the error,
but this will be against pythonic principles (“errors should not pass unnoticed”). In
practice, this may cause problems because if a function returns an unanticipated
value, the effects can be unpredictable. On raising the exception, we assure the
error will not pass unnoticed.

In some texts or old code you will find a syntax of the form raise "This is

an error". These types of exceptions (called chained exceptions), are not com-
patible with Python 2.6 and later. The form raise ValueError, ’A message’ is
also deprecated and the preferred form is raise ValueError(’A message’). From
Python 3.0, the latter form is mandatory.1

7.2 CREATING CUSTOMIZED EXCEPTIONS

An advantage of the exception system is that we don’t have to limit ourselves to
those provided by Python. We can define new exceptions to serve our needs. In

1Please see PEP 3109 (http://www.python.org/dev/peps/pep-3109) regarding the rationale
for this.

http://www.python.org/dev/peps/pep-3109

Error Handling � 137

order to create an exception, we need to work with Object Oriented Programming
(OOP), a topic that has not been covered yet. As a result, if you’re reading this
book from the start and need to create your own exceptions, my recommendation
is that you skip the rest of this chapter and proceed directly to Chapter 8. After
reading Chapter 8, return to this section.

All Exceptions Derive from Exception Class

Since all exceptions derive from the Exception class, we can make our own excep-
tion by subclassing the Exception class. Take for example this exception that I
called NotDNAException. It should be raised when there is a DNA sequence with a
character not belonging to ’a’, ’c’, ’t’, or ’g’. Let’s see a custom exception defined:

class NotDNAException(Exception):

"""A user-defined exception"""

def __init__(self, dna):

self.dna = dna

def __str__(self):

for nt in self.dna:

if nt not in ’atcg’:

return nt

The programmer should create a code to detect the exception:

dnaseq = ’agctwtacagt’

if set(dnaseq) != set(’atcg’):

raise NotDNAException(dnaseq)

else:

print(’OK’)

If dnaseq is an iterable object with ’a’, ’c’, ’t’, or ’g’, this code prints OK. But
if dnaseq contains a non-DNA character, the exception will be raised. This is the
result of the former code but with a ’w’ in dnaseq:

Traceback (most recent call last):

File "7_25.py", line 22, in <module>

raise NotDNAException(dnaseq)

__main__.NotDNAException: w

7.3 ADDITIONAL RESOURCES

• PEP 3134 “Exception Chaining and Embedded Tracebacks.”
https://www.python.org/dev/peps/pep-3134/

• Python documentation. Built-in exceptions.
https://docs.python.org/3.6/library/exceptions.html

https://www.python.org/dev/peps/pep-3134/
https://docs.python.org/3.6/library/exceptions.html

138 � Python for Bioinformatics

• Python documentation. Standard errno system symbols.
https://docs.python.org/3.6/library/errno.html

• C H. Swaroop. Python exceptions.
https://python.swaroopch.com/exceptions.html

• Ian Bicking. Re-raising exceptions.
http://www.ianbicking.org/blog/2007/09/re-raising-exceptions.html

7.4 SELF-EVALUATION

1. What is the meaning of LBYL and EAFP? Which one is used in Python?

2. What is an exception?

3. What is an “unhandled exception”?

4. When do you use finally and when do you use else?

5. Exceptions are often associated with file handling. Why?

6. How do you sort an error derived from a disk full condition from trying to
write to a read-only file system?

7. Why is it not advisable to use except: to catch all kind of exceptions, instead
of using, for example, except IOError:?

8. Exceptions can be raised at will. Why would you do that?

9. What is the purpose of sys.exc_info()?

10. Explain the purpose of this function:

def formatExceptionInfo():

""" Author: Arturo ’Buanzo’ Busleiman """

cla, exc = sys.exc_info()[:2]

excName = cla.__name__

try:

excArgs = exc.__dict__["args"]

except KeyError:

excArgs = str(exc)

return (excName, excArgs)

https://docs.python.org/3.6/library/errno.html
https://python.swaroopch.com/exceptions.html
http://www.ianbicking.org/blog/2007/09/re-raising-exceptions.html

C H A P T E R 8

Introduction to Object

Orienting Programming

(OOP)

CONTENTS

8.1 Object Paradigm and Python . 139
8.2 Exploring the Jargon . 140

Classes: Object Generators . 140
Instance: Particular Implementation of Class . 140
Attributes or Instance Variables: Characteristics of Objects 141
Methods: Behavior of Objects . 141
Class Attributes: Characteristics of Classes . 141
Inheritance: Properties Are Transmitted between the Related Classes 141
Polymorphism . 141
Encapsulation . 141

8.3 Creating Classes . 142
8.4 Inheritance . 145

Introducing Some Biopython Objects . 146
8.5 Special Methods . 149

8.5.1 Create a New Data Type Using a Built-in Data Type 154
8.6 Making Our Code Private . 154
8.7 Additional Resources . 155
8.8 Self-Evaluation . 156

8.1 OBJECT PARADIGM AND PYTHON

As mentioned in the introduction of the book, Python is an object-oriented lan-
guage. Unlike other languages that handle objects, Python allows us to program
in a classic procedural way, without considering the objects paradigm. Sometimes
this is called a “multi-paradigm language.”

We have already used objects, even without stating it in an explicit way. Data
types included in Python are objects. Strings, dictionaries, and lists, are implemen-
tation of objects. Each of them has its associated functions (methods in the jargon)
and its attributes (associated data). We have seen that lower() returns a string

139

140 � Python for Bioinformatics

in lower case. This is because all the objects of the class string have the method
lower() associated with them.

Representing part of the real world usually is one of the goals of programming.
From a bank transaction to the reconstruction of a DNA sequence, all can be
expressed in a programming language. Although data types included in Python
are many and varied, its capacity to include all our information modeling needs is
limited. A class can be used to define new kind of data type.

For example, a dictionary can represent a translation table between nucleotides
and amino acids, a string may represent a DNA sequence and a tuple can represent
the space coordinates of an atom in a protein. But what data type do we use to
represent a metabolic state of a cell? The different domains in a protein? The result
of a BLAST run? What about an ecosystem?

There is a need to define our own data types, to be able to model any system,
either biological or any other type. Although the functions are useful to modularize
the code, they are not designed to fulfill this role. The functions cannot store states,
since the values of variables only have life while the function is being executed.
Other languages have their personalized data types, like “structs” in C or “record”
in Pascal, but they do not have the same flexibility as the objects of languages
based on OOP (like Java, C++ or Python). Objects have enough ductility to be
able to model any type of system and its possible relations with other systems.

8.2 EXPLORING THE JARGON

The world of OOP has its own vocabulary. In this section I will try to clarify a few
of the many new words such as class, method, instance, attributes, polymorphism,
inheritance, etc. The definitions will not be exhaustive. Some of them will not even
be exact, but the priority will be the understanding of the subject rather than
being overly formal. Let’s remember that the objective of this book is to provide
programming tools to solve biological problems. Keeping this in mind, the following
definitions and their respective examples have been written.

Classes: Object Generators

A class is a template that is used to generate objects. Objects can contain data
and have associated functions. A class can be a data type such as string or set,
but also something more complex like genome, people, sequences, etc. Any object
capable of being abstracted can be a class.

Instance: Particular Implementation of Class

An instance is the implementation of a class. For instance, if we have a class Orca,
an instance can be Willy. Several instances from the same class can be created (for
example, Shamu) and all are independent of each other.

Introduction to Object Orienting Programming (OOP) � 141

Attributes or Instance Variables: Characteristics of Objects

Each object will have its own characteristics (or attributes), for example weight.
Willy may have a weight different from Shamu, but in spite of having variations
in their attributes, both instances, belong to the same class Orca. They share at
least the “type of attributes.” We could create a class dog, with instances Lassie,
Laika and Rin-tin-tin. This class can have the attribute hair_color, which is
not going to be shared by instances of the Orca class.

Methods: Behavior of Objects

A method is a function associated with an object. Methods define how the objects
“behave.” For example, the DNA class can have an instance plasmid with a method
translate that allows translating an amino acid sequence into a protein. The
notation in Python for this is: plasmid.translate(). This method is a function
associated with a class. It could require as parameters a string with the DNA
sequence and a dictionary with a translation table. Keeping with the Orca class, it
could have an eat method.

Class Attributes: Characteristics of Classes

Attributes are variables associated with all the objects of a class. Whenever an
object is created from a class, this object inherits the variable of the class. In the
Orca class, weight can be a class attribute.

Inheritance: Properties Are Transmitted between the Related Classes

Classes can be related to each other and are not isolated entities. It is possible to
have a Mammal class with common properties with the Orca class and the Dog
class. For example, the method reproduction can be defined for the Mammal class.
When we create the classes Dog and Orca, and define them as “children” of Mammal,
it won’t be necessary to create for them the method reproduction. This method
will be inhered from the parent class. Child classes may have their own unique
methods, like swim and run.

Polymorphism

Polymorphism is the ability of different types of objects to respond to the same
method with a different behavior. The same method, for example feed, is very
different in the Orca class and the Dog class. Both will be called the same way but
the result may be different. For example, you can iterate over a list, a dictionary, a
file, and more in the same way, but the way Python handles the iteration changes
for each type of object.

142 � Python for Bioinformatics

Encapsulation

Encapsulation is the ability to hide the internal operation of an object and leave
access for the programmers only through their public methods. The term encap-
sulation is not associated with Python because this language does not have a true
encapsulation. It is possible to make the access to certain methods difficult, but
not to prevent it. It is not in the philosophy of Python to be in the way of the
programmer. What it is possible to do in Python is to make clear which methods
and properties are owned solely by a class and which are conceived to be shared.
This behavior is also referred as pseudo-encapsulation or translucent encapsulation.
It is up to the programmer to make a rational use of this option. This is called in
Python: Protection by convention, not by legislation. See the section “Making Our
Code Private” on page 154 for using this property.

8.3 CREATING CLASSES

Classes are the template of the objects. The syntax to create classes in Python is
very simple:

class Name:

[body]

Let’s see a sample class:

class Square:

def __init__(self):

self.side = 1

This class (Square) has a method called __init__. It is a special method that
doesn’t return any value. It is executed whenever an instance of Square is created
(or instantiated). It is used to customize a specific initial state. In this case it sets
the value of the attribute side. Another peculiarity to consider is the word self,
which is repeated as parameter of the method and as part of the name of the
attribute. Self is a variable that is used to represent the instance of Square. It
is possible to use another name instead of self, but self is used by convention.
It is advisable to follow the convention because it makes our program easier to
understand by other programmers.1

To instantiate a class, you need to use function notation. This is like a function
without parameters that returns a new instance of the class.

Let’s see an example, the use of the Square class, with the creation of the
instance Bob:

>>> Bob = Square() # Bob is an instance of Square.

>>> Bob.side #Let’s see the value of side

1

1There are also code analyzers that depend on this convention to work.

Introduction to Object Orienting Programming (OOP) � 143

It is possible to change the value of the attribute side of the instance Bob:

>>> Bob.side = 5 #Assing a new value to side

>>> Bob.side #Let’s see the new value of side

5

This change is specific for the Bob instance. When new instances are created,
the method __init__ is executed again to assign the side value to the new
instance:

>>> Krusty = Square()

>>> Krusty.side

1

If the variable side is a variable that must be accessible from all the instances
of the class, it is advisable to use a class variable. These variables are shared by
all the objects of the same class.

class Square:

side = 1

This way, the value of side will be defined even before we create an instance of
Square:

>>> Square.side

1

Of course if we created instances of Square, they will also have this value of
side:

>>> Crab = Square()

>>> Crab.side

1

The class variables can have information on the instances. For example, it is
possible to use them to control how many instances of a class have been created.

class Square:

count = 0

def __init__(self):

Square.count += 1

print("Object created successfully")

This version of Square can count the number of instances that have been cre-
ated. Note that the count variable is acceded within the class as Square.count to
distinguish itself from an instance variable, which is noted with the prefix self.name.
Let’s see how this object is used:

144 � Python for Bioinformatics

>>> Bob = Square()

Object created successfully

>>> Patrick = Square()

Object created successfully

>>> Square.count

2

Let’s see another class:

class Sequence:

transcription_table = {’A’:’U’, ’T’:’A’, ’C’:’G’ , ’G’:’C’}

def __init__(self, seqstring):

self.seqstring = seqstring.upper()

def transcription(self):

tt = ""

for letter in self.seqstring:

if letter in ’ATCG’:

tt += self.transcription_table[letter]

return tt

This class has two methods and one attribute. The method __init__ is used
to set the value of seqstring in each instance:

>>> dangerous_virus = Sequence(’atggagagccttgttcttggtgtcaa’)

>>> dangerous_virus.seqstring

’ATGGAGAGCCTTGTTCTTGGTGTCAA’

>>> harmless_virus = Sequence(’aatgctactactattagtagaattgatgcca’)

>>> harmless_virus.seqstring

’AATGCTACTACTATTAGTAGAATTGATGCCA’

The Sequence class also has a method called transcription that has as its only
parameter the instance itself (represented by self). This parameter does not appear
when the function is called, because it is implicit. Notice that the function tran-
scription uses the class variable of the transcription_table (that is, a dictionary) to
convert the sequence seqstring to its transcript equivalent:

>>> dangerous_virus.transcription()

’GCUAAGAGCUCGCGUCCUCAGAGUUUAGGA’

The methods can also have parameters. In order to show this, here is a new
method (restriction) in the Sequence class. This method calculates how many re-
striction sites a sequence has for a given enzyme.2 Therefore, this method will

2A restriction enzyme is a protein that recognizes a specific DNA sequence and produces a cut
within the recognition zone.

Introduction to Object Orienting Programming (OOP) � 145

require as a parameter the name of a restriction enzyme. Another difference is that
this class will contain a dictionary that relates the name of the enzyme to the
recognition sequence:

Listing 8.1: seqclass.py: Sequence class

class Sequence:

transcription_table = {’A’:’U’, ’T’:’A’, ’C’:’G’ , ’G’:’C’}

enz_dict = {’EcoRI’:’GAATTC’, ’EcoRV’:’GATATC’}

def __init__(self, seqstring):

self.seqstring = seqstring.upper()

def restriction(self, enz):

try:

enz_target = Sequence.enz_dict[enz]

return self.seqstring.count(enz_target)

except KeyError:

return 0

def transcription(self):

tt = ""

for letter in self.seqstring:

if letter in ’ATCG’:

tt += self.transcription_table[letter]

return tt

Using the Sequence class:

>>> other_virus = Sequence(’atgatatcggagaggatatcggtgtcaa’)

>>> other_virus.restriction(’EcoRV’)

2

8.4 INHERITANCE

Inheritance of classes implies that the new (child) class “inherits” the methods and
attributes of the base class. The following is the syntax used to create a class that
inherits from other class:

class DerivedClass(BaseClass):

[body]

Following with the example of the Orca class that inhered from Mammal class:

Listing 8.2: orca.py: Orca class

146 � Python for Bioinformatics

class Orca(Mammal):

"""Docstring with class description"""

Properties here

Methods here

Let’s see as an example a class called Plasmid3 that is based on the Sequence

class. Because plasmid is a type of DNA sequence, we created the Plasmid class
which inherits methods and properties from Sequence. We also defined methods
and attributes that are exclusive to this new class, like AbResDict and ABres.
The method ABres is used to know if our plasmid has resistance to a particular
antibiotic, whereas the AbResDict attribute has the information of the regions that
characterize the different antibiotic resistances.

Listing 8.3: plasmid.py: Plasmid class

class Plasmid(Sequence):

ab_res_dict = {’Tet’:’ctagcat’, ’Amp’:’CACTACTG’}

def __init__(self, seqstring):

Sequence.__init__(self, seqstring)

def ab_res(self, ab):

if self.ab_res_dict[ab] in self.seqstring:

return True

return False

Notice that within the method __init__ of Plasmid we called the method
__init__ of Sequence. This is the way that our class inherits the attributes and
methods of the “father” class. Let’s see how the Plasmid class uses its own methods
and those of its father (Sequence). The method ABres works in a way similar to
Restriction with the difference that instead of giving back the position that we
are looking for, it simply informs us if it is present or absent.

Introducing Some Biopython Objects

While there is a special section for Biopython ahead in this book, we will see some
Biopython structures here to get familiar with them.

Class IUPACAmbiguousDNA: The class IUPACAmbiguousDNA4 is in the
module IUPAC. It is a class that derives from Alphabet and holds the in-
formation regarding the IUPAC5 approved letters for DNA sequences. In this

3A plasmid is a DNA molecule that is independent of the chromosomal DNA of a microorganism.
4See http://biopython.org/DIST/docs/api/Bio.Alphabet.IUPAC-module.html for more in-

formation.
5IUPAC stands for International Union for Pure and Applied Chemistry; it is an international

federation that regulates the nomenclature used in chemistry.

http://biopython.org/DIST/docs/api/Bio.Alphabet.IUPAC-module.html

Introduction to Object Orienting Programming (OOP) � 147

Figure 8.1 IUPAC nucleic acid notation table.

case (IUPACAmbiguousDNA) ambiguity is taken into account, that is, there
are characters to encode nucleotides not fully determined in a given position.
For example, if a nucleotide in a specific position can be A or G, it is encoded
with an R (see Figure 8.1 for the complete IUPAC nucleic acid notation ta-
ble). For this reason IUPACAmbiguousDNA has a class variable letters that
holds the string ’GATCRYWSMKHBVDN’. At first sight it doesn’t seem a very
useful class, but in the class Seq its usefulness will be shown.

Class IUPACUnambiguousDNA: Like IUPACAmbiguousDNA, there is
IUPACUnambiguousDNA. This class derives from the former, so it keeps
its properties. The only difference is that this class again defines the letters
attribute, with ’GATC’ as the content.

Class Seq: In the module Seq there is a class called Seq.6 Objects from this class
store sequence information. Up to this point we have represented sequences as
strings. The problem with this approach is that the string holds only sequence
information, and there is no metadata to tell us what kind of sequence it is
(DNA, RNA, amino acids). In the Seq class, there are two parameters: data

6See http://biopython.org/DIST/docs/api/Bio.Seq.Seq-class.html for more information.

http://biopython.org/DIST/docs/api/Bio.Seq.Seq-class.html

148 � Python for Bioinformatics

and alphabet. Data is a string with the sequence and alphabet is an object
of the alphabet type. It contains information about the type of sequence
alphabet. Another feature of this class is that it is “immutable,” that is, once
a sequence is defined, it can’t be modified (just as a string). This way we are
sure the sequence remains the same even after several manipulations. In order
to change the sequence, we have to use a MutableSeq kind of object.

The Seq class defines several methods, as the most important: complement
(returns the complement sequence), reverse_complement (returns the re-
verse complement sequence), tomutable (returns a MutableSeq object), and
tostring (returns the sequence as a string). Let’s see it in action:7

>>> from Bio.Alphabet import IUPAC

>>> from Bio.Seq import Seq

>>> first_seq = Seq(’GCTATGCAGC’, IUPAC.unambiguous_dna)

>>> first_seq

Seq(’GCTATGCAGC’, IUPACUnambiguousDNA())

>>> first_seq.complement()

Seq(’CGATACGTCG’, IUPACUnambiguousDNA())

>>> first_seq.tostring()

’GCTATGCAGC’

This object has special methods that allow the programmer to work with a
Seq type object as if it were a string:

>>> first_seq[:10] # slice a sequence

Seq(’GCTAT’, IUPACUnambiguousDNA())

>>> len(first_seq) # get the length of the sequence

10

>>> first_seq[0] # get one character

’G’

Class MutableSeq: This is an object very similar to Seq, with the main differ-
ence that its sequence can be modified. It has the same methods as Seq, with
some methods tailored to handle mutable sequences.

We can create it from scratch or it can be made from a Seq object using the
tomutable method:

>>> first_seq

Seq(’GCTATGCAGC’, IUPACUnambiguousDNA())

>>> AnotherSeq=first_seq.tomutable()

>>> AnotherSeq.extend("TTTTTTT")

7For running this code you need to install Biopyton; see page 159 more more information.

Introduction to Object Orienting Programming (OOP) � 149

>>> print(AnotherSeq)

MutableSeq(’GCTATGCAGCTTTTTTT’, IUPACUnambiguousDNA())

>>> AnotherSeq.pop()

’T’

>>> AnotherSeq.pop()

’T’

>>> print(AnotherSeq)

MutableSeq(’GCTATGCAGCTTTTT’, IUPACUnambiguousDNA())

8.5 SPECIAL METHODS

Some methods have a special meaning. We have already seen the __init__
method that is executed each time a new instance is created (or a new object is
instantiated). Each special method is executed under a pre-established condition.
The developer can modify how the object responds to each of these pre-established
conditions.

Take for example the __len__ method. This method is activated in an object
each time the function len(instance) is called. What this method returns is up to
the developer. Recall the Sequence class (Listing 8.1) and see what happens when
you want to find out the length of a sequence:

>>> len(Sequence("ACGACTCTCGACGGCATCCACCCTCTCTGAGA"))

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AttributeError: Sequence instance has no attribute ’__len__’

This was somehow expected. We didn’t define what is the meaning of the length
of Sequence. This object has several attributes and the interpreter has no way to
know which attribute returns when len(Sequence) is required. The error message
gives us a clue about the problem: “Sequence instance has no attribute ’__len__’
”. Hence if we want to set a behavior for len() function, we have to define the
special method attribute __len__:

def __len__(self):

return len(self.seqstring)

This method must be included in the class definition (8.1).

Listing 8.4: seqclass2.py: Sequence class

class Sequence:

transcription_table = {’A’:’U’, ’T’:’A’, ’C’:’G’ , ’G’:’C’}

enz_dict = {’EcoRI’:’GAATTC’, ’EcoRV’:’GATATC’}

150 � Python for Bioinformatics

def __init__(self, seqstring):

self.seqstring = seqstring.upper()

def __len__(self):

return len(self.seqstring)

def restriction(self, enz):

try:

enz_target = Sequence.enz_dict[enz]

return self.seqstring.count(enz_target)

except KeyError:

return 0

def transcription(self):

tt = ""

for letter in self.seqstring:

if letter in ’ATCG’:

tt += self.transcription_table[letter]

return tt

Now that we have defined the __len__ method, we can apply the function
len to the Sequence objects:

>>> M13 = Sequence("ACGACTCTCGACGGCATCCACCCTCTCTGAGA")

>>> len(M13)

32

In the same way that we can control what is returned by len(), we can do it
with other methods that can be programmed in a class. Let’s see some of them:8

• __str__ This method is invoked when the string representation of an object
is required. This representation is obtained with str(object) or with print
object. This way the programmer can choose how its object “looks.” For
example, the translation table provided by Biopython, Bio.Data.CodonTable,
is stored as a dictionary, but its representation appears as a table:

>>> import Bio.Data.CodonTable

>>> print(Bio.Data.CodonTable.standard_dna_table)

Table 1 Standard, SGC0

| T | C | A | G |

--+---------+---------+---------+---------+--

T | TTT F | TCT S | TAT Y | TGT C | T

T | TTC F | TCC S | TAC Y | TGC C | C

T | TTA L | TCA S | TAA Stop| TGA Stop| A

8In https://docs.python.org/3.6/reference/datamodel.html#special-method-names there
is a list of Special methods.

https://docs.python.org/3.6/reference/datamodel.html#special-method-names

Introduction to Object Orienting Programming (OOP) � 151

T | TTG L(s)| TCG S | TAG Stop| TGG W | G

--+---------+---------+---------+---------+--

C | CTT L | CCT P | CAT H | CGT R | T

C | CTC L | CCC P | CAC H | CGC R | C

C | CTA L | CCA P | CAA Q | CGA R | A

C | CTG L(s)| CCG P | CAG Q | CGG R | G

--+---------+---------+---------+---------+--

A | ATT I | ACT T | AAT N | AGT S | T

A | ATC I | ACC T | AAC N | AGC S | C

A | ATA I | ACA T | AAA K | AGA R | A

A | ATG M(s)| ACG T | AAG K | AGG R | G

--+---------+---------+---------+---------+--

G | GTT V | GCT A | GAT D | GGT G | T

G | GTC V | GCC A | GAC D | GGC G | C

G | GTA V | GCA A | GAA E | GGA G | A

G | GTG V | GCG A | GAG E | GGG G | G

--+---------+---------+---------+---------+--

• __repr__ invoked with the repr() built-in function and when the object is
entered into the interactive shell. It should look like a valid Python expression
that could be used to re-create an object with the same value, when not pos-
sible, a string of the form <...some useful description...>. It is used mostly in
debugging. See the same object as above but with repr() instead of print():

>>> repr(Bio.Data.CodonTable.standard_dna_table)

’<Bio.Data.CodonTable.NCBICodonTableDNA instance at 0xb7da0c>’

• __getitem__ is used to access an object sequentially or by using a sub-
script like object[n]. Each time you try to access an object as object[n], ob-
ject.__getitem__(n) is executed. This method requires two parameters: The
object (usually self) and the index. There is a usage sample in listing 8.6.

• __iter__ allows walking over a sequence. With __iter__ we can iterate the
same way over many different objects such as dictionaries, lists, files, strings,
and so on. The for statement calls the build-in function iter on the object
being iterated over. __iter__ defines how the items are returned when
using the __next__ special method. In the first example we create the
Straight class, where its elements are returned in the same order as they are
stored, while the Reverse class returns its elements using an inverted order:

Listing 8.5: straight.py: Straight and Reverse classes

class Straight:

152 � Python for Bioinformatics

def __init__(self, data):

self.data = data

self.index = 0

def __iter__(self):

return self

def __next__(self):

if self.index == len(self.data):

raise StopIteration

answer = self.data[self.index]

self.index += 1

return answer

class Reverse:

def __init__(self, data):

self.data = data

self.index = len(data)

def __iter__(self):

return self

def __next__(self):

if self.index == 0:

raise StopIteration

self.index -= 1

return self.data[self.index]

Let’s see them in action:

>>> a = Straight("123")

>>> for i in a:

print(i)

1

2

3

>>> b = reverse("123")

>>> for i in b:

print(i)

3

2

1

• __setitem__ is used to assign a value to a key (with the form self[key]=value).
It is typically used to change the value of a dictionary key. In this case it is
used to replace a character in a string:

Introduction to Object Orienting Programming (OOP) � 153

def __setitem__(self, key, value):

if len(value) == 1:

self.seq = self.seq[:key] + value + self.seq[key+1:]

return None

else:

raise ValueError

• __delitem__ implements the deletion of objects of the form self[key]. It can
be used with any object that supports the deletion of its elements.

Sequence class with some special methods:

Listing 8.6: seqwitsm.py: Sequence class with special methods attributes

class Sequence:

transcription_table = {’A’:’U’, ’T’:’A’, ’C’:’G’, ’G’:’C’}

comp_table = {’A’:’T’, ’T’:’A’, ’C’:’G’, ’G’:’C’}

def __init__(self, seqstring):

self.seqstring = seqstring.upper()

def restriction(self, enz):

enz_dict = {’EcoRI’:’ACTGG’, ’EcoRV’:’AGTGC’}

try:

target = enz_dict[enz]

except KeyError:

raise ValueError(’No such enzime in out enzime DB’)

return self.seqstring.count(target)

def __getitem__(self,index):

return self.seqstring[index]

def __getslice__(self, low, high):

return self.seqstring[low:high]

def __len__(self):

return len(self.seqstring)

def __str__(self):

if len(self.seqstring) >= 28:

return ’{0}...{1}’.format(self.seqstring[:25],

self.seqstring[-3:])

else:

return self.seqstring

def transcription(self):

tt = ’’

for x in self.seqstring:

if x in ’ATCG’:

tt += self.transcription_table[x]

return tt

154 � Python for Bioinformatics

def complement(self):

tt = ’’

for x in self.seqstring:

if x in ’ATCG’:

tt += self.comp_table[x]

return tt

8.5.1 Create a New Data Type Using a Built-in Data Type

We can create our own classes derived from built-in data types. To illustrate this
point, see how to create a variant of the dict type. Zdict is a dictionary-like object;
it behaves like a dictionary with one difference: Instead of raising an exception when
trying to retrieve a value with a nonexistent key, it returns 0 (zero).

Listing 8.7: zdict.py: Extending dictionary class

1 class Zdic(dict):

2 """ A dictionary-like object that return 0 when a user

3 request a non-existent key.

4 """

5

6 def __missing__(self,x):

7 return 0

Code explanation: In line 1 we name the class and pass a data type as ar-
gument (dict). This means that the resulting class (Zdic) inherits from the dict

type. From line 7 to 8 there is the definition of a special method: __missing__.
This method is triggered when the user tries to retrieve a value with a non-existent
key. It takes as an argument the value of the key, but in this case the program does
not use such value (x) since it returns 0, disregarding of the key value:

>>> a = Zdic()

>>> a[’blue’] = ’azul’

>>> a[’red’]

0

8.6 MAKING OUR CODE PRIVATE

At the beginning of this chapter it was highlighted that one of the characteristics
of the OOP is encapsulation. Encapsulation is about programmers ignoring the
internal operation of objects and only being able to see their available methods.
Some of these methods that we will create will not be for “external consumption,”
but they will serve as support for other methods of the class, which we do want

Introduction to Object Orienting Programming (OOP) � 155

to be used from other sections of the program. Some languages allow the hiding of
methods and properties. In the jargon, this is called “making a method private.”
Python does not allow the hiding of a method, because it is one of its premises not
to be in the way of the programmer. But it has a syntax that makes it difficult to
access a method or a property from outside of a class. This is called mangling and
its syntax consists of adding two underscores at the beginning (but not at the end)
of the name of the method or attribute that we want to be private. Let’s see an
example of a class that defines 2 methods, a and __b:

class TestClass:

"""A class with a "private" method (b)"""

def a(self):

pass

def __b(self):

mangled to _TestClass__b

pass

Trying to access __b() raises an error:

>>> my_object = TestClass()

>>> my_object.a()

>>> my_object.__b()

Traceback (most recent call last):

File "<pyshell#14>", line 1, in <module>

my_object.__b()

AttributeError: TestClass instance has no attribute ’__b’

It is possible to access the method a, but not __b, at least not directly. The
notation object._Class__method should be used. For example:

>>> my_object._TestClass__b()

You may be wondering what the point is of a privacy method that is not re-
ally private. On one hand, the methods that have this “semi-protection” are inher-
ited/associated by the child classes (and the name space is not contaminated). On
the other hand, when an object is explored using dir, this class of objects won’t be
seen. An important thing to consider is that the protection offered by this notation
is a convention on how to proceed more than an effective protection.

8.7 ADDITIONAL RESOURCES

• Python programming/OOP.
http://en.wikibooks.org/wiki/Python_Programming/OOP

http://en.wikibooks.org/wiki/Python_Programming/OOP

156 � Python for Bioinformatics

• Introduction to OOP with Python.
http://www.voidspace.org.uk/python/articles/OOP.shtml

• Dive into Python, by Mark Pilgrim. Chapter 5, Objects and Object-
Orientation.
http://diveintopython.org/object_oriented_framework

• Python objects, by Fredrik Lundh.
http://www.effbot.org/zone/python-objects.htm

• Java tutorial: lesson: object-oriented programming concepts.
http://java.sun.com/docs/books/tutorial/java/concepts/

• The seq object:
http://biopython.org/wiki/Seq

8.8 SELF-EVALUATION

1. Why is Python often characterized as a multi-paradigm language?

2. Name the main characteristics of Object-Oriented Programming (OOP).

3. Explain the following concepts: Inheritance, Encapsulation, and Polymor-
phism.

4. What is the difference between class attributes and instance attributes?

5. What is a special method attribute? Name at least four.

6. What is the difference between __str__ and __repr__?

7. What is a private method? Are they really private in Python?

8. What is self? Inside a class definition, what is the difference between self.var

= 0 and var = 0?

9. Define a class that keeps track of how many instances have instantiated.

10. Define a new type based on a built-in type.

http://www.voidspace.org.uk/python/articles/OOP.shtml
http://diveintopython.org/object_oriented_framework
http://www.effbot.org/zone/python-objects.htm
http://java.sun.com/docs/books/tutorial/java/concepts/
http://biopython.org/wiki/Seq

C H A P T E R 9

Introduction to Biopython

CONTENTS

9.1 What Is Biopython? . 158
9.1.1 Project Organization . 158

9.2 Installing Biopython . 159
In macOS/Linux . 159
In Windows . 162

9.3 Biopython Components . 162
9.3.1 Alphabet . 162
9.3.2 Seq . 163
Seq Objects as a String . 165
9.3.3 MutableSeq . 165
9.3.4 SeqRecord . 166
9.3.5 Align . 167
9.3.6 AlignIO . 169
AlignInfo . 170
9.3.7 ClustalW . 171
Passing Parameters to ClustalW . 173
9.3.8 SeqIO . 173
Reading Sequence Files . 174
Writing Sequence Files . 175
9.3.9 AlignIO . 176
9.3.10 BLAST . 177
BLAST Running and Processing with Biopython . 178
Starting a BLAST Job . 178
Reading the BLAST Output . 180
What’s in a BLAST Record Object? . 180
9.3.11 Biological Related Data . 187
9.3.12 Entrez . 190
eUtils at a Glance . 190
Biopython and eUtils . 191
eUtils: Retrieving Bibliography . 191
eUtils: Retrieving Gene Information . 192
9.3.13 PDB . 194
Bio.PDB Module . 195
9.3.14 PROSITE . 196
9.3.15 Restriction . 197
Bio.Restriction Module . 198

157

158 � Python for Bioinformatics

Analysis Class: All in One . 199
9.3.16 SeqUtils . 200
DNA Utils . 200
Protein Utils . 202
9.3.17 Sequencing . 202
Phd Files . 203
Ace Files . 203
9.3.18 SwissProt . 205

9.4 Conclusion . 207
9.5 Additional Resources . 207
9.6 Self-Evaluation . 209

9.1 WHAT IS BIOPYTHON?

Biopython1 is a package of useful modules to develop bioinformatics applications.
Although each bioinformatics analysis is unique, there are some tasks that are
repeated, constants shared between programs and standard file formats. This situ-
ation suggests the need for a package to deal with biological problems.

Biopython started as an idea in August of 1999; it was an initiative by Jeff
Chang and Andrew Dalke. Although they came up with the idea, collaborators
soon joined the project. Among the most active developers, Brad Chapman, Peter
Cock, Michiel de Hoon, and Iddo Friedberg stand out. The project began to take
code form in February 2000 and in July of the same year the first release was
made. The original idea was to build a package equivalent to BioPerl which, back
then, was the principal bioinformatics package. Although BioPerl may have been
Biopython’s inspiration, the conceptual differences between Perl and Python have
given Biopython a particular way of doing things. Biopython is part of the family
of open-bio projects (also known as Bio*), which, institutionally is a member of the
Open Bioinformatics Foundation.2

9.1.1 Project Organization

It is an open source community project. Although the Open Bioinformatics Founda-
tion takes care of administrative, economic, and legal aspects, its content is managed
by the software developers and users.

The code is in the public domain and is available in its Github repository
at https://github.com/biopython/biopython. Anyone can participate in the
project. The procedure that you have to follow to collaborate on Biopython is
similar to other open source projects. You have to use the software and then deter-
mine if it needs any additional features or if you want to modify any of the existing
features. Before writing any code, my recommendation is to discuss your ideas on

1Available from http://www.biopython.org.
2http://www.open-bio.org

https://github.com/biopython/biopython
http://www.biopython.org
http://www.open-bio.org

Introduction to Biopython � 159

the development mailing list3 first. There you will find out if that feature had al-
ready been discussed and was rejected or if it was not included because nobody
needed it until that time. In the case of a bug fix, you don’t need to ask; just report
it in the issue tracker,4 and if possible, add a solution proposal.

Due to the open nature of the project, tens of people have contributed code
from diverse fields within Bioinformatics, from information theory to population
genetics.

I was involved in Biopython as a user since 2002 and submitted my first contribu-
tion in 2003 with lcc.py, a function to calculate the local compositional complexity
of a sequence. In 2004 I submitted code for melting point calculation of oligonu-
cleotides. In 2007 I contributed with some functions for the CheckSum module.5

My last submission was a patch to Bio.Restriction module (2017). In every case I
found a supportive community, especially in the first submission when my coding
skills were at a beginner level.

For more information concerning how to participate in the Biopython project,
see the specific instructions at http://biopython.org/wiki/Contributing.

The Biopython code is developed under the Biopython License.6 It is very liberal
and there are virtually no restrictions to its use.7

9.2 INSTALLING BIOPYTHON

In macOS/Linux

The following commands shows how to install Biopython under a virtualenv. Fist
install virtualenv (if you don’t have it already):

$ pip install virtualenv

Collecting virtualenv

Using cached virtualenv-15.1.0-py2.py3-none-any.whl

Installing collected packages: virtualenv

Successfully installed virtualenv-15.1.0

You are using pip version 8.1.1, however version 9.0.1 is available.

You should consider upgrading via the ’pip install --upgrade pip’ <=

command.

$ pip install --upgrade pip

Collecting pip

(...)

3http://biopython.org/wiki/Mailing_lists
4https://github.com/biopython/biopython/issues
5Bassi, Sebastian, and Gonzalez, Virginia. New checksum functions for Biopython. Available

from Nature Precedings <http://dx.doi.org/10.1038/npre.2007.278.1> (2007).
6The license is included in the Biopython package and available online at http://www.

biopython.org/DIST/LICENSE.
7The only condition imposed for using Biopython are related to publishing the copyright notice

and not using the name of the contributors in advertising.

http://biopython.org/wiki/Contributing
http://biopython.org/wiki/Mailing_lists
https://github.com/biopython/biopython/issues
http://www.biopython.org/DIST/LICENSE
http://www.biopython.org/DIST/LICENSE
http://dx.doi.org/10.1038/npre.2007.278.1

160 � Python for Bioinformatics

Create a virtualenv for Biopython (in this case the virtualenv is called
py4biovirtualenv)

$ virtualenv py4biovirtualenv

Using base prefix ’/usr’

New python executable in /home/sb/py4biovirtualenv/bin/python3

Also creating executable in /home/sb/py4biovirtualenv/bin/python

Installing setuptools, pip, wheel...done.

Activate the virtualenv

$. py4biovirtualenv/bin/activate

(py4biovirtualenv) $

Inside the virtualenv, install numpy and then, biopython

(py4biovirtualenv) $ pip install numpy

Collecting numpy

(...)

Installing collected packages: numpy

Successfully installed numpy-1.11.2

(py4biovirtualenv) $ pip install biopython

Collecting biopython

(...)

Successfully installed biopython-1.68

(py4biovirtualenv) $ python

Python 3.5.2 (default, Nov 17 2016, 17:05:23)

[GCC 5.4.0 20160609] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import Bio

>>> Bio.__version__

’1.68’

If you are using Anaconda, instead of running virtualenv, use conda create.
You need to do it only once.

$ conda create -n biopy python

Fetching package metadata:

Solving package specifications:

Package plan for installation in environment /sb/anaconda3/envs/biopy:

The following packages will be downloaded:

package | build

---------------------------|-----------------

Introduction to Biopython � 161

pip-9.0.1 | py35_1 1.7 MB

(...)

#

To activate this environment, use:

$ source activate biopy

#

To deactivate this environment, use:

$ source deactivate

#

Once the conda environment (equivalent to a virtualenv) is created, you need
to activate it. You do this each time you need to use the environment:

$ source activate biopy

discarding /sb/anaconda3/bin from PATH

prepending /sb/anaconda3/envs/biopy/bin to PATH

(biopy)$

Once in the conda environment, install Biopython using conda instead of pip:

(biopy)$ conda install biopython

Fetching package metadata:

Solving package specifications:

Package plan for installation in environment /sb/anaconda3/envs/biopy:

The following packages will be downloaded:

(...)

The following NEW packages will be INSTALLED:

biopython: 1.68-np111py35_0

mkl: 11.3.3-0

numpy: 1.11.2-py35_0

Proceed ([y]/n)?

(...)

Test that the Biopython package is installed:

(biopy)$ python

Python 3.5.2 |Continuum Analytics, Inc.| (default, Jul 2 2016)

[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux

162 � Python for Bioinformatics

Type "help", "copyright", "credits" or "license" for more information.

>>> import Bio

>>> Bio.__version__

’1.68’

In Windows

There are no official Biopython packages for 64-bit Windows (the most common
Windows architecture), so the Windows installation is not so easy. The first step
us to download an unofficial package from http://www.lfd.uci.edu/~gohlke/

pythonlibs. There are a lot of files in this page, so choose carefully. It should match
the Python version and microprocessor architecture you are using. For Python 3.6 in
a 64-bit machine, download biopython-1.68-cp36-cp36m-win_amd64.whl. Once
the file is downloaded, take note where it is because you will need it in the next
step. Since Python has pip pre-installed since version 2.7.9, you can use it from the
command prompt:

c:\Users\sb\AppData\Local\Programs\Python36\Scripts> pip install c:<=

\Users\sb\Downloads\biopython-1.68-cp36-cp36m-win_amd64.whl

This will install Biopython.

9.3 BIOPYTHON COMPONENTS

Biopython has several modules. Some facilitate tasks that are undertaken on a
daily basis in most molecular biology laboratories while others have very specific
objectives. What is “commonly used” will depend on the work environment of the
reader, so the compilation that follows is based in my personal perspective on what
I think it is most used.

As with all enumerations, it is arbitrary and it is possible that it would not
reflect the interests of all readers. It’s sorted in didactic fashion with the intention
that the first items will help you to understand the rest.

9.3.1 Alphabet

In bioinformatics we deal with alphabets. DNA has a 4-letter alphabet (A,C,T,G)
while proteins have their 20 amino acids, each one represented by a letter of the
alphabet. There are also special “alphabets” like the ones that contemplate ambigu-
ity positions. These are positions where more than one nucleotide may be present.
For example, the letter S may represent the nucleic acids C or G, and the letter H
represents A, C, or T. This ambiguous alphabet in Biopython is called ambigu-
ous_dna. Concerning the proteins, there is also an extended dictionary, which
is the dictionary that contains amino acids that are not normally found in pro-
teins8 (ExtendedIUPACProtein). Similarly, there is an extended alphabet for

8Selenocysteine and pyrrolysine are typical examples.

http://www.lfd.uci.edu/~gohlke/pythonlibs
http://www.lfd.uci.edu/~gohlke/pythonlibs

Introduction to Biopython � 163

nucleotides (ExtendedIUPACDNA) that allows letters with modified bases. Go-
ing back to proteins, there is also a reduced alphabet that, taking into account
common physicochemical properties, lumps together several amino acids into one
letter.

There is even one alphabet that is not DNA or amino-acid based: SecondaryS-
tructure. This alphabet represents domains like Helix, Turn, Strand, and Coil.

Alphabets defined by IUPAC are stored in Biopython as classes of the IUPAC
module. The parent module (Bio.Alphabet) includes more general/generic cases.
Here are some attributes of the alphabets:

>>> import Bio.Alphabet

>>> Bio.Alphabet.ThreeLetterProtein.letters

[’Ala’, ’Asx’, ’Cys’, ’Asp’, ’Glu’, ’Phe’, ’Gly’, ’His’, <=

’Ile’, ’Lys’, ’Leu’, ’Met’, ’Asn’, ’Pro’, ’Gln’, ’Arg’, <=

’Ser’, ’Thr’, ’Sec’, ’Val’, ’Trp’, ’Xaa’, ’Tyr’, ’Glx’]

>>> from Bio.Alphabet import IUPAC

>>> IUPAC.IUPACProtein.letters

’ACDEFGHIKLMNPQRSTVWY’

>>> IUPAC.unambiguous_dna.letters

’GATC’

>>> IUPAC.ambiguous_dna.letters

’GATCRYWSMKHBVDN’

>>> IUPAC.ExtendedIUPACProtein.letters

’ACDEFGHIKLMNPQRSTVWYBXZJUO’

>>> IUPAC.ExtendedIUPACDNA.letters

’GATCBDSW’

Alphabets are used to define the content of a sequence. How do you know that
sequence made of “CCGGGTT” is a small peptide with several cysteine, glycine, and
threonine or it is a DNA fragment of cytosine, guanine, and thymine? If sequences
were stored as strings, there would be no way to know what kind of sequence it is.
This is why Biopython introduces Seq objects.

9.3.2 Seq

This object is composed of the sequence itself and an alphabet that defines the
nature of the sequence.

Let’s create a sequence object as a DNA fragment:

>>> from Bio.Seq import Seq

>>> import Bio.Alphabet

>>> seq = Seq(’CCGGGTT’, Bio.Alphabet.IUPAC.unambiguous_dna)

Since this sequence (seq) is defined as DNA, you can apply operations that
are permitted in DNA sequences. Seq objects have the transcribe and translate
methods:

164 � Python for Bioinformatics

>>> seq.transcribe()

Seq(’CCGGGUU’, IUPACUnambiguousRNA())

>>> seq.translate()

BiopythonWarning: Partial codon, len(sequence) not a multiple of th<=

ree.

Explicitly trim the sequence or add trailing N before translation.<=

This may become an error in future.

Seq(’PG’, IUPACProtein())

An RNA sequence can’t be transcribed, but it can be translated:

>>> rna_seq = Seq(’CCGGGUU’,Bio.Alphabet.IUPAC.unambiguous_rna)

>>> rna_seq.transcribe()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "/home/sb/Seq.py", line 520, in transcribe

raise ValueError("RNA cannot be transcribed!")

ValueError: RNA cannot be transcribed!

>>> rna_seq.translate()

Seq(’PG’, IUPACProtein())

You can go back from RNA to DNA using the back_transcribe method.

>>> rna_seq.back_transcribe()

Seq(’CCGGGTT’, IUPACUnambiguousDNA())

Tip: The Transcribe Function in Biopython.
Note that the transcribe function may not work as expected by most biologists.
This function replaces each occurrence of “T” in the sequence with a “U.” In biol-
ogy, a transcription means replace each DNA nucleotide with its complementary
nucleotide and reverse the resulting string. The transcribe function works this
way because all biological publications show the non-template strand. Biopython
assumes that you are giving the non-template strand to the function. The Bio.Seq
module also has transcribe, back transcribe, and translate functions that can be
used on Seq objects or strings:

>>> from Bio.Seq import translate, transcribe, back_transcribe

>>> dnaseq = ’ATGGTATAA’

>>> translate(dnaseq)

’MV*’

>>> transcribe(dnaseq)

’AUGGUAUAA’

>>> rnaseq = transcribe(dnaseq)

>>> translate(rnaseq)

Introduction to Biopython � 165

’MV*’

>>> back_transcribe(rnaseq)

’ATGGTATAA’

Seq Objects as a String

Seq objects behave almost like a string, hence many string operations are allowed:

>>> seq = Seq(’CCGGGTTAACGTA’,Bio.Alphabet.IUPAC.unambiguous_dna)

>>> seq[:5]

Seq(’CCGGG’, IUPACUnambiguousDNA())

>>> len(seq)

13

>>> print(seq)

CCGGGTTAACGTA

This behavior is constantly evolving, so expect more string-like features in the
next Biopython releases.

If you need a string representation of a Seq object, you can use the Python
built-in str() function. There is also a tostring() method that still works but it is
recommended only if you want to make your code compatible with older Biopython
versions.

9.3.3 MutableSeq

Seq objects are not mutable. This is intended since you may want to keep your
data without changes. This way, immutable seq matches Python string behavior.
Attempting to modify it raises an exception:

>>> seq[0] = ’T’

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: ’Seq’ object does not support item assignment

This problem can be solved by generating a MutableSeq with the to-
mutable() method:

>>> mut_seq = seq.tomutable()

>>> mut_seq

MutableSeq(’CCGGGTTAACGTA’, IUPACUnambiguousDNA())

Introduce a change to test that it is mutable:

166 � Python for Bioinformatics

>>> mut_seq[0] = ’T’

>>> mut_seq

MutableSeq(’TCGGGTTAACGTA’, IUPACUnambiguousDNA())

You can change the sequence as if it were a list, with append(), insert(),
pop() and remove(). There are also some methods specific for manipulating a
DNA sequence:

>>> mut_seq.reverse()

>>> mut_seq

MutableSeq(’ATGCAATTGGGCT’, IUPACUnambiguousDNA())

>>> mut_seq.complement()

>>> mut_seq

MutableSeq(’TACGTTAACCCGA’, IUPACUnambiguousDNA())

>>> mut_seq.reverse_complement()

>>> mut_seq

MutableSeq(’TCGGGTTAACGTA’, IUPACUnambiguousDNA())

9.3.4 SeqRecord

The Seq class is important because it stores the main subject of study in bioin-
formatics: the sequence. Sometimes we need more information than the plain se-
quences, like the name, id, description, and cross references to external databases
and annotations. For all this information related to the sequence, there is the Se-
qRecord class. In other words, a SeqRecord is a Seq object with associated
metadata:

>>> from Bio.SeqRecord import SeqRecord

>>> SeqRecord(seq, id=’001’, name=’MHC gene’)

SeqRecord(seq=Seq(’CCGGGTTAACGTA’, IUPACUnambiguousDNA()), id=’001’<=

, name=’MHC gene’, description=’<unknown description>’, dbxrefs=[])

SeqRecord has two main attributes:

id A string with an identifier. This attribute is optional but highly recommended.

seq A Seq object. This attribute is required.

There are some additional attributes:

name A string with the name of the sequence.

description A string with more information.

dbxrefs A list of strings; each string is a database cross reference id.

Introduction to Biopython � 167

features A list of SeqFeature objects. This represents those Sequence Feature
found in Genbank records. This attribute is usually populated when we re-
trieve a sequence from a GenBank file (using, for example, the SeqIO parser).
It contains the sequence location, type, strand, and other variables.

annotations A dictionary with further information about the whole sequence.
This attribute can’t be set when initializing a SeqRecord object.

Creating a SeqRecord object from scratch:

>>> from Bio.SeqRecord import SeqRecord

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import generic_protein

>>> rec = SeqRecord(Seq(’mdstnvrsgmksrkkkpkttvidddddcmtcsacqs’

’klvkisditkvsldyintmrgntlacaacgsslkll’,

generic_protein),

id = ’P20994.1’, name = ’P20994’,

description = ’Protein A19’,

dbxrefs = [’Pfam:PF05077’, ’InterPro:IPR007769’,

’DIP:2186N’])

>>> rec.annotations[’note’] = ’A simple note’

>>> print(rec)

ID: P20994.1

Name: P20994

Description: Protein A19

Database cross-references: Pfam:PF05077, InterPro:IPR007769, DIP<=

:2186N

Number of features: 0

/note=A simple note

Seq(’mdstnvrsgmksrkkkpkttvidddddcmtcsacqsklvkisditkvsldyint...kl<=

l’, ProteinAlphabet())

To create a SeqRecord from a GenBank file, please see page 174.

9.3.5 Align

The Align module contains code for dealing with alignments. The central object
of this module is the MultipleSeqAlignment class. This object stores sequence
alignments. It is not meant for making alignments; it is supposed that the sequences
are already aligned before storing the alignments in it.

Here is a simple two small peptide sequence alignment:

MHQAIFIYQIGYPLKSGYIQSIRSPEYDNW

|| ||||||||*|||||||||||||| ||

MH--IFIYQIGYALKSGYIQSIRSPEY-NW

168 � Python for Bioinformatics

This alignment can be stored in one object by using Biopython as in Listing
9.1:

Listing 9.1: Using Align module

1 from Bio.Alphabet import generic_protein

2 from Bio.Align import MultipleSeqAlignment

3 from Bio.Seq import Seq

4 from Bio.SeqRecord import SeqRecord

5 seq1 = ’MHQAIFIYQIGYPLKSGYIQSIRSPEYDNW’

6 seq2 = ’MH--IFIYQIGYALKSGYIQSIRSPEY-NW’

7 seq_rec_1 = SeqRecord(Seq(seq1, generic_protein), id = ’asp’)

8 seq_rec_2 = SeqRecord(Seq(seq2, generic_protein), id = ’unk’)

9 align = MultipleSeqAlignment([seq_rec_1, seq_rec_2])

10 print(align)

Code explanation: The MultipleSeqAlignment class is instantiated in line
9. align is the name of the MultipleSeqAlignment object. Both sequences are added
in the MultipleSeqAlignment object initialization as SeqRecord objects.

Output of previous code:

ProteinAlphabet() alignment with 2 rows and 30 columns

MHQAIFIYQIGYPLKSGYIQSIRSPEYDNW asp

MH--IFIYQIGYALKSGYIQSIRSPEY-NW unk

MultipleSeqAlignment can be treated as a list of sequences (or SeqRecord
objects), it shares some of its methods. To add a new sequence to the alignment
uses append and to add multiple sequences, it supports extend:

>>> seq3 = ’M---IFIYQIGYAAKSGYIQSIRSPEY--W’

>>> seq_rec_3 = SeqRecord(Seq(seq3, generic_protein), id = ’cas’)

>>> align.append(seq_rec_3)

>>> print(align)

ProteinAlphabet() alignment with 3 rows and 30 columns

MHQAIFIYQIGYPLKSGYIQSIRSPEYDNW asp

MH--IFIYQIGYALKSGYIQSIRSPEY-NW unk

M---IFIYQIGYAAKSGYIQSIRSPEY--W cas

Note that the new SeqRecord objects must have the same length as the original
alignment, and have alphabets compatible with the alignment’s alphabet.

Another property in common with lists, is that you can retrieve an element (a
row or a SeqRecord object) by using an integer index:

>>> align[0]

Introduction to Biopython � 169

SeqRecord(seq=Seq(’MHQAIFIYQIGYPLKSGYIQSIRSPEYDNW’, ProteinAlphabet()),<=

id=’asp’, name=’<unknown name>’, description=’<unknown description>’, <=

dbxrefs=[])

Use Python’s slice notation instead of an integer index to retrieve a sub-
alignment:

>>> print(align[:2,5:11])

ProteinAlphabet() alignment with 2 rows and 6 columns

FIYQIG asp

FIYQIG unk

As in any Python sequence, you can get the length of the alignment with len():

>>> len(align)

3

It also supports iterating over all its elements, returning a SeqRecord object for
each sequence.

The following code calculates the isoelectric point of each sequence in the align-
ment:

>>> from Bio.SeqUtils.ProtParam import ProteinAnalysis

>>> for seq in align:

... print(ProteinAnalysis(str(seq.seq)).isoelectric_point())

6.50421142578125

8.16033935546875

8.13848876953125

9.3.6 AlignIO

To read a file with one alignment, use AlignIO.read(). It requires two parameters:
The file name (or file handle object) and the format of the alignment. Valid for-
mats are clustal, emboss, fasta, fasta-m10, ig, maf, nexus, phylip, phylip-sequential,
phylip-relaxed and stockholm. The AlignIO.read() method returns a Multiple-
SeqAlignment object.

>>> from Bio import AlignIO

>>> AlignIO.read(’cas9al.fasta’, ’fasta’)

print(align)

SingleLetterAlphabet() alignment with 8 rows and 1407 columns

MDKKYSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIK...GGD J7M7J1

MDKKYSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIK...GGD A0A0C6FZC2

MDKKYSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIK...GGD A0A1C2CVQ9

MDKKYSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIK...GGD A0A1C2CV43

170 � Python for Bioinformatics

MDKKYSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIK...GGD Q48TU5

MDKKYSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIK...GGD M4YX12

MKKPYSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIK...GGD A0A0E2EP65

--...GED A0A150NVN1

For reading files with more than one alignment, use AlignIO.parse(): It takes
the same arguments as AlignIO.read(), and it returns an iterator with all the
alignments present in this file. It is meant to be used in a loop:

>>> from Bio import AlignIO

>>> for alignment in AlignIO.parse(’example.aln’, ’clustal’):

... print(len(alignment))

1098

233

To write an alignment to disk, use AlignIO.write(). This method requires as
the first parameter the MultipleSeqAlignment object, then it needs the same
two parameters as AlignIO.read() (file name and format). Accepted formats are:
clustal, fasta, maf, nexus, phylip, phylip-sequential, phylip-relaxed, stockholm. The
AlignIO.write() method returns the number of alignments saved:

>>> from Bio import AlignIO

>>> AlignIO.write(align, ’cas9al.phy’, ’phylip’)

1

There is a helper function to convert alignment files in one step:
AlignIO.convert(). It takes four parameters: file name to read, format of the
file to read, file name to write, and format of the file to write. It also returns the
number of alignments saved:

>>> from Bio import AlignIO

>>> AlignIO.convert(’cas9al.fasta’, ’fasta’, ’cas9al.aln’, ’clustal’)

1

AlignInfo

The AlignInfo module is used to extract information from alignment objects. It
provides the print_info_content function, and the SummaryInfo and PSSM
classes:

• print_info_content():

Let’s see them in action:

Introduction to Biopython � 171

>>> from Bio import AlignIO

>>> from Bio.Align.AlignInfo import SummaryInfo

>>> from Bio.Alphabet import ProteinAlphabet

>>> align = AlignIO.read(’cas9align.fasta’, ’fasta’)

>>> align._alphabet = ProteinAlphabet()

>>> summary = SummaryInfo(align)

>>> print(summary.information_content())

4951.072487965924

>>> summary.dumb_consensus(consensus_alpha=ProteinAlphabet())

Seq(’MDKKYSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNL...GGD’,<=

ProteinAlphabet())

>>> summary.gap_consensus(consensus_alpha=ProteinAlphabet())

Seq(’MDKKYSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNL...GGD’,<=

ProteinAlphabet())

>>> print(summary.alignment)

ProteinAlphabet() alignment with 8 rows and 1407 columns

MDKKYSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIK...GGD J7M7J1

MDKKYSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIK...GGD A0A0C6FZC2

MDKKYSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIK...GGD A0A1C2CVQ9

MDKKYSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIK...GGD A0A1C2CV43

MDKKYSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIK...GGD Q48TU5

MDKKYSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIK...GGD M4YX12

MKKPYSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIK...GGD A0A0E2EP65

--...GED A0A150NVN1

>>> print(summary.pos_specific_score_matrix())

- A C D E F G H I K L M N P Q

M 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.0 0.0 0.0

D 1.0 0.0 0.0 6.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

K 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.0 0.0 0.0 0.0 0.0

K 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0 1.0

Y 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

S 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

I 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.0 0.0 0.0 0.0 0.0 0.0

G 1.0 0.0 0.0 0.0 0.0 0.0 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

L 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.0 0.0 0.0 0.0

D 1.0 0.0 0.0 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9.3.7 ClustalW

This module has classes and functions to interact with ClustalW.9 You may
know ClustalX, a popular graphical multiple alignment program authored by

9This program is available from http://www.clustal.org/download/current.

http://www.clustal.org/download/current

172 � Python for Bioinformatics

Julie Thompson and Francois Jeanmougin. ClustalX is a graphical front-end for
ClustalW, a command line multiple alignment program.

Biopython has support for Clustalw, with the ClustalwCommandline wrap-
per. This class can be used to construct the ClustalW command line:

>>> from Bio.Align.Applications import ClustalwCommandline

>>> clustalw_exe = ’clustalw2’

>>> ccli = ClustalwCommandline(clustalw_exe, <=

infile="input4align.fasta", outfile=’../../aoutput.aln’)

>>> print(ccli)

clustalw2 -infile=input4align.fasta -outfile=../../aoutput.aln

If the clustalw program is not in your system path, you have to spec-
ify its location when initializing the object. For example, if clustalw is in
c:\windows\program file\clustal\clustalw.exe, replace the line

>>> clustalw_exe = ’clustalw2’

for

>>> clustalw_exe=’c:\\windows\\program file\\clustal\\clustalw.exe’

To run the program, call the created instance:

>>> from Bio.Align.Applications import ClustalwCommandline

>>> clustalw_exe = ’clustalw2’

>>> ccli = ClustalwCommandline(clustalw_exe,

infile="input4align.fasta", outfile=’../../aoutput.aln’)

>>> ccli()

(’\n\n\n CLUSTAL 2.1 Multiple Sequence Alignments\n\n\nSequence <=

format is Pearson\nSequence 1: AGA92859.1 106 aa\nSequence 2: <=

AML31452.1 116 aa\nSequence 3: AAH03888.1 473 aa\nSequence 4<=

: BAE71953.1 118 aa\nStart of Pairwise alignments\nAligning...<=

\n\nSequences (1:2) Aligned. Score: 88\nSequences (1:3) Aligned<=

. Score: 93\nSequences (1:4) Aligned. Score: 82\nSequences (2:<=

(...)

[alignoutput.txt]\n\n’, ’’)

The function returns a tuple with two values. The first value is what the program
returns (also called the standard ouput) while the second is the error message, if
any.

To process the output, read the file with AlignIO.read():

>>> from Bio import AlignIO

>>> seqs = AlignIO.read(’../../aoutput.aln’, ’clustal’)

Introduction to Biopython � 173

>>> seqs[0]

SeqRecord(seq=Seq(’-------------------QVQLQQSDAELVKPGASVKISCKVSG<=

YTFTDHTIH...---’, SingleLetterAlphabet()), id=’AGA92859.1’, name<=

=’<unknown name>’, description=’AGA92859.1’, dbxrefs=[])

>>> seqs[1]

SeqRecord(seq=Seq(’MEWSWVFLFFLSVTTGVHSQVQLQQSDAELVKPGASVKISCKVSG<=

YTFTDHTIH...PGK’, SingleLetterAlphabet()), id=’AAH03888.1’, name<=

=’<unknown name>’, description=’AAH03888.1’, dbxrefs=[])

>>> seqs[2]

SeqRecord(seq=Seq(’-------------------EVQLQESDAELVKPGASVKISCKVSG<=

YTFTDHSIH...---’, SingleLetterAlphabet()), id=’AML31452.1’, name<=

=’<unknown name>’, description=’AML31452.1’, dbxrefs=[])

Passing Parameters to ClustalW

To pass more parameters to Clustalw, pass them when instantiating ClustalwCom-
mandline. For example to change the Gap opening penalty, use pwgapopen:

>>> from Bio.Align.Applications import ClustalwCommandline

>>> clustalw_exe = ’clustalw2’

>>> ccli = ClustalwCommandline(clustalw_exe,

infile="input4align.fasta", outfile=’../../aoutput.aln’,

pwgapopen=5)

>>> print(ccli)

clustalw2 -infile=input4align.fasta -outfile=../../aoutput.aln <=

-pwgapopen=5

To see the rest of available parameters, do:

>>> from Bio.Align.Applications import ClustalwCommandline

>>> ccli = ClustalwCommandline()

>>> help(ccli)

or see the online manual at https://goo.gl/dJwoJx or at the API page: http:
//biopython.org/DIST/docs/api/.

9.3.8 SeqIO

Bio.SeqIO is a common interface to input and output sequence file formats. Se-
quences retrieved with this interface are passed to your program as SeqRecord
objects. Bio.SeqIO can also read alignment file formats, and it will return each
record as a SeqRecord object. To retrieve an alignment as an Alignment object, use
the Bio.AlignIO module.

https://goo.gl/dJwoJx
http://biopython.org/DIST/docs/api/
http://biopython.org/DIST/docs/api/

174 � Python for Bioinformatics

Reading Sequence Files

The method used for reading sequences is parse(file_handle, format). Where
format can be “fasta”, “genbank” or any other present in Table 10.1. This parser
returns a generator. The elements returned by this generator are of the SeqRecord
type:

>>> from Bio import SeqIO

>>> f_in = open(’../../samples/a19.gp’)

>>> seq = SeqIO.parse(f_in, ’genbank’)

>>> next(seq)

SeqRecord(seq=Seq(’MGHHHHHHHHHHSSGHIDDDDKHMLEMDSTNVRSGMKSRKKKPKT<=

TVIDDDDDC...FAS’, IUPACProtein()), id=’AAX78491.1’, name=’AAX784<=

91’, description=’unknown [synthetic construct]’, dbxrefs=[])

When there is only one sequence in the file, use SeqIO.read() instead of Se-
qIO.parse():

>>> f_in = open(’../../samples/a19.gp’)

>>> SeqIO.read(f_in, ’genbank’)

SeqRecord(seq=Seq(’MGHHHHHHHHHHSSGHIDDDDKHMLEMDSTNVRSGMKSRKKKPKT<=

TVIDDDDDC...FAS’, IUPACProtein()), id=’AAX78491.1’, name=’AAX784<=

91’, description=’unknown [synthetic construct]’, dbxrefs=[])

In Listing 9.2 there is a script that reads a file full of sequences in FASTA format
and displays the title and the length of each entry.

Listing 9.2: readfasta.py: Read a FASTA file

1 from Bio import SeqIO

2

3 FILE_IN = ’../../samples/3seqs.fas’

4

5 with open(FILE_IN) as fh:

6 for record in SeqIO.parse(fh, ’fasta’):

7 id_ = record.id

8 seq = record.seq

9 print(’Name: {0}, size: {1}’.format(id_, len(seq)))

Content of the input file (3seqs.fas):

>Protein-X [Simian immunodeficiency virus]

NYLNNLTVDPDHNKCDNTTGRKGNAPGPCVQRTYVACH

>Protein-Y [Homo sapiens]

MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGPDA

>Protein-Z [Rattus norvegicus]

MKAAVLAVALVFLTGCQAWEFWQQDEPQSQWDRVKDFATVYVDAVKDSGRDYVSQFESST

Introduction to Biopython � 175

Listing 9.2 parses the file 3seqs.fas and generates the following output:

(biopy169) $ python readfasta.py

Name: Protein-X, size: 38

Name: Protein-Y, size: 62

Name: Protein-Z, size: 60

TABLE 9.1 Sequence and Alignment Formats

Format
name

Description Alignment
- Sequence

ace Reads the contig sequences from an ACE assem-
bly file.

S

clustal Ouput from Clustal W or X A
embl The EMBL flat file format. S
emboss The “pairs” and “simple” alignment format from

the EMBOSS tools.
A

fasta A simple format where each record starts with
an identifer line starting with a “>” character,
followed by lines of sequence.

A/S

fasta-m10 Alignments output by Bill Pearson’s FASTA
tools when used with the -m 10 command line
option.

A

genbank The GenBank or GenPept flat file format. S
ig IntelliGenetics file format, also used by MASE. A/S
nexus Used by MrBayes and PAUP. See also the mod-

ule Bio.Nexus which can also read any phyloge-
netic trees in these files.

A

phd Output from PHRED. S
phylip Used by the PHYLIP tools. A
stockholm Used by PFAM. A
swiss Swiss-Prot (UniProt) format. S
tab Simple two column tab separated sequence files. S

Writing Sequence Files

SeqIO has a method for writing sequences: write(iterable, file_handle, for-
mat). The first parameter that this function takes is an iterable object with Se-
qRecord objects (e.g., a list of SeqRecord objects). The second parameter is the file
handle that will be used to write the sequences. The format argument works as in
parse.

Listing 9.3 shows how to read a file with a sequence as plain-text and write it
as a FASTA sequence:

Listing 9.3: rwfasta.py: Read a file and write it as a FASTA sequence

176 � Python for Bioinformatics

1 from Bio import SeqIO

2 from Bio.Seq import Seq

3 from Bio.SeqRecord import SeqRecord

4 with open(’NC2033.txt’) as fh:

5 with open(’NC2033.fasta’,’w’) as f_out:

6 rawseq = fh.read().replace(’\n’,’’)

7 record = (SeqRecord(Seq(rawseq),’NC2033.txt’,’’,’’),)

8 SeqIO.write(record, f_out,’fasta’)

Knowing how to read and write most biological file formats allows one to read
a file with sequences in one format and write them into another format:

from Bio import SeqIO

fo_handle = open(’myseqs.fasta’,’w’)

readseq = SeqIO.parse(open(’myseqs.gbk’), ’genbank’)

SeqIO.write(readseq, fo_handle, "fasta")

fo_handle.close()

There are more examples of SeqIO usage in Chapter 15.

9.3.9 AlignIO

AlignIO is the Input/Output interface for alignments. It works mostly as SeqIO,
but instead of returning a SeqRecord object, it returns an Alignment object. It has
three main methods: read, parse, and write. The first two methods are used for
input and the last one for output.

• read(handle,format[,sec_count]): Take the file handle and the alignment
format as arguments and return an Alignment object.

>>> from Bio import AlignIO

>>> fn = open(’secu3.aln’)

>>> align = AlignIO.read(fn, ’clustal’)

>>> print(align)

SingleLetterAlphabet() alignment with 3 rows and 1098 columns

--------------------------------------...--- secu3

--------------------------------------...--- AT1G14990.1-CDS

GCTTTGCTATGCTATATGTTTATTACATTGTGCCTCTG...CAC AT1G14990.1-SEQ

The sec_count argument can be used with any file format although it is used
mostly with FASTA alignments. It indicates the number of sequences per
alignment, which is useful to determine if a file is only one alignment with 15
sequences or three alignments of 5 sequences.

Introduction to Biopython � 177

• write(iterable,handle,format): Take a set of Alignment objects, a file han-
dle, and a file format, to write them into a file. You are expected to call this
function with all alignments in iterable and close the file handle. The fol-
lowing code reads an alignment in Clustal format and writes it in Phylip
format.

Listing 9.4: Alignments

fi = open(’../../samples/example.aln’)

with open(’../../samples/example.phy’, ’w’) as fo:

align = AlignIO.read(fi, ’clustal’)

AlignIO.write([alig], fo, ’phylip’)

9.3.10 BLAST

Basic Local Alignment Search Tool (BLAST) is a sequence similarity search pro-
gram used to compare a user’s query to a database of sequences. Given a DNA
or amino acid sequence, the BLAST heuristic algorithm finds short matches be-
tween the two sequences and attempts to start alignments from these “hot spots.”
BLAST also provides statistical information about an alignment such as the “ex-
pect” value.10 Note that BLAST is not a single program, but a family of programs.
All BLAST programs search for match between sequences, but there is a special-
ized BLAST program for each type of sequence search. blastn for example, is used
to search in nucleotide databases using a nucleotide sequence as input. When the
database is protein (amino-acid) based and your input is a nucleotide sequence, the
BLAST program you should use is blastx. This program translate the nucleotide
input into a a protein and make a search against the protein database. See table
9.2 for a list of BLAST programs and when to use them.

BLAST is one of the most widely used bioinformatics research tools, since it
has several applications. Here is a list of typical BLAST applications:

• Following the discovery of a previously unknown gene in one species, search
other genomes to see if other species carry a similar gene.

• Finding functional and evolutionary relationships between sequences.

• Search for consensus regulatory patterns such as promoter signals, splicing
sites and transcription factor binding sites.

• Infer protein structure based on previously crystallized proteins.

• Help identify members of gene families.

10The expect value (E) is a parameter that describes the number of hits one can “expect” to see
by chance when searching a database of a particular size.

178 � Python for Bioinformatics

If you work in bioinformatics, chances are that you will need to run some BLAST
queries or face the need to process BLAST queries generated by you or by another
person. Biopython provides tools for both tasks:

TABLE 9.2 Blast programs

Program name
Query/database combination

blastn nucleotide vs nucleotide.
blastp protein vs protein.
blastx translated nucleotide vs protein.
tblastn protein vs translated nucleotide.
tblastx translated nucleotide vs translated nucleotide

BLAST Running and Processing with Biopython

BLAST can be run online on the NCBI webserver or locally on your own computer.
Running BLAST over the Internet is a good option for small jobs involving few
sequences. Larger jobs tend to get aborted by the remote server with the message
“CPU usage limit was exceeded.” Since NCBI BLAST is a public service, they have
to put quotas on CPU usage to avoid overloading their servers. Another compelling
reason to use a local version of BLAST is when you need to query a custom database.
There is some flexibility regarding the database(s) you could use in the NCBI
BLAST server, but it can’t accommodate every type and size of custom data.

For all these reasons, it is not uncommon for most research laboratories to run
in-house BLAST searches.

Starting a BLAST Job

Biopython has a wrapper for each BLAST executable, so you can run a BLAST
program from inside your script. The wrapper for blastn is a function called
NcbiblastnCommandline, inside the Bio.Blast.Applications module. The wrap-
per for blastx is NcbiblastxCommandline, and so on. We will see how to use
NcbiblastnCommandline but this can be applied to all other wrappers as well.

Here is the NcbiblastnCommandline syntaxis:

NcbiblastnCommandline(blast executable, program name, database,<=

input file, [align_view=7], [parameters])

This function returns a tuple with two file objects. The first one is the actual
result while the second one is the BLAST error message (if any). Most parameters
are self-explanatory. Listing 9.5 will make it clear:

Listing 9.5: runblastn.py: Running a local NCBI BLAST

1 from Bio.Blast.Applications import NcbiblastnCommandline as blastn

Introduction to Biopython � 179

2 BLAST_EXE = ’/home/sb/opt/ncbi-blast-2.6.0+/bin/blastn’

3 f_in = ’seq3.txt’

4 b_db = ’db/samples/TAIR8cds’

5 blastn_cline = blastn(cmd=BLAST_EXE, query=f_in, db=b_db,

6 evalue=.0005, outfmt=5)

7 rh, eh = blastn_cline()

The BLAST program is run in line 5. To retrieve the result, you have to read
the returned file-like object rh, as already seen in Chapter 5:

>>> rh.readline()

<?xml version="1.0"?>

>>> rh.readline()

’<!DOCTYPE BlastOutput PUBLIC "-//NCBI//NCBI BlastOutput/EN"<=

"http://www.ncbi.nlm.nih.gov/dtd/NCBI_BlastOutput.dtd">\n’

The output is in XML format. This information can be parsed using the tools
learned in Chapter 11 or with the tools provided by Biopython (more on this in
the next section). There is also a way to avoid dealing with the XML output by
forcing NcbiblastnCommandline to use plain text as output. This is done by using
-outfmt 011 as an optional parameter in the command line or in the Biopython
function. This will result in an easier-to-read (by a human) but hard-to-parse (by
a computer) output. If the last sentence seems strange, bear with me for a few
paragraphs to understand why a “human-readable” format may not be suitable for
automated processing.

The eh filehandle stores the error message returned by NcbiblastnCommandline.
In this case it is empty (since there was no error):

>>> eh.readline()

’’

The function call in line 5 is the equivalent of entering the following statement
in the command line:

$./blastn -query seq3.fasta -db db/TAIR8cds -outfmt 5

All parameters in this command line can be matched up with a parameter in
the Biopython NcbiblastnCommandline function. The last parameter (-outfmt 5)
forces the result to output XML. Other BLAST output formats like plain text and
HTML tend to change from version to version, making keeping an up-to-date parser
very difficult.12. Human-readable text tends to be non structured. These reasons is
why an easy to read output ends up being harder to parse.

11-outfmt 0 to 4 will generate different type of human readable outputs.
12There is an official statement from NCBI about this: “NCBI does not advocate the use of the

plain text or HTML of BLAST output as a means of accurately parsing the data.”

http://www.ncbi.nlm.nih.gov/dtd/NCBI_BlastOutput

180 � Python for Bioinformatics

There are many aspects of a blast query that can be controlled via optional
parameters that are appended at the end of the function call. Check this appendix
at the NCBI BLAST User Manual at https://www.ncbi.nlm.nih.gov/books/

NBK279675 for more information.
Once you have the BLAST result as a file object, you may need to process it.

If you plan to store the result for later processing, you need to save it:

>>> fh = open(’testblast.xml’,’w’)

>>> fh.write(rh.read())

>>> fh.close()

Most of the time you will need to extract some information from the BLAST
output. For this purpose the NCBIXML parser, featured in the next subsection,
comes in handy.

Reading the BLAST Output

Parsing the contents of a BLAST file is something any bioinformatician has to
deal with. Biopython provides a useful parser in the Bio.Blast.NCBIXML module
(called parse). With this parser, the programmer can extract any significant bit
from a BLAST output file. This parser takes as input a file object with the BLAST
result and returns an iterator for each record inside the file. In this context, record
represents an object with all the information of each BLAST result (assuming that
the BLAST file has the result of several BLAST queries inside13). Since it returns
an iterator, you can retrieve BLAST records one by one using a for loop:

from Bio.Blast import NCBIXML

for blast_record in NCBIXML.parse(rh):

Do something with blast_record

What’s in a BLAST Record Object?

Every bit of information present in a BLAST file can be retrieved from the blast
record object . Here is the big picture: A BLAST record contains the information of
the BLAST run. This information is divided in two groups. First there are fixed
features such as the characteristics of the program, query sequence, and database
(like program name, program version, query name, database length, name). The
other group of data is related to the alignments (or hits). Each hit is the alignment
between the query sequence and the target found. In turn, each alignment may
have more than one HSP (High-scoring Segment Pairs). An HSP is a segment of an
alignment. Figure 9.1 should make these concepts more accessible.

13This is a bug in BLAST versions prior to 2.2.14 with the way it formats the XML results for
multiple queries, so you must use newer NCBI BLAST versions.

https://www.ncbi.nlm.nih.gov/books/NBK279675
https://www.ncbi.nlm.nih.gov/books/NBK279675

Introduction to Biopython � 181

Figure 9.1 Anatomy of a BLAST result. This query sequence has three alignments.
Each alignment has at least one HSP. Note that an alignment (or hit) can have
more than one HSP like the “Alignment 3.”

The BLAST record object mirrors this structure. It has an alignments prop-
erty which is a list of (BLAST) alignment objects. Each alignment object has the
information of the hit (hit_id, hit_definition, title) and a list (hsps) with the
information of each HSP. The data associated with each HSP is usually the most
requested information from a BLAST record (like bit score, E value, position). Let’s
see a plain-text BLAST output in Listing 9.6:

Listing 9.6: A BLAST output

BLASTX 2.6.0+

Reference: Stephen F. Altschul, Thomas L. Madden, Alejandro A.

Schaffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David

J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new

generation of protein database search programs",

Nucleic Acids Res. 25:3389-3402.

Database: Non-redundant UniProtKB/SwissProt sequences

466,658 sequences; 175,602,800 total letters

Query= sample X

Length=257

Score E

Sequences producing significant alignments: (Bits) Value

182 � Python for Bioinformatics

P04252.1 RecName: Full=Bacterial hemoglobin; ... 93.6 1e-34

Q9RC40.1 RecName: Full=Flavohemoprotein; AltN... 66.2 2e-17

Q8ETH0.1 RecName: Full=Flavohemoprotein; AltN... 66.6 1e-16

>P04252.1 RecName: Full=Bacterial hemoglobin; AltName:

Full=Soluble cytochrome O

Length=146

Score = 93.6 bits (231), Expect(2) = 1e-34,

Method: Compositional matrix adjust.

Identities = 45/45 (100%), Positives = 45/45 (100%),

Gaps = 0/45 (0%)

Frame = +3

Query 123 VAAAHYPIVGQELLGAIKEVLGDAATDDILDAWGKAYGVIADVFI 257

VAAAHYPIVGQELLGAIKEVLGDAATDDILDAWGKAYGVIADVFI

Sbjct 90 VAAAHYPIVGQELLGAIKEVLGDAATDDILDAWGKAYGVIADVFI 134

Score = 72.8 bits (177), Expect(2) = 1e-34,

Method: Compositional matrix adjust.

Identities = 36/36 (100%), Positives = 36/36 (100%),

Gaps = 0/36 (0%)

Frame = +2

Query 2 PKALAMTVLAAAQNIENLPAILPAVKKIAVKHCQAG 109

PKALAMTVLAAAQNIENLPAILPAVKKIAVKHCQAG

Sbjct 54 PKALAMTVLAAAQNIENLPAILPAVKKIAVKHCQAG 89

>Q9RC40.1 RecName: Full=Flavohemoprotein; AltName:

Full=Flavohemoglobin;

AltName: Full=Hemoglobin-like protein; AltName: Full=Nitric

oxide dioxygenase; Short=NO oxygenase; Short=NOD

Length=411

Score = 66.2 bits (160), Expect(2) = 2e-17,

Method: Composition-based stats.

Identities = 28/45 (62%), Positives = 37/45 (82%),

Gaps = 0/45 (0%)

Frame = +3

Query 123 VAAAHYPIVGQELLGAIKEVLGDAATDDILDAWGKAYGVIADVFI 257

Introduction to Biopython � 183

+ YPIVG+ LL A++EVLGDAA+DD+L+AW +AY +IADVFI

Sbjct 94 IKPEQYPIVGENLLAAMREVLGDAASDDVLEAWREAYELIADVFI 138

Score = 41.6 bits (96), Expect(2) = 2e-17,

Method: Composition-based stats.

Identities = 19/32 (59%), Positives = 26/32 (81%),

Gaps = 0/32 (0%)

Frame = +2

Query 2 PKALAMTVLAAAQNIENLPAILPAVKKIAVKH 97

P+ALA ++ AAA++I+NL AILP V +IA KH

Sbjct 58 PQALANSIYAAAEHIDNLEAILPVVSRIAHKH 89

>Q8ETH0.1 RecName: Full=Flavohemoprotein;

AltName: Full=Flavohemoglobin;

AltName: Full=Hemoglobin-like protein; AltName: Full=Nitric

oxide dioxygenase; Short=NO oxygenase; Short=NOD

Length=406

Score = 66.6 bits (161), Expect(2) = 1e-16,

Method: Composition-based stats.

Identities = 31/45 (69%), Positives = 37/45 (82%),

Gaps = 0/45 (0%)

Frame = +3

Query 123 VAAAHYPIVGQELLGAIKEVLGDAATDDILDAWGKAYGVIADVFI 257

+ YPIVG+ LL AIKEVLGDAATD+I++AW KAY VIAD+FI

Sbjct 96 IKPEQYPIVGKYLLIAIKEVLGDAATDEIIEAWEKAYFVIADIFI 140

Score = 39.3 bits (90), Expect(2) = 1e-16,

Method: Composition-based stats.

Identities = 22/31 (71%), Positives = 23/31 (74%),

Gaps = 0/31 (0%)

Frame = +2

Query 5 KALAMTVLAAAQNIENLPAILPAVKKIAVKH 97

KALA TV AAA NIE L ILP VK+IA KH

Sbjct 61 KALANTVYAAAANIEKLEEILPHVKQIAHKH 91

184 � Python for Bioinformatics

Lambda K H a alpha

0.318 0.134 0.401 0.792 4.96

Gapped

Lambda K H a alpha sigma

0.267 0.0410 0.140 1.90 42.6 43.6

Effective search space used: 4334628608

Database: Non-redundant UniProtKB/SwissProt sequences

Posted date: May 14, 2017 12:32 PM

Number of letters in database: 175,602,800

Number of sequences in database: 466,658

Matrix: BLOSUM62

Gap Penalties: Existence: 11, Extension: 1

Neighboring words threshold: 12

Window for multiple hits: 40

Listing 9.6 is the product of a blastx of a DNA query sequence against the
SwissProt protein database, using these settings:

./blastx -db db/swissprot -query sampleX.fas -evalue 1e-15 -outfmt 5

default program settings.14 Note that there are three alignments in this result.
The first and last alignments have only one HSP, while the second one, has two
HSPs.

See in Listing 9.7 how to retrieve the name of all the target sequence names:

Listing 9.7: BLASTparser1.py: Extract alignments title from a BLAST output

1 from Bio.Blast import NCBIXML

2 with open(’../../samples/sampleXblast.xml’) as xmlfh:

3 for record in NCBIXML.parse(xmlfh):

4 for align in record.alignments:

5 print(align.title)

Listing 9.7 (program BLASTparser1.py) produces an output like this:

gi|114816|sp|P04252.1|BAHG_VITST RecName: Full=Bacterial hemoglob<=

in; AltName: Full=Soluble cytochrome O

gi|52000645|sp|Q9RC40.1|HMP_BACHD RecName: Full=Flavohemoprotein;<=

14This listing is a reduced version of the actual output, some results were intentionally left out
to avoid showing redundant data and facilitate the reader focusing on how the parser works.

Introduction to Biopython � 185

AltName: Full=Flavohemoglobin; AltName: Full=Hemoglobin-like pro<=

tein; AltName: Full=Nitric oxide dioxygenase; Short=NO oxygenase;<=

Short=NOD

gi|52000637|sp|Q8ETH0.1|HMP_OCEIH RecName: Full=Flavohemoprotein;<=

AltName: Full=Flavohemoglobin; AltName: Full=Hemoglobin-like pro<=

tein; AltName: Full=Nitric oxide dioxygenase; Short=NO oxygenase;<=

Short=NOD

You can get more information from each alignment like the length of the target
sequence, and other related information:

>>> align.length

406

>>> align.hit_id

’gi|52000637|sp|Q8ETH0.1|HMP_OCEIH’

>>> align.hit_def

’RecName: Full=Flavohemoprotein; AltName: Full=Flavohemoglobin; A<=

ltName: Full=Hemoglobin-like protein; AltName: Full=Nitric oxide <=

dioxygenase; Short=NO oxygenase; Short=NOD’

>>> align.hsps

[<Bio.Blast.Record.HSP object at 0x7fa444665eb8>, <Bio.Blast.Reco<=

rd.HSP object at 0x7fa444665ef0>]

hsps contain a list of HSPs. Each HSP instance, as already mentioned, has the
information most users want to extract from a BLAST output. Look at an HSP:

>P04252.1 RecName: Full=Bacterial hemoglobin; AltName:

Full=Soluble cytochrome O

Length=146

Score = 93.6 bits (231), Expect(2) = 1e-34,

Method: Compositional matrix adjust.

Identities = 45/45 (100%), Positives = 45/45 (100%),

Gaps = 0/45 (0%)

Frame = +3

Query 123 VAAAHYPIVGQELLGAIKEVLGDAATDDILDAWGKAYGVIADVFI 257

VAAAHYPIVGQELLGAIKEVLGDAATDDILDAWGKAYGVIADVFI

Sbjct 90 VAAAHYPIVGQELLGAIKEVLGDAATDDILDAWGKAYGVIADVFI 134

This is how this information can be retrieved with the BLAST parser:

>>> xmlfile = ’../../samples/sampleXblast.xml’

>>> blast_records = NCBIXML.parse(open(xmlfile))

>>> blast_record = next(blast_records)

186 � Python for Bioinformatics

>>> align = blast_record.alignments[0]

>>> align.hsps

[<Bio.Blast.Record.HSP object at 0x7fa444677e80>, <Bio.Blast.Re<=

cord.HSP object at 0x7fa444677f28>]

>>> hsp = align.hsps[0]

>>> hsp.bits

93.5893

>>> hsp.score

231.0

>>> hsp.expect

1.06452e-34

>>> hsp.identities

45

>>> hsp.align_length

45

>>> hsp.frame

(3, 0)

>>> hsp.query_start

123

>>> hsp.query_end

257

>>> hsp.sbjct_start

90

>>> hsp.sbjct_end

134

>>> hsp.query

’VAAAHYPIVGQELLGAIKEVLGDAATDDILDAWGKAYGVIADVFI’

>>> hsp.match

’VAAAHYPIVGQELLGAIKEVLGDAATDDILDAWGKAYGVIADVFI’

>>> hsp.sbjct

’VAAAHYPIVGQELLGAIKEVLGDAATDDILDAWGKAYGVIADVFI’

Having this in mind, we can answer questions involving the accession numbers
of the alignments with E value lesser than a threshold value? (Listing 9.8) and
other questions involving any parameter in the BLAST output.

Listing 9.8: BLASTparser2.py: Extract accession numbers of sequences that have
an E value less than a specific threshold

1 from Bio.Blast import NCBIXML

2 threshold = 0.0001

3 xmlfh = open(’../../samples/other.xml’)

4 blast_record = next(NCBIXML.parse(open(xmlfh)))

5 for align in blast_record.alignments:

Introduction to Biopython � 187

6 if align.hsps[0].expect < threshold:

7 print(align.accession)

Code explained: This program is very similar to Listing 9.7. It retrieves the
first BLAST record in the xml file (note the next() built-in function in line 4). This
method is used because older Biopython version lacks the NCBIXML.read() method.
If you are using Biopython 1.50, and there is only one BLAST record in the xml
file, use NCBIXML.read(open(xmlfh)). The program walks through all alignments
in blast_record (from line 5). For each alignment (align in line 5), it checks the
expect value of the first HSP (line 6). If the E value is less than the threshold
defined in line 2, the program prints the accession number of the alignment.

Note that when doing a BLAST search you can set an E value either from
the command line or from NcbiblastnCommandline wrapper. Once the output is
generated you can apply a filter like in Listing 9.8.

Tip: BLAST Running and Processing without Biopython.

Although Biopython can be used to run and parse BLAST searches, we can get
by without Biopython if necessary.

BLAST can be executed as any external program with os.system or with sub-
process.Popen. Remember to set up the “m” option according to how you plan
to process the output.

There are two ways to process the BLAST output. If the BLAST was set to
produce the output in XML (with command line option “-m 7”), the result can be
parsed with the tools shown in Chapter 11. Another easier way to parse BLAST
results is to use the CSV module (seen on page 90). To do this, the BLAST output
should be formatted in a compatible way (with the command line option “-m 8”).

9.3.11 Biological Related Data

Biopython is not just a collection of tools. It has some biological related data.
This data is included in Biopython for internal usage, like translation tables
(CodonTable.unambiguous_dna_by_name) for the Translate function, and
amino acid weights (protein_weights) for molecular_weight function.

Your code can also access these data. For example, the code in this interactive
session accesses the dictionary that converts an “ambiguous dna value” into its
possible values:

>>> from Bio.Data import IUPACData

>>> IUPACData.ambiguous_dna_values[’M’]

’AC’

>>> IUPACData.ambiguous_dna_values[’H’]

188 � Python for Bioinformatics

’ACT’

>>> IUPACData.ambiguous_dna_values[’X’]

’GATC’

Remember the protein weight calculator from Listing 4.8 on page 77? With
Biopython there is no need to define a dictionary with amino acid weights since
such a dictionary is already included:

Listing 9.9: protwwbiopy.py: Protein weight calculator with Biopython

1 from Bio.Data.IUPACData import protein_weights as pw

2 protseq = raw_input(’Enter your protein sequence: ’)

3 total_w = 0

4 for aa in protseq:

5 total_w += pw.get(aa.upper(),0)

6 total_w -= 18*(len(protseq)-1)

7 print(’The net weight is: {0}’.format(total_w))

The resulting program is shorter than the original version and there is no need
to define a dictionary with values taken from a reference table; let Biopython de-
velopers handle this for you.

Most data available from Bio.Data.IUPACData and Bio.Data.Codon-
Table is presented in Listings 9.10 and 9.11, respectively.

Listing 9.10: Data from Bio.Data.IUPACData

protein_letters

extended_protein_letters

ambiguous_dna_letters

unambiguous_dna_letters

ambiguous_rna_letters

unambiguous_rna_letters

ambiguous_dna_complement

ambiguous_dna_values

ambiguous_dna_weight_ranges

ambiguous_rna_complement

ambiguous_rna_values

ambiguous_rna_weight_ranges

avg_ambiguous_dna_weights

avg_ambiguous_rna_weights

avg_extended_protein_weights

extended_protein_values

extended_protein_weight_ranges

protein_weight_ranges

Introduction to Biopython � 189

protein_weights

unambiguous_dna_weight_ranges

unambiguous_dna_weights

unambiguous_rna_weight_ranges

unambiguous_rna_weights

Listing 9.11: Data from Bio.Data.CodonTable

ambiguous_dna_by_id

ambiguous_dna_by_name

ambiguous_generic_by_id

ambiguous_generic_by_name

ambiguous_rna_by_id

ambiguous_rna_by_name

generic_by_id

generic_by_name

standard_dna_table

standard_rna_table

unambiguous_dna_by_id

unambiguous_dna_by_name

unambiguous_rna_by_id

unambiguous_rna_by_name

To get the bacterial DNA translation table:

>>> from Bio.Data.CodonTable import unambiguous_dna_by_id

>>> bact_trans=unambiguous_dna_by_id[11]

>>> bact_trans.forward_table[’GTC’]

’V’

>>> bact_trans.back_table[’R’]

’CGT’

To have a graphical representation of a translation table:

>>> from Bio.Data import CodonTable

>>> print CodonTable.generic_by_id[2]

Table 2 Vertebrate Mitochondrial, SGC1

| U | C | A | G |

--+---------+---------+---------+---------+--

U | UUU F | UCU S | UAU Y | UGU C | U

U | UUC F | UCC S | UAC Y | UGC C | C

U | UUA L | UCA S | UAA Stop| UGA W | A

190 � Python for Bioinformatics

U | UUG L | UCG S | UAG Stop| UGG W | G

--+---------+---------+---------+---------+--

C | CUU L | CCU P | CAU H | CGU R | U

C | CUC L | CCC P | CAC H | CGC R | C

C | CUA L | CCA P | CAA Q | CGA R | A

C | CUG L | CCG P | CAG Q | CGG R | G

--+---------+---------+---------+---------+--

A | AUU I(s)| ACU T | AAU N | AGU S | U

A | AUC I(s)| ACC T | AAC N | AGC S | C

A | AUA M(s)| ACA T | AAA K | AGA Stop| A

A | AUG M(s)| ACG T | AAG K | AGG Stop| G

--+---------+---------+---------+---------+--

G | GUU V | GCU A | GAU D | GGU G | U

G | GUC V | GCC A | GAC D | GGC G | C

G | GUA V | GCA A | GAA E | GGA G | A

G | GUG V(s)| GCG A | GAG E | GGG G | G

--+---------+---------+---------+---------+--

9.3.12 Entrez

Entrez is a search engine that integrates several health sciences databases at the Na-
tional Center for Biotechnology Information (NCBI) website. From a single webpage
you can search on diverse datasets such as “scientific literature, DNA and protein
sequence databases, 3D protein structure and protein domain data, expression data,
assemblies of complete genomes, and taxonomic information.”15

This search engine is available at http://www.ncbi.nlm.nih.gov/sites/

gquery. You can use it online as any standard search engine, but using it from
a browser is not useful for incorporating data in your scripts. That is why the
NCBI created the “Entrez Programming Utilities” (eUtils). This is a server side set
of tools for querying the Entrez database without a web browser and can be used
for retrieving search results to include them in your own programs.

eUtils at a Glance

The user must construct a specially crafted URL. This URL should contain the
name of the program to use in the NCBI web server and all required parameters
(like database name and search terms). Once this URL is posted, the NCBI sends
the resulting data back to the user. This data is sent, in most cases, in XML format.

The rationale behind this procedure is that the program must build the URL
automatically, post it, retrieve and process the results. The URL is not supposed to
be built manually, but by a program. The same is expected for the resulting XML
file.

15https://www.ncbi.nlm.nih.gov/books/NBK3807/

http://www.ncbi.nlm.nih.gov/sites/gquery
https://www.ncbi.nlm.nih.gov/books/NBK3807/
http://www.ncbi.nlm.nih.gov/sites/gquery

Introduction to Biopython � 191

It is possible to combine eUtils components to form customized data pipelines
within these applications.

Biopython and eUtils

Python has tools to fetch a URL (urllib2) and to parse XML files (like miniDOM), so
it could be used to access eUtils. Even using the relevant Python modules to interact
with the eUtils involves a lot of work. For this reason, Biopython includes the
Entrez module. The Bio.Entrez module provides functions to call every eUtils
program without having to know how to build a URL or how to parse an XML file.

There are two ways to interact with the Entrez database: Query the database
and retrieve the actual data. The first action can be performed with esearch and
egquery Bio.Entrez functions, while the efetch and esummary functions are
used for data retrieval. Table 9.3 summarizes all functions available in the eUtils
module.

TABLE 9.3 eUtils

Name
Description

efetch Retrieves records in the requested format from a list
of one or more primary IDs or from the user’s envi-
ronment.

einfo Provides field index term counts, last update, and
available links for each database.

egquery Provides Entrez database counts in XML for a single
search using Global Query.

elink Checks for the existence of an external or Related Ar-
ticles link from a list of one or more primary IDs.

epost Posts a file containing a list of primary IDs for future
use in the user’s environment to use with subsequent
search strategies.

esearch Searches and retrieves primary IDs (for use in EFetch,
ELink, and ESummary).

espell Retrieves spelling suggestions.
esummary Retrieves document summaries from a list of primary

IDs or from the user’s environment.
read Parses the XML results returned by any of the above

functions.

eUtils: Retrieving Bibliography

The following script queries PubMed through Entrez. PubMed is a search engine
for MEDLINE, a literature database of life sciences and biomedical information.

192 � Python for Bioinformatics

Listing 9.12: entrez1.py: Retrieve and display data from PubMed

1 from Bio import Entrez

2 my_em = ’user@example.com’

3 db = "pubmed"

4 # Search de Entrez website using esearch from eUtils

5 # esearch returns a handle (called h_search)

6 h_search = Entrez.esearch(db=db, email=my_em,

7 term=’python and bioinformatics’)

8 # Parse the result with Entrez.read()

9 record = Entrez.read(h_search)

10 # Get the list of Ids returned by previous search

11 res_ids = record["IdList"]

12 # For each id in the list

13 for r_id in res_ids:

14 # Get summary information for each id

15 h_summ = Entrez.esummary(db=db, id=r_id, email=my_em)

16 # Parse the result with Entrez.read()

17 summ = Entrez.read(h_summ)

18 print(summ[0][’Title’])

19 print(summ[0][’DOI’])

20 print(’==’)

Provided that there is a working Internet connection when running Listing 9.12,
it outputs something like this:

Optimal spliced alignments of short sequence reads.

10.1093/bioinformatics/btn300

==

Mixture models for protein structure ensembles.

10.1093/bioinformatics/btn396

==

Contact replacement for NMR resonance assignment.

10.1093/bioinformatics/btn167

==

eUtils: Retrieving Gene Information

Since eUtils is an interface for several databases, the same program that is used to
retrieve bibliographic data (Listing 9.12) can be used to retrieve gene information.
The key change in Listing 9.13 is the database field (line 3).

Listing 9.13: entrez2.py: Retrieve and display data from PubMed

mailto:user@example.com

Introduction to Biopython � 193

1 from Bio import Entrez

2 my_em = ’user@example.com’

3 db = "gene"

4 term = ’cobalamin synthase homo sapiens’

5 h_search = Entrez.esearch(db=db, email=my_em, term=term)

6 record = Entrez.read(h_search)

7 res_ids = record["IdList"]

8 for r_id in res_ids:

9 h_summ = Entrez.esummary(db=db, id=r_id, email=my_em)

10 summ = Entrez.read(h_summ)

11 print(r_id)

12 print(summ[0][’Description’])

13 print(summ[0][’Summary’])

14 print(’==’)

Listing 9.13 (entrez2.py) produces a result like this:

326625

methylmalonic aciduria (cobalamin deficiency) cblB type

This gene encodes a protein that catalyzes the final step in <=

the conversion of vitamin B(12) into adenosylcobalamin (AdoCb<=

l), a vitamin B12-containing coenzyme for methylmalonyl-CoA m<=

utase. Mutations in the gene are the cause of vitamin B12-dep<=

endent methylmalonic aciduria linked to the cblB complementat<=

ion group. [provided by RefSeq]

==

4524

5,10-methylenetetrahydrofolate reductase (NADPH)

Methylenetetrahydrofolate reductase (EC 1.5.1.20) catalyzes t<=

he conversion of 5,10-methylenetetrahydrofolate to 5-methylte<=

trahydrofolate, a cosubstrate for homocysteine remethylation <=

to methionine.[supplied by OMIM]

==

(...)

Note that there is a number in this output that was not present in the result of
Listing 9.12. This number is the ID returned by the esearch function. This ID was
used to retrieve the summary with the esummary function. The next code uses
this ID to retrieve an actual DNA sequence:

>>> n = "nucleotide"

>>> handle = Entrez.efetch(db=n, id="326625", rettype=’fasta’)

>>> print handle.read()

>gi|326625|gb|M77599.1|HIVED82FO Human immunodeficiency virus<=

mailto:user@example.com

194 � Python for Bioinformatics

type 1 gp120 (env) gene sequence

TTAATAGTACTTGGAATTCAACATGGGATTTAACACAACTTAATAGTACTCAGAATAAAGA

AGAAAATATCACACTCCCATGTAGAATAAAACAAATTATAAACATGTGGCAGGAAGTAGGA

AAAGCAATGTATGCCCCTCCCATCAAAGGACAAATTAAATGTTCATCAAATATTACAGGGC

TACTATTAACAAGAGATGGTGGTAATAGTGGTAACAAAAGCAACGACACCACCGAGACCTT

CAGACC

By changing the rettype parameter to “genbank” you can get the GenBank
record instead of the plain sequence. Once the sequence is in GenBank format, it
can parse it with the SeqIO module as seen on page 173. An alternative way to
parse the results is to retrieve them in XML format and then parse them with the
Entrez.read() function:

>>> handle = Entrez.efetch(db=n, id="326625", retmode=’xml’)

>>> record[0][’GBSeq_moltype’]

’RNA’

>>> record[0][’GBSeq_sequence’]

’ttaatagtacttggaattcaacatgggatttaacacaacttaatagtactcagaataaaga<=

agaaaatatcacactcccatgtagaataaaacaaattataaacatgtggcaggaagtaggaa<=

aagcaatgtatgcccctcccatcaaaggacaaattaaatgttcatcaaatattacagggcta<=

ctattaacaagagatggtggtaatagtggtaacaaaagcaacgacaccaccgagaccttcag<=

acc’

>>> record[0][’GBSeq_organism’]

’Human immunodeficiency virus 1’

9.3.13 PDB

PDB files store information regarding three-dimensional structures of molecules
held at the Protein Data Bank.

This database, with more than fifty thousand records, is the reference repository
of protein structural data. A PDB file stores spatial positions of atoms obtained by
X-ray crystallography, NMR spectroscopy, and other experimental techniques.

This data is used by several programs, like molecule structure viewers like Deep
View,16 Cn3D17 and PyMol,18 protein analysis, and structure prediction software
such as MakeMultimer19 and Modeller.20

Records of this database can be accessed through the RCSB webpage at http:
//www.rcsb.org/pdb/home/home.do.21 If you want to make your own application

16http://spdbv.vital-it.ch
17http://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml
18http://www.pymol.org
19http://watcut.uwaterloo.ca/cgi-bin/makemultimer
20http://www.salilab.org/modeller
21RCSB is the Research Collaboratory for Structural Bioinformatics, the consortium in charge

of the management of the PDB.

http:www.rcsb.org/pdb/home/home.do
http://spdbv.vital-it.ch
http://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml
http://www.pymol.org
http://watcut.uwaterloo.ca/cgi-bin/makemultimer
http://www.salilab.org/modeller
http:www.rcsb.org/pdb/home/home.do

Introduction to Biopython � 195

to analyze protein structure data, your program will have to be able to parse the
data from PDB files. This is the role of the Bio.pdb module.

To effectively use the Bio.PDB module, you must first understand the PDB file
structure. A protein structure is modeled with a top-down hierarchy. It begins with
the structure class, down to the atom subclass. Intermediate orders are model,
chain and residue. This hierarchy is also known as SMCRA. Some proteins don’t
follow this pattern, but PDB files do.22

Bio.PDB Module

The PDB module provides the PDBParser class.23 This class has the
get_structure method. This method needs, as input, an id and a file name, and
it returns a structure object. This SMCRA hierarchy can be accessed by an
identifier as a key:

>>> from Bio.PDB.PDBParser import PDBParser

>>> pdbfn = ’../../samples/1FAT.pdb’

>>> parser = PDBParser(PERMISSIVE=1)

>>> structure = parser.get_structure("1fat", pdbfn)

WARNING: Chain A is discontinuous at line 7808.

(... some warnings removed ...)

WARNING: Chain D is discontinuous at line 7870.

>>> structure.child_list

[<Model id=0>]

>>> model = structure[0]

>>> model.child_list

[<Chain id=A>, <Chain id=B>, <Chain id=C>, <Chain id=D>, <=

<Chain id= >]

>>> chain = model[’B’]

>>> chain.child_list[:5]

[<Residue SER het= resseq=1 icode= >, <Residue ASN het= <=

resseq=2 icode= >, <Residue ASP het= resseq=3 icode= >,<=

<Residue ILE het= resseq=4 icode= >, <Residue TYR het= <=

resseq=5 icode= >]

>>> residue = chain[4]

>>> residue.child_list

[<Atom N>, <Atom CA>, <Atom C>, <Atom O>, <Atom CB>, <=

<Atom CG1>, <Atom CG2>, <Atom CD1>]

>>> atom = residue[’CB’]

>>> atom.bfactor

22There are some malformed PDBs out there. When the Bio.PDB module finds a problem it can
generate an exception or a warning, depending on the PERMISSIVE argument (0 for no tolerance
and 1 for the parser to issue warnings).

23In some Linux installations you have to install the python-numeric-ext package for this module
to run.

196 � Python for Bioinformatics

14.130000000000001

>>> atom.coord

array([34.30699921, -1.57500005, 29.06800079],’f’)

The following program opens a PDB file that is compressed with gzip.24 It scans
through all chains of the protein, and in each chain it walks through all the atoms
in each residue, to print the residue and atom name when there is a disordered
atom:

Listing 9.14: pdb2.py: Parse a gzipped PDB file

1 import gzip

2 from Bio.PDB.PDBParser import PDBParser

3

4 def disorder(structure):

5 for chain in structure[0].get_list():

6 for residue in chain.get_list():

7 for atom in residue.get_list():

8 if atom.is_disordered():

9 print(residue, atom)

10 return None

11

12 pdbfn = ’../../samples/pdb1apk.ent.gz’

13 handle = gzip.GzipFile(pdbfn)

14 parser = PDBParser()

15 structure = parser.get_structure("test", handle)

16 disorder(structure)

9.3.14 PROSITE

PROSITE is a database of documentation entries describing protein domains, fam-
ilies, and functional sites as well as associated patterns and profiles used to identify
them.

This database is accessed through the PROSITE site at http://www.expasy.

org/prosite or distributed as a single plain-text file.25 This file can be parsed with
the parse function in the Prosite module:

>>> from Bio import Prosite

>>> handle = open("prosite.dat")

24gzip is the “standard” application used in *nix systems for file compression, but it is also
available in most common platforms. It is shown in this example because most of the publicly
accessible molecular data files are compressed in this format.

25Release 20.36, of 02-Sep-2008, is a 22-Mb file available at ftp://ftp.expasy.org/databases/
prosite/prosite.dat.

http://www.expasyorg/prosite
ftp://ftp.expasy.org/databases/
http://www.expasyorg/prosite

Introduction to Biopython � 197

>>> records = Prosite.parse(handle)

>>> for r in records:

print(r.accession)

print(r.name)

print(r.description)

print(r.pattern)

print(r.created)

print(r.pdoc)

print("===================================")

PS00001

ASN_GLYCOSYLATION

N-glycosylation site.

N-{P}-[ST]-{P}.

APR-1990

PDOC00001

===================================

PS00004

CAMP_PHOSPHO_SITE

cAMP- and cGMP-dependent protein kinase phosphorylation site.

[RK](2)-x-[ST].

APR-1990

PDOC00004

===================================

PS00005

PKC_PHOSPHO_SITE

Protein kinase C phosphorylation site.

[ST]-x-[RK].

APR-1990

PDOC00005

===================================

9.3.15 Restriction

Recombinant DNA technology is based on the possibility of combining DNA se-
quences (usually from different organisms) that would not normally occur together.
This kind of biological cut and paste is accomplished by a restriction endonuclease,
a special group of enzymes that works as specific molecular scissors.

The main characteristic of these enzymes is that they recognize a specific se-
quence of nucleotides and cut both DNA strands. When a researcher wants to
introduce a cut in a known DNA sequence, he or she must first check which enzyme

198 � Python for Bioinformatics

has a specificity for a site inside the sequence. All available restriction enzymes are
stored in a database called REBASE.26

A well-known restriction enzyme is EcoRI. This enzyme recognizes the
“GAATTC” sequence. So this enzyme cuts any double-stranded DNA having this
sequence, like

CGCGAATTCGCG

GCGCTTAAGCGC

In this case, the restriction site is found in the middle of the top strand (marked
with ’-’): CGC-GAATTC-GCG. The separated pieces look like this:

CGC GAATTCGCG

GCGCTTAA GCGC

Bio.Restriction Module

Biopython provides tools for dealing with restriction enzymes, including enzyme
information retrieved from REBASE. All restriction enzymes are available from
Restriction module:

>>> from Bio import Restriction

>>> Restriction.EcoRI

EcoRI

Restriction enzyme objects have several methods, like search, that can be used
to search for restriction sites in a DNA sequence:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet.IUPAC import IUPACAmbiguousDNA

>>> alfa = IUPACAmbiguousDNA()

>>> gi1942535 = Seq(’CGCGAATTCGCG’, alfa)

>>> Restriction.EcoRI.search(gi1942535)

[5]

Note that the search function returns a list with all positions where the enzyme
cuts. The position is the first nucleotide after the cut, beginning at 1 instead of 0
(as usual in other parts of Python). Another parameter in search is linear. It is
defaulted to False and should be set as True when the sequence is circular.

Segments produced after a restriction can be seen with the catalyze function:

>>> Restriction.EcoRI.catalyse(gi1942535)

(Seq(’CGCG’, IUPACAmbiguousDNA()), Seq(’AATTCGCG’, <=

IUPACAmbiguousDNA()))

26REBASE is available at http://rebase.neb.com/rebase/rebase.html.

http://rebase.neb.com/rebase/rebase.html

Introduction to Biopython � 199

To analyze several enzymes at the same time, there is the RestrictionBatch
class:

>>> enz1 = Restriction.EcoRI

>>> enz2 = Restriction.HindIII

>>> batch1 = Restriction.RestrictionBatch([enz1, enz2])

>>> batch1.search(gi1942535)

{EcoRI: [5], HindIII: []}

The search function applied over a set of enzymes returns a dictionary:

>>> dd = batch1.search(gi1942535)

>>> dd.get(Restriction.EcoRI)

[5]

>>> dd.get(Restriction.HindIII)

[]

Enzymes can be added or removed as if the RestrictionBatch instance were
a set:

>>> batch1.add(Restriction.EarI)

>>> batch1

RestrictionBatch([’EarI’, ’EcoRI’, ’HindIII’])

>>> batch1.remove(Restriction.EarI)

>>> batch1

RestrictionBatch([’EcoRI’, ’HindIII’])

There are also some predefined sets in the Restriction module, like AllEn-
zymes, CommOnly and NonComm:

>>> batch2 = Restriction.CommOnly

Analysis Class: All in One

Analysis class simplifies dealing with multiple enzymes:

>>> an1 = Restriction.Analysis(batch1,gi1942535)

>>> an1.full()

{HindIII: [], EcoRI: [5]}

Up to this point, the result of the full() method in the Analysis object is the
same as a search over a RestrictionBatch. Analysis provides:

200 � Python for Bioinformatics

>>> an1.print_that()

EcoRI : 5.

Enzymes which do not cut the sequence.

HindIII

>>> an1.print_as(’map’)

>>> an1.print_that()

5 EcoRI

|

CGCGAATTCGCG

||||||||||||

GCGCTTAAGCGC

1 12

Enzymes which do not cut the sequence.

HindIII

>>> an1.only_between(1,8)

{EcoRI: [5]}

This covers most of the functions available in the Restriction module. For
more information please refer to the Biopython tutorial at http://biopython.

org/DIST/docs/cookbook/Restriction.html.

9.3.16 SeqUtils

This module has several functions to deal with DNA and protein sequences, such
as CG, GC skew, molecular weight, checksum algorithms, Codon Usage, Melting
Temperature, and others. All functions are properly documented, so I will explain
only a few functions to get the idea of how to use them.

DNA Utils

SeqUtils has plenty of functions that can be applied to DNA sequences. Let’s see
some of them:

GC content: The percentage of bases that are either guanine or cytosine is a
parameter that affects some physical properties of the DNA molecule. It is calcu-
lated with the GC function:

>>> from Bio.SeqUtils import GC

http://biopython.org/DIST/docs/cookbook/Restriction.html
http://biopython.org/DIST/docs/cookbook/Restriction.html

Introduction to Biopython � 201

>>> GC(’gacgatcggtattcgtag’)

50.0

DNA Melting Temperature: This can be calculated with the Melting-
Temp.Tm_staluc function. This function implements the “nearest neighbor
method”27 and can be used for both DNA and RNA sequences:

>>> from Bio.SeqUtils import MeltingTemp

>>> MeltingTemp.Tm_staluc(’tgcagtacgtatcgt’)

42.211472744873447

>>> print(’%.2f’%MeltingTemp.Tm_staluc(’tgcagtacgtatcgt’))

42.21

CheckSum functions: A checksum is usually a short alphanumeric string,
based in an input file, mostly used to test data integrity. From any kind of data
(like a text file, a DNA sequence), using an algorithm you can generate a small string
(usually called a “signature”) that can represent the original data. Some programs
attach checksum information to sequence information to ensure data integrity. A
simple checksum is implemented by the GCG program.

This is a sequence in the gcg format:

ID AB000263 standard; RNA; PRI; 368 BP.

XX

AC AB000263;

XX

DE Homo sapiens mRNA for prepro cortistatin like peptide.

XX

SQ Sequence 37 BP;

AB000263 Length: 37 Check: 1149 ..

1 acaagatgcc attgtccccc ggcctcctgc tgctgct

The Check number (1149 in this case) is derived from the sequence. If the
sequence is changed, the number is (hopefully) changed. There is always a chance
of a random collision, that is, when two different sequences generate the same
signature. The “gcg checksum” is weak in the sense that it allows only 10000 different
signatures. This is why there are some other stronger checksums like the crc32,
crc64, and seguid.28

All these checksums are available from the CheckSum module. They are shown
in order from the weaker to the strongest checksum algorithm.

27For more information on nearest neighbor method, see the work of “Santalucia, et al. (1996)
Biochemistry 35, 3555–3562.”

28For more information on the checksums, refer to “Bassi, Sebastian and Gonza-
lez, Virginia. New checksum functions for Biopython.” Available from Nature Precedings
<http://dx.doi.org/10.1038/npre.2007.278.1> (2007).

http://dx.doi.org/10.1038/npre.2007.278.1

202 � Python for Bioinformatics

>>> from Bio.SeqUtils import CheckSum

>>> myseq = ’acaagatgccattgtcccccggcctcctgctgctgct’

>>> CheckSum.gcg(myseq)

1149

>>> CheckSum.crc32(myseq)

-2106438743

>>> CheckSum.crc64(myseq)

’CRC-A2CFDBE6AB3F7CFF’

>>> CheckSum.seguid(myseq)

’9V7Kf19tfPA5TntEP75YiZEm/9U’

Protein Utils

Protein-related functions are accessible from the ProtParam class. Available pro-
tein properties are Molecular weight, aromaticity, instability index, flexibility, iso-
electric point, and secondary structure fraction. Function names are straightforward.
See them in Listing 9.15:

Listing 9.15: protparam.py: Apply PropParam functions to a group of proteins

1 from Bio.SeqUtils.ProtParam import ProteinAnalysis

2 from Bio.SeqUtils import ProtParamData

3 from Bio import SeqIO

4

5 with open(’/../../samples/pdbaa’) as fh:

6 for rec in SeqIO.parse(fh,’fasta’):

7 myprot = ProteinAnalysis(str(rec.seq))

8 print(myprot.count_amino_acids())

9 print(myprot.get_amino_acids_percent())

10 print(myprot.molecular_weight())

11 print(myprot.aromaticity())

12 print(myprot.instability_index())

13 print(myprot.flexibility())

14 print(myprot.isoelectric_point())

15 print(myprot.secondary_structure_fraction())

16 print(myprot.protein_scale(ProtParamData.kd, 9, .4))

9.3.17 Sequencing

Sequencing projects usually generate .ace and .phd.1 files.29

29This depends on sequencing technology; these files are generated by processing sequence trace
chromatogram with popular sequencing processing software such as Phred, Phrap, CAP3, and
Consed.

Introduction to Biopython � 203

Phd Files

The DNA sequencer trace data is read by the Phred program. This program calls
bases, assigns quality values to the bases, and writes the base calls and quality
values to output files (with .phd.1 extension).

The following code (Listing 9.16) shows how to extract the data from the .phd.1
files:

Listing 9.16: phd1.py: Extract data from a .phd.1 file

1 import pprint

2 from Bio.Sequencing import Phd

3

4 fn = ’../../samples/phd1’

5 fh = open(fn)

6 rp = Phd.RecordParser()

7 # Create an iterator

8 it = Phd.Iterator(fh, rp)

9 for r in it:

10 # All the comments are in a dictionary

11 pprint.pprint(r.comments)

12 # Sequence information

13 print(’Sequence: %s’ % r.seq)

14 # Quality information for each base

15 print(’Quality: %s’ % r.sites)

16 fh.close()

If you only want to extract the sequence, it is easier to use SeqIO:

>>> from Bio import SeqIO

>>> fn = ’../../samples/phd1’

>>> fh = open(fn)

>>> seqs = SeqIO.parse(fh,’phd’)

>>> seqs = SeqIO.parse(fh,’phd’)

>>> for s in seqs:

print(s.seq)

ctccgtcggaacatcatcggatcctatcacagagtttttgaacgagttctcg

(...)

Ace Files

In a typical sequencing strategy, several overlapping sequences (or “reads”) are as-
sembled electronically into one long contiguous sequence. This contiguous sequence

204 � Python for Bioinformatics

is called “contig” and is made with specialized programs like CAP3 and Phrap. Con-
tig files are used for viewing or further analysis. Biopython has the ACEParser in
the Ace module. For each .ace file you can get the number of contigs, number of
reads, and some file information:

>>> from Bio.Sequencing import Ace

>>> fn=’836CLEAN-100.fasta.cap.ace’

>>> acefilerecord=Ace.read(open(fn))

>>> acefilerecord.ncontigs

87

>>> acefilerecord.nreads

277

>>> acefilerecord.wa[0].info

[’phrap 304_nuclsu.fasta.screen -new_ace -retain_duplicates’, <=

’phrap version 0.990329’]

>>> acefilerecord.wa[0].date

’040203:114710’

The Ace.read also retrieves relevant information of each contig as shown in
Listing 9.17.

Listing 9.17: ace.py: Retrieve data from an “.ace” file

1 from Bio.Sequencing import Ace

2

3 fn = ’../../samples/contig1.ace’

4 acefilerecord = Ace.read(open(fn))

5

6 # For each contig:

7 for ctg in acefilerecord.contigs:

8 print(’==’)

9 print(’Contig name: %s’%ctg.name)

10 print(’Bases: %s’%ctg.nbases)

11 print(’Reads: %s’%ctg.nreads)

12 print(’Segments: %s’%ctg.nsegments)

13 print(’Sequence: %s’%ctg.sequence)

14 print(’Quality: %s’%ctg.quality)

15 # For each read in contig:

16 for read in ctg.reads:

17 print(’Read name: %s’%read.rd.name)

18 print(’Align start: %s’%read.qa.align_clipping_start)

19 print(’Align end: %s’%read.qa.align_clipping_end)

20 print(’Qual start: %s’%read.qa.qual_clipping_start)

21 print(’Qual end: %s’%read.qa.qual_clipping_end)

Introduction to Biopython � 205

22 print(’Read sequence: %s’%read.rd.sequence)

23 print(’==’)

9.3.18 SwissProt

SwissProt30 is a hand-annotated protein sequence database. It is maintained collab-
oratively by the Swiss Institute for Bioinformatics (SIB) and the European Bioinfor-
matics Institute (EBI), forming the UniProt consortium. It is known for its reliable
protein sequences associated with a high level of annotation, and is the reference
database for proteins. As of September 2008 it has almost 400,000 entries, while
the whole UniProt database has more than 6,000,000 records. Its reduced size is
due to its hand-curation process.

SwissProt files are text files structured so as to be usable by human readers as
well as by computer programs. Specifications for this file format are available at
http://www.expasy.org/sprot/userman.html, but there is no need to know it
internals to parse its with Biopython.

A sample SwissProt file is shown below:31

ID 6PGL_ECOLC Reviewed; 331 AA.

AC B1IXL9;

DT 20-MAY-2008, integrated into UniProtKB/Swiss-Prot.

DT 29-APR-2008, sequence version 1.

DT 02-SEP-2008, entry version 5.

DE RecName: Full=6-phosphogluconolactonase;

DE Short=6-P-gluconolactonase;

DE EC=3.1.1.31;

GN Name=pgl; OrderedLocusNames=EcolC_2895;

OS Escherichia coli (strain ATCC 8739 / DSM 1576 / Crooks).

OC Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;

OC Enterobacteriaceae; Escherichia.

OX NCBI_TaxID=481805;

RN [1]

RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].

RA Copeland A., Lucas S., Lapidus A., Glavina del Rio T., Dalin E.,

RA Tice H., Bruce D., Goodwin L., Pitluck S., Kiss H., Brettin T.;

RT "Complete sequence of Escherichia coli C str. ATCC 8739.";

RL Submitted (FEB-2008) to the EMBL/GenBank/DDBJ databases.

CC -!- FUNCTION: Catalyzes the hydrolysis of 6-phosphogluconolactone

CC to 6-phosphogluconate (By similarity).

CC -!- CATALYTIC ACTIVITY: 6-phospho-D-glucono-1,5-lactone + H(2)O

30http://www.expasy.org/sprot
31This file is slightly modified to fit in this page; the original file can be retrieved from http:

//www.expasy.org/uniprot/B1IXL9.txt.

http://www.expasy.org/sprot/userman.html
http://www.expasy.org/sprot
http://www.expasy.org/uniprot/B1IXL9.txt
http://www.expasy.org/uniprot/B1IXL9.txt

206 � Python for Bioinformatics

CC = 6-phospho-D-gluconate.

CC -!- PATHWAY: Carbohydrate degradation; pentose phosphate pathway;

CC D-ribulose 5-phosphate from D-glucose 6-phosphate (oxidative

CC stage): step 2/3.

CC -!- SIMILARITY: Belongs to the cycloisomerase 2 family.

CC ---

CC Copyrighted by the UniProt Consortium, see

CC http://www.uniprot.org/terms Distributed under the Creative

CC Commons Attribution-NoDerivs License

CC ---

DR EMBL; CP000946; ACA78522.1; -; Genomic_DNA.

DR RefSeq; YP_001725849.1; -.

DR GeneID; 6065358; -.

DR GenomeReviews; CP000946_GR; EcolC_2895.

DR KEGG; ecl:EcolC_2895; -.

DR GO; GO:0017057; F:6-phosphogluconolactonase activity; IEA:HAMAP.

DR GO; GO:0006006; P:glucose metabolic process; IEA:HAMAP.

DR HAMAP; MF_01605; -; 1.

DR InterPro; IPR015943; WD40/YVTN_repeat-like.

DR Gene3D; G3DSA:2.130.10.10; WD40/YVTN_repeat-like; 1.

PE 3: Inferred from homology;

KW Carbohydrate metabolism; Complete proteome; Glucose metabolism;

KW Hydrolase.

FT CHAIN 1 331 6-phosphogluconolactonase.

FT /FTId=PRO_1000088029.

SQ SEQUENCE 331 AA; 36308 MW; D731044CFCF31A8F CRC64;

MKQTVYIASP ESQQIHVWNL NHEGALTLTQ VVDVPGQVQP MVVSPDKRYL YVGVRPEFRV

LAYRIAPDDG ALTFAAESAL PGSPTHISTD HQGQFVFVGS YNAGNVSVTR LEDGLPVGVV

DVVEGLDGCH SANISPDNRT LWVPALKQDR ICLFTVSDDG HLVAQDPAEV TTVEGAGPRH

MVFHPNEQYA YCVNELNSSV DVWELKDPHG NIECVQTLDM MPENFSDTRW AADIHITPDG

RHLYACDRTA SLITVFSVSE DGSVLSKEGF QPTETQPRGF NVDHSGKYLI AAGQKSHHIS

VYEIVGEQGL LHEKGRYAVG QGPMWVVVNA H

//

The Listing 9.18 shows how to retrieve data from a SwissProt file with multiple
records:

Listing 9.18: Retrieve data from a SwissProt file

1 from Bio import SwissProt

2 with open(’../../samples/spfile.txt’) as fh:

3 records = SwissProt.parse(fh)

4 for record in records:

5 print(’Entry name: %s’ % record.entry_name)

http://www.uniprot.org/terms

Introduction to Biopython � 207

6 print(’Accession(s): %s’ % ’,’.join(record.accessions))

7 print(’Keywords: %s’ % ’,’.join(record.keywords))

8 print(’Sequence: %s’ % record.sequence)

The Listing 9.19 shows all atributes in records parsed by SwissProt module:

Listing 9.19: Attributes of a SwissProt record

1 from Bio import SwissProt

2 with open(’../../samples/spfile.txt’) as fh:

3 record = next(SwissProt.parse(fh))

4 for att in dir(record):

5 if not att.startswith(’__’):

6 print(att, getattr(record,att))

9.4 CONCLUSION

Most used Biopython features were covered in this chapter. Following the code
samples presented here and the full programs in Section III should give you insight
on how to use Biopython. You should also learn how to use the Python built-in
help since online documentation tends to be more up to date than anything in
print. Biopython development happens at a fast pace. So fast that this chapter was
rewritten several times while I was working on it. The best way to keep updated
with Biopython development is to subscribe to the Biopython development mailing
list and receive the RSS feed from the code repository.

9.5 ADDITIONAL RESOURCES

• Chang J., Chapman B., Friedberg I., Hamelryck T., de Hoon M., Cock P.,
and Antão, T. Biopython tutorial and cookbook.
http://www.biopython.org/DIST/docs/tutorial/Tutorial.html or http:
//www.biopython.org/DIST/docs/tutorial/Tutorial.pdf.

• Hamelryck T, and Manderick B., PDB file parser and structure class imple-
mented in Python. Bioinformatics. 2003 Nov 22;19(17):2308–10.
https://www.ncbi.nlm.nih.gov/pubmed/14630660

• Sohm, F., Manual in cookbook style on using the Restriction module.
http://biopython.org/DIST/docs/cookbook/Restriction.html

• Wu C.H., Apweiler R., Bairoch A., Natale D.A, Barker W.C., Boeckmann
B., Ferro S., Gasteiger E., Huang H., Lopez R., Magrane M., Martin M.J.,
Mazumder R., O’Donovan C., Redaschi N. and Suzek B. (2006). The Universal
Protein Resource (UniProt): An expanding universe of protein information.
Nucleic Acids Research 34: D187–D191.

http://www.biopython.org/DIST/docs/tutorial/Tutorial.html
http://www.biopython.org/DIST/docs/tutorial/Tutorial.pdf
https://www.ncbi.nlm.nih.gov/pubmed/14630660
http://biopython.org/DIST/docs/cookbook/Restriction.html
http://www.biopython.org/DIST/docs/tutorial/Tutorial.pdf

208 � Python for Bioinformatics

• Magrane M., and Apweiler R. (2002). Organisation and standardisation of
information in Swiss-Prot and TrEMBL. Data Science Journal 1(1): 13–18.
http://datascience.codata.org/articles/10.2481/dsj.1.13/galley/168/

download/

• Benson Dennis A., Karsch-Mizrachi Ilene, Lipman David J., Ostell James, and
Wheeler David L.. GenBank. Nucleic Acids Res. 2008 January; 36(Database
issue): D25–D30.
http://dx.doi.org/10.1093/nar/gkm929

• Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A.,
McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson
J.D., Gibson T.J., Higgins D.G.. Clustal W and Clustal X version 2.0. Bioin-
formatics. 2007 Nov 1;23(21):2947-8. Epub 2007 Sep 10.

• Wikipedia contributors. Restriction enzyme. Wikipedia, The Free Encyclope-
dia. February 13, 2009, 16:44 UTC.
http://en.wikipedia.org/wiki/Restriction_enzyme.

• EFetch for Sequence and other molecular biology databases.
https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.EFetch

• Cock P. Clever tricks with NCBI Entrez EInfo (& Biopython).
https://news.open-bio.org/2009/06/21/ncbi-einfo-biopython/

http://datascience.codata.org/articles/10.2481/dsj.1.13/galley/168/download/
http://dx.doi.org/10.1093/nar/gkm929
http://en.wikipedia.org/wiki/Restriction_enzyme
https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.EFetch
https://news.open-bio.org/2009/06/21/ncbi-einfo-biopython/
http://datascience.codata.org/articles/10.2481/dsj.1.13/galley/168/download/

Introduction to Biopython � 209

9.6 SELF-EVALUATION

1. What is an Alphabet in Biopython? Name at least four.

2. Describe Seq and SeqRecord objects.

3. What advantage provides a Seq object over a string?

4. Seq object provides some string operations. Why?

5. What is a MutableSeq object?

6. What is the relation between the Align and ClustalW modules?

7. Name the methods of the SeqIO module.

8. Why there is a comma near the end of line 7 in code 9.3?

9. Name five functions found in SeqUtils.

10. What kind of sequence files can be read with the Sequencing module?

11. What module would you use to retrieve data from the NCBI web server?

12. Make a program to count all ordered atoms in a PDB file. The PDB file must
be passed to the program on the command line, in the form: program.py
file.pdb.

http://taylorandfrancis.com

II
Advanced Topics

211

http://taylorandfrancis.com

C H A P T E R 10

Web Applications

CONTENTS

10.1 Introduction to Python on the Web . 213
10.2 CGI in Python . 214

10.2.1 Configuring a Web Server for CGI . 215
10.2.2 Testing the Server with Our Script . 215
Sending Data to a CGI Program . 216
10.2.3 Web Program to Calculate the Net Charge of a Protein (CGI

version) . 219
10.3 WSGI . 221

10.3.1 Bottle: A Python Web Framework for WSGI 222
10.3.2 Installing Bottle . 223
10.3.3 Minimal Bottle Application . 223
10.3.4 Bottle Components . 224
Routes . 224
URL with Variable Parts . 225
Getting Data: request . 225
Templates . 226
Static Files . 228
10.3.5 Web Program to Calculate the Net Charge of a Protein (Bottle

Version) . 229
10.3.6 Installing a WSGI Program in Apache . 232

10.4 Alternative Options for Making Python-Based Dynamic Web Sites . . . 232
10.5 Some Words about Script Security . 232
10.6 Where to Host Python Programs . 234
10.7 Additional Resources . 235
10.8 Self-Evaluation . 236

10.1 INTRODUCTION TO PYTHON ON THE WEB

We have just seen how to run programs locally. This chapter shows how to port
them to the web.

The main advantage of making a program available on the web is that it can
reach more users without the need for them to install a copy of the program and to
have a Python installation. Sometimes the program accesses demanding resources
like huge databases that can’t be installed on the end user’s hard drive.

213

214 � Python for Bioinformatics

To make web applications you need tools other than Python, like HTML, CSS,
JS, web server management, and more. Those topics are beyond the scope of this
book, for which reason I recommend that you read up on them if you have never
designed a web page before. Knowing the basics of HTML has special importance as
most IT Labs have staff dedicated to the setup and maintenance of the web servers,
but the HTML design is something that they will rarely do for you. For more
information on HTML, please see the “Additional Resources” section. Regarding
the web server, Python provides one that is useful for development and testing,
but not for use in production. In this case, you should use a stand-alone server
program like Apache or Nginx; since Apache is by far the most popular, this
book will cover how to set it up. It is common that the web server is provided
by your institution, but it is also common now that the IT department provides a
virtual machine where you should install all required software instead of only your
app.

There are several ways to use Python on a web server, CGI (Common Gateway
Interface), mod_python, and WSGI (Web Server Gateway Interface). CGI is
the oldest method to run dynamic content in a web page. The first web servers
only showed static HTML, until the CGI protocol was defined in 1993. It is still
in use today and some hosting companies even offer CGI as the only option to
make interactive web servers. As an advantage, it is the easiest to configure and is
available on almost all web servers without having to install additional software. It is
essentially a protocol to connect an application, written in any language, with a web
server. mod_python in particular consists of an Apache Module that integrates
Python with the web server. The advantage of this approach is the fast script
execution, since the Python interpreter is loaded with the Web server. WSGI, in
turn, is a “specification for web servers and application servers to communicate with
web applications.” Since it is a specification, there are several implementations. The
main advantage of WSGI is that once you have made a WSGI application, it can
be deployed in any WSGI-compatible server1 (or even using the Python provided
web server). As in mod_python, the execution speed of WSGI-based programs is
better than CGI, because there is no overhead for starting the Python interpreter
on each request.

10.2 CGI IN PYTHON

For this section, I assume you already have an Apache web server running. If not,
it can be installed in Debian/Ubuntu-based Linux distributions with:

$ sudo apt-get install apache2

As an alternative, you can hire any web hosting plan; most of them have Apache
and CGI pre-installed. For more information on web hosting please see page 234.

1For a comparison on WSGI web servers check out this article: https://www.digitalocean.
com/community/tutorials/a-comparison-of-web-servers-for-python-based-web-applications.

https://www.digitalocean.com/community/tutorials/a-comparison-of-web-servers-for-python-based-web-applications
https://www.digitalocean.com/community/tutorials/a-comparison-of-web-servers-for-python-based-web-applications

Web Applications � 215

10.2.1 Configuring a Web Server for CGI

In the server configuration file2 there should be specifications that scripts can be
executed via CGI, in which directories, and how they will be named.

If the scripts will be located at /var/www/apache2-default/cgi-bin, we have
to include the following lines in the server’s configuration file.

<Directory /var/www/apache2-default/cgi-bin>

Options +ExecCGI

</Directory>

Add the following line in the config file to specify that the executable scripts
are those that have the file extension .py

AddHandler cgi-script .py

If the configuration file already has a line with the file extensions registered, you
only need to add .py to it.

AddHandler cgi-script .cgi .pl .py

Finally we have to configure the ScriptAlias variable. It requires the path that
the user will see in the URL and the path where the scripts are stored.

ScriptAlias /cgi-bin/ /var/www/apache2-default/cgi-bin/

This is all there is to the server configuration file. The only thing that is left to
do is make sure that the script has the Apache user permissions. From the server’s
terminal, enter:

chmod a+x MyScript.py

If you only have FTP access, use an FTP client to set the permissions.

10.2.2 Testing the Server with Our Script

The following code can be used to confirm that the server is ready to execute CGI
programs:

Listing 10.1: firstcgi.py: First CGI script

1 #!/usr/bin/env python

2 print("Content-Type: text/html\n")

3 print("<html><head><title>Test page</title></head><body>")

4 print("<h1>HELLO WORLD!</h1>")

5 print("</body></html>")

2In Apache web server, in most cases the configuration file is httpd.conf or apache2.conf and
it is located at /etc/apache2 directory. This can change on each installation.

httpd.conf or apache2.conf

216 � Python for Bioinformatics

Code explanation: The first line indicates the location of the Python inter-
preter. Usually, this line is optional and it is added only when we want to run the
script directly without first having to call the Python interpreter. For CGI pro-
grams, this line is mandatory.3 The second line is important for the web server
to know that it is going to be sent an HTML page. We have to send the string
Content-Type/html followed by two carriage returns. Although on line 2 there is
only one implicit carriage return (\n), the other one is added by the print command.
The rest of the program is similar to the others that we’ve done up to this point,
the difference being that we print HTML code to be read by the browser.

If we upload this program to a web server and then access the page with our
browser, the results we will see will be similar to Figure 10.2.2. If everything goes
well, we won’t see the content of the file but the product of its execution on the
server. This product (an HTML page) will be rendered by the web browser (see
Figure 10.1).

Figure 10.1 Our first CGI.

Take into account that in order to test our pages we need them to be processed
by a web server, and not open them directly from our hard drive. In this case we
will have as a result what you see in Figure 10.2, instead of the page rendered by
the web browser.

Sending Data to a CGI Program

The previous program is not very useful, it is just a static page that doesn’t accept
any parameters from the user. Let’s see an example of a minimalist HTML form
that sends data to a Python program that will use this data.

The first step is to design the form. In this case we will create a simple form
with one field and it will be saved as greeting.html:

3If you don’t know the path to the Python interpreter, ask the system administrator to install
your script. Another option, if you have access to the server command line, is to execute whereis

python.

Web Applications � 217

Figure 10.2 CGI accessed from local disk instead from a web server.

Listing 10.2: greeting.html: HTML front end to send data to a CGI program

1 <html><head><title>Very Simple Form</title></head>

2 <body>

3 <form action=’cgi-bin/greeting.py’ method=’post’>

4 Your name: <input type=’text’ name=’username’> <p>

5 <input type=’submit’ value=’Send’>

6 </form></body></html>

Code explained: There are two important features to note on this small form.
Line 3 is specified where the program that is going to process the data is located
(cgi-bin/greeting.py). On line 4 there is the field that the user has to fill (“text”
type), with an associated variable (username). This variable name is important
because the information entered by the user will be bound to this name. The form
looks like the one in Figure 10.2.2.

Figure 10.3 greeting.html: A very simple form.

Let’s see how to write the code that will accept data sent by the form and from
it will build a Web page “on the fly.”

218 � Python for Bioinformatics

Listing 10.3: greeting.py: CGI program that processes the form in
greeting.html.

1 #!/usr/bin/env python

2 import cgi

3 print("Content-Type: text/html\n")

4 form = cgi.FieldStorage()

5 name = form.getvalue("username","NN")[:10]

6 print("<html><head><title>A CGI script</title></head>")

7 print("<body><h2>Hello {0}</h2></body></html>".format(name))

Code explained: On line 4 we create an instance (form) from the class
cgi.FieldStorage. This class takes the values sent by the form and make them
accessible in a dictionary-like fashion. On the next line (5), we access the data sent
by the form, and also trim the number of characters we are going to pass to the
print function; this is done to mitigate a potential security problem.4 The getvalue
method takes as a necessary argument, the name of the field whose content we want
to access. The second argument is optional and indicates which value will be re-
turned in case the wanted field is blank. Take note that this is similar to the get
dictionary function. From line 6 forward, the program prints the HTML code using
the content of the variable. This is the code that will be rendered in the browser.

In summary, we used the web form in Listing 10.2 to enter a name and
press “Send.” This sends the data. It is then read by the program thanks to the
cgi.FieldStorage class and referenced as a variable name that is used in the
program to generate a web page. See the output in Figure 10.5.

Figure 10.4 Output of CGI program that processes greeting.html.

4For more information on securing web sites please see page 232.

Web Applications � 219

10.2.3 Web Program to Calculate the Net Charge of a Protein (CGI version)

Using the code from Listing 4.14, we can easily adapt it to use from a web page.
As a first step we need to design a form where a user can enter the data. This is a
proposed form:

Listing 10.4: protcharge.html: HTML front end to send data to a CGI program

1 <!DOCTYPE html>

2 <html lang="en">

3 <head><meta charset="utf-8">

4 <title>Protein Charge Calculator</title>

5 <link href="css/bootstrap.min.css" rel="stylesheet">

6 </head>

7 <body style="background-color:#e7f5f5;">

8 <div class="container"><h2>Protein Charge Calculator</h2>

9 <form action=’/cgi-bin/protcharge.py’ method=’post’>

10 <div class="row">

11 <div class="col-sm-8">

12 <div class="form-group">

13 <label for="aaseq">Enter the amino-acid sequence:</label>

14 <textarea name="aaseq" rows="5" cols="40"></textarea>

15 </div>

16 </div>

17 </div>

18 <div class="row">

19 <div class="col-sm-8">

20 <div class="form-group">

21 <label for="prop">Do you want to see the proportion of

22 charged amino-acid?</label>

23 <div class="radio">

24 <label>

25 <input type="radio" name="prop" value="y">Yes

26 </label>

27 </div>

28 <div class="radio">

29 <label>

30 <input type="radio" name="prop" value="n">No

31 </label>

32 </div>

33 <label for="title">Job title (optional):</label>

34 <input type="text" size="30" name="title" value="">

35

36 <button type="submit" class="btn btn-primary">Send

220 � Python for Bioinformatics

37 </button>

38 </div>

39 </div>

40 </div>

41 </form>

42 </div>

43 </body>

44 </html>

Figure 10.5 shows how the form in Listing 10.4 is rendered in a web browser.

Figure 10.5 Form protcharge.html ready to be submitted.

Below is the code (protcharge.py) that will be called when the form is used:

Listing 10.5: protcharge.py: Back-end code to calculate the net charge of a
protein and proportion of charged amino acid

1 #!/usr/bin/env python

2 import cgi, cgitb

Web Applications � 221

3

4 def chargeandprop(aa_seq):

5 protseq = aa_seq.upper()

6 charge = -0.002

7 cp = 0

8 aa_charge = {’C’:-.045,’D’:-.999,’E’:-.998,’H’:.091,

9 ’K’:1,’R’:1,’Y’:-.001}

10 for aa in protseq:

11 charge += aa_charge.get(aa, 0)

12 if aa in aa_charge:

13 cp += 1

14 prop = float(cp)/len(aa_seq)*100

15 return (charge, prop)

16

17 cgitb.enable()

18 print(’Content-Type: text/html\n’)

19 form = cgi.FieldStorage()

20 seq = form.getvalue(’aaseq’, ’QWERTYYTREWQRTYEYTRQWE’)

21 prop = form.getvalue(’prop’, ’n’)

22 jobtitle = form.getvalue(’title’,’No title’)

23 charge, propvalue = chargeandprop(seq)

24 print(’<html><body>Job title:{0}
’.format(jobtitle))

25 print(’Your sequence is:
{0}
’.format(seq))

26 print(’Net charge: {0}
’.format(charge))

27 if prop == ’y’:

28 print(’Proportion of charged AA: {0:.2f}
’

29 .format(propvalue))

30 print(’</body></html>’)

Figure 10.2.3 shows the resulting HTML page after code in Listing 10.5 is exe-
cuted.

Code explanation: The code to calculate the charge and the proportion of
charged amino acid, are in the function that starts at line 4. On line 19 we create
an instance (form) of the class cgi.FieldStorage. The form object is responsible
for taking the values sent by the form and making them available in a dictionary-
like fashion. From line 20 to 22 we retrieve values entered by the user. In line 24,
the “net charge” and “proportion of charged amino acids” are evaluated. Line 25 up
to the end generates the HTML that will be sent to the browser.

10.3 WSGI

Before WSGI there was a lot of incompatible choices for web programming in
Python. Some of them were web frameworks, that is, a set of programs for develop-
ment of dynamic web sites. The problem with some of these frameworks was that

222 � Python for Bioinformatics

Figure 10.6 Net charge CGI result.

each one operated in a different way and most of them were tied to a web server,
limiting the choice of web server/application pair.

WSGI was made to fill this gap, and it is defined as a “simple and univer-
sal interface between web servers and web applications or frameworks.” A lot
of components (or middleware) are now WSGI compatible, so the programmer
doesn’t need to deal directly with WSGI. Once an application works with a mid-
dleware, it can be deployed in any WSGI compliant server. WSGI is now stan-
dardized and part of the Python languageḟootnoteAs described in PEP-3333 at
https://www.python.org/dev/peps/pep-3333/. For these reasons, WSGI is the
recommended choice for web developing in Python.

10.3.1 Bottle: A Python Web Framework for WSGI

Bottle is a micro web-framework for Python. It is distributed as a single file and
has no dependencies, that is, it only needs Python to run. Bottle provides 4 basic
components:

• Routing: A way to translate (or map) a URL to a Python function. So each
time a user requests a URL (that can have variable parts), a specific function
is executed.

• Templates: A built-in template engine and support out of the box for three
thir-party templates (mako, jinja2, and cheetah).

• Utilities: A dictionary-like object to access to form data, file uploads, cookies,
headers, and other metadata.

• Server: Development server and support for an external HTTP server, in-
cluded any WSGI compatible HTTP server.

There are other alternatives to Bottle. The most prominent one is Flask (see
Table 10.1 at page 233 at the end of this chapter for more options), but at this

https://www.python.org/dev/peps/pep-3333/

Web Applications � 223

moment it supports a template engine that is not Python 3 compatible, so Bottle
is the best choice at this moment.

10.3.2 Installing Bottle

Bottle is available from its web page at https://bottlepy.org, but as most
external packages, it can be installed with pip install under a virtual environ-
ment. The following snippet shows how to create the virtual environment (named
bottleproj), how to activate it, and how to install Bottle in the bottleproj virtual
environment:

$ virtualenv bottleproj

Using base prefix ’/usr’

New python executable in /home/sb/bottleproj/bin/python3

Also creating executable in /home/sb/bottleproj/bin/python

Installing setuptools, pip, wheel...done.

$. bottleproj/bin/activate

(bottleproj) $ pip install bottle

Collecting bottle

Downloading bottle-0.12.13.tar.gz (70kB)

(...)

Successfully built bottle

Installing collected packages: bottle

Successfully installed bottle-0.12.13

The equivalent command for Anaconda distribution is:

$ conda create -n bottleproj bottle

Since Bottle is contained in a file, an alternative installation method is to
download the file from https://raw.githubusercontent.com/bottlepy/bottle/

master/bottle.py and copy it to the same directory where your script resides.

10.3.3 Minimal Bottle Application

Here is a simple “Hello World” application in Bottle:

Listing 10.6: hellobottle.py: Hello World in Bottle

1 from bottle import route, run

2

3 @route(’/’)

4 def index():

5 return ’<h2>Hello World!</h2>’

6

7 run(host=’localhost’, port=8000)

https://bottlepy.org
https://raw.githubusercontent.com/bottlepy/bottle/master/bottle.py
https://raw.githubusercontent.com/bottlepy/bottle/master/bottle.py

224 � Python for Bioinformatics

In the first line we import two components of Bottle (route and run). In line 3
we assign a route or path to a function that starts in the next line. This is the URL
(web address) that the user should enter after the domain to get this page. When
an user types this path (in this case, the root level) in his/her browser, the function
index will run. This function (in line 4) just returns “<h2>Hello World!</h2>.”
Lines 7 starts the server.

Here is the output of this program to the terminal:

(bottleproj) $ python helloworldbottle.py

Bottle v0.13-dev server starting up (using WSGIRefServer())...

Listening on http://localhost:8000/

Hit Ctrl-C to quit.

Figure 10.7 Hello World program made in Bottle, as seen in a browser.

10.3.4 Bottle Components

Routes

Using the @route decorator we define how the URL will look for each page. The
following snippet shows 2 pages, a root page without any path and an about page
with /about path in the URL:

@route(’/’)

def index():

return ’Top level, or Index Page’

@route(’/about’)

http://localhost:8000/

Web Applications � 225

def about():

return ’The about page’

URL with Variable Parts

In some sites, part of the URL are one or more variables that are passed to the server
to build the web page; for example, in https://stackoverflow.com/questions/

6224052, the part with the number 6224052 is a variable part. This number is
passed to the program and used as a key to search the article content in a database.

The following code shows a URL with a fixed and a variable part. The fixed
part is /greets/ while the variable part is called name. Any string that is in its
place, will be passed to the associated function (shows_greeting) as a parameter.

@route(’/greets/<name>’)

def shows_greeting(name):

return ’Hello {0}’.format(name)

If you hit the URL http://127.0.0.1:5000/greets/Adele, you will see a page
with the text Hello Adele.

Getting Data: request

request is a dictionary-like object with some useful properties. It stores cookies,
values sent in a form, HTTP headers, files, and more. Let’s see some useful prop-
erties:

• request.form: All variables from a web form are available from this
dictionary-like object. If there is data in a form field called username, the
way to access the field value is with request.forms.get(’username’).

• request.method: The HTTP method used when requesting the page. When
a browser retrieves a web page, it sends a ’GET’ type of request. When a
URL is hit because a form is being submitted, it is a ’POST’ request. There
are other type of requests (’PUT’, ’PATCH’, and ’DELETE’) but they won’t
be covered here.5

• request.args: To access parameters submitted in the URL. Used when the
URL has the form ?key=value. It is also a dictionary-like object. If you
have a site with a URL like http://example.com/position?lat=37.51&

long=115.71, there are two keys, lat and long, whose values are 37.51 and
115.71 respectively. To retrieve lat you can use request.args[’lat’] or

5For more information on request methods see http://www.w3schools.com/tags/ref_

httpmethods.asp.

https://stackoverflow.com/questions/6224052
http://127.0.0.1:5000/greets/Adele
http://example.com/position?lat=37.51&long=115.71
http://www.w3schools.com/tags/ref_httpmethods.asp
http://www.w3schools.com/tags/ref_httpmethods.asp
https://stackoverflow.com/questions/6224052
http://example.com/position?lat=37.51&long=115.71

226 � Python for Bioinformatics

request.args.get(’lat’). These kinds of URLs are discouraged, and user-
friendly URLs are the norm, in this case it could be http://example.com/

position/37.51/115.716.

• request.files: When a file is uploaded, it is passed to the program as
request.files[’filename’].

Templates

In previous examples our methods were returning strings (plain-text string or
HTML string). The preferred way to build an HTML file to be sent to the user, is
to have a template and variable data, and with both components, make a final (or
rendered) HTML. To do this, use the template method provided by Bottle. The
general form of the template method is: template(template_name, **dictionary).
A template is usually an HTML file with variables as placeholders for final values.
The following text is a template with one variable:

Listing 10.7: index.tpl: Template for Bottle with variables

1 <html lang="en">

2 <body>

3 <h1>Hello {{ name }}!</h1>

4 </body>

5 </html>

If this file is called index.tpl and it is stored in the folder views, it can be
rendered with this code:

Listing 10.8: indextemplate.py: Bottle code for template with variables

1 from bottle import route, run, template

2

3 @route(’/greets/<username>’)

4 def shows_greeting(username):

5 return template(’index’, **{’name’:username})

6

7 run(host=’localhost’, port=8000)

Templates can also have flow control commands so you can control which
part of the template is rendered. For example, consider the following template
(index2.tpl):

6For more advice on URLs please see https://support.google.com/webmasters/answer/

76329.

http://example.com/position/37.51/115.71
https://support.google.com/webmasters/answer/76329
http://example.com/position/37.51/115.71
https://support.google.com/webmasters/answer/76329

Web Applications � 227

Listing 10.9: index2.tpl: Template for Bottle with variables and flow control

1 <html lang="en">

2 <body>

3 %if name[0].isalpha():

4 <h1>Hello {{ name }}!</h1>

5 %else:

6 <h1>Your user name must can’t start with a number</h1>

7 %end

8 </body>

9 </html>

This template has Python-like code in lines 3, 5 and 7. It looks like Python,
but has an %end (line 7) which is not part of the normal Python syntax. This is
because in Python code-blocks are marked with indentation and in the templates,
indentation are not taken into account, so the %end mark must be present. To use
this template, change line 5 in Listing 10.8 to point to the index2.tpl file. The
new Listing (10.10) is called indextemplate2.py:

Listing 10.10: index2.py: Bottle code for template with variables

1 from bottle import route, run, template

2

3 @route(’/greets/<username>’)

4 def shows_greeting(username):

5 return template(’index2’, **{’name’:username})

6

7 run(host=’localhost’, port=8000)

This listing uses the template index2.tpl (Listing 10.9) that, in line 3, checks
for the first character in the variable name; if it is true, it prints the same message
as in the first template, if not, it will print the message you can see in line 6 of the
template.

Note that we can get the same result by making the decision (the if clause) in
the code instead of doing it in the template, see the following code and template:

Listing 10.11: indextemplate3.py: Bottle code with logic in code instead of in
templates

1 from bottle import route, run, template

2

3 @route(’/greets/<username>’)

4 def shows_greeting(username):

228 � Python for Bioinformatics

5 if username[0].isalpha():

6 msg = ’Hello {0}!’.format(username)

7 else:

8 msg = "Your username must can’t start with a number"

9 return template(’index3’, **{’msg’:msg})

10

11 run(host=’localhost’, port=8000)

Template for Listing 10.11 (index3.tpl):

Listing 10.12: index3.tpl: template for indextemplate3.py

1 <html lang="en">

2 <body>

3 <h1>{{ msg }}</h1>

4 </body>

5 </html>

In Listing 10.11 (file indextemplate3.py) we check for the first letter of the
user name in line 6, so we move the logic away from the template, resulting in
an easier to read template. Since both Listing 10.10 and 10.11 produce the same
output, seems like both strategies are equivalent. They are not. Templates support
logic, but it is better to have complex logic in your code (where you have better
tools to debug it) rather than in the HTML (where usually a web designer with no
Python knowledge will edit it). In this case, Listing 10.11 is preferred over 10.10.
This does not mean that you should avoid using logic in any template. Sometimes
it makes a lot of sense, like in this situation:

% for item in items:

{{item}}

% end

The takeaway from this is to use logic in the templates where you estimate that
it will not make the site harder to maintain.

Static Files

Some files are served in a static manner, which means that they are not generated
on the fly by a backend process. The most common cases are css, JavaScript, and
images files. You can return a static file by returning a template without any vari-
ables, but Bottle has the method static_file to handle these files. static_file

Web Applications � 229

provides the extra functionality needed in this case.7 You need to pass the filename
and path where this file resides:

@route(’/static/rss.xml’)

def rss_static():

return static_file(’rss.xml’, root=’static/’)

The path can be passed with variable parts, by enclosing the variable part
between < and >:

@route(’/static/js/<filename>’)

def js_static(filename):

return static_file(filename, root=’static/js/’)

10.3.5 Web Program to Calculate the Net Charge of a Protein (Bottle Version)

Figure 10.8 Form for the web app to calculate the net charge of a protein.

Here is the Bottle version the web program to calculate the net charge of a

7See https://bottlepy.org/docs/dev/tutorial.html#tutorial-static-files for more in-
formation on this method.

https://bottlepy.org/docs/dev/tutorial.html#tutorial-static-files

230 � Python for Bioinformatics

protein. We need an HTML template for the web form. In this case we can use the
same HTML file as in protchargeformcgi.html (page 219) with a modification in
line 9. The “action attribute” in the “form element” should point to a new URL.
Now it reads:

<form action=’/protcharge’ method=’post’>

The complete file is called protchargeformbottle.html and can be found the
book repository at https://github.com/Serulab/Py4Bio/tree/master/code.
When the form is used and the user presses SEND, the browser will make a POST
request to /protcharge URL. This will execute the following code:

Listing 10.13: protchargebottle.py: Back-end of the program to calculate the
net charge of a protein using Bottle

1 from bottle import route, run, static_file, view, post, request

2

3 def chargeandprop(aa_seq):

4 """ Calculates protein net charge and charged AA proportion

5 """

6 protseq = aa_seq.upper()

7 charge = -0.002

8 cp = 0

9 aa_charge = {’C’:-.045,’D’:-.999,’E’:-.998,’H’:.091,

10 ’K’:1,’R’:1,’Y’:-.001}

11 for aa in protseq:

12 charge += aa_charge.get(aa, 0)

13 if aa in aa_charge:

14 cp += 1

15 prop = float(cp)/len(aa_seq)*100

16 return (charge, prop)

17

18 @route(’/’)

19 def index():

20 return static_file(’protchargeformbottle.html’, root=’views/’)

21

22 @route(’/css/<filename>’)

23 def css_static(filename):

24 return static_file(filename, root=’css/’)

25

26 @post(’/protcharge’)

27 @view(’result’)

28 def protcharge():

29 seq = request.forms.get(’aaseq’, ’QWERTYYTREWQRTYEYTRQWE’)

https://github.com/Serulab/Py4Bio/tree/master/code

Web Applications � 231

30 prop = request.forms.get(’prop’,’n’)

31 title = request.forms.get(’title’, ’No title’)

32 charge, propvalue = chargeandprop(seq)

33 return {’seq’: seq, ’prop’: prop, ’title’: title,

34 ’charge’: round(charge, 3), ’propvalue’: propvalue}

35

36 run(host=’localhost’, port=8000)

In Listing 10.13 (file protchargebottle.py) there are 4 functions. One function
that handles the actual net charge calculation (chargeandprop) and three that han-
dle the mapping of different URLs. The index function is run when the user hits the
home page and returns the HTML with the form (the protchargeformbottle.html
file), which can be seen in Figure 10.8. The css_static function returns the css
needed for proper visualization of the form and the result page. The protcharge

function is executed when the url domain/protcharge receives a post request,
and this is sent when the user press the “SEND” button in the form in the
protchargeformbottle.html file. This function returns a dictionary with all the
values needed for rendering the result page. The template used in this case is the
file result.html as is shown in the view decorator at line 27. Remember that this
file must be in the directory view in order for this decorator to work.

Listing 10.14: result.html: Template for showing the result of method
protcharge

1 <!DOCTYPE html>

2 <html lang="en">

3 <head><meta charset="utf-8">

4 <title>Protein Charge Calculator: Result</title>

5 <link href="css/bootstrap.min.css" rel="stylesheet">

6 </head>

7 <body style="background-color:#e7f5f5;">

8 <div class="container"><h2>Result</h2>

9 <p>Job title: {{title}}</p>

10 <p>Your sequence is: {{seq}}</p>

11 <p>Net charge: {{charge}}</p>

12 % if prop == ’y’:

13 <p>Proportion of charged AA: {{propvalue}}<p>

14 % end

15 </div>

16 </body>

17 </html>

232 � Python for Bioinformatics

10.3.6 Installing a WSGI Program in Apache

There are several ways to run a WSGI in the Apache web server. In this book we
will use mod_wsgi, an Apache module made to host Python applications which
supports the Python WSGI interface.

The module can be downloaded from the project website8 or installed with the
operating system package manager.9

Once mod_wsgi is installed, you have to modify the apache.conf file by
adding a line like this:

WSGIScriptAlias webpath path_in_server

where webpath is the path seen by the user and path_in_server is the path to the
file that will receive all the requests in this directory. For example,

WSGIScriptAlias / /var/www/sitepath/htdocs/test.wsgi

That means that every request pointing to any page in the root directory of the
web server will be handled by a script located in /var/www/sitepath/htdocs/-

test.wsgi.

10.4 ALTERNATIVE OPTIONS FOR MAKING PYTHON-BASED DYNAMIC

WEB SITES

Solutions presented up to this point are useful enough to build small and medium-
sized sites from the ground up. But if your website uses advanced features like
database support, user and session management, administrative interface, inter-
nationalization, caching, and others, it would be better to use a full feature web
framework where most of these features are already covered. Since these types of
applications are beyond the scope of this book, I will show a table that summarizes
the most important frameworks in Table 10.1. The table is sorted roughly on ab-
straction level. The first entries are systems with fewer features and require more
tweaking to achieve the same result than a higher-level framework.

No framework has received the status of “Python official web framework,” so
there is some usage and developer dispersion, but Django is by far the most popular
Python web framework. If you want to learn the most used and supported web
framework, Django is the way to go.

10.5 SOME WORDS ABOUT SCRIPT SECURITY

If your scripts will run on trusted environments (that is, not on the Internet), you
can skip this section and jump to the next section on page 234.

Something to have in mind when designing web applications is that the user

8http://code.google.com/p/modwsgi/
9It is called libapache2-mod-wsgi in Debian-based systems.

http://code.google.com/p/modwsgi/

Web Applications � 233

TABLE 10.1 Frameworks for Web Development

Name
URL Description

Flask tornadoweb.org Simple web framework very similar to
Bottle

Tornado tornadoweb.org Web framework and asynchronous net-
work library used for long polling and
websockets

Plone plone.net Ready to use Python-based customizable
content management system

Django djangoproject.com High-level Python web framework that
encourages rapid development

TurboGears turbogears.org Full-stack solution with AJAX and multi-
database support.

Web2py www.web2py.com Free open source full-stack framework for
rapid development of fast, scalable, se-
cure, and portable database-driven web-
based applications

may (and will) enter data in an unexpected format. When the form is publicly
accessible on the Internet, this threat shouldn’t be underestimated.

There will be people who will not know how to complete the online form and try
whatever they think is best. There will be attackers who will test your site looking
for any exploitable vulnerability.

A first barrier that can be used to avoid misuse of your scripts is to use
JavaScript (JS) for form validation. It is not the purpose of this book to teach
JS, so there are links in the “Additional Resources” section.

JS can be used to avoid end-user related issues, but it is rather useless as a
deterrent for anyone who is determined to attack your server. If anyone wants to
interact with your script, they could do it without using the web browser, bypassing
completely your carefully created JS code. This is why all data validation must also
be done “server side.”

Another critical point to watch out for is when a script accesses a database
engine. There is a chance that an attacker could inject SQL commands to produce
unwanted results (like listing the full contents of a table with sensitive information
like usernames and passwords10). This kind of attack is called “SQL injection” and
it will be covered in the “Python and Databases” chapter (Chapter 12).

There is no rule of thumb regarding how to sanitize every kind of input, but it

10You should not store passwords in plain text in a database. The best practice is to store a hash
of the password instead, using a hash function like PBKDF2 or bcrypt. Apart from the hash, you
should also add some “salt,” that is, a random string to avoid an attacker using pre-hashed keys to
find a match. Do not use non-tested custom made algorithms or fast cryptographic hash functions
such as MD5, SHA1, SHA512, etc.

www.web2py.com
tornadoweb.org
tornadoweb.org
plone.net
djangoproject.com
turbogears.org

234 � Python for Bioinformatics

depends on the particular application. Following there are some outlines of what to
take into consideration at the moment of designing the security of your application.

1. Identify where the data can access the application. Clearly the mosts evident
point of entry are the forms you set up for data input. But you should not
overlook other points of entry like URLs, files stored on the server, and other
web sites if your scripts read external sources like RSS feeds.

2. Watch for escape characters used by the program your application interacts
with. These should always be filtered. If your program accesses a Unix shell,
filter the “;” character (semicolon) since it can be used to issue arbitrary
commands. This depends on the type of shell your system is using. Some
characters you should consider watching are: ;, &&, ||, \ and ".

3. Consider making a list of valid accepted characters (a “white list”) to make
sure that your strings have only the required characters.

4. The running privileges of the web server program must be the lowest possible.
Most Unix systems use an adhoc user for the web server process. This is called
the “Principle of Least Privilege.” The program is given the smallest amount
of privilege required to do its job. This limits the abuse that can be done to
a system if the web server process is hijacked by an attacker.

10.6 WHERE TO HOST PYTHON PROGRAMS

If you’ve satisfactorily tested your scripts on your local server, it’s time to put them
on the Internet so that the rest of the world can enjoy them. Usually the institution
that you work for has a web server where you can store your scripts, for which
the first step would be to ask for support from your IT department. In the event
that you don’t get a satisfactory response, you would have to consider resolving
the problem by yourself. It is not too difficult. There are thousands of web hosting
businesses. Look for one that explicitly supports Python.

Among the diverse plans that are offered by the web hosting businesses, choose
the “shared” plan type if your script is very simple and does not involve installation
of programs or additional modules. If your script executes programs that aren’t
installed on the server, as is the case with Biopython, you can ask for it to be
installed. Ask before contracting the service if they install modules on demand.
Another problem that can surface is with the web frameworks. Some work as a
long running process, which is not permitted by the hosting agreement.

Make sure that the version of Python installed on the hosting server is compat-
ible with your scripts. This is not a minor topic considering that operating systems
used for servers tend to use a “stable” version of every software instead of the latest.

If the web hosting service does not allow program installation, you will have to
consider a dedicated hosting solution, where you have root access to a computer

Web Applications � 235

where there are not limits with regard to what you can install. Thanks to virtual-
ization technologies, it is possible to contract a dedicated virtual hosting plan at
a more than affordable price (also known as Virtual Private Server of VPS).
This is because the computer is shared between various users, but it differs from
the shared hosting plan type in that each user has total access to the server. For
very demanding applications, this may not be the best solution and you may have
to resort to the use of dedicated hosting (not virtual).

An alternative to servers is the Google App Engine. This system enables you
to build web applications on the same scalable systems that power Google applica-
tions. Let Google take care of Apache web server configuration files, startup scripts,
databases, server monitoring and software upgrades. Just write your Python code.
Applications designed for this engine are implemented using the Python program-
ming language. The App Engine Python runtime environment includes a specialized
version of the Python interpreter. For more information on “Google App Engine,”
see https://cloud.google.com.

Amazon Web Services (AWS) has also a “serverless” solution called Lambda.
With AWS Lambda, you focus only on your code and Lambda manages the com-
pute fleet that offers a balance of memory, CPU, network, and other resources. The
downside is that you pay per program execution and can’t run the programs as you
already have them written; you need to make some adjustments to make it com-
patible with this particular environment. It runs only a handful of languages, but
Python is included. For more information see https://aws.amazon.com/lambda/

and http://docs.aws.amazon.com/lambda.

10.7 ADDITIONAL RESOURCES

• W3Schools: JavaScript form validation.
https://www.w3schools.com/js/js_validation.asp

• Data validation.
https://www.owasp.org/index.php/Data_Validation

• JavaScript-Coder.com: JavaScript form validation : Quick and Easy!
http://www.javascript-coder.com/html-form/javascript-form-validation.

phtml

• HTML reference: A free guide to HTML.
http://htmlreference.io

• Bootstrap: The most popular HTML, CSS, and JS framework for developing
responsive, mobile first projects on the web.
http://getbootstrap.com

• PureCSS: A set of small, responsive CSS modules that you can use in every
web project.
http://purecss.io

https://cloud.google.com
https://aws.amazon.com/lambda/
http://docs.aws.amazon.com/lambda
https://www.w3schools.com/js/js_validation.asp
https://www.owasp.org/index.php/Data_Validation
http://www.javascript-coder.com/html-form/javascript-form-validation.phtml
http://htmlreference.io
http://getbootstrap.com
http://purecss.io
http://www.javascript-coder.com/html-form/javascript-form-validation.phtml

236 � Python for Bioinformatics

• BottlePlate: A bottle template for python 3.3+ web applications or API
servers.
https://github.com/Rolinh/bottleplate

• Bottle + uWSGI: simple web app configuration and fun hidden features.
https://goo.gl/X8Up6S

• Decanter: Creates a Bottle based directory structure with an example view
and controller.
http://gengo.github.io/decanter/

• Learn web development.
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django

• Web programming in Python.
http://wiki.python.org/moin/WebProgramming

• wuzz: An interactive command line tool for HTTP inspection.
https://github.com/asciimoo/wuzz

10.8 SELF-EVALUATION

1. What is CGI?

2. What is WSGI? Why is it the recommended choice for web programming?

3. What is the rationale for using Bottle or any other “web framework”?

4. What is a template language?

5. What is a static file and why should you serve it in a different way?

6. Python includes a limited web server. Why would you use such a web server
if there are free full-featured web servers like Apache?

7. Name security considerations to take into account when running a Web server
on the Internet.

8. Why is client-side data validation not useful as server-side data validation?

9. What is the difference between shared, dedicated, and virtual dedicated host-
ing? When would you use dedicated hosting over a shared plan?

https://github.com/Rolinh/bottleplate
http://gengo.github.io/decanter/
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django
http://wiki.python.org/moin/WebProgramming
https://github.com/asciimoo/wuzz
https://goo.gl/X8Up6S

C H A P T E R 11

XML

CONTENTS

11.1 Introduction to XML . 237
What Is XML? . 237
XML in 10 Points . 238

11.2 Structure of an XML Document . 241
Prologue . 242
Body . 243

11.3 Methods to Access Data inside an XML Document . 246
cElementTree . 246
11.3.1 SAX: cElementTree Iterparse . 246
BeautifulSoup . 248

11.4 Summary . 251
11.5 Additional Resources . 252
11.6 Self-Evaluation . 252

11.1 INTRODUCTION TO XML

What Is XML?

A widespread problem in all branches of information technology is the storage and
interchange of data. Each application has its own particular way of storing the
generated information, which is often a problem, especially when we don’t have the
application that generated the data.

For example, Sanger DNA sequencers made by Applied Biosystems store data
in files with the extension .ab1. If we want to access data stored in such a file, we
need to know how it is structured internally. In this case, the creator of the format
has released the specification of the file,1 and it would be possible, though not easy,
to write code to extract our data from these files. Usually we do not have such
good luck, and it is very common to find data file formats poorly documented, or
not documented at all. In many cases those who have wanted to open these files
have had to resort to “reverse engineering,” with mixed results. To avoid this type
of problem and to make more fluid exchange of data between applications from

1File format specification for ABI files are available at http://www6.appliedbiosystems.com/

support/software_community/ABIF_File_Format.pdf.

237

http://www6.appliedbiosystems.com/support/software_community/ABIF_File_Format.pdf
http://www6.appliedbiosystems.com/support/software_community/ABIF_File_Format.pdf

238 � Python for Bioinformatics

different manufacturers, the W3C2 developed the eXtensible Markup Language,
better known as XML.

XML is a way of representing data. Practically any type can be represented using
XML. Configuration files, databases, web pages, spreadsheets, and even drawings
can be represented and stored in XML.

For some specific applications, there are subsets of XML, prepared for repre-
senting a particular type of data. So, mathematical formulas can be stored in an
XML dialect called MathML,3 vector graphics in SVG,4 and chemical formulas in
CML.5. All major bioinformatics databases have their data available in XML. This
means that, by learning to read XML, we can access a multitude of files from the
most diverse origins.

Before going into details on how to process this type of file, review this W3C
document called “XML in 10 points”6 that shows the big picture:

XML in 10 Points

1. XML is for structuring data: Structured data includes things like spreadsheets,
address books, configuration parameters, financial transactions, and technical
drawings. XML is a set of rules (you may also think of them as guidelines or
conventions) for designing text formats that let you structure your data. XML
is not a programming language, and you don’t have to be a programmer
to use it or learn it. XML makes it easy for a computer to generate data,
read data, and ensure that the data structure is unambiguous. XML avoids
common pitfalls in language design: it is extensible, platform-independent,
and it supports internationalization and localization. XML is fully Unicode-
compliant.

2. XML looks a bit like HTML: Like HTML, XML makes use of tags (words
bracketed by ’<’ and ’>’) and attributes (of the form name="value"). While
HTML specifies what each tag and attribute means, and often how the text
between them will look in a browser, XML uses the tags only to delimit pieces
of data, and leaves the interpretation of the data completely to the application
that reads it. In other words, if you see “<p>” in an XML file, do not assume
it is a paragraph. Depending on the context, it may be a price, a parameter,
a person, a p... (and who says it has to be a word with a “p”?).

3. XML is text, but isn’t meant to be read: Programs that produce spreadsheets,
address books, and other structured data often store that data on disk, using

2The World Wide Web Consortium, abbreviated W3C, is an international consortium that
produces standards for the World Wide Web.

3http://www.w3.org/Math
4http://www.w3.org/Graphics/SVG
5http://www.xml-cml.org
6Taken from http://www.w3.org/XML/1999/XML-in-10-points. Authorized by “©[1999]

World Wide Web Consortium, (Massachusetts Institute of Technology, European Research Con-
sortium for Informatics and Mathematics, Keio University). All Rights Reserved.”

http://www.w3.org/Math
http://www.xml-cml.org
http://www.w3.org/XML/1999/XML-in-10-points
http://www.w3.org/Graphics/SVG

XML � 239

either a binary or text format. One advantage of a text format is that it allows
people, if necessary, to look at the data without the program that produced
it; in a pinch, you can read a text format with your favorite text editor. Text
formats also allow developers to more easily debug applications. Like HTML,
XML files are text files that people shouldn’t have to read, but may when
the need arises. Compared to HTML, the rules for XML files allow fewer
variations. A forgotten tag, or an attribute without quotes makes an XML
file unusable, while in HTML such practice is often explicitly allowed. The
official XML specification forbids applications from trying to second-guess the
creator of a broken XML file; if the file is broken, an application has to stop
right there and report an error.

4. XML is verbose by design: Since XML is a text format and it uses tags to
delimit the data, XML files are nearly always larger than comparable binary
formats. That was a conscious decision by the designers of XML. The advan-
tages of a text format are evident (see point 3), and the disadvantages can
usually be compensated at a different level. Disk space is less expensive than
it used to be, and compression programs like zip and gzip can compress files
very well and very fast. In addition, communication protocols such as modem
protocols and HTTP/1.1, the core protocol of the Web, can compress data
on the fly, saving bandwidth as effectively as a binary format.

5. XML is a family of technologies: XML 1.0 is the specification that defines
what “tags” and “attributes” are. Beyond XML 1.0, “the XML family” is a
growing set of modules that offer useful services to accomplish important and
frequently demanded tasks. XLink describes a standard way to add hyperlinks
to an XML file. XPointer is a syntax in development for pointing to parts of
an XML document. An XPointer is a bit like a URL, but instead of pointing
to documents on the Web, it points to pieces of data inside an XML file.
CSS, the style sheet language, is applicable to XML as it is to HTML. XSL
is the advanced language for expressing style sheets. It is based on XSLT, a
transformation language used for rearranging, adding and deleting tags and
attributes. The DOM is a standard set of function calls for manipulating XML
(and HTML) files from a programming language. XML Schemas 1 and 2 help
developers to precisely define the structures of their own XML-based formats.
There are several more modules and tools available or under development.
Keep an eye on W3C’s technical reports page.

6. XML is new, but not that new: Development of XML started in 1996 and
it has been a W3C Recommendation since February 1998, which may make
you suspect that this is rather immature technology. In fact, the technology
isn’t very new. Before XML there was SGML, developed in the early ’80s, an
ISO standard since 1986, and widely used for large documentation projects.
The development of HTML started in 1990. The designers of XML simply
took the best parts of SGML, guided by the experience with HTML, and

240 � Python for Bioinformatics

produced something that is no less powerful than SGML, and vastly more
regular and simple to use. Some evolutions, however, are hard to distinguish
from revolutions... And it must be said that while SGML is mostly used for
technical documentation and much less for other kinds of data, with XML it
is exactly the opposite.

7. XML leads HTML to XHTML: There is an important XML application that
is a document format: W3C’s XHTML, the successor to HTML. XHTML has
many of the same elements as HTML. The syntax has been changed slightly
to conform to the rules of XML. A format that is “XML-based” inherits the
syntax from XML and restricts it in certain ways (e.g., XHTML allows “<p>”,
but not “<r>”); it also adds meaning to that syntax (XHTML says that “<p>”
stands for “paragraph”, and not for “price”, “person”, or anything else).

8. XML is modular: XML allows you to define a new document format by com-
bining and reusing other formats. Since two formats developed independently
may have elements or attributes with the same name, care must be taken
when combining those formats (does “<p>” mean “paragraph” from this for-
mat or “person” from that one?). To eliminate name confusion when com-
bining formats, XML provides a namespace mechanism. XSL and RDF are
good examples of XML-based formats that use namespaces. XML Schema is
designed to mirror this support for modularity at the level of defining XML
document structures, by making it easy to combine two schemas to produce
a third which covers a merged document structure.

9. XML is the basis for RDF and the Semantic Web: W3C’s Resource Description
Framework (RDF) is an XML text format that supports resource description
and metadata applications, such as music play-lists, photo collections, and
bibliographies. For example, RDF might let you identify people in a Web
photo album using information from a personal contact list; then your mail
client could automatically start a message to those people stating that their
photos are on the Web. Just as HTML integrated documents, images, menu
systems, and forms applications to launch the original Web, RDF provides
tools to integrate even more, to make the Web a little bit more into a Se-
mantic Web. Just like people need to have agreement on the meanings of the
words they employ in their communication, computers need mechanisms for
agreeing on the meanings of terms in order to communicate effectively. For-
mal descriptions of terms in a certain area (shopping or manufacturing, for
example) are called ontologies and are a necessary part of the Semantic Web.
RDF, ontologies, and the representation of meaning so that computers can
help people do work are all topics of the Semantic Web Activity.

10. XML is license-free, platform-independent and well-supported: By choosing
XML as the basis for a project, you gain access to a large and growing com-
munity of tools (one of which may already do what you need!) and engineers

XML � 241

experienced in the technology. Opting for XML is a bit like choosing SQL for
databases: you still have to build your own database and your own programs
and procedures that manipulate it, but there are many tools available and
many people who can help you. And since XML is license-free, you can build
your own software around it without paying anybody anything. The large and
growing support means that you are also not tied to a single vendor. XML
isn’t always the best solution, but it is always worth considering.

11.2 STRUCTURE OF AN XML DOCUMENT

We do not need to know the details of the internal structure of an XML document.
This is because Python has its own tools for accessing this type of file. The devel-
opers of Python had to deal with the internals of XML in order to build these tools;
however I think that is necessary to have a slight notion of the structure of XML
files in order to make better use of the tools provided by Python.

Let’s see a sample XML document, in this case an UniProt record:7

Listing 11.1: Q9JJE1.xml: UniProt record in XML

<?xml version="1.0" encoding="UTF-8"?>

<uniprot xmlns="http://uniprot.org/uniprot"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://uniprot.org/uniprot

http://www.uniprot.org/support/docs/uniprot.xsd">

<entry dataset="TrEMBL" created="2000-10-01" version="35">

<accession>Q9JJE1</accession>

<organism key="1">

<name type="scientific">Mus musculus</name>

<lineage>

<taxon>Eukaryota</taxon>

<taxon>Metazoa</taxon>

<taxon>Chordata</taxon>

<taxon>Craniata</taxon>

<taxon>Vertebrata</taxon>

<taxon>Euteleostomi</taxon>

<taxon>Mammalia</taxon>

<taxon>Eutheria</taxon>

<taxon>Euarchontoglires</taxon>

<taxon>Glires</taxon>

<taxon>Rodentia</taxon>

<taxon>Sciurognathi</taxon>

7This record was altered to fit the page. This file can be found in the book Github repository
with the name uniprotrecord.xml under the samples directory.

http://uniprot.org/uniprot
http://www.w3.org/2001/XMLSchema-instance
http://uniprot.org/uniprot
http://www.uniprot.org/support/docs/uniprot.xsd

242 � Python for Bioinformatics

<taxon>Muroidea</taxon>

<taxon>Muridae</taxon>

<taxon>Murinae</taxon>

<taxon>Mus</taxon>

</lineage>

</organism>

<dbReference type="UniGene" id="Mm.248907" key="5"/>

<sequence length="393" checksum="E0C0CC2E1F189B8A">

MPKKKPTPIQLNPAPDGSAVNGTSSAETNLEALQKKLEELELDEQQRKRL

EAFLTQKQKVGELKDDDFEKISELGAGNGGVVFKVSHKPSGLVMARKLIH

LEIKPAIRNQIIRELQVLHECNSPYIVGFYGAFYSDGEISICMEHMDGGS

LDQVLKKAGRIPEQILGKVSIAVIKGLTYLREKHKIMHRDVKPSNILVNS

RGEIKLCDFGVSGQLIDSMANSFVGTRSYMSPERLQGTHYSVQSDIWSMG

LSLVEMAVGRYPIPPPDAKELELLFGCHVEGDAAETPPRPRTPGGPLSSY

GMDSRPPMAIFELLDYIVNEPPPKLPSGVFSLEFQDFVNKCLIKNPAERA

DLKQLMVHAFIKRSDAEEVDFAGWLCSTIGLNQPSTPTHAASI

</sequence>

</entry>

</uniprot>

In broad outlines, the structure of an XML document is simple. It generally
consists of a prologue, a body, and an epilogue.8

Prologue

The prologue is an optional section that marks the beginning of the XML data and
gives important information to the parser. A prologue might have only one line,
like this one,

<?xml version="1.0" encoding="UTF-8"?>

Or several lines:

<?xml version="1.0"?>

<!DOCTYPE BlastOutput PUBLIC "-//NCBI//NCBI BlastOutput/EN"

"http://www.ncbi.nlm.nih.gov/dtd/NCBI_BlastOutput.dtd">

<!-- edited with XMLSPY (http://www.xmlspy.com) by Andy -->

The first line is the XML declaration where the XML version and character
code are specified. Character code information is optional only if the document is
encoded in UTF-8 or UTF-16.

The second line is the DOCTYPE declaration, whose purpose is to relate the
XML document with a document type definition (DTD). This DTD file contains

8The epilogue is seldom used, so the prologue and the body are the most important parts of an
XML file.

http://www.ncbi.nlm.nih.gov/dtd/NCBI_BlastOutput.dtd
http://www.xmlspy.com

XML � 243

information about the particular structure of the XML file: it says which tags and
attributes are permitted, as well as where they can be found. In some cases, in place
of a DTD reference, there are references to an alternate method to DTD called XML
Schema which serves the same function but with better performance, and with a
syntax based on XML. The structure of a DTD or XML Schema file is beyond the
scope of this book; however, there are several, quite complete, references on the
Internet (see Additional Resources at the end of this chapter).

The third line, in this case, is a comment. It is equivalent to # in Python. It
begins with “<!−−” and ends with “−− >”, and can be in the prologue as well as
in the body of an XML document. It is the same type of comment that is used in
HTML and it can span multiple lines.

Body

The body is where the elements reside, the true protagonists of XML files. An
element is the information from the beginning of the start tag to the end of the end
tag, including all that lies in between.

Here is an example of an element that can be found in the body of an XML
document:

<taxon>Eukaryota</taxon>

where <taxon> is the start tag, </taxon> is the end tag, and the contents
(Eukaryota), is that which is between the two tags.

Elements may show up empty. It is valid to write, for example:

<accession></accession>

While in this case it doesn’t make much sense to have nothing contained in the
“accession” element (an UniProt record should always have a number of accessions),
it is possible that for other types of data the contents of an element will be optional.

There is an abbreviated way to represent empty elements, called an “empty
element tag,” which consists of the name of the element followed by a forward slash
(/), all enclosed by angle brackets, for example:

<accession/>

The elements can be “nested” inside one another. In Listing 11.1 we can see how
the element “taxon” is nested within “lineage.” This gives an idea of a hierarchical
structure: there are elements that are subordinate to others. We see that “taxon”
is an element of “lineage,” which is an element of “organism.” Normally this type of
structure is compared to a tree. The first element is called the “Document Element”
(in this case, “uniprot”), from which hangs all the rest, which are its “children.”
To obtain a graphical representation of this tree, one can use a program like XML
Viewer,9 (see Figure 11.2) or a website like http://codebeautify.org/xmlviewer
that shows both the data and the document structure as seen in Figure 11.2.

http://codebeautify.org/xmlviewer

244 � Python for Bioinformatics

Figure 11.1 Screenshot of XML viewer: Tree viewer shows the structure of document
Q9JJE1.xml (Listing 11.1).

Some elements have “attributes,” that is, additional information about the ele-
ment. The general syntax of an element with an attribute is

<element attributeName="value">

Continuing with the example of Listing 11.1, we come across other elements
with attributes as, for example,

<name type="scientific">

In this case the element called “name” has the attribute “type,” which has a

9XML Viewer is available at http://sourceforge.net/projects/ulmxmlview.

http://sourceforge.net/projects/ulmxmlview

XML � 245

Figure 11.2 Codebeautify XML viewer, shows structure and data from document
Q9JJE1.xml (Listing 11.1).

value of “scientific.” Additionally it can have more than one attribute, as in the
element “sequence”:

<sequence length="393" checksum="E0C0CC2E1F189B8A">

Here the attributes are “length” and “checksum”, whose values are “393” and
“E0C0CC2E1F189B8A,” respectively.

At this stage we already have elements that give us an idea of the data contained
in an XML file. Of the record of file Q9JJE1.xml (Listing 11.1) we can say that
the element “sequence” contains a nucleotide sequence of a length of 393 bp, a
known signature, and an ID “Q9JJE1” from the UniProt base. All this without
prior knowledge of the data structure and without the use of a special program.
Try to open an .ab1 file to see if you can find any recognizable element.

Despite having a general overview of the structure of XML files, you will find
the format has other particularities that go beyond the scope of this book. If you
are interested in knowing more about XML, see the list of resources at the end of
the chapter.

The following section shows how to access the contents of XML documents using
Python.

246 � Python for Bioinformatics

11.3 METHODS TO ACCESS DATA INSIDE AN XML DOCUMENT

Regardless of the programming language you use, there are two strategies that you
can use to gain access to the information contained in an XML file.

On one hand, you can read the file in its entirety, analyze the relationships
between the elements, and build a tree-type structure, by which the application
can navigate the data. This is called the Document Object Model (DOM) and is
the manner recommended by the W3C in parsing XML documents.

Another possibility is that the application detects and reports events such as
the start and the end of an element, without the necessity of constructing a tree-
type representation. In the case that a tree representation is needed, this task is left
to the programmer. This is the method used by the Simple API for XML (SAX).
Generally these types of parsers are called “event-driven parsers.” In this chapter we
will see, as an example of an event-based parser, Iterparse from cElementTree.

In some cases it is convenient to use DOM, while in other cases SAX is the
preferred option. DOM usually implies saving the whole tree in memory for later
traversal. This can present a problem at the time of parsing large documents, espe-
cially when what you want to do is simply detect the presence of a single element’s
value. In these cases a SAX is the most efficient parser. Nevertheless, many applica-
tions require operating on all the elements within the tree, for which we must turn
to DOM. From the perspective of the programmer, the DOM interface is easier to
use than SAX as it doesn’t require event-driven programming.

cElementTree

cElementTree is SAX parser that is optimized to parse quickly and with less use
of memory. Another advantage of cElementTree is a function called Iterparse. This
function provides us the use of an event based parser, which will be explained in
the next section.

11.3.1 SAX: cElementTree Iterparse

cElementTree Iterparse isn’t SAX, but it is included here because, unlike the other
parsers, it is based on events.

Iterparse returns a flow iterable by tuples in the form (event, element). It is
used to iterate over the elements and processing them on the fly.

Get the protein sequence and its attributes:

>>> import xml.etree.cElementTree as cET

>>> for event, elem in cET.iterparse(’uniprotrecord.xml’,

events=(’start’, ’end’)):

if event==’end’ and ’sequence’ in elem.tag:

print(’Sequence: {0}’.format(elem.text))

print(’Checksum: {0}’.format(elem.attrib["checksum"]))

print(’Length: {0}’.format(elem.attrib["length"]))

XML � 247

elem.clear()

Sequence:

MPKKKPTPIQLNPAPDGSAVNGTSSAETNLEALQKKLEELELDEQQRKRL

EAFLTQKQKVGELKDDDFEKISELGAGNGGVVFKVSHKPSGLVMARKLIH

LEIKPAIRNQIIRELQVLHECNSPYIVGFYGAFYSDGEISICMEHMDGGS

LDQVLKKAGRIPEQILGKVSIAVIKGLTYLREKHKIMHRDVKPSNILVNS

RGEIKLCDFGVSGQLIDSMANSFVGTRSYMSPERLQGTHYSVQSDIWSMG

LSLVEMAVGRYPIPPPDAKELELLFGCHVEGDAAETPPRPRTPGGPLSSY

GMDSRPPMAIFELLDYIVNEPPPKLPSGVFSLEFQDFVNKCLIKNPAERA

DLKQLMVHAFIKRSDAEEVDFAGWLCSTIGLNQPSTPTHAASI

Checksum: E0C0CC2E1F189B8A

Length: 393

iterparse returns a tuple. The first element of the tuple is event and can be
one of two values: ’start’ or ’end’. If the event we received is ’start’, it means
that we can access the name of the element and its attributes, but not necessarily
its text. When we receive ’end’, we can be assured that we’ve processed all the
components of that element. For this reason the previous code checked not only
that we had reached the chosen element, but that we had also found the ’end’

event.10 If the parser were to return only ’end’, there would be no need for this
check:

>>> for event, elem in cET.iterparse(’uniprotrecord.xml’):

if ’sequence’ in elem.tag:

print(’Sequence: {0}’.format(elem.text))

print(’Checksum: {0}’.format(elem.attrib["checksum"]))

print(’Length: {0}’.format(elem.attrib["length"]))

elem.clear()

Sequence:

MPKKKPTPIQLNPAPDGSAVNGTSSAETNLEALQKKLEELELDEQQRKRL

EAFLTQKQKVGELKDDDFEKISELGAGNGGVVFKVSHKPSGLVMARKLIH

LEIKPAIRNQIIRELQVLHECNSPYIVGFYGAFYSDGEISICMEHMDGGS

LDQVLKKAGRIPEQILGKVSIAVIKGLTYLREKHKIMHRDVKPSNILVNS

RGEIKLCDFGVSGQLIDSMANSFVGTRSYMSPERLQGTHYSVQSDIWSMG

LSLVEMAVGRYPIPPPDAKELELLFGCHVEGDAAETPPRPRTPGGPLSSY

GMDSRPPMAIFELLDYIVNEPPPKLPSGVFSLEFQDFVNKCLIKNPAERA

DLKQLMVHAFIKRSDAEEVDFAGWLCSTIGLNQPSTPTHAASI

10In the current implementation, the parser goes along reading 16 Kb chunks, so in this case the
whole sequence could be read from the ’start’ element. To make sure that you pick up all the
elements you should read it after an ’end’ element.

248 � Python for Bioinformatics

Checksum: E0C0CC2E1F189B8A

Length: 393

As for the clean method, it is used to “clean up” the node after it’s used, because
unlike a classic SAX parser like ElementTree, iterparse constructs a complete tree.
The problem with this code is that the primary element remains with all its (now
empty) children, and that uses memory. In this simple example, this behavior is
not problematic, but it could be when processing large files. The ideal would be to
access the parent node in order to clean it up.

A way to do this is to save a reference to the first variable; for this we create
an iterator and obtain from it the first element, calling it “root”:

>>> allelements = iterparse(’uniprotrecord.xml’, events=(’start’,<=

’end’))

>>> allelements = iter(allelements)

>>> event, root = next(allelements)

Now we process it the same as before, only this time we can delete the parent
element specifically:

>>> for event, elem in allelements:

if event==’end’ and ’sequence’ in elem.tag:

print(elem.text)

root.clear()

BeautifulSoup

BeautifulSoup11 is an external module that is used to parse XML and HTML
files. Its main advantage over Python built-in parsers, is that it can parse malformed
(broken) HTML files.

This module calls another module that does the parsing job in background.
In this case we use lxml; there are others, but I use it because it is the most
feature-rich and easy-to-use library for processing XML and HTML in the Python
language.

Since it is an external module you have to install it:

$ pip install beautifulsoup4

or if you are using Anaconda:

$ conda install beautifulsoup4

Once installed, the first step is to create a BeautifulSoup object by calling its
class with two parameters, a file object and the parser. Here is the general form:

11Available at https://www.crummy.com/software/BeautifulSoup.

https://www.crummy.com/software/BeautifulSoup

XML � 249

BeautifulSoup(FILE_OBJECT or STRING, PARSER)

Let’s see it in action:

>>> from bs4 import BeautifulSoup as bs

>>> soup = bs(open(’uniprotrecord.xml’), ’lxml’)

If the xml file is not a local file, but an Internet resource, you can use the
requests library.12 If this is the case, first install and import requests:

(py4bio) $ pip install requests

Collecting requests

Downloading requests-2.13.0-py2.py3-none-any.whl (584kB)

100% |********************************| 593kB 968kB/s

Installing collected packages: requests

Successfully installed requests-2.13.0

(py4bio) $ python

Python 3.5.2 (default, Nov 17 2016, 17:05:23)

[GCC 5.4.0 20160609] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import requests

Once imported, use .get() to get the URL and content to retrieve the content:

>>> url = ’https://s3.amazonaws.com/py4bio/uniprotrecord.xml’

>>> req = requests.get(url)

>>> c = req.content

The content of the XML file (c) can be used as parameter for BeautifulSoup:

>>> from bs4 import BeautifulSoup as bs

>>> soup = bs(c, ’lxml’)

We have now a BeautifulSoup object that is called soup. To access an element,
just use the element name as a property of this object. To get the sequence, use
soup.sequence:

>>> soup.sequence

<sequence checksum="E0C0CC2E1F189B8A" length="393">

MPKKKPTPIQLNPAPDGSAVNGTSSAETNLEALQKKLEELELDEQQRKRL

EAFLTQKQKVGELKDDDFEKISELGAGNGGVVFKVSHKPSGLVMARKLIH

LEIKPAIRNQIIRELQVLHECNSPYIVGFYGAFYSDGEISICMEHMDGGS

LDQVLKKAGRIPEQILGKVSIAVIKGLTYLREKHKIMHRDVKPSNILVNS

12There are built-in libraries to retrieve files from Internet (like urllib2), but requests is less
complex and has more features than any built-in library.

250 � Python for Bioinformatics

RGEIKLCDFGVSGQLIDSMANSFVGTRSYMSPERLQGTHYSVQSDIWSMG

LSLVEMAVGRYPIPPPDAKELELLFGCHVEGDAAETPPRPRTPGGPLSSY

GMDSRPPMAIFELLDYIVNEPPPKLPSGVFSLEFQDFVNKCLIKNPAERA

DLKQLMVHAFIKRSDAEEVDFAGWLCSTIGLNQPSTPTHAASI

</sequence>

If you want the content of this element, use string:

>>> soup.sequence.string

’\nMPKKKPTPIQLNPAPDGSAVNGTSSAETNLEALQKKLEELELDEQQRKRL\nEAFLTQKQKV<=

GELKDDDFEKISELGAGNGGVVFKVSHKPSGLVMARKLIH\nLEIKPAIRNQIIRELQVLHECNS<=

PYIVGFYGAFYSDGEISICMEHMDGGS\nLDQVLKKAGRIPEQILGKVSIAVIKGLTYLREKHKI<=

MHRDVKPSNILVNS\nRGEIKLCDFGVSGQLIDSMANSFVGTRSYMSPERLQGTHYSVQSDIWSM<=

G\nLSLVEMAVGRYPIPPPDAKELELLFGCHVEGDAAETPPRPRTPGGPLSSY\nGMDSRPPMAI<=

FELLDYIVNEPPPKLPSGVFSLEFQDFVNKCLIKNPAERA\nDLKQLMVHAFIKRSDAEEVDFAG<=

WLCSTIGLNQPSTPTHAASI\n’

To get the “checksum” and “length” properties of this element, use .get():

>>> soup.sequence.get(’checksum’)

’E0C0CC2E1F189B8A’

>>> soup.sequence.get(’length’)

’393’

If an element has multiple children, you can iterate through it. For example,
the element “lineage” has multiple elements of type “taxon.”

>>> for taxon in soup.lineage.children:

if taxon.string != ’\n’:

print(taxon.string)

Eukaryota

Metazoa

Chordata

Craniata

Vertebrata

Euteleostomi

Mammalia

Eutheria

Euarchontoglires

Glires

Rodentia

Sciurognathi

Muroidea

Muridae

XML � 251

Murinae

Mus

Here is the way to get the same data (sequence, Checksum and Length) we
where getting with the cElementTree parser in the same format:

>>> print(’Sequence: {0}’.format(soup.sequence.string))

Sequence:

MPKKKPTPIQLNPAPDGSAVNGTSSAETNLEALQKKLEELELDEQQRKRL

EAFLTQKQKVGELKDDDFEKISELGAGNGGVVFKVSHKPSGLVMARKLIH

LEIKPAIRNQIIRELQVLHECNSPYIVGFYGAFYSDGEISICMEHMDGGS

LDQVLKKAGRIPEQILGKVSIAVIKGLTYLREKHKIMHRDVKPSNILVNS

RGEIKLCDFGVSGQLIDSMANSFVGTRSYMSPERLQGTHYSVQSDIWSMG

LSLVEMAVGRYPIPPPDAKELELLFGCHVEGDAAETPPRPRTPGGPLSSY

GMDSRPPMAIFELLDYIVNEPPPKLPSGVFSLEFQDFVNKCLIKNPAERA

DLKQLMVHAFIKRSDAEEVDFAGWLCSTIGLNQPSTPTHAASI

>>> print(’Checksum: {0}’.format(soup.sequence.get(’checksum’)))

Checksum: E0C0CC2E1F189B8A

>>> print(’Length: {0}’.format(soup.sequence.get(’length’)))

Length: 393

11.4 SUMMARY

XML means eXtensible Markup Language and was created to enable a standard
way of storing and exchanging data. One of the advantages of XML is that it
is supported by various programming languages, among which is Python. XML
documents consist of a prologue, a body, and an epilogue. The prologue contains
information on the version, the encoding, and the structure of that document. The
body contains all the information of the document, divided into hierarchically or-
dered elements. Each element consists of a tag with its text. Optionally, an element
can have attributes. There also exist elements without text at all, called “empty
elements.”

Without regard to the programming language used, there are two major strate-
gies used when accessing these types of files. On one hand, it can analyze the
relationships between all the elements, and construct the corresponding tree. This
implies having the whole file structure in memory, and is called the Document
Object Model (DOM). The other option is to recurse over the file and generate
events by which we can then travel, recursing on each distinct element. At each
event we can process our data. These are called “event-driven parsers” and the
most well known is Simple API for XML (SAX).

In this chapter we presented as an example of a parser based on events, and
we saw the use of Iterparse, provided by cElementTree. DOM is often easier to use
because it does not involve event handling; however, on some occasions it’s more
convenient to use a parser based on events, especially for large files. An alternative

252 � Python for Bioinformatics

external module that can also be used to parse broken HTML is BeautifulSoup.
This module relies on another parser (typically lxml) but is easy to use.

11.5 ADDITIONAL RESOURCES

• Extensible Markup Language (XML). Links to W3C recommendations, pro-
posed recommendations and working drafts.
http://www.w3.org/XML

• Beautiful Soup documentation.
https://www.crummy.com/software/BeautifulSoup/bs4/doc/

• Web scraping workshop. Using requests and Beautiful Soup, with the most
recent Beautiful Soup 4 docs.
https://gist.github.com/bradmontgomery/1872970

• Mark Pilgrim. Dive into Python 3. Chapter 12; XML processing.
http://www.diveintopython3.net/xml.html

• Python and XML: An introduction.
http://www.boddie.org.uk/python/XML_intro.html

• Resources on DTD.
http://www.w3schools.com/dtd/, http://www.xmlfiles.com/dtd, and http:

//www.w3.org/TR/REC-xml/#dt-doctype.

• Resources on XML schema:
https://www.w3schools.com/xml/schema_intro.asp.

11.6 SELF-EVALUATION

1. What does the OpenOffice format have in common with RSS feeds and Google
Earth’s geographic coordinates?

2. What are the benefits of using XML for data storage and information inter-
change?

3. When will you not use XML?

4. Why should an XML parser not read a malformed XML document?

5. Distinguish between the terms tag, element, attribute, value, DTD, and
Schema.

6. In the example XML file (Listing 11.1) there is one empty-element tag. Which
one is it?

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://gist.github.com/bradmontgomery/1872970
http://www.diveintopython3.net/xml.html
http://www.boddie.org.uk/python/XML_intro.html
http://www.w3schools.com/dtd/
http://www.xmlfiles.com/dtd
http://www.w3.org/TR/REC-xml/#dt-doctype
https://www.w3schools.com/xml/schema_intro.asp
http://www.w3.org/XML
http://www.w3.org/TR/REC-xml/#dt-doctype

XML � 253

7. What is the difference between the SAX and DOM models of XML file pro-
cessing?

8. If you have to parse an XML file that has a size approaching or exceeding
available RAM, what is the recommended parser?

9. In cElementTree.iterparse there are both start and end event types. By
default it returns only the end event. When would you use the information
in a start event?

10. Make two programs to parse all hit names in an XML BLAST output. One
program should use Python XML tools and the other should read the input
file as text.

http://taylorandfrancis.com

C H A P T E R 12

Python and Databases

CONTENTS

12.1 Introduction to Databases . 256
What Is a Database? . 256
Database Types . 256
12.1.1 Database Management: RDBMS . 257
12.1.2 Components of a Relational Database . 258
A Key Concept: Primary Key . 259
12.1.3 Database Data Types . 259

12.2 Connecting to a Database . 261
12.3 Creating a MySQL Database . 262

12.3.1 Creating Tables . 263
12.3.2 Loading a Table . 264

12.4 Planning Ahead . 266
12.4.1 PythonU: Sample Database . 266
Grades Table . 266
Courses Table . 268

12.5 SELECT: Querying a Database . 269
Simple Query . 269
Combining Two Queries . 269
Querying Several Tables . 270
12.5.1 Building a Query . 271
12.5.2 Updating a Database . 273
12.5.3 Deleting a Record from a Database . 273

12.6 Accessing a Database from Python . 274
12.6.1 PyMySQL Module . 274
12.6.2 Establishing the Connection . 274
12.6.3 Executing the Query from Python . 275

12.7 SQLite . 276
12.8 NoSQL Databases: MongoDB . 278

12.8.1 Using MongoDB with PyMongo . 278
12.9 Additional Resources . 282
12.10 Self-Evaluation . 284

255

256 � Python for Bioinformatics

12.1 INTRODUCTION TO DATABASES

The amount of data that is handled in a typical bioinformatics project forces us to
use something more versatile than the data structures bundled with Python. Lists,
tuples, and dictionaries are very flexible, but they are not suitable to model all the
complexity associated with real-world data. Sometimes it is necessary to have a
permanent data repository (in computer terms this is called data persistence),
since data structures are available only while the program is running. While it is
possible to write out the data to a file using pickle, this is not as efficient as using
a database engine designed for that purpose.

What Is a Database?

A database is an ordered collection of related data. Generally, they are constructed
to model real-world situations: a person’s video collection, the students of a univer-
sity, a firm’s inventory, etc. The database stores relevant data for the users of our
program. In modeling the students of a university, we have to take into account the
first and last names, the year of entry, and the subjects studied; we wouldn’t care
about the hair color or height of the student. Designing a database is like modeling
a natural process. The first step is to determine what are the relevant variables.

One advantage of databases is that, in addition to data storage, they provide
search tools. Some of these searches have immediate replies, such as “how many
students are there?” Others are trickier, involving combining different information
sources to enable a response, as for example “How many different subjects, on
average, did each 2017 freshman take?” In a biological database a typical question
might be “What are the proteins with a weight of less than 134 kDa that have
been crystallized?” It’s interesting to note that there is no need to anticipate all the
questions that could be asked; but having an idea of the most common questions
will help the design process.

In any case, the advantage of having a database is that we can ask these ques-
tions and receive these answers without having to program the search mechanism.
That is the job of the database engine, which is optimized to quickly handle large
amounts of data. Using Python, we communicate with the database engine and
process its responses, without having to worry about the internal processes. This
doesn’t mean we have to totally disengage from the functioning of the database, as
the more we understand the internals, the better results we can achieve.

Database Types

Not all databases are the same. There are different theoretical models for describing
both the structure of the database and the interrelationships of the data. Some of
the most popular models are: hierarchical, network, relational, entity-relationship
and document based (or NoSQL). Choosing between the different models is more a
job for IT professionals than for bioinformatics researchers. In this chapter we will
spend most of our time with the relational model due to the flexibility it offers,

Python and Databases � 257

the many implementations available, and (why not?) its popularity. There is also
an overview NoSQL databases.

A relational database is a database that groups data using common attributes.
The resulting sets of organized data can be handled in a logical way.

For example, a data set containing all the real estate transactions in a town can
be grouped by the year the transaction occurred; or it can be grouped by the sale
price of the transaction; or it can be grouped by the buyer’s last name; and so on.

Such a grouping uses the relational model. Hence such a database is called a
“relational database.” To manage a relational database, you must use a specific
computer language called SQL (Structured Query Language). It allows a program-
mer to create, query, update, and delete data from a database. Although SQL is an
ANSI standard, there are multiple non-compatible implementations. Even if they
are different, since all versions are based in the same published standard, it is not
hard to transfer your knowledge from one SQL dialect to another.

Among the different implementations of relational databases and query lan-
guages, this book focuses on two of them: MySQL and SQLite. MySQL (it is pro-
nounced “My Ess Cue Ell”) is the most popular database used in web applications,
with more than 10 million installations. The great majority of small and medium
websites use MySQL. While many system administrators would not consider using
MySQL for very demanding applications, there are many high-traffic sites success-
fully using it. One example of this is YouTube.com. Other popular MySQL-based
sites are Wikipedia, Flickr, Facebook, and Slashdot.org.1 SQLite’s target is much
more narrowly defined: it is made for small embedded systems, both hardware and
software. The Firefox browser uses SQLite internally, as does macOS and others.
This versatility is due to its small size (about 250 KB), its lack of external depen-
dencies, and its storage of a database in a single file. These advantages of small size
and simplicity are offset by a lack of features, but for its unique niche this is not a
problem.

In both cases, the fundamentals are similar and the concepts explained in this
chapter are applicable to all relational databases. When a characteristic is exclusive
to a database in particular, this will be pointed out.

12.1.1 Database Management: RDBMS

RDBMS stands for Relational DataBase Management System. It is software de-
signed to act as an interface between the database engine, the user, and the appli-
cations. The just mentioned MySQL and SQLite are examples of RDBMS.2

In the case of MySQL, the RDBMS is separated into two components: A server
and a client. The server is the program that accomplishes the hard work associated
with the database engine; it can work on our own computer or on a remotely
accessible server. The client is the program that gives us an interface to the server.

1Granted, they are not default installations running on commodity hardware, but highly opti-
mized installations running on branded hardware.

2Other-well known RDBMS are Oracle, DB2, and PostgreSQL.

258 � Python for Bioinformatics

MySQL provides its own client (mysql), which is a command line program, but
there are some alternatives. A popular client is PhpMyAdmin,3 which requires a
web server to run, but provides to the final user a nice Web-based front-end to
the MySQL server (see Figure 12.1). There are also desktop clients with the same
function, like MySQL Workbench4 (the free and multi-platform official version from
Oracle), SQLyog,5 and Navicat6 among others.

Figure 12.1 Screenshot of PhpMyAdmin: Easy-to-use HTML front end to administer
a MySQL database.

SQLite, on the other hand, is available as a library to include in your programs
or as a stand-alone executable. Python has a built-in module (sqlite3) to interface
with SQLite and it works “out of the box” if Python was compiled with SQLite
present (the most likely option). It can also be linked to an external executable file
with the module pysqlite2.dbapi2.

12.1.2 Components of a Relational Database

The first concept of databases we need to understand is that of entities. Formally,
an entity is defined as every significant element that should be stored. We should
distinguish between an entity type and the occurrence of an entity. In an ad-
ministration database, Students is an entity type, while each student in particular
is an occurrence of this entity.

Each entity has its own attributes. The attributes are the data associated
to an entity. Let’s go back to the college administration database we have just

3http://www.phpmyadmin.net
4https://dev.mysql.com/downloads/workbench/
5http://webyog.com/en/
6http://www.navicat.com

http://www.phpmyadmin.net
https://dev.mysql.com/downloads/workbench/
http://webyog.com/en/
http://www.navicat.com

Python and Databases � 259

schemed. name, lastname, DateJoined, and OutstandingBalance are attributes of
the entity Students.

In turn, each entity has its own attributes. The attributes are the data asso-
ciated with an entity. Let’s create a college administration database, where Name,
Lastname, DateJoined, and OutstandingBalance are attributes of the entity Stu-
dents.

The data in a relational database are not isolated, but as the name implies, they
are represented by relations. A relation maps a key, or a grouping of keys, with a
grouping of rows. Each key corresponds to an occurrence of one entity, which relates
to the group of attributes associated with that occurrence. These relationships are
displayed as tables, independently of how they are stored physically. A database
can have multiple tables. Continuing the example of the university administration
database, we might have a table with information on the students and another on
the professors, as each entity has its own attributes.

In Table 12.1 we can see an example of the students relation.

TABLE 12.1 Students in Python University

Name LastName DateJoined OutstandingBalance

Harry Wilkinson 2006-02-10 No
Jonathan Hunt 2004-02-16 No
Harry Hughes 2005-03-20 No
Kayla Allen 2001-03-15 Yes
Virginia Gonzalez 2003-04-02 No

A Key Concept: Primary Key

Every table has to have a means of identifying a row of data; it must have an
attribute, or group of attributes, that serves as a unique identifier. This attribute is
called a primary key. In the case that no single attribute can be used as a primary
key, several can be taken simultaneously to make a composite key. Returning to
Table 12.1, we can see that the attribute Name cannot be used as a primary key,
as there is more than one occurrence of an entity with the same attribute (Joe
Campbell and Joe Doe share the same first name). One solution to this problem
would be to use Name and LastName as a composite key; but this would not be the
best solution, because it’s still possible to have more than one occurrence of an entity
sharing this particular composite key, such as another Joe Doe. For this reason,
normally we add to the table an ID field –a unique identifier– instead of depending
on the data to have a primary key. In most databases there are mechanisms for
automatically generating such a primary key when we insert data. Let us look at a
version of Table 12.1 with a new attribute that can be used as the primary key:

260 � Python for Bioinformatics

TABLE 12.2 Table with primary key

ID Name LastName DateJoined OutstandingBalance

1 Harry Wilkinson 2006-02-10 No
2 Jonathan Hunt 2004-02-16 No
3 Harry Hughes 2005-03-20 No
4 Kayla Allen 2001-03-15 Yes
5 Virginia Gonzalez 2003-04-02 No

12.1.3 Database Data Types

As in programming languages, databases have their own data types. For example,
in Python we have int, float, and string (among others); databases have their own
data types such as tinyint, smallint, mediumint, int, bigint, float, char, varchar, text,
and others. You may be wondering why there are so many data types (such as five
different data types for integers). The main reason is that with so many options it
is possible to the make best use of available resources. If we need a field where we
wish to store the age of the students, we can achieve that with a field of type tinyint,
as it supports a range of values between −128 and 127 (which can be stored in one
byte). Of course, we can just as well store it in a field of type int, which supports
a range between −2147483648 to 2147483647 (that is, 4 bytes); but that would be
a waste of memory, as the system must unnecessarily reserve space. Because of the
difference in the number of bytes, a number stored as int occupies 4 times as much
RAM and disk space as one stored as tinyint. The difference between one and four
bytes may seem insignificant and not worth mentioning, but then multiply it by
the number of data entries you have; when the dataset is large enough, disk space
and access time could be an issue. That is why you should be aware of the data
type storage requirements.7

Table 12.3 summarizes the characteristics of the main data types in MySQL.
Note that some of the minor characteristics may vary depending on the version of
MySQL used, which is why it is advisable to consult the documentation for your
particular version.8 In the case of SQLite, there are only 5 data types: INTEGER,
REAL, TEXT, BLOB, and NULL. However, one must realize that SQLite is typeless, and
that any data can be inserted into any column. For this reason, SQLite has the idea
of “type affinity”: it treats the data types as a recommendation, not a requirement.9

7Estimating what data types are adequate for the situation is no minor issue. In the online
multi-player game World of Warcraft, some players found they could not receive more gold when
they had reached the limit of the variable in which money was stored, a signed 32-bit integer. Much
more serious was the case of the software in the Ariane 5 rocket when a 64-bit real was converted
to a 16-bit signed integer. This led to a cascade of problems culminating in destruction of the entire
flight, costing US$ 370 million.

8MySQL has a complete online reference manual. Data Type documentation for MySQL 5.7 is
available at https://dev.mysql.com/doc/refman/5.7/en/data-types.html.

9For more information about the idea of “type affinity” I recommend the section “Datatypes in
SQLite Version 3” (http://www.sqlite.org/datatype3.html) of the SQLite online documentation.

https://dev.mysql.com/doc/refman/5.7/en/data-types.html
http://www.sqlite.org/datatype3.html

Python and Databases � 261

TABLE 12.3 Most Used MySQL Data Types

Data type
Comment

TINYINT ±127 (0-255 UNSIG.)
SMALLINT ±32767 (0-65535 UNSIG.)
MEDIUMINT ±8388607 (0-16777215 UNSIG.)
INT ±2147483647 (0-4294967295 UNSIG.)
BIGINT ±9223372036854775807 (0-18446744073709551615 UNSIG.)
FLOAT A small number with a floating decimal point.
DOUBLE A large number with a floating decimal point.
DATETIME From ’1000-01-01 00:00:00’ to ’9999-12-31 23:59:59’
DATE From ’1000-01-01’ to ’9999-12-31’
CHAR(n) A fixed section with n characters long (up to 255).
VARCHAR(n) A variable section with n characters long (up to 255).
TEXT A string with a maximum length of 65535 characters.
BLOB A binary string version of TEXT.
MEDIUMTEXT A string with a maximum length of 16777215 characters.
MEDIUMBLOB Binary string equivalent to MEDIUMTEXT.
LONGTEXT A string with a maximum length of 4294967295 characters.
LONGBLOB Binary string equivalent to LONGTEXT.
ENUM String value taken from a list of allowed values.

12.2 CONNECTING TO A DATABASE

To connect to the MySQL database server, you need a valid user, and to set up
a user, you need to connect to the database. This catch-22 is solved by accessing
the server with the default credentials (user: “root”, and no password). From the
command line, if the server is in the same computer, it is possible to access with
this command:

$ mysql -u root -p

Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 234787469

Server version: 5.5.51-38.2 Percona Server (GPL), Release 38.2

Copyright (c) 2000, 2016, Oracle. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type ’help;’ or ’\h’ for help. Type ’\c’ to clear the current inp<=

ut statement.

262 � Python for Bioinformatics

mysql>

From now on, interaction with MySQL server will be shown by using the php-
MyAdmin front-end.

12.3 CREATING A MYSQL DATABASE

Before working with a database, we should create one. You could skip this step if
you plan to access a database previously created. But it is likely that sooner or
later you will need to create your own database. Creating a database is a simple
task and will help you to understand the data you are going to handle, and create
more effective queries.

Since database creation is something that is done only once for each database,
there is not much need to automate this task with a program. This step is usu-
ally done manually. My recommendation is to use a graphical tool to design the
database. phpMyAdmin or Navicat will do the job.

To create a database from the MySQL console:

mysql> CREATE DATABASE PythonU;

Query OK, 1 row affected (0.01 sec)

This will create the PythonU MySQL database. To create a database from
phpMyAdmin, press “New” in the left panel and fill a form field with the proposed
name of the database in “Create new database” (see Figure 12.2).

Figure 12.2 Creating a new database using phpMyAdmin.

Python and Databases � 263

12.3.1 Creating Tables

Once we have a newly created database, the next step is to create the tables where
the data will be stored. Creating the tables using this kind of software doesn’t
seem a problem worth mentioning in this book, so we will focus more on the table
structure rather than on the procedure for dealing with a GUI tool.

We must keep in mind that a table represents a relationship between the data;
it makes no sense to create a table for one entity and then populate it with data
of another entity. Continuing with the example of our “Python University,” we can
think about what information related to students we need to store in the Students
table.

As we saw earlier, in the table Students we assigned the following fields: ID,
Name, LastName, DateJoined, and OutstandingBalance.

There are “good practices,” for database design. It is certainly not easy to convey
the necessary knowledge to achieve an efficient design for every situation in this
space; in any case, good database design is something that one learns with practice.

Let’s see how we define each field in this case:
ID: Is a unique id for each registrant. Since Python University is expected to

have several students, an unsigned INT data type is used (up to 4294967295). There
is no need to use negative numbers in an ID, so this field should be set as unsigned.

Name: Since the size of a name is variable with less than 255 characters, VAR-
CHAR is used. The maximum size for names in characters, according to my arbi-
trary criteria, is 150.

LastName: This field was set with the same criteria as the former field. The only
difference is in the maximum size for a last name; which is set to 200 characters.

DateJoined: There is not much choice here. A simple DATE field would do it
best.

OutstandingBalance: This field represents whether the student has paid the
tuition in full or not. Since there are only two possible values (paid or not paid),
a BOOL data type is chosen. This data type stores a 0 or a 1. It is up to the
programmer to assign a meaning to this value, but in mathematical notation, 0
stands for FALSE and 1 for TRUE, so this convention is generally used.

The last choice is the table type (InnoDB or MyISAM). In this case it is OK
to leave the default option (MyISAM), which will be appropriate for most uses.
Please see Advanced Tip: MyISAM vs InnoDB on page 265 for a brief discussion
on both table types.

If you want to manually create the table, first you must select the database to
use:

mysql> use PythonU;

Database changed

And after the database is selected, type these commands into the MySQL
prompt (also available at the book GitHub repository as db/studentstbl.sql):

264 � Python for Bioinformatics

Figure 12.3 Creating a new table using phpMyAdmin.

CREATE TABLE ‘Students‘ (

‘ID‘ INT UNSIGNED NOT NULL AUTO_INCREMENT,

‘Name‘ VARCHAR(150) NOT NULL,

‘LastName‘ VARCHAR(200) NOT NULL,

‘DateJoined‘ DATE NOT NULL,

‘OutstandingBalance‘ BOOLEAN NOT NULL,

PRIMARY KEY (‘ID‘)) ENGINE = MyISAM;

No wonder I recommended the use of a GUI to design the table!

Tip: Creating a Database Using Another Database as a Template.
Instead of manually defining each field on each table, you could import a “MySQL
dump” from another database and create a database in one step. There are two
different kinds of dump files: “Structure only” and “structure and data” dump files.
Both files are imported the same way into a database:

$ mysql -p database_name < dbname.sql

Where do you get the dump file from?. You can get a dump file from the
backup of another database or from the installation files of a program that requires
a database.

12.3.2 Loading a Table

Once we have the table created, it is time to load the data into it. This operation
can be done from any MySQL front-end, either row by row or in batch. Since there
are several data to load at the beginning, and the manual data load is intuitive,
let’s see how to load data in batch mode.

The most common way to upload data is by using csv files. This kind of file was

Python and Databases � 265

reviewed in Section 5.3 (page 90). To upload the data that is seen in Table 12.2,
we can prepare a csv file (dbdata.csv) with the following format:

1,Harry,Wilkinson,2016-02-10,0

2,Jonathan,Hunt,2014-02-16,0

3,Harry,Hughes,2015-03-20,0

4,Kayla,Allen,2016-03-15,1

5,Virginia,Gonzalez,2003-04-02,0

To load the csv file into the MySQL database, use the LOAD DATA INFILE com-
mand10 at the MySQL prompt:

mysql> LOAD DATA LOCAL INFILE ’dbdata.csv’ INTO TABLE Students

FIELDS TERMINATED BY ’,’;

If you want to avoid doing it by yourself, there is also a web service that convert
a CSV file into a MySQL table at https://sqlizer.io. It is free to convert a file
to SQL for up to 5000 rows of data and for personal use. My advice is to try to do
it by yourself, it is not so hard.

An alternative way, using INSERT statements:

INSERT INTO ‘Students‘ (‘ID‘, ‘Name‘, ‘LastName‘, ‘DateJoined‘,

‘OutstandingBalance‘) VALUES

(1, ’Harry’, ’Wilkinson’, ’2016-02-10’, 0),

(2, ’Jonathan’, ’Hunt’, ’2014-02-16’, 0),

(3, ’Harry’, ’Hughes’, ’2015-03-20’, 0),

(4, ’Kayla’, ’Allen’, ’2016-03-15’, 1),

(5, ’Virginia’, ’Gonzalez’, ’2017-04-02’, 0);

Once the data is loaded into the database, the table looks like the one in Figure
12.4.

Advanced Tip: MyISAM versus InnoDB

There are several formats for the internal data structures in MySQL tables. The
most commonly used formats are InnoDB and MyISAM. MyISAM is used by default
and is characterized by its higher reading speed (using SELECT operations), and
it uses less disk space. It is slower than InnoDB at writing, since when data is being
recorded, the table is momentarily blocked until finished, so all other operations
must wait to complete. This limitation doesn’t exist in an InnoDB table. The main
advantage of this format is that it allows secure transactions and has a better

10For a complete reference of this command, see the MySQL online manual at https://dev.

mysql.com/doc/refman/5.7/en/load-data.html.

https://sqlizer.io
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html

266 � Python for Bioinformatics

Figure 12.4 View of the Student table.

crash recovery. InnoDB is thus recommended for intensively updated tables and for
storing sensitive information. To sum up, since you can use different table types in
the same database, choose the appropriate table type according to the operation
that will be performed most on each table.

12.4 PLANNING AHEAD

Making a database requires some planning. This is specially true when there is
a large amount of data and we want to optimize the time it takes to answer our
queries. A bad design can make a database unusable. In this section I present a
sample database to show the basis of database design. To have a better idea of
designing relational databases, you could read about Database normalization in
“Additional resources.”, but this section should give you a brief glimpse of this
subject.

12.4.1 PythonU: Sample Database

Let’s keep the example of a student database from the fictional Python University
(whose database is called PythonU), to store student data and subjects taken. To
store student data, we already have the table Students. We have to make a table
to store the grades associated with each subject (a “Grades” table). As in many
other aspects of programming, there is more than one way to accomplish this. We
will start by showing some non-optimal ways, to better understand why there is a
recommended way.

Grades Table

In the table Grades we want to store for each student: subjects studied, grade, and
date when each course was taken.

A proposed Grades table for two courses is depicted in Figure 12.5.
This design (schema) has several flaws. The first design error in the table is its

Python and Databases � 267

Figure 12.5 An intentionally faulty “Grades” table.

inflexibility. If we want to add a new course, we have to modify the table. This is
not considered good programming practice; a change in the structure of an already
populated table is an expensive operation that must be avoided whenever possible.
The other problem that arises from this design, as seen in the diagram, is that there
is no place to store the grade of a student who has taken a course more than once.
How do we solve this? With a more intelligent design. An almost optimal solution
can be seen in Figure 12.6.

Figure 12.6 A better “Grades” table.

The first problem, the need to redesign the table for entering new subjects,
we solve by entering the course name as a new field: Course. This field can be of
type TEXT or VARCHAR. And the problem of being able to keep track of when
a student took a course more than once, we solved with the Term field. While this
is a decidedly better design than the previous one, it is far from being optimal. It
is evident that storing the name of each subject for each student is an unnecessary
waste of resources. A way to save this space is to use the data type ENUM in the
field Course; in this way we can save a substantial amount of space, because MySQL
internally uses one or two bytes for each entry of this type. The table remains the
same as seen before (Figure 12.6), and only changes the way the field Course is
defined, saving disk space as mentioned.

Is this the best way? The problem with using ENUM with the field Course is
that when we wish to add a new subject, we still have to alter the table structure.
This modification, to add a new option to the ENUM, is not as costly as adding
a new column, but conceptually it is not a good idea to modify the definition of

268 � Python for Bioinformatics

a new table in order to accommodate a new type of data. In cases like these, we
resort to “lookup tables.”

Courses Table

Figure 12.7 Courses table: A lookup table.

A lookup table is a reference table that is used to store values that are used
as content of a column located in another table. Continuing with the example of
Python University, we can make a lookup table for the subjects (see Figure 12.7).

This Courses table contains a field for storing the ID of the course (CourseID)
and another for the name of the course (Course_Name). For this scheme to work,
we must change the field Course of the table Grades; in place of an ENUM field,
we now use an INT field (see Figure 12.8).

Figure 12.8 Modified “Grades” table.

The data in CourseID now correspond to that of the field Course in the table
Grades. Using a single lookup, we can then link the ID with the corresponding
course name. This way we save the same amount of space in the Students table as
when we used an ENUM for the Course field, with the additional advantage that
we can expand the list of subjects simply by adding one element to the Courses

table.

Tip: ENUM field type versus Lookup Table

We have seen how convenient it is to use a lookup table in place of an ENUM

Python and Databases � 269

field. You are probably wondering how to decide when to use one strategy or the
other when designing your database. ENUM is better than TEXT or VARCHAR
in the cases where the number of possibilities is limited and not expected to vary:
for example, a list of colors, the months of the year, and other options that by their
very nature have a set range. One disadvantage that should be taken into account
with regard to ENUM, is that it is a data type specific to MySQL, which may
not be available on other DB engines; this limits the potential portability of the
database.

Now we have the PythonU database with 3 tables: Students, Grades, and
Courses. It’s time to learn how to construct queries.

12.5 SELECT: QUERYING A DATABASE

The most useful operation in a database, once it is created and populated, is query-
ing its contents. We can extract information from one table or many tables simul-
taneously. For example, to have a list of students, the table Students must be
queried. On the other hand, if we want to know a student’s average grades, we need
to query the Students and Grades tables. In addition, there are cases where one
must query 3 tables simultaneously, as when finding out a student’s grade in one
particular subject.

Let’s look at each case:

Simple Query

To obtain a listing of students (first and last names) from the Students table, we
would use the following command at the MySQL prompt:

mysql> SELECT Name, LastName FROM Students;

+----------+-----------+

| Name | LastName |

+----------+-----------+

| Harry | Wilkinson |

| Jonathan | Hunt |

| Harry | Hughes |

| Kayla | Allen |

| Virginia | Gonzalez |

+----------+-----------+

5 rows in set (0.00 sec)

Combining Two Queries

To obtain the average grade of a given student, we need to extract all the grades
corresponding to that student. As the grades are in the Grades table and the names

270 � Python for Bioinformatics

in the Students table, we need to query both tables in order to receive a reply to
our question. First we need to query Students for the ID of the student; then with
this ID we must search for all corresponding records.

To get the grade average of Harry Wilkinson:

SELECT AVG(Grade) FROM Grades

WHERE StudentID = (SELECT ID FROM Students

WHERE Name=’Harry’ AND LastName=’Wilkinson’);

We can also accomplish it with a single query, without using the nested SE-
LECT:

SELECT AVG(Grade) FROM Grades, Students

WHERE Grades.StudentID=Students.ID

AND Students.Name=’Harry’ AND Students.LastName=’Wilkinson’;

There are two new things to understand in this example: When we use fields
from more than one table, we should prepend the table name to avoid ambiguities
in the field names. Thus, StudentID becomes Grades.StudentID. The following
statement is equivalent to the above:

SELECT AVG(Grade) FROM Grades, Students

WHERE StudentID=ID AND Name=’Harry’ AND LastName=’Wilkinson’;

If the field name is present only in one table, there is no need to add the table
name, but it makes the query easer to parse for the programmer.

The other feature worth pointing out in this example is that instead of looking
only at the student ID, there is a condition that matches the IDs of both tables
(Grades.StudentID = Students.ID).

In either case, the result is 7.5.

Querying Several Tables

To retrieve the grade average of one student (Harry Hughes) in one particular course
(Python 101), there is a need to build a query using more than one table:

SELECT Grades.Grade FROM Grades, Courses, Students

WHERE Courses.CourseID = Grades.Course

AND Courses.Course_Name = ’Python 101’

AND Students.ID = Grades.StudentID

AND Students.Name = ’Harry’ AND Students.LastName = ’Hughes’;

Python and Databases � 271

12.5.1 Building a Query

The general syntax of SELET statements is

SELECT field(s)_to_retrieve FROM table(s)_where_to_look_for

WHERE condition(s)_to_met] [ORDER BY ordering_criteria]

[LIMIT limit_the_records_returned];

To use grouping functions, include at the end of your query:

GROUP BY variable_to_be_grouped HAVING condition(s)_to_met

The aggregating functions are AVG(), COUNT(), MAX(), MIN() and
SUM().

Note that HAVING works like WHERE. The difference is that HAVING is used only
with GROUP BY since it restricts the records after they have been grouped.

These constructs can be understood better with actual examples. The following
cases show how to execute the queries from the MySQL command line.

To get all the elements of a table, use wildcards:

mysql> select * from Students;

Connection id: 234793415

Current database: PythonU

+----+----------+-----------+------------+--------------------+

| ID | Name | LastName | DateJoined | OutstandingBalance |

+----+----------+-----------+------------+--------------------+

| 1 | Harry | Wilkinson | 2016-02-10 | 0 |

| 2 | Jonathan | Hunt | 2014-02-16 | 0 |

| 3 | Harry | Hughes | 2015-03-20 | 0 |

| 4 | Kayla | Allen | 2016-03-15 | 1 |

| 5 | Virginia | Gonzalez | 2017-04-02 | 0 |

+----+----------+-----------+------------+--------------------+

5 rows in set (0.08 sec)

To obtain a count of all elements in a table:

mysql> select COUNT(*) from Students;

+----------+

| COUNT(*) |

+----------+

| 5 |

+----------+

1 row in set (0.00 sec)

To see the grade average of all students:

272 � Python for Bioinformatics

mysql> select avg(Grade) from Grades GROUP BY StudentID;

+------------+

| avg(Grade) |

+------------+

| 7.5000 |

| 7.5000 |

| 6.0000 |

| 8.5000 |

+------------+

4 rows in set (0.17 sec)

To retrieve the best grade of one particular student (Harry Wilkinson):

mysql> select max(Grades.Grade) from Grades,Students

WHERE studentID=ID AND Students.Name=’Harry’

AND Students.Lastname=’Wilkinson’;

+-------------------+

| max(Grades.Grade) |

+-------------------+

| 8 |

+-------------------+

1 row in set (0.00 sec)

Which courses have the string “101” in their names?

mysql> SELECT Course_Name FROM Courses

WHERE Course_Name LIKE ’%101%’;

+-------------+

| Course_Name |

+-------------+

| Python 101 |

+-------------+

1 row in set (0.00 sec)

Note that % is used as a wildcard character when working with strings.

How many students have flunked a class? Supposing that the passing grade is
7, this query is equivalent to asking how many grades are below 7.

mysql> SELECT Name,LastName,Grade FROM Students,Grades

WHERE Grades.Grade<7 and Grades.StudentID=Students.id;

+----------+----------+-------+

| Name | LastName | Grade |

+----------+----------+-------+

| Jonathan | Hunt | 6 |

Python and Databases � 273

| Harry | Hughes | 5 |

+----------+----------+-------+

2 rows in set (0.00 sec)

The above was simply an example of the possibilities of the SELECT command.
For more complex queries I recommend the resources indicated in “Additional Re-
sources.”

12.5.2 Updating a Database

While values can be changed using any of the aforementioned GUI tools, it’s good
to know the syntax for updating data, to enable implementing it from Python when
necessary.

The general syntax is:11

UPDATE table_name(s) SET variable1=expr1 [,variable2=expr2 ...]

[WHERE condition(s)];

Suppose you want the database to reflect the fact that Joe Campbell didn’t
pay his tuition, therefore we must make sure the OutstandingBalance field in the
Students table is set to Y. Here is the SQL command with the server’s response:

mysql> UPDATE Students SET OutstandingBalance=’Y’

WHERE Name=’Harry’ and LastName=’Wilkinson’;

Query OK, 1 row affected (0.67 sec)

Rows matched: 1 Changed: 1 Warnings: 0

It is also possible, instead of changing a specific value, to apply a function 12 to
all values in a column. For example, to subtract one point from all grades:

mysql> UPDATE Grades SET Grade = Grade-1;

Query OK, 8 rows affected (0.00 sec)

Rows matched: 8 Changed: 8 Warnings: 0

12.5.3 Deleting a Record from a Database

To delete a record use the DELETE command:

mysql> DELETE from Students WHERE ID = "5";

Query OK, 1 row affected (0.02 sec)

11For more information on this command, see the MySQL manual at https://dev.mysql.com/

doc/refman/5.7/en/update.html.
12Any valid MySQL function can be used. To see a list with available functions, check the MySQL

manual at https://dev.mysql.com/doc/refman/5.7/en/functions.html.

https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/functions.html
https://dev.mysql.com/doc/refman/5.7/en/update.html

274 � Python for Bioinformatics

As in SELECT, the WHERE clause specifies the conditions that identify which rows
to delete. Without the WHERE clause, all rows are deleted. But this is not the best
way to delete a whole table. Instead of deleting all records row by row, you can
use the TRUNCATE command, which drops and re-creates the table. This is faster for
large tables.

12.6 ACCESSING A DATABASE FROM PYTHON

Now that we know how to access our data using SQL, we can take advantage of
Python’s tools for interfacing with databases.

12.6.1 PyMySQL Module

This module allows accessing MySQL databases from Python.13 It’s not installed
by default; in a shared web hosting environment you may have to request the
installation of the PyMySQL Python module. To know if the module is installed,
try importing it. If you get an import error, it’s not installed:

>>> import pymysql

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ImportError: No module named ’pymysql’

>>>

To install it, use pip or conda:

(py4bio) $ pip install PyMySQL

Collecting PyMySQL

Downloading PyMySQL-0.7.10-py2.py3-none-any.whl (78kB)

100% |********************************| 81kB 934kB/s

Installing collected packages: PyMySQL

Successfully installed PyMySQL-0.7.10

12.6.2 Establishing the Connection

There is the connect method in the MySQLdb module. This method returns a
connection object that we’ll need to act upon later, so we should give it a name (in
the same way we would give a name to the object resulting from opening a file):

>>> import pymysql

>>> db = pymysql.connect(host="localhost", user="root",

... passwd="mypassword", db="PythonU")

13There is another module to access MySQL database called MySQLdb This module was fea-
tured in a previous edition of this book, but is no longer used in this edition because at this time
is not Python 3 compatible.

Python and Databases � 275

12.6.3 Executing the Query from Python

Once the connection to the database is established, we have to create a cursor. A
cursor is a structure used to walk through the records of the result set.

The method used to create the cursor has a clever name, cursor() :

>>> cursor = db.cursor()

The connection is established, and the cursor has been created. It is time to
execute some SQL commands:

>>> cursor.execute("SELECT * FROM Students")

5

The execute method is used to execute SQL commands. Note that there is no
need to add a semicolon (;) at the end of the command. Now the question is how
to retrieve data from the cursor object. To get one element, use fetchone():

>>> cursor.fetchone()

(1, ’Harry’, ’Wilkinson’, datetime.date(2016, 2, 10), 0)

fetchone() returns a row with the elements of the first record of the table.
Remaining records can be extracted one by one in the same way:

>>> cursor.fetchone()

(2, ’Jonathan’, ’Hunt’, datetime.date(2014, 2, 16), 0)

>>> cursor.fetchone()

(3, ’Harry’, ’Hughes’, datetime.date(2015, 3, 20), 0)

In contrast, fetchall() extracts all the elements at once:

>>> cursor.fetchall()

((1, ’Harry’, ’Wilkinson’, datetime.date(2016, 2, 10), 0),

(2, ’Jonathan’, ’Hunt’, datetime.date(2014, 2, 16), 0),

(3, ’Harry’, ’Hughes’, datetime.date(2015, 3, 20), 0),

(4, ’Kayla’, ’Allen’, datetime.date(2016, 3, 15), 1),

(5, ’Virginia’, ’Gonzalez’, datetime.date(2017, 4, 2), 0))

Which method to use depends on the amount of data returned, the available
memory, and above all, what we’re trying to accomplish. When working with limited
datasets, there’s no problem using fetchall(); but if the result is too large to fit in
memory, one must implement a strategy like the one found in Listing 12.1.

Listing 12.1: pymysql1.py: Reading results once at a time

276 � Python for Bioinformatics

1 import pymysql

2 db = pymysql.connect(host=’localhost’,

3 user=’root’, passwd=’secret’, db=’PythonU’)

4 cursor = db.cursor()

5 recs = cursor.execute(’SELECT * FROM Students’)

6 for x in range(recs):

7 print(cursor.fetchone())

While the code in Listing 12.1 works flawlessly, it was shown as an example of
using fetchone(). It is possible to iterate directly over the cursor object:

Listing 12.2: pymysql2.py: Iterating directly over the DB cursor

1 import pymysql

2 db = pymysql.connect(host=’localhost’,

3 user=’root’, passwd=’secret’, db=’PythonU’)

4 cursor = db.cursor()

5 cursor.execute(’SELECT * FROM Students’)

6 for row in cursor:

7 print(row)

12.7 SQLITE

In SQLite a new database is created when passing a file name in the command
line, as in:

$ sqlite3 PythonU.db

SQLite version 3.3.5

Enter ".help" for instructions

sqlite>

Basic syntax to create a table in SQLite:

CREATE TABLE table_name(

column1 datatype PRIMARY KEY(one or more columns),

column2 datatype,

.....

columnN datatype);

For example, here is the command to create the Students table:

sqlite> create table Students(

ID int,

Name text,

Python and Databases � 277

LastName char,

DateJoined datetext,

OutstandingBalance Boolean);

To import the data from a CSV file, set the separator and do the import:

sqlite> .separator ,

sqlite> .import dbdata.csv Students

Figure 12.9 Screenshot of SQLite manager: A SQLite GUI as a Firefox add-on.

The following example shows that, practically speaking, there is no difference
in working with one database type or another:

Listing 12.3: sqlite1.py: Same script as 12.2, but with SQLite

1 import sqlite3

2 db = sqlite3.connect(’../../samples/PythonU.db’)

3 cursor = db.cursor()

4 cursor.execute(’Select * from Students’)

5 for row in cursor:

6 print(row)

The only thing that changed in Listing 12.3 with respect to Listing 12.2 was
the first two lines. In line 1, module sqlite3 was imported instead of MySQLdb.
Meanwhile, in line 2 the connection code is far simpler, as it does not require a
password or a username to connect to an SQLite database.14

14Access permissions can be applied by using the normal file access permissions of the underlying
operating system.

278 � Python for Bioinformatics

This is the output of sqlite1.py (Listing 12.3):

(1, ’Harry’, ’Wilkinson’, ’2016-02-10’, 0)

(2, ’Jonathan’, ’Hunt’, ’2014-02-16’, 0)

(3, ’Harry’, ’Hughes’, ’2015-03-20’, 0)

(4, ’Kayla’, ’Allen’, ’2016-03-15’, 1)

(5, ’Virginia’, ’Gonzalez’, ’2003-04-02’, 0)

As with MySQL, there are some GUIs for SQLite. SQLite Administrator15 is
a Windows application16 that allows the user to create new databases or modify
existing ones. SQLite Manager17 has similar capacities but is available both for
Windows and macOS. A multi-platform SQLite front-end is the SQLite Manager
Firefox add-on,18 it works on any platform on which Firefox browser runs. See
Figure 12.9 for a screen-shot of SQLite Manager.

12.8 NOSQL DATABASES: MONGODB

There are several NoSQL type of databases, such as Cassandra, CouchDB, and
MongoDB. This book covers the latest because it is a good product, it is open
source and has extensive Python support.

Why would I use non-relational database? This type of database has several
advantages over the classic SQL databases: It has no schema (AKA schemaless),
so it is better for semi-structured, complex, or nested data. This also means that
new properties can be added “on the fly” without the need to restructure a table
and change current stored data. Performance gains are obtained because there are
usually fewer requests and table lookups to get the same data as in SQL. Also,
by reducing consistency you can get more performance (this is mostly used in
heavily demand scenario and for data that is not critical). Another advantage is
the scalability; instead of upgrading the server as in SQL databases, in most cases
you can upgrade DB capability buy adding more servers.

If you are not planning to be in any described scenario, you may not need to a
NoSQL database. This type of database is not a silver bullet. It is not recommended
for every situation but is worth learning about it so you can recognize the right
moment to use it and be ready when the time comes.

12.8.1 Using MongoDB with PyMongo

In order to follow the rest of this chapter, you need to either install MongoDB or
have access to a MongoDB installation. A local install is fairly easy to accomplish.
Download the last version from the MongoDB download center.19 If you choose to

15Available at http://sqliteadmin.orbmu2k.de.
16It also works on Linux with Wine.
17Available from http://www.sqlabs.net/sqlitemanager.php.
18Available at http://code.google.com/p/sqlite-manager.
19https://www.mongodb.com/download-center

http://sqliteadmin.orbmu2k.de
http://www.sqlabs.net/sqlitemanager.php
http://code.google.com/p/sqlite-manager
https://www.mongodb.com/download-center

Python and Databases � 279

use a service that provides MongoDB on the cloud (like Mlab20), you don’t need
to install a local server. In any case, you will need to install PyMongo:

(py4bio) $ pip install pymongo

Collecting pymongo

Downloading pymongo-3.4.0-cp35-cp35m-manylinux1_x86_64.whl (359kB)

100% |********************************| 368kB 3.0MB/s

Installing collected packages: pymongo

Successfully installed pymongo-3.4.0

Its use is similar to PyMySQL. Import the Mongo Client:

>>> from pymongo import MongoClient

The general syntax to instantiate the Mongo Client is:

MongoClient(CONNECTION_STRING)

where the connection string takes this form:

’mongodb://USER:PASSWORD@DOMAIN:PORT/DB’

If the MongoDB server is in the local machine:

>>> from pymongo import MongoClient

>>> client = MongoClient(’localhost:27017’)

To see databases available in this MongoDB server:

>>> client.database_names()

[’Employee’, ’admin’, ’local’]

The command to create a DB is the same as to connect to existing one:

>>> db = client.PythonU

Verify that it is already created:

>>> client.database_names()

[’Employee’, ’PythonU’, ’admin’, ’local’]

You can delete a database with drop_database method:

>>> client.drop_database(’Employee’)

20https://mlab.com

https://mlab.com

280 � Python for Bioinformatics

To create a collection (the equivalent of a SQL table) inside a DB, use the same
method as used when creating a DB:

>>> students = db.Students

This “students” collection is ready to accept documents. A document is the
equivalent of a record in SQL. Unlike SQL records, they are stored as JSON doc-
uments and can have any structure (that is why it is also called schemaless). With
pymongo we can insert Python dictionaries instead of JSON documents. Here are
some Python dictionaries with all information related to each student (shown here
only first two records):

{

’Name’: ’Harry’,

’LastName’: ’Wilkinson’,

’DateJoined’: ’2016-02-10’,

’OutstandingBalance’: False,

’Courses’: [(’Python 101’, 7, ’2016/1’),

(’Mathematics for CS’, 8, ’2016/1’)]

}

{

’Name’: ’Jonathan’,

’LastName’: ’Hunt’,

’DateJoined’: ’2014-02-16’,

’OutstandingBalance’: False,

’Courses’: [(’Python 101’, 6, ’2016/1’),

(’Mathematics for CS’, 9, ’2015/2’)]

}

This is a difference with SQL databases. Instead of having this information
distributed into 3 tables, and having to resort to relationships, it is all in one
document.

To insert these dictionaries into the collection:

>>> student_1 = {’Name’:’Harry’, ’LastName’:’Wilkinson’,

’DateJoined’:’2016-02-10’, ’OutstandingBalance’:False,

’Courses’:[(’Python 101’, 7, ’2016/1’), (’Mathematics for CS’,

8, ’2016/1’)]}

>>> student_2 = {’Name’:’Jonathan’, ’LastName’:’Hunt’,

’DateJoined’:’2014-02-16’, ’OutstandingBalance’:False,

’Courses’:[(’Python 101’, 6, ’2016/1’), (’Mathematics for CS’,

9, ’2015/2’)]}

>>> students.count()

0

Python and Databases � 281

>>> students.insert(student_1)

ObjectId(’58b64f201d41c8066755035e’)

>>> students.insert(student_2)

ObjectId(’58b64f251d41c8066755035f’)

>>> students.count()

2

Figure 12.10 Documents in a collection, from MLab, a MongoDB cloud provider.

After each insertion, the insert() method returns the ObjectId, which is a key
for each document. This ID is a 12-byte number that contains the date when the
document was entered and an unique number for the collection. You can use this
ID to retrieve a record, using the find_one() method:

>>> from bson.objectid import ObjectId

>>> search_id = {’_id’:ObjectId(’58b64f251d41c8066755035f’)}

>>> my_student = students.find_one(search_id)

>>> my_student[’LastName’]

282 � Python for Bioinformatics

’Hunt’

You can get the insertion date with the generation_time property:

>>> my_student[’_id’].generation_time

datetime.datetime(2017, 3, 1, 4, 33, 41, tzinfo=<bson.tz_util<=

.FixedOffset object at 0x7f3eb8c3fd68>)

With find() you get a generator object that can be iterated over:

>>> for student in students.find():

... print(student[’Name’], student[’LastName’])

...

Harry Wilkinson

Jonathan Hunt

If you want the whole list, use the built-in method list():

>>> list(students.find())

[{’_id’: ObjectId(’58b64f201d41c8066755035e’), ’DateJoined’: <=

’2016-02-10’, ’Courses’: [[’Python 101’, 7, ’2016/1’], [’Math<=

ematics for CS’, 8, ’2016/1’]], ’OutstandingBalance’: False, <=

’LastName’: ’Wilkinson’, ’Name’: ’Harry’}, {’_id’: ObjectId(’<=

58b64f251d41c8066755035f’), ’DateJoined’: ’2014-02-16’, ’Cour<=

ses’: [[’Python 101’, 6, ’2016/1’], [’Mathematics for CS’, 9,<=

’2015/2’]], ’OutstandingBalance’: False, ’LastName’: ’Hunt’,<=

’Name’: ’Jonathan’}]

12.9 ADDITIONAL RESOURCES

• Database interfaces in Python.
https://wiki.python.org/moin/DatabaseInterfaces

• MySQL queries examples.
http://www.pantz.org/software/mysql/mysqlcommands.html

• Richard Hipp. SQLite lecture.
https://youtu.be/gpxnbly9bz4

• SQLite FAQ.
https://sqlite.org/faq.html

• The Unofficial MySQL 8.0 Optimizer Guide.
http://www.unofficialmysqlguide.com

• Why schemaless?
https://www.mongodb.com/blog/post/why-schemaless

https://wiki.python.org/moin/DatabaseInterfaces
http://www.pantz.org/software/mysql/mysqlcommands.html
https://youtu.be/gpxnbly9bz4
https://sqlite.org/faq.html
http://www.unofficialmysqlguide.com
https://www.mongodb.com/blog/post/why-schemaless

Python and Databases � 283

• Installing PyMongo: The Python MongoDb Connector.
http://codehandbook.org/pymongo-tutorial-crud-operation-mongodb

• NOSQL data modeling techniques.
https://goo.gl/iZcFOy

• Database normalization basics. Normalizing your database.
https://goo.gl/x7tbX4

• Software:

– MySQL homepage.
http://www.mysql.com

– SQuirreL SQL Client - JDBC SQL GUI Client
http://www.squirrelsql.org/

– SQLite homepage
http://www.sqlite.org/

– SQLite Administrator
http://sqliteadmin.orbmu2k.de/

– PostgreSQL home page
http://www.postgresql.org

• Alternative Solutions:

– Choosing a non-relational database; why we migrated from MySQL to
MongoDB.
https://goo.gl/8f7KeB

– The CouchDB Project
http://couchdb.apache.org

– HyperTable: Performance and scalability.
http://www.hypertable.org

– Apache Libcloud: An unified interface to the cloud in Python.
http://libcloud.org

http://codehandbook.org/pymongo-tutorial-crud-operation-mongodb
https://goo.gl/iZcFOy
https://goo.gl/x7tbX4
http://www.mysql.com
http://www.squirrelsql.org/
http://www.sqlite.org/
http://sqliteadmin.orbmu2k.de/
http://www.postgresql.org
http://couchdb.apache.org
http://www.hypertable.org
http://libcloud.org
https://goo.gl/8f7KeB

284 � Python for Bioinformatics

12.10 SELF-EVALUATION

1. What is a database?

2. Give some examples of databases.

3. What is a relational database?

4. Define the following terms: entity, attributes, and relationships.

5. What is non-relational database?

6. What is a query?

7. Translate this query into English:
SELECT LastName,Grade FROM Student,Grades WHERE Grades.Grade>3;

8. What is the difference between MySQL and SQLite?

9. When is it appropriate to use SQLite?

10. What are the limitations of SQLite with regard to MySQL?

11. Name the advantages and disadvantages of NoSQL over SQL databases.

C H A P T E R 13

Regular Expressions

CONTENTS

13.1 Introduction to Regular Expressions (REGEX) . 285
13.1.1 REGEX Syntax . 286

13.2 The re Module . 287
re.search . 288
re.findall . 288
re.finditer . 289
re.match . 289
13.2.1 Compiling a Pattern . 290
Groups . 291
13.2.2 REGEX Examples . 292
13.2.3 Pattern Replace . 294
re.sub . 294
re.subn . 294

13.3 REGEX in Bioinformatics . 294
13.3.1 Cleaning Up a Sequence . 296

13.4 Additional Resources . 297
13.5 Self-Evaluation . 298

13.1 INTRODUCTION TO REGULAR EXPRESSIONS (REGEX)

A common feature of every scripting language is support of regular expressions
(REGEX in programming jargon). What are regular expressions? They are ex-
pressions that summarize a text pattern. A known case of regular expression is the
abbreviations used in most operating systems, like using “ls *.py” (or “dir *.py”)
to list all files ended in “.py.” These are known as wildchars.

When doing text processing it is often necessary to give special treatment to
strings containing a specific condition. For example, you may want to extract ev-
erything that is between <pre> and </pre> in an HTML file, or remove from a file
any character that is not A, T, C, or G.

Biological applications of this feature are straightforward. Regular expressions
can be used to locate domains in proteins, sequence patterns in DNA like CpG

285

286 � Python for Bioinformatics

islands, repeats, restriction enzyme, nuclease recognition sites, and so on. There
are even biological databases devoted to protein domains, like PROSITE.1

Nevertheless, your programming needs may not include the use of regular ex-
pressions. In this case, you can skip this chapter and read it when you need it. The
rest of this book can be read without knowledge of regular expressions.

Each language has its own REGEX syntax. In Python, this syntax is close to
the one used in Perl. So if you know Perl, learning Python REGEX is easy. If you
have never heard of REGEX before, don’t worry, basic REGEX syntax is not so
hard to learn. Some REGEX can turn into obscure and complex expressions in
specific cases. Due to this potential complexity, there are even whole books on this
subject.2

13.1.1 REGEX Syntax

In general, the letters and characters match with themselves. “Python” is going
to match with “Python” (but not with “python”). The exceptions to this rule are
meta-characters, which are characters that have a special meaning in the context
of the REGEX:

. ^ $ * + ? { [] \ | ()

Let’s see the meaning of the most commonly used special characters:
. (dot): Matches any character, except the new line: “ATT.T” will match

“ATTCT”, “ATTFT” but not “ATTTCT”.
^(carat): Matches the beginning of the chain: “^AUG” will match “AUGAGC”

but not “AAUGC”. Using inside a group means “opposite”.
$(dollar): Matches the end of the chain or just before a new line at the end of

the chain: “UAA$” will match “AGCUAA” but not “ACUAAG”.
* (star): Matches 0 or more repetitions of the preceding token: “AT*” will

match “AAT”, “A”, but not “TT”.
+ (plus): The resulting REGEX will match 1 or more repetitions of the pre-

ceding REGEX: “AT+” will match “ATT”, but not “A”.
? (question mark): The resulting REGEX matches 0 or 1 repetitions of the

preceding RE. “AT?” will match either “A” or “AT”.
(...): Matches whatever regular expression is inside the parentheses, and indi-

cates the start and end of a group. To match the literals "(" or ")", use \(or \),
or enclose them inside a character class: [(] [)].

(?:...): A non-grouping version of regular parentheses. The substring matched
by the group cannot be retrieved after performing a match.

{n}: Exactly n copies of the previous REGEX will match: “(ATTG){3}” will
match “ATTGATTGATTG” but not “ATTGATTG”.

1http://prosite.expasy.org/
2Please see Additional Resources for book recommendations.

http://prosite.expasy.org/

Regular Expressions � 287

TABLE 13.1 REGEX Special Sequences

Name
Description

\number The contents of the group of the same number, start-
ing from 1

\A Only at the start of the string
\b The empty string, only at the beginning or end of a

word
\B The empty string, only when it is not at the beginning

or end of a word
\d Any decimal digit (as [0-9])
\D Any non-digit (as [^0-9])
\s Any whitespace character (as [\t\n\r\f\v])
\S Any non-whitespace character (as [^\t\n\r\f\v])
\w Any alphanumeric character (as [a-zA-Z0-9_])
\W Any non-alphanumeric character (as [^a-zA-Z0-9_]
\Z Only the end of the string

{m,n}: The resulting REGEX will match from m to n repetitions of the preced-
ing REGEX: “(AT){3,5}” will match “ATATTATATAT” but not “ATATTATAT”.
Without m, it will match from 0 repetitions. Without n, it will match all repetitions.

[] (square brackets): Indicates a set of characters. “[A-Z]” will match any
uppercase letter and “[a-z0-9]” will match any lowercase letter or digit. Meta char-
acters are not active inside REGEX sets. “[AT*]” will match “A”, “T” or “*”. The
^inside a set will match the complement of a set. “[^R]” will match any character
but “R”.

"\" (backslash): Used to escape reserved characters (to match characters like
“?”, “*”). Since Python also uses backslash as the escape character, you should pass
a raw string to express the pattern.
| (vertical bar): As in logic, it reads as “or”. Any number of REGEX can be

separated by “ |”. “A|T” will match “A”, “T” or “AT”.
There are also special sequences with “\” and a character. They are listed in

Table 13.1.

13.2 THE RE MODULE

The re module provides methods like compile, search, findall, match, and other.
These functions are used to process a text using a pattern built with the REGEX
syntax.

A basic search works like this:

>>> import re

>>> mo = re.search(’hello’, ’Hello world, hello Python!’)

288 � Python for Bioinformatics

re.search

The search from the re method requires a pattern as a first argument and as
a second argument, a string where the pattern will be searched. In this case the
pattern can be translated as “H or h, followed by ello.” When a match is found, this
function returns a match object (called mo in this case) with information about
the first match. If there is no match, it returns None. A match object can be
queried with the methods shown here:

>>> mo.group()

’hello’

>>> mo.span()

(13, 18)

group() returns the string matched by the REGEX, while span() returns a
tuple containing the (start, end) positions of the match (that is the (0, 5) returned
by mo.span()).

This result is very similar to what the index method returns:

>>> ’Hello world, hello Python!’.index(’hello’)

13

The difference lies in the chance of using REGEX instead of plain strings. For
example, we would like to match “Hello” and “hello”:

>>> import re

>>> mo = re.search(’[Hh]ello’, ’Hello world, hello Python!’)

The first match now is,

>>> mo.group()

’Hello’

re.findall

To find all the matches, and not just the first one, use findall:

>>> re.findall("[Hh]ello","Hello world, hello Python,!")

[’Hello’, ’hello’]

Note that findall returns a list with the actual matches instead of match objects.

Regular Expressions � 289

re.finditer

If we want to have a match object for each match, there is the finditer method. As
an additional bonus, it doesn’t return a list, but an iterator. This means that each
time finditer is invoked it returns the next element without having to calculate
them all at once. As with any iterator, this optimizes memory usage:

>>> re.finditer("[Hh]ello", "Hello world, hello Python,!")

<callable-iterator object at 0xb6f43d8c>

Walking on the results:

>>> mos = re.finditer("[Hh]ello", "Hello world, hello Python,!")

>>> for x in mos:

print(x.group())

print(x.span())

Hello

(0, 5)

hello

(13, 18)

re.match

This match method works like search but it looks only at the start of a string.
When the pattern is not found, it returns None:

>>> mo = re.match("hello", "Hello world, hello Python!")

>>> print mo

None

As search, when the pattern is found, it returns a match object:

>>> mo = re.match("Hello", "Hello world, hello Python!")

>>> mo

<_sre.SRE_Match object at 0xb7b5eb80>

This match object can be queried as before:

>>> mo.group()

’Hello’

>>> mo.span()

(0, 5)

290 � Python for Bioinformatics

13.2.1 Compiling a Pattern

A pattern can be compiled (converted to an internal representation) to speed up
the search. This step is not mandatory but recommended for large amounts of text.
Let’s see findall with a regular pattern and then with a “compiled” pattern (rgx):

>>> re.findall("[Hh]ello","Hello world, hello Python,!")

[’Hello’, ’hello’]

>>> rgx = re.compile("[Hh]ello")

>>> rgx.findall("Hello world, hello Python,!")

[’Hello’, ’hello’]

Compiled patterns have all methods available in the re module:

>>> rgx = re.compile("[Hh]ello")

>>> rgx.search("Hello world, hello Python,!")

<_sre.SRE_Match object at 0xb6f494f0>

>>> rgx.match("Hello world, hello Python,!")

<_sre.SRE_Match object at 0xb6f493d8>

>>> rgx.findall("Hello world, hello Python,!")

[’Hello’, ’hello’]

Program 13.1 shows how to compile a pattern in the context of a search:

Listing 13.1: findTAT.py: Find the first “TAT” repeat

1 import re

2 seq = "ATATAAGATGCGCGCGCTTATGCGCGCA"

3 rgx = re.compile("TAT")

4 i = 1

5 for mo in rgx.finditer(seq):

6 print(’Ocurrence {0}: {1}’.format(i, mo.group()))

7 print(’Position: From {0} to {1}’.format(mo.start(),

8 mo.end()))

9 i += 1

Code explanation: In line 3 the pattern (TAT) is compiled. The compiled ob-
ject returned in line 3 (rgx) has the methods found in the re module, like finditer.
This operation returns a “match” type object (mo). From this object, in lines 6 and
7, the group and span methods are invoked. Note that mo.start() and mo.end()

are equivalent to mo.span()[0] and mo.span()[1].
This is the result of running the program:

Ocurrence 1: TAT

Position: From 1 to 4

Ocurrence 2: TAT

Position: From 18 to 21

Regular Expressions � 291

Groups

Sometimes you need to match more than one pattern; this can be done by group-
ing. Groups are marked by a set of parentheses (“()”). Groups can be “capturing”
(“named” or “unnamed”) and “non-capturing.” The difference between them will be
clear later.

A “capturing” group is used when you need to retrieve the contents of a group.
Groups are captured with groups. Don’t confuse group with groups. As seen on
page 288, group returns the string matched by the REGEX.

>>> import re

>>> seq = "ATATAAGATGCGCGCGCTTATGCGCGCA"

>>> rgx = re.compile("(GC){3,}")

>>> result = rgx.search(seq)

>>> result.group()

’GCGCGCGC’

This case is just like code snippet shown in page 288. Instead, groups return
a tuple with all the subgroups of the match. In this case, since search returns one
match and there is one group in the pattern, the result is a tuple with one group:

>>> result.groups()

(’GC’,)

There is a “CG” group, like in the pattern. If you want the whole pattern re-
turned by groups, you need to declare another group like in this example:

>>> rgx = re.compile("((GC){3,})")

>>> result = rgx.search(seq)

>>> result.groups()

(’GCGCGCGC’, ’GC’)

Both groups present in the pattern are retrieved (counting from left to right).
This is true because by default every group is “capturing.” If you don’t need the
internal subgroup (the “CG” group), you can label as “non-capturing.” This is done
by adding “?:” at the beginning of the group:

>>> # Only the inner group is non-capturing

>>> rgx = re.compile("((?:GC){3,})")

>>> result = rgx.search(seq)

>>> result.groups()

(’GCGCGCGC’,)

findall also behaves differently if there is a group in the pattern. Without a
group it returns a list of matching strings (as seen on page 288). If there is one
group in the pattern, it returns a list with the group. If there is more than one
group, it return a list of tuples:

292 � Python for Bioinformatics

>>> rgx = re.compile("TAT") # No group at all.

>>> rgx.findall(seq) # This returns a list of matching strings.

[’TAT’, ’TAT’]

>>> rgx = re.compile("(GC){3,}") # One group. Return a list

>>> rgx.findall(seq) # with the group for each match.

[’GC’, ’GC’]

>>> rgx = re.compile("((GC){3,})") # Two groups. Return a

>>> rgx.findall(seq) # list with tuples for each match.

[(’GCGCGCGC’, ’GC’), (’GCGCGC’, ’GC’)]

>>> rgx = re.compile("((?:GC){3,})") # Using a non-capturing

>>> rgx.findall(seq) # group to get only the matches.

[’GCGCGCGC’, ’GCGCGC’]

Groups can be labeled to refer to them later. To give a name to a group, use:
?P<name>. Listing 13.2 shows how to use this feature:

Listing 13.2: subgroups.py: Find multiple sub-patterns

1 import re

2 rgx = re.compile("(?P<TBX>TATA..).*(?P<CGislands>(?:GC){3,})")

3 seq = "ATATAAGATGCGCGCGCTTATGCGCGCA"

4 result = rgx.search(seq)

5 print(result.group(’CGislands’))

6 print(result.group(’TBX’))

This program returns:

GCGCGC

TATAGA

13.2.2 REGEX Examples

As a REGEX example, Listing 13.3 shows how many lines in a given file have a
pattern entered from the command line.3 The program is executed like this:

program_name.py file_name pattern Where file_name is the name of the
file where pattern is searched.

Listing 13.3: regexsys1.py: Count lines with a user-supplied pattern on it

1 import re, sys

2 myregex = re.compile(sys.argv[2])

3There are more efficient ways to accomplish this, like using the Unix grep command, but it is
shown here for a didactic purpose.

Regular Expressions � 293

3 counter = 0

4 with open(sys.argv[1]) as fh:

5 for line in fh:

6 if myregex.search(line):

7 counter += 1

8 print(counter)

Code explained: The re module is imported and the expression to search
is “compiled” (line 1 and 2). This “compilation” is optional but recommended.
It accelerates the search by compiling the REGEX into an internal struc-
ture that is later used by the interpreter. sys.argv is a list of strings. Each
string is an argument taken from the command line. If the command line
is program.py word myfile.txt, the content of sys.argv is [’program.py’,

’word’, ’myfile.txt’] (a list with 3 strings). In line 4 the program opens the
file entered as the first argument. In line 5 it parses the open file and in 5 and 6
it does the regular expression search “Python” within each line. If the expression is
found, the counter variable (counter) is incremented by one (line 7).

This script doesn’t count how many occurrences of your word are in the file.
If a word is repeated more than once in the same line, it is counted as one. The
following script counts all the occurrences of a given pattern:

Listing 13.4: countinfile.py: Count the occurrences of a pattern in a file

1 import re, sys

2 myregex = re.compile(sys.argv[2])

3 i = 0

4 with open(sys.argv[1]) as fh:

5 for line in fh:

6 i += len(myregex.findall(line))

7 print(i)

Tip: Testing a REGEX with Kodos

Kodos is a nice GUI utility (made in Python) that allows you to test and debug
your regular expressions. It has a window where you enter your REGEX pattern
and another window where you enter a string to test your REGEX pattern against.
As a result you will have the matching group information (if applicable), the match
of the REGEX pattern in relation to the text string by using colors, and several
variations of using the REGEX pattern in a Python application.

The program is released under the GNU Public License (GPL) and it is available
at http://kodos.sourceforge.net. Since it is made in Python, it runs in all major
operating systems (Windows, macOS and Linux).

http://kodos.sourceforge.net

294 � Python for Bioinformatics

13.2.3 Pattern Replace

The re module can be used to replace patterns with the sub function:

re.sub

sub(rpl,str[,count=0]): Replace rpl with the portion of the string (str) that
coincides with the REGEX to which it applies. The third parameter, which is
optional, indicates how many replacements we want made. By default the value
is zero and means that it replaces all of the occurrences. It is very similar to the
string method called replace, just that instead of replacing one text for another,
the replaced text is located by a REGEX.

Listing 13.5: deletegc.py: Delete GC repeats (more than 3 GC in a row)

1 import re

2 regex = re.compile("(?:GC){3,}")

3 seq="ATGATCGTACTGCGCGCTTCATGTGATGCGCGCGCGCAGACTATAAG"

4 print "Before:",seq

5 print "After:",regex.sub("",seq)

The product of this program is

Before: ATGATCGTACTGCGCGCTTCATGTGATGCGCGCGCGCAGACTATAAG

After: ATGATCGTACTTTCATGTGATAGACTATAAG

re.subn

subn(rpl,str[,count=0]): This has the same function as sub, differing in that
instead of returning the new string, it returns a tuple with two elements: the new
string and the number of replacements made. This function is used when, in addition
to replacing a pattern in a string, it’s required to know how many replacements have
been made.

With this we have a very general vision of the possibilities that Regular Expres-
sions open for us. The idea was to give an introduction to the subject and tools to
start making our own REGEX. Next, we will see an example use of what has been
learned so far.

13.3 REGEX IN BIOINFORMATICS

As I mentioned at the beginning of the chapter, the REGEX can be used to search
PROSITE style patterns.4 The patterns are sequences of characters that describe a

4If you are not familiar with protein patterns, please take a look at the PROSITE user manual,
located at: http://prosite.expasy.org/prosuser.html.

http://prosite.expasy.org/prosuser.html

Regular Expressions � 295

group of sequences in a condensed form. For example, the following is the pattern
for the active site of the enzyme isocitrate lyase:

K-[KR]-C-G-H-[LMQR]

This pattern is interpreted as: a K in the first position, a K or R in the second,
then the sequence CGH, and finally, one of the following amino acids: L ,M, Q or
R. If we want to search for this pattern in this sequence, as a first measure one
must convert the pattern from PROSITE to a Python REGEX. The conversion in
this case is immediate:

"K[KR]CGH[LMQR]"

To change a PROSITE profile to REGEX basically consists of removing the
hyphens (-), replacing the numbers between parentheses with numbers between
braces, and replacing the “x” with a period. Let’s see an example of the adenylyl
cyclase associated protein 2:

PROSITE version:

[LIVM](2)-x-R-L-[DE]-x(4)-R-L-E

REGEX version:

"[LIVM]{2}.RL[DE].{4}RLE"

Let’s suppose that we want to find a pattern of this type in a sequence in FASTA
format. Besides finding the pattern, we may need to retrieve it in a context, that
is, 10 amino acids before and after the pattern. Here is a sample FASTA file:

>Q5R5X8|CAP2_PONPY CAP 2 - Pongo pygmaeus (Orangutan).

MANMQGLVERLERAVSRLESLSAESHRPPGNCGEVNGVIGGVAPSVEAFDKLMDSMVAEF

LKNSRILAGDVETHAEMVHSAFQAQRAFLLMASQYQQPHENDVAALLKPISEKIQEIQTF

RERNRGSNMFNHLSAVSESIPALGWIAVSPKPGPYVKEMNDAATFYTNRVLKDYKHSDLR

HVDWVKSYLNIWSELQAYIKEHHTTGLTWSKTGPVASTVSAFSVLSSGPGLPPPPPPPPP

PGPPPLLENEGKKEESSPSRSALFAQLNQGEAITKGLRHVTDDQKTYKNPSLRAQGGQTR

SPTKSHTPSPTSPKSYPSQKHAPVLELEGKKWRVEYQEDRNDLVISETELKQVAYIFKCE

KSTLQIKGKVNSIIIDNCKKLGLVFDNVVGIVEVINSQDIQIQVMGRVPTISINKTEGCH

IYLSEDALDCEIVSAKSSEMNILIPQDGDYREFPIPEQFKTAWDGSKLITEPAEIMA

The program in Listing 13.6 (searchinfasta.py) reads the FASTA file.

Listing 13.6: searchinfasta.py: Search a pattern in a FASTA file

296 � Python for Bioinformatics

1 import re

2 pattern = "[LIVM]{2}.RL[DE].{4}RLE"

3 with open(’/home/sb/bioinfo/prot.fas’) as fh:

4 fh.readline() # Discard the first line.

5 seq = ""

6 for line in fh:

7 seq += line.strip()

8 rgx = re.compile(pattern)

9 result = rgx.search(seq)

10 patternfound = result.group()

11 span = result.span()

12 leftpos = span[0]-10

13 if leftpos<0:

14 leftpos = 0

15 print(seq[leftpos:span[0]].lower() + patternfound +

16 seq[span[1]:span[1]+10].lower())

The result of this program is

lrsyrrdewaLLTRLDAQWERLElwmdrfatki

Code explanation: Up to line 7, the program reads the FASTA file and stores
the protein sequence (seq). In line 8 the pattern defined in line 2 is compiled. The
search is done at line 9. From line 10 onward the program works on displaying the
result. As requested, the resulting pattern is shown in a context of 10 amino acids
on each side.

13.3.1 Cleaning Up a Sequence

It’s more than common to find a file with sequences in a non-standard format, such
as the following sequence:

1 ATGACCATGA TTACGCCAAG CTCTAATACG ACTCACTATA GGGAAAGCTT GCATGCCTGC

61 AGGTCGACTC TAGAGGATCT ACTAGTCATA TGGATATCGG ATCCCCGGGT ACCGAGCTCG

121 AATTCACTGG CCGTCGTTTT

The following code reads a text file with the sequence in this format and returns
only the sequence, without any strange (number or whitespace) character:

Listing 13.7: cleanseq.py: Cleans a DNA sequence

1 import re

2 regex = re.compile(’ |\d|\n|\t’)

Regular Expressions � 297

3 seq = ’’

4 for line in open(’pMOSBlue.txt’):

5 seq += regex.sub(’’,line)

6 print seq

This program prints:

ATGACCATGATTACGCCAAGCTCTAATACGACTCACTATAGGGAAAGCTTGCATGCCTGCAGGTC<=

GACTCTAGAGGATCTACTAGTCATATGGATATCGGATCCCCGGGTACCGAGCTCGAATTCACTGG<=

CCGTCGTTTT

Code explained: Line 2 defines the characters we are going to search for
removal. In this case the characters are white spaces, numbers, carriage return, and
tabs. In lines 4 and 5 the program parses all the lines of the file (pMOSBlue.txt)
and removes the pattern each time it’s found.

13.4 ADDITIONAL RESOURCES

• Jeffrey EF Friedl, Mastering Regular Expressions, Third Edition, 2006,
O’Reilly Media.
http://shop.oreilly.com/product/9780596528126.do

• Tony Stubblebine, Regular Expression Pocket Reference, Second Edition,
2007. O’Reilly Media.
http://www.oreilly.com/catalog/9780596514273/

• The premier web site about regular expressions.
http://www.regular-expressions.info.

• Regular expressions in Java. Test your regular expressions online.
http://www.javaregex.com/test.html

• Python regular expression builder. Pyreb is a wxPython GUI to the re python
module; it will speed up the development of Python regular expression.
http://savannah.nongnu.org/projects/pyreb

• Python’s hidden regular expression gems, by Armin Ronacher.
http://lucumr.pocoo.org/2015/11/18/pythons-hidden-re-gems/

• Harry J Mangalam. tacg: a grep for DNA. BMC Bioinformatics 2002, 3:8.
http://www.biomedcentral.com/1471-2105/3/8

http://shop.oreilly.com/product/9780596528126.do
http://www.oreilly.com/catalog/9780596514273/
http://www.regular-expressions.info
http://www.javaregex.com/test.html
http://savannah.nongnu.org/projects/pyreb
http://lucumr.pocoo.org/2015/11/18/pythons-hidden-re-gems/
http://www.biomedcentral.com/1471-2105/3/8

298 � Python for Bioinformatics

13.5 SELF-EVALUATION

1. What is a REGEX?

2. What is the difference between a “capturing” and a “non-capturing” group?

3. How can text pattern search be applied to biology?

4. Line 13 of Listing 13.6 (page 295) is checked if the value leftpos is less than
0. Why?

5. In List 13.7, the pattern used was “|\d|\n|\t”. What other alternative could
have been employed?

6. Make a program that retrieves all phone number found in a file. The numbers
must be in the format nnn-nnn-nnnn, where n is a number.

7. Make a program to retrieve every e-mail ending in .com present in every file
in a given directory.

8. Make a program to sort if a sequence is made of DNA or amino acids. Hint:
DNA sequences can only have these characters: “ATCGN.”

9. Write a REGEX pattern to detect a HindII restriction site. This enzyme
recognizes the DNA sequence GTYRAC (where “Y” means “C” or “T” and “R”
means “G” or “A”).

10. What is the meaning of the following REGEX? Write a string that matches
it.

"[0-9]{1,4}/[0-9]{1,2}/[0-9]{1,2}"

C H A P T E R 14

Graphics in Python

CONTENTS

14.1 Introduction to Bokeh . 299
14.2 Installing Bokeh . 299
14.3 Using Bokeh . 301

14.3.1 A Simple X-Y Plot . 303
14.3.2 Two Data Series Plot . 304
14.3.3 A Scatter Plot . 306
14.3.4 A Heatmap . 308
14.3.5 A Chord Diagram . 309

14.1 INTRODUCTION TO BOKEH

Bokeh is an interactive visualization library that runs in a web browser. It mimics
the style of D3.js, a popular library for web graphics made in JavaScript. It also has
taken ideas from MATLAB®1. Users from both system will find the similarities
and learn fast. If you have never used a graphical library before, some concepts will
look strange or out of place, so you will have to follow this chapter closely, without
skipping any section. Once you know how to use this library, it will help you make
interactive plots, dashboards, and data applications.

How does it work? It has two main components; first a JavaScript library called
BokehJS that runs in the browser. This library is used to render the graphics
and also to provide interaction such as zoom, pan, and save. As input, this library
uses JSON objects with all the information needed to draw the plot. The other
component is a Python library that produces these JSON objects.

14.2 INSTALLING BOKEH

Bokeh can be installed with pip or with conda if you use the Anaconda distri-
bution. The former method does not install the examples, so the latter (conda) is
preferred. If you install Bokeh with pip and want the examples, download them
from the GitHub page.2

1MATLAB® is a registered trademark of The MathWorks, Inc. For product information please
contact: The MathWorks, Inc. 3 Apple Hill Drive Natick, MA, 01760-2098 USA. Tel: 508-647-7000.
Fax: 508-647-7001. E-mail: info@mathworks.com. Web: www.mathworks.com.

2https://github.com/bokeh/bokeh

299

www.mathworks.com
https://github.com/bokeh/bokeh
mailto:info@mathworks.com

300 � Python for Bioinformatics

Installing Bokeh with pip:

(py4bio) $ pip install bokeh

Collecting bokeh

Downloading bokeh-0.12.4.tar.gz (5.6MB)

100% |********************************| 5.6MB 213kB/s

Requirement already satisfied: six>=1.5.2 in ./py4bio/lib/python2.7<=

/site-packages (from bokeh)

Collecting PyYAML>=3.10 (from bokeh)

(...)

Successfully built bokeh PyYAML tornado MarkupSafe

Installing collected packages: PyYAML, python-dateutil, MarkupSafe,<=

Jinja2, singledispatch, certifi, backports-abc, tornado, futures, <=

bokeh

Successfully installed Jinja2-2.9.5 MarkupSafe-1.0 PyYAML-3.12 back<=

ports-abc-0.5 bokeh-0.12.4 certifi-2017.1.23 futures-3.0.5 python-d<=

ateutil-2.6.0 singledispatch-3.4.0.3 tornado-4.4.2

With Conda, first create an environment:

$ conda create --name p4b

Fetching package metadata

.Solving package specifications: .

Package plan for installation in environment /sb/anaconda3/envs/p4b:

The following empty environments will be CREATED:

/sb/anaconda3/envs/p4b

Proceed ([y]/n)?

#

To activate this environment, use:

> source activate p4b

#

To deactivate this environment, use:

> source deactivate p4b

#

Activate this environment and install Bokeh:

$ source activate p4b

(p4b) $ conda install bokeh

Fetching package metadata

Solving package specifications:

Graphics in Python � 301

Package plan for installation in environment /sb/anaconda3/envs/p4b:

The following packages will be downloaded:

(...)

The following NEW packages will be INSTALLED:

bokeh: 0.12.4-py36_0

jinja2: 2.9.5-py36_0

(...)

Proceed ([y]/n)?

Fetching packages ...

bokeh-0.12.4-p 100% |#####################| Time: 0:00:00 10.06 MB/s

Extracting packages ...

[COMPLETE]|##| 100%

Linking packages ...

[COMPLETE]|##| 100%

(bokeh) sbassi@sbassi-MS-7641:~$

14.3 USING BOKEH

The main class is called Figure and it includes methods for adding elements to a
plot. It also composes default axes, grids, and tools in a sensible way. To instantiate
this class we use the figure method that accepts basic parameters such as the title
of the graphic and the labels of the axis. The generated figure object has methods
to add elements to the figure. A typical method to add elements is circle. Let’s see
it in action:

Listing 14.1: basiccircle.py: A circle made with Bokeh

1 from bokeh.plotting import figure, output_file, show

2

3 p = figure(width=400, height=400)

4 p.circle(2, 3, radius=.5, alpha=0.5, color=’red’)

5 output_file("out.html")

6 show(p)

Code explanation: In line 1 we import all required elements: figure,
output_file, and show. In line 3 we call the figure method to instantiate the
Figure class. The parameters we use are width and height, which are the width and
height of the image. This object is called p. In line 4, we call the circle method in
the p Figure instance. In this case the parameters are X axis value, Y axis value,

302 � Python for Bioinformatics

the radius of the circle (radius), a transparency value (alpha), and a color (color).
The general form for this method is circle(x, y, **kwargs) (where **kwargs are an
undetermined number of keyword arguments). The method output_file in line
5 sets a name of an HTML file that the browser will load with the graphic. The
command show() in the last line (6) calls the web browser with the output_file.
This will fire a web browser as can be seen in figure 14.1. The resulting graphic is
interactive, you can pan and zoom using the controls on the right. If you just want
a png image, use the save icon (the one with the floppy disk logo).

Figure 14.1 A circle with Bokeh.

To make multiple circles, just enter their coordinates in a list for each axis. For
example the following code displays four circles:

Listing 14.2: fourcircles.py: 4 circles made with Bokeh

1 from bokeh.plotting import figure, output_file, show

2

3 p = figure(width=500, height=500)

Graphics in Python � 303

4 x = [1, 1, 2, 2]

5 y = [1, 2, 1, 2]

6 p.circle(x, y, radius=.35, alpha=0.5, color=’red’)

7 output_file(’out.html’)

8 show(p)

Code explanation: This code is very similar to Listing 14.1. The main differ-
ence is that in line 6, instead of passing one X and one Y value, we pass a list of
values for each axis. Other changes are straightforward. The result can be seen in
Figure 14.2

Figure 14.2 Four circles with Bokeh.

14.3.1 A Simple X-Y Plot

With this we are ready to plot two column of data. Even if you are not considering
doing this particular type of chart, the elements that appear here are also part of
other type of charts, so it is worth following this chapter in the proposed order and
not jumping directly into a particular type of graphic. Consider the following table:

304 � Python for Bioinformatics

=======================

Time | Mean wt increase

=======================

1 | 0.7

2 | 1.4

3 | 2.1

4 | 3

5 | 3.85

6 | 4.55

7 | 5.8

8 | 6.45

=======================

To make an x-y plot we need the figure class. In this case we use new keyword
arguments to set a title and a label for each axis. As we did in Listing 14.2 we use
circle but with a new argument (legand). The output_file class is used to set the
name of the output HTML file.

Listing 14.3: plot1.py: A minimal plot

1 from bokeh.plotting import figure, output_file, show

2

3 x = [1, 2, 3, 4, 5, 6, 7, 8]

4 y = [.7, 1.4, 2.1, 3, 3.85, 4.55, 5.8, 6.45]

5

6 p = figure(title=’Mean wt increased vs. time’,

7 x_axis_label=’Time in days’,

8 y_axis_label=’% Mean WT increased’)

9 p.circle(x, y, legend=’Subject 1’, size=10)

10 output_file(’test.html’)

11 show(p)

The result of the execution of Listing 14.3 can be seen in Figure 14.3.

14.3.2 Two Data Series Plot

Listing (14.4) adds a new data series and some small customizations. The new data
series is a list called z. On line 11 there is a new call to the circle method, to add
the new data series. Note that in this case we add the parameter line_color with
the value of ’red’ and fill_color as ’white’. Bokeh supports the list of named
colors stated at https://www.w3schools.com/colors/colors_names.asp. If you
need to include a color that is not in this list, you must enter the RGB code in its
place. The last new object is legend with its property location. This changes the
position of the legend box to a place that won’t overlap part of the graphic.

https://www.w3schools.com/colors/colors_names.asp

Graphics in Python � 305

Figure 14.3 A simple plot with Bokeh.

Listing 14.4: plot2.py: Two data series plot

1 from bokeh.plotting import figure, output_file, show

2

3 x = [1, 2, 3, 4, 5, 6, 7, 8]

4 y = [.7, 1.4, 2.1, 3, 3.85, 4.55, 5.8, 6.45]

5 z = [.5, 1.1, 1.9, 2.5, 3.1, 3.9, 4.85, 5.2]

6

7 p = figure(title=’Mean wt increased vs. time’,

8 x_axis_label=’Time in days’,

9 y_axis_label=’% Mean WT increased’)

10 p.circle(x, y, legend=’Subject 1’, size=10)

11 p.circle(x, z, legend=’Subject 2’, size=10, line_color=’red’,

306 � Python for Bioinformatics

12 fill_color=’white’)

13 p.legend.location = ’top_left’

14 output_file(’test.html’)

15 show(p)

Figure 14.4 A two data series plot with Bokeh.

14.3.3 A Scatter Plot

The scatter plot displays values for two or more variables for a set of data. The dots
can be color-coded to display another variable. The following CSV file was made
from a work where the intestinal content in various fish species was studied. A prin-
cipal component analysis (PCA) was made and the data of the first two principals

Graphics in Python � 307

component, the type of feed and the fish species, are in fishdata.csv. For more
information on research using this analysis, see the article DOI 10.7717/peerj.550.3

index,PC1,PC2,feeds,species

0,0.5,0.8,Crustacea,Epinephelus

1,0.3,0.9,Mosquito larvae,Sebastiscus

2,0.95,0.83,Mosquito larvae,Sebastiscus

3,0.92,1.98,Mosquito larvae,Sebastiscus

4,2.01,1.4,Crustacea,Sebastiscus

5,2.15,1.25,Crustacea, Sebastiscus

6,2.19,1.01,Aquaculture feed,Sebastiscus

7,2.35,0.21,Mosquito larvae,Sebastes

8,2.48,0.87,Crustacea,Sebastes

9,2.53,0.98,Crustacea,Sebastes

10,2.85,1.5,Polychaeta,Sebastes

11,2.93,2.39,Aquaculture feed,Sebastes

12,3.05,3.05,Mosquito larvae,Acanthogobius

13,3.38,3.08,Mosquito larvae,Acanthogobius

14,4.05,2.09,Mosquito larvae,Acanthogobius

15,4.18,2.89,Crustacea,Acanthogobius

16,4.23,1.95,Crustacea,Acanthogobius

17,5.03,1.98,Polychaeta,Acanthogobius

18,5.32,2.05,Aquaculture feed,Acanthogobius

Listing 14.5 reads fishdata.csv using the DataFrame class from the Pandas
library. The from_csv method converts a CSV file into a DataFrame object. This
object works as a matrix with each column a different data type. In this case we
use the Scatter class, which is initialized with this DataFrame object (df). The
x and y parameters are the column names (the column names of the CSV object
that was converted into the df DataFrame). Note that in line 11 we change the
background_fill_alpha attribute to insert transparency in the legend box.

Listing 14.5: fishpc.py: Scatter plot

1 from bokeh.charts import Scatter, output_file, show

2 from pandas import DataFrame

3

4 df = DataFrame.from_csv(’fishdata.csv’)

5

6 scatter = Scatter(df, x=’PC1’, y=’PC2’, color=’feeds’,

7 marker=’species’, title=

3Asakura T, Sakata K, Yoshida S, Date Y, Kikuchi J. (2014) Noninvasive analysis of metabolic
changes following nutrient input into diverse fish species, as investigated by metabolic and microbial
profiling approaches. PeerJ 2:e550 https://doi.org/10.7717/peerj.550.

https://doi.org/10.7717/peerj.550

308 � Python for Bioinformatics

8 ’Metabolic variations based on 1H NMR profiling of fishes’,

9 xlabel=’Principal Component 1: 35.8%’,

10 ylabel=’Principal Component 2: 15.1%’)

11 scatter.legend.background_fill_alpha = 0.3

12 output_file(’scatter.html’)

13 show(scatter)

The resulting graphics can be seen in Figure 14.5.

Figure 14.5 Scatter plot graphics.

14.3.4 A Heatmap

A heatmap is a graphic of a matrix where each value is represented as a color,
usually the intensity of the color is proportional with the value assigned to its
position. There are a lot of uses of heatmaps in biology. In this case we will work

Graphics in Python � 309

with a DNA microarray experiment. This is used to measure gene expression values.
From the following file, we will use the first three values (x, y and lux). The first
two are the position in the matrix and the third one is the intensity of the light
emitted by the target. The amount of light is relative to the abundance of nucleic
acid sequences in the target.

This file is called GSM188012.CEL:

x y lux avg type

0 0 241.3 28.2 16

1 0 10834.8 1384.4 16

2 0 219.0 24.5 16

3 0 11074.5 1287.4 16

(...)

709 711 416.3 34.1 16

710 711 9177.3 1056.3 16

711 711 437.8 35.4 16

The relevant fields in GSM188012.CEL are:
x: Position in the x axis. y: Position in the y axis. lux: Signal intensity.
Now we have all that we need to supply the HeatMap class:

Listing 14.6: heatmap.py: Plot a gene expression file

1 from bokeh.charts import HeatMap, bins, output_file, show

2 import pandas as pd

3

4 DATA_FILE = ’../../samples/GSM188012.CEL’

5 dtype = {’x’: int, ’y’: int, ’lux’: float}

6 dataset = pd.read_csv(DATA_FILE, sep=’\t’, dtype=dtype)

7 hm = HeatMap(dataset, x=bins(’x’), y=bins(’y’), values=’lux’,

8 title=’Expression’, stat=’mean’)

9 output_file("heatmap7.html", title="heatmap.py example")

10 show(hm)

14.3.5 A Chord Diagram

Chord diagrams are used to represent inter-relationships among data in a matrix.
The data is arranged radially around a circle with the relationships between the
points drawn as arcs connecting the data.

The following table (fishbacteria.csv) is based in the work “Fish gut mi-
crobiota analysis differentiates physiology and behavior of invasive Asian carp and
indigenous American fish” (DOI: 10.1038/ismej.2013.181). They analyzed the gut
of different fishes species and measured the number of bacterial species carried. The
fields are:

310 � Python for Bioinformatics

Figure 14.6 A heatmap out of a microarray experiment. This is typically used to
study gene expression.

value: This is the number of microbial species found in a given environment, and
is measured in operational taxonomic unit (OTUs). name_x: This is the name of the
phylum (Acidobacteria for example). name_y: This is the name of an environment,
for example SVCP_H, which is the hindgut of the Asian silver carp.

value,name_x,name_y

5,Acidobacteria,SVCP_H

3,Acidobacteria,SVCP_F

2,Acidobacteria,GZSD_F

2,Acidobacteria,GZSD_H

9,Crenarchaeota,GZSD_F

1,Euryarchaeota,GZSD_H

Graphics in Python � 311

1,Euryarchaeota,GZSD_F

(...)

8,Unknown,SVCP_F

(...)

To make the Chord diagram, Bokeh provides the Chord class. It requires the
data, it could be a dictionary or a DataFrame object as in this case (converted out
of a CSV file). The other needed parameters are source, target and value. Once
you pass the name of the variables in the data that corresponds to each parameter,
the rest of the Listing 14.7 is identical to previous code:

Listing 14.7: chord.py: A Chord diagram

1 from bokeh.charts import output_file, Chord

2 from bokeh.io import show

3 import pandas as pd

4

5 data = pd.read_csv(’test3.csv’)

6 chord_from_df = Chord(data, source=’name_x’, target=’name_y’,

7 value=’value’)

8 output_file(’chord.html’)

9 show(chord_from_df)

This code will output the chord diagram that can be seen in figure 14.7.

312 � Python for Bioinformatics

Figure 14.7 A chord diagram.

III
Python Recipes with Commented

Source Code

313

http://taylorandfrancis.com

C H A P T E R 15

Sequence Manipulation in

Batch

CONTENTS

15.1 Problem Description . 315
15.2 Problem One: Create a FASTA File with Random Sequences 315

15.2.1 Commented Source Code . 315
15.3 Problem Two: Filter Not Empty Sequences from a FASTA File 316

15.3.1 Commented Source Code . 317
15.4 Problem Three: Modify Every Record of a FASTA File 319

15.4.1 Commented Source Code . 320

15.1 PROBLEM DESCRIPTION

Sequence manipulation is a pretty common task in most laboratories. Some tasks
can be done with the Python Standard Library, but this chapter will show that
the Biopython package can help. In this case we will use the SeqRecord and SeqIO
modules from the Biopython package.

15.2 PROBLEM ONE: CREATE A FASTA FILE WITH RANDOM SE-

QUENCES

Random sequences are used as input in some statistical tests. These sequences can
also be used to test programs when you don’t have real data in the required amount.

In Listing 15.1 we use constants to set the length range and the number of
sequences. In this case, the minimum size is 400 nucleotides, the maximum is 1500
nucleotides, and we will generate 500 sequences. This can be modified by changing
the constants from line 7 to 9.

15.2.1 Commented Source Code

Listing 15.1: seqiornd.py: Generate random sequences

1 import random

2

315

316 � Python for Bioinformatics

3 from Bio.SeqRecord import SeqRecord

4 from Bio.Seq import Seq

5 from Bio import SeqIO

6

7 TOTAL_SEQUENCES = 500

8 MIN_SIZE = 400

9 MAX_SIZE = 1500

10

11 def new_rnd_seq(seq_len):

12 """

13 Generate a random DNA sequence with a sequence length

14 of "sl" (int).

15 return: A string with a DNA sequence.

16 """

17 s = ’’

18 while len(s) < seq_len:

19 s += random.choice(’ATCG’)

20 return s

21

22 with open(’randomseqs.txt’,’w’) as new_fh:

23 for i in range(1, TOTAL_SEQUENCES + 1):

24 # Select a random number between MIN_SIZE and MAX_SIZE

25 rsl = random.randint(MIN_SIZE, MAX_SIZE)

26 # Generate the random sequence

27 rawseq = new_rnd_seq(rsl)

28 # Generate a correlative name

29 seqname = ’Sequence_number_{0}’.format(i)

30 rec = SeqRecord(Seq(rawseq), id=seqname, description=’’)

31 SeqIO.write([rec], new_fh, ’fasta’)

Code explanation: Generation of the random sequence is done in the
new_rnd_seq function (from lines 11 to 20). This function is called inside the
for loop and it is stored as rawseq. In line 30 a SeqRecord object is created. This
object is passed to SeqIO.write in line 31.

15.3 PROBLEM TWO: FILTER NOT EMPTY SEQUENCES FROM A FASTA

FILE

Sometimes you need to get rid of malformed sequences from a FASTA file. Some
programs choke when they receive an empty sequence as the input file. Formatdb,
the program used to format BLAST databases, is known behave like this. The code
in Listing 15.2 assumes that you have a FASTA file like this:

>SSR86 [ssr] : Tomato-EXPEN 2000 map, chr 3

Sequence Manipulation in Batch � 317

AGGCCAGCCCCCTTTTCCCTTAAGAACTCTTTGTGAGCTTCCCGCGGTGGCGGCCGCTCTAG

>SSR91 [ssr]

>SSR252 [ssr]

TGGGCAGAGGAGCTCGTANGCATACCGCGAATTGGGTACACTTACCTGGTACCCCACCCGGG

TGGAAAATCGATGGGCCCGCGGCCGCTCTAGAAGTACTCTCTCTCT

>SSR257 [ssr]

TGAGAATGAGCACATCGATACGGCAATTGGTACACTTACCTGCGACCCCACCCGGGTGGAAA

ATCGATGGGCCCGCGGCC

>SSR92 [ssr] : Tomato-EXPEN 2000 map, chr 1

And it should produce a version of the file without the empty records:

>SSR86 [ssr] : Tomato-EXPEN 2000 map, chr 3

AGGCCAGCCCCCTTTTCCCTTAAGAACTCTTTGTGAGCTTCCCGCGGTGGCGGCCGCTCTAG

>SSR252 [ssr]

TGGGCAGAGGAGCTCGTANGCATACCGCGAATTGGGTACACTTACCTGGTACCCCACCCGGG

TGGAAAATCGATGGGCCCGCGGCCGCTCTAGAAGTACTCTCTCTCT

>SSR257 [ssr]

TGAGAATGAGCACATCGATACGGCAATTGGTACACTTACCTGCGACCCCACCCGGGTGGAAA

ATCGATGGGCCCGCGGCC

15.3.1 Commented Source Code

Listing 15.2: seqio1.py: Filter a FASTA file

1 from Bio import SeqIO

2

3 INPUT_FILE = ’../../samples/fasta22.fas’

4 OUTPUT_FILE = ’fasta22_out.fas’

5

6 def retseq(seq_fh):

7 """

8 Parse a fasta file and store non empty records

9 into the fullseqs list.

10 :seq_fh: File handle of the input sequence

11 :return: A list with non empty sequences

12 """

13 fullseqs = []

14 for record in SeqIO.parse(seq_fh, ’fasta’):

15 if len(record.seq):

16 fullseqs.append(record)

17 return fullseqs

18

318 � Python for Bioinformatics

19 with open(INPUT_FILE) as in_fh:

20 with open(OUTPUT_FILE, ’w’) as out_fh:

21 SeqIO.write(retseq(in_fh), out_fh, ’fasta’)

Although this program does its job, it is not an example of efficient use of
computer resources. The list fullseqs ends up with the information on every non-
empty sequence in the file. For short sequence files this is not noticeable. In a
real-world scenario it could bring a server to its knees.

The same program can be adapted for low memory usage. This is accomplished
in Listing 15.3 by the use of a generator. A generator is a special kind of function.
Syntactically, a generator and a function are very alike; both have a header with
the def keyword, a name, and parameters (if any). The most visible difference is
that instead of having the word return as an exit point, generators have yield . The
main difference between a function and a generator is that the generator keeps its
internal state after being called. The next time the generator is called, it resumes
its execution from the point where it was before. This property is used to yield
several values, one at a time.

Listing 15.3: seqio2.py: Filter a FASTA file with a generator

1 from Bio import SeqIO

2

3 INPUT_FILE = ’../../samples/fasta22.fas’

4 OUTPUT_FILE = ’fasta22_out2.fas’

5

6 def retseq(seq_fh):

7 """

8 Parse a fasta file and returns non empty records

9 :seq_fh: File handle of the input sequence

10 :return: Non empty sequences

11 """

12 for record in SeqIO.parse(seq_fh, ’fasta’):

13 if len(record.seq):

14 yield record

15

16 with open(INPUT_FILE) as in_fh:

17 with open(OUTPUT_FILE, ’w’) as out_fh:

18 SeqIO.write(retseq(in_fh), out_fh, ’fasta’)

Code explanation: This code is very similar to Listing 15.2. The first difference
that is apparent when they are compared line by line is that in this code there is
no empty list to store the sequences (it was called fullseqs in Listing 15.2). Another
difference is that in the first code, retseq is a function while in the last version it is a
generator. Both differences are tightly related: Since generators return elements one

Sequence Manipulation in Batch � 319

by one, there is no need to use a list. The generator yields one record to SeqIO.write,
which keeps on calling the generator until it gets a StopIteration exception.

There is another way to do the same task without using generators and func-
tions, while still consuming an optimal amount of RAM:

Listing 15.4: seqio3.py: Yet another way to filter a FASTA file

1 from Bio import SeqIO

2

3 INPUT_FILE = ’../../samples/fasta22.fas’

4 OUTPUT_FILE = ’fasta22_out3.fas’

5

6 with open(INPUT_FILE) as in_fh:

7 with open(OUTPUT_FILE, ’w’) as out_fh:

8 for record in SeqIO.parse(in_fh, ’fasta’):

9 if len(record.seq):

10 SeqIO.write([record], out_fh, ’fasta’)

Note that there is no list creation and there is no generator because the Se-
qIO.write function saves the records as soon as it receives them.1 If Listing 15.4
was shown in the first place, I wouldn’t have the chance to show the difference
between using a function and a generator.

15.4 PROBLEM THREE: MODIFY EVERY RECORD OF A FASTA FILE

In this problem we have a FASTA file that looks the one in Listing 15.5:

Listing 15.5: Input file

>Protein-X

NYLNNLTVDPDHNKCDNTTGRKGNAPGPCVQRTYVACH

>Protein-Y

MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGPDA

>Protein-Z

MKAAVLAVALVFLTGCQAWEFWQQDEPQSQWDRVKDFATVYVDAVKDSGRDYVSQFESST

The goal of the exercise is to modify all the sequences by adding the species tag
in each sequence name. This kind of file modification may be required for sequence
submission for a genetic data bank. A modified FASTA file would look like this:

Listing 15.6: Input file

1There is some internal small RAM caching but it is not relevant in terms of how this function
works.

320 � Python for Bioinformatics

>Protein-X [Rattus norvegicus]

NYLNNLTVDPDHNKCDNTTGRKGNAPGPCVQRTYVACH

>Protein-Y [Rattus norvegicus]

MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGPDA

>Protein-Z [Rattus norvegicus]

MKAAVLAVALVFLTGCQAWEFWQQDEPQSQWDRVKDFATVYVDAVKDSGRDYVSQFESST

Note that in Listing 15.6 there is the tag [Rattus norvegicus] in the name
of each record. There are several ways to accomplish this task. Here is a version
with Biopython Bio.SeqIO module (Listing 15.7) and another that uses just the
Standard Python Library (Listing 15.8).

15.4.1 Commented Source Code

Listing 15.7: seqiofile3.py: Add a tag in a FASTA sequence with Biopython

1 from Bio import SeqIO

2

3 INPUT_FILE = ’fasta22_out.fas’

4 OUTPUT_FILE = ’fasta33.fas’

5

6 with open(INPUT_FILE) as in_fh:

7 with open(OUTPUT_FILE, ’w’) as out_fh:

8 for record in SeqIO.parse(in_fh,’fasta’):

9 # Modify description

10 record.description += ’[Rattus norvegicus]’

11 SeqIO.write([record], out_fh, ’fasta’)

Even if you can use Biopython to modify a FASTA sequence, in a case like this,
it’s overkill. The following code shows how to accomplish the same task without
Biopython:

Listing 15.8: seqiofile4.py: Add a tag in a FASTA sequence

1 INPUT_FILE = ’fasta22_out.fas’

2 OUTPUT_FILE = ’fasta33.fas’

3

4 with open(INPUT_FILE) as in_fh:

5 with open(OUTPUT_FILE, ’w’) as out_fh:

6 for line in in_fh:

7 if line.startswith(’>’):

8 line = line.replace(’\n’, ’[Rattus norvegicus]\n’)

9 out_fh.write(line)

C H A P T E R 16

Web Application for Filtering

Vector Contamination

CONTENTS

16.1 Problem Description . 321
16.1.1 Commented Source Code . 322
HTML Input Form . 322
HTML Ouput Template . 323
Server Code . 323

16.2 Additional Resources . 326

16.1 PROBLEM DESCRIPTION

DNA sequences are usually inserted into a cloning vector for manipulation. When
sequencing, these constructs frequently produce raw sequences that include seg-
ments derived from a vector. If the vector part of the raw sequence is not removed,
the finished sequence will be contaminated, spoiling further analysis. There are
multiple sources of DNA contamination, like transposons, insertion sequences, or-
ganisms infecting our samples, and other organisms used in the same laboratory
(e.g., cross contamination from dirty equipment).

Sequence contamination is not a minor issue, since it can lead to several prob-
lems:1

• Time and effort wasted on meaningless analyses

• Misassembly of sequence contigs and false clustering

• Erroneous conclusions drawn about the biological significance of the sequence

• Pollution of public databases

• Delay in the release of the sequence in a public database

1For information regarding each item, please see NCBI VecScreen program at http://www.ncbi.
nlm.nih.gov/VecScreen/contam.html.

321

http://www.ncbi.nlm.nih.gov/VecScreen/contam.html
http://www.ncbi.nlm.nih.gov/VecScreen/contam.html

322 � Python for Bioinformatics

In order to identify the vector part of a sequence, a BLAST can be done against
a vector sequence database (or against any other database that you think your
sequence could be contaminated by). To help in removing those sequences, this
program takes a sequence or a group of sequences in FASTA format and makes the
BLAST against a user-selected database. It identifies the match and the contami-
nation is masked by using the “N” character in the sequence input by the user.

This program works as a web application, so there is an HTML form for the
user to enter the data and a Python file to process it.

16.1.1 Commented Source Code

HTML Input Form

Listing 16.1: index.html: Form for vector filter

1 <!DOCTYPE html>

2 <html lang="en">

3 <head><meta charset="utf-8">

4 <title>Vector Filter</title>

5 <link href="css/bootstrap.min.css" rel="stylesheet">

6 </head>

7 <body style="background-color:#e7f5f5;">

8 <div class="container"><h2>Vector Filter</h2>

9 <form action=’/vector_result’ method=’post’>

10 <div class="row">

11 <div class="col-sm-8">

12 <div class="form-group">

13 <label for="seqs">Paste sequence in FASTA format:</label>

14 <p><textarea name="seqs" rows="15" cols="80"></textarea></p>

15 </div>

16 </div>

17 </div>

18 <div class="row">

19 <div class="col-sm-8">

20 <div class="form-group">

21 <label for="prop">Filter by: </label>

22 <div class="radio">

23 <label>

24 <input type="radio" name="vector" value="customdb">Custom Vectors

25 </label>

26 </div>

27 <div class="radio">

28 <label>

29 <input type="radio" name="vector" value="ncbivector">NCBI Vector DB

Web Application for Filtering Vector Contamination � 323

30 </label>

31 </div>

32

33 <button type="submit" class="btn btn-primary">Send

34 </button>

35 </div>

36 </div>

37 </div>

38 </form>

39 </div>

40 </body>

41 </html>

This code produces, when rendered by a web browser, a page like the one shown
in Figure 16.1.

In line 4 there is a call to the Python script that processes the form. This script
is shown in Listing 16.3:

HTML Ouput Template

Listing 16.2: vector_result.tpl: Template file

1 <!DOCTYPE html>

2 <html lang="en">

3 <head><meta charset="utf-8">

4 <title>Vector Filter</title>

5 <link href="css/bootstrap.min.css" rel="stylesheet">

6 </head>

7 <body style="background-color:#e7f5f5;">

8 <div class="container">

9 <h2>Vector Filter Result</h2>

10 <pre>{{finalout}}</pre>

11 </div>

12 </body>

13 </html>

Server Code

Listing 16.3: vector.py: Web script to filter a DNA sequence

1 import os, io

2

324 � Python for Bioinformatics

3 from Bio import SeqIO

4 from Bio.SeqRecord import SeqRecord

5 from Bio.Blast import NCBIXML

6 from Bio.Blast.Applications import NcbiblastnCommandline as blastn

7 from bottle import route, post, run, static_file, request, view

8 from tempfile import NamedTemporaryFile

9

10 BLAST_EXE = ’/home/sb/opt/ncbi-blast-2.6.0+/bin/blastn’

11 DB_BASE_PATH = ’/home/sb/opt/ncbi-blast-2.6.0+/db/’

12 MASK = ’N’

13

14 def create_rel(XMLin):

15 """

16 Create a dictionary that relate the sequence name

17 with the region to mask

18 """

19 bat1 = {}

20 output = io.StringIO()

21 output.write(XMLin)

22 output.seek(0)

23 b_records = NCBIXML.parse(output)

24 for b_record in b_records:

25 for alin in b_record.alignments:

26 for hsp in alin.hsps:

27 qs = hsp.query_start

28 qe = hsp.query_end

29 if qs > qe:

30 qe, qs = qs, qe

31 record_id = b_record.query.split(’ ’)[0]

32 if record_id not in bat1:

33 bat1[record_id] = [(qs,qe)]

34 else:

35 bat1[record_id].append((qs,qe))

36 return bat1

37

38 def maskseqs(ffh, bat1):

39 """

40 Take a FASTA file and apply the mask using the

41 positions in the dictionary

42 """

43 outseqs = []

44 for record in SeqIO.parse(ffh, ’fasta’):

45 if record.id in bat1:

46 # Generate a mutable sequence object to store

Web Application for Filtering Vector Contamination � 325

47 # the sequence with the "mask".

48 mutable_seq = record.seq.tomutable()

49 coords = bat1[record.id]

50 for x in coords:

51 mutable_seq[x[0]:x[1]] = MASK*(x[1]-x[0])

52 seq_rec = SeqRecord(mutable_seq, record.id, ’’, ’’)

53 outseqs.append(seq_rec)

54 else:

55 # Leave the sequence as found

56 outseqs.append(record)

57 return outseqs

58

59 @route(’/’)

60 def index():

61 return static_file(’index.html’, root=’views/’)

62

63 @post(’/vector_result’)

64 @view(’vector_result’)

65 def result():

66 seqs = request.forms.get(’seqs’)

67 db = os.path.join(DB_BASE_PATH, ’UniVec_Core’)

68 if request.forms.get(’vector’,’customdb’) == ’customdb’:

69 db = os.path.join(DB_BASE_PATH, ’custom’)

70 # Create a temporary file

71 with NamedTemporaryFile(mode=’w’) as fasta_in_fh:

72 # Write the user entered sequence into this temporary file

73 fasta_in_fh.write(seqs)

74 # Flush data to disk without closing and deleting the file,

75 # since that closing a temporary file also deletes it

76 fasta_in_fh.flush()

77 # Get the name of the temporary file

78 file_in = fasta_in_fh.name

79 # Run the BLAST query

80 blastn_cline = blastn(cmd=BLAST_EXE, query=file_in, db=db,

81 evalue=.0005, outfmt=5)

82 rh, eh = blastn_cline()

83 # Create contamination position and store it in a dictionary

84 bat1 = create_rel(rh)

85 # Get the sequences masked

86 newseqs = maskseqs(file_in, bat1)

87 with io.StringIO() as fasta_out_fh:

88 SeqIO.write(newseqs, fasta_out_fh, ’fasta’)

89 fasta_out_fh.seek(0)

90 finalout = fasta_out_fh.read()

326 � Python for Bioinformatics

91 return {’finalout’:finalout}

92

93 @route(’/css/<filename>’)

94 def css_static(filename):

95 return static_file(filename, root=’css/’)

96

97 run(host=’localhost’, port=8080)

Note that this code assumes that there is a BLAST-formatted database (from
line 67 to 69). To create such a base you should run the makeblastdb utility that is
included in the NCBI BLAST+ package.2

If your sequence file is called mito.nt, a makeblastdb command may look like
this:

$./makeblastdb -dbtype nucl -in ~/sb/UniVec_Core -title UniVec_Core

Building a new DB, current time: 03/04/2017 19:04:07

New DB name: /sb/UniVec_Core

New DB title: UniVec_Core

Sequence type: Nucleotide

Keep MBits: T

Maximum file size: 1000000000B

Adding sequences from FASTA; added 2822 sequences in 0.1253 seconds.

where -in means “input file”, -dbtype nucl stands for nucleotide (-dbtype prot

is for protein). The makeblastdb manual is available from the command line with
the option -h.

16.2 ADDITIONAL RESOURCES

• K. W. Liao, Y. W. Chang, and S. R. Roffler, Presence of cloning vector
sequences in the untranslated region of some genes in GenBank, J. Biomed.
Sci., 7(6):529–30, 2000.

• C. Miller, J. Gurd, and A. Brass, A RAPID algorithm for sequence database
comparisons: Application to the identification of vector contamination in the
EMBL databases, Bioinformatics, 15(2):111–21, 1999.

• G. A. Seluja, A. Farmer, M. McLeod, C. Harger, and P. A. Schad, Establish-
ing a method of vector contamination identification in database sequences,
Bioinformatics, 15(2):106–10, 1999.

• C. Savakis and R. Doelz, Contamination of cDNA sequences in databases,
Science, 259(5102):1677–8, 1993.

2Look for the appropriate package for your system on this FTP site: ftp://ftp.ncbi.nih.gov/
blast/executables/LATEST.

ftp://ftp.ncbi.nih.gov/

Web Application for Filtering Vector Contamination � 327

Figure 16.1 HTML form for sequence filtering.

328 � Python for Bioinformatics

Figure 16.2 HTML form for sequence filtering.

C H A P T E R 17

Searching for PCR Primers

Using Primer3

CONTENTS

17.1 Problem Description . 329
17.2 Primer Design Flanking a Variable Length Region . 330

17.2.1 Commented Source Code . 331
17.3 Primer Design Flanking a Variable Length Region, with Biopython . 332
17.4 Additional Resources . 333

17.1 PROBLEM DESCRIPTION

Primers are small DNA strands (from 15 to 30 base pairs long) that are comple-
mentary to a specific spot in a DNA molecule. They are needed for DNA replication
to take place. In molecular biology, primers are used for a DNA amplification chain
reaction called PCR (Polymerase Chain Reaction). PCR primers have their own
characteristics, like specific melting temperature, primer length, need to avoid self-
complementarity, and other parameters.1

PCR primer design is one of the most ubiquitous tasks done in a molecular
biology laboratory. There are several programs that help researchers to pick good
primers. Some programs are web based, some of them are standalone GUI ap-
plications like VectorNTI Suite2 and Oligo.net. These programs are suitable for
case-by-case study of a few sequences, but they are not the chosen option for au-
tomatic batch generation of hundreds of primers, a task that is routinely done in
sequencing and fingerprinting projects. One of the most used programs is primer3.3

This is due to the high quality of proposed primers and because it can be run in
batch and generate multiple primers at once.

Primer3 takes care of primer design; we only need is to prepare the input file for
primer3. This input file holds the sequence for which the primer should be picked

1For more information on primer design please see “Additional Resources.”
2VectorNTI web site: https://www.thermofisher.com/us/en/home/life-science/cloning/

vector-nti-software.html.
3This software is available at http://sourceforge.net/projects/primer3; please see the in-

cluded documentation for how to cite this software if used in a publication.

329

https://www.thermofisher.com/us/en/home/life-science/cloning/vector-nti-software.html
http://sourceforge.net/projects/primer3
https://www.thermofisher.com/us/en/home/life-science/cloning/vector-nti-software.html

330 � Python for Bioinformatics

and other required and optional parameters like desired primer name, primer size,
product size, regions to exclude, and others.

A primer3 input file looks like this:

PRIMER_SEQUENCE_ID=<Name>

SEQUENCE=<DNA Sequence in one line>

TARGET=<start>,<length>

PRIMER_OPT_SIZE=<size>

PRIMER_MIN_SIZE=<size>

PRIMER_MAX_SIZE=<size>

PRIMER_NUM_NS_ACCEPTED=<int>

PRIMER_EXPLAIN_FLAG=<int>

PRIMER_PRODUCT_SIZE_RANGE=<start>-<end>

=

Each parameter is detailed in the primer3 README.txt file, although most of
them are self-explanatory. The = character is used to terminate the record. Several
records can be included in one primer3 input file.

This recipe chapter is divided in two tasks. The first task will be to generate
an input file for primer3 based in a FASTA file with one sequence inside and one
restriction. The second task involves analysis of several sequences for the generation
of a multiple sequence primer3 input file.

17.2 PRIMER DESIGN FLANKING A VARIABLE LENGTH REGION

This script should read a FASTA-formatted file with one sequence inside. This
sequence has a microsatellite4 of variable length where we should avoid doing primer
design over it. In fact, we need to assure that the chosen primer flanks this region.
We don’t know the length or the position of the microsatellite, but we know it is a
repeat of the “AAT” sequence and it can be present between 5 to 15 times.

This task could be divided into the following steps:

1. Read the sequence from the FASTA file: Biopython provides the SeqIO mod-
ule that will be used to read the sequence.

2. Detect the region with the microsatellite and store its position: A sliding
windows approach will be used. On each possible 45-base-pair-long window5

we will count how many times our repeated sequence is present. The chosen
window will be the one with the highest number of repetitions inside. We need
to store the position of this window.

4A microsatellite is a region in the chromosome that is characterized by having a small DNA
sequence repeated a variable number of times. Since they are inheritable, they can be used to trace
relationships between individuals.

5This size is estimated by calculating a 3-letter repeat (AAT) and this sequence can be repeated
up to 15 times.

Searching for PCR Primers Using Primer3 � 331

3. Generate the primer3 input file: This is trivially accomplished by using the
retrieved sequence and the previously stored position as a target.

17.2.1 Commented Source Code

Listing 17.1: primer31.py: Primer design out of one sequence without Biopython

1 from Bio import SeqIO

2

3 sfile = open(’../../samples/hsc1.fasta’)

4 # myseq stores a SeqRecord object generated from the

5 # first record in the fasta file.

6 myseq = SeqIO.read(sfile, "fasta")

7 # title stores the "id" attribute of the SeqRecord object.

8 title = myseq.id

9 seq = str(myseq.seq).upper()

10 win_size = 45

11 i = 0

12 number_l = []

13 # This while is used to walk over the sequence.

14 while i<=(len(seq)-win_size):

15 # Each position of number_l stores the amount of ’AAT’

16 # found on each window.

17 number_l.append(seq[i:i + win_size].count(’AAT’))

18 i += 1 # This is the same as i = i+1

19 # pos stores the position of the window with the highest

20 # amount of ’AAT’

21 pos = number_l.index(max(number_l))

22 data = {’title’: title, ’seq’: seq, ’pos’: pos, ’win_size’:

23 win_size, ’len_seq’: len(seq)}

24 # Saves the data formated as the input file needed by

25 # primer3.

26 with open(’swforprimer3.txt’,’w’) as f_out:

27 with open(’template’) as tpl:

28 completed = tpl.read().format(**data)

29 f_out.write(completed)

This program could process a file like this one:6

>NC_000001.11:156082546-156140089

GTAGTTTCCCGCCCTTGGGGGCGCGGGGACAAATTCCTTGACCCGAGGAGGATAGGGATGTGGC

6To change the name of the input file, you have to change line 3.

332 � Python for Bioinformatics

CTTCGGTCTTTCCTCGCAGCTCCGGGGCAAGCTAGGAGTGGGATGGAAGTCGAGGTCCCTAATT

TTTTAAGGGGAGGGTGCGGGGAGAAGGGGTAGTATGCGGAAACAGAGCGGGTATGAAGCTGGCT

AACGCCGCGCGCCCCCTCCCAGGACCCGCTCCTGCCCCGCGCCGGCCGGTCCTGGGGGCCCGCT

TTTTTATGGAAATGAGGAGGGGGGGCCGGGGCCGGGGGCGGGGAGCCGGGAGCCGGGGGTAGTA

(...)

The result of Listing 17.1 produces a file like this one:

PRIMER_SEQUENCE_ID=NC_000001.11:156082546-156140089

SEQUENCE=GTAGTTTCCCGCCCTTGGGGGCGCGGGGACAAATTCCTTGACCCGAGGAGGATAG<=

GGATGTGGCCTTCGGTCTTTCCTCGCAGCTCCGGGGCAAGCTAGGAGTGGGATGGAAGTCGAGG<=

TCCCTAATTTTTTAAGGGGAGGGTGCGGGGAGAAGGGGTAGTATGCGGAAACAGAGCGGGTATG<=

AAGCTGGCTAACGCCGCGCGCCCCCTCCCAGGACCCGCTCCTGCCCCGCGCCGGCCGGTCCTGG<=

GGGCCCGCTTTTTTATGGAAATGAGGAGGGGGGGCCGGGGCCGGGGGCGGGGAGCCGGGAGCCG<=

(...)

TARGET=43423,45

PRIMER_OPT_SIZE=18

PRIMER_MIN_SIZE=15

PRIMER_MAX_SIZE=20

PRIMER_NUM_NS_ACCEPTED=0

PRIMER_EXPLAIN_FLAG=1

PRIMER_PRODUCT_SIZE_RANGE=45-57544

This file is used as input into primer3 in this way:

$./primer3_core < swforprimer3.txt > primer3out.txt

17.3 PRIMER DESIGN FLANKING A VARIABLE LENGTH REGION, WITH

BIOPYTHON

Biopython can build the input file for primer3 and also the command line.

Listing 17.2: primer32.py: Primer design out of one sequence without Biopython

1 from Bio import SeqIO

2 from Bio.Emboss.Applications import Primer3Commandline

3

4 INPUT_SEQUENCE = open(’../../samples/hsc1.fasta’)

5 OUTPUT_SEQUENCE = ’primer.txt’

6 sfile = open(’../../samples/hsc1.fasta’)

7 myseq = SeqIO.read(sfile, ’fasta’)

8 title = myseq.id

9 seq = str(myseq.seq).upper()

10 win_size = 45

Searching for PCR Primers Using Primer3 � 333

11 i = 0

12 number_l = []

13 while i <= (len(seq) - win_size):

14 number_l.append(seq[i:i + win_size].count(’AAT’))

15 i += 1 # This is the same as i = i+1

16 pos = number_l.index(max(number_l))

17 pr_cl = Primer3Commandline(sequence=INPUT_SEQUENCE, auto=True)

18 pr_cl.outfile = OUTPUT_SEQUENCE

19 pr_cl.osize = 18

20 pr_cl.maxsize = 20

21 pr_cl.minsize = 15

22 pr_cl.explainflag = 1

23 pr_cl.target = (pos, win_size)

24 pr_cl.prange = (win_size, len(seq))

25 primer_cl()

Code explanation: this code uses Primer3Commandline (line 17). After
you instantiate this class, all parameters are passed as properties (from line 18 to
24). These properties are used to build the input file. The last line runs eprimer3,
which calls primer3.

17.4 ADDITIONAL RESOURCES

• Andreas Untergasser et all. 2007. Primer3Plus, an enhanced web interface to
Primer3. (Nucleic Acids Res. Source code available at: http://sourceforge.
net/projects/primer3. The paper above is available at: https://

academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkm306.

• Integrating PCR theory and bioinformatics into a research-oriented primer
design exercise. (CBE Life Sci Educ. 2008 Spring;7(1):89–95)

• Enhancements and modifications of primer design program Primer3. (Bioin-
formatics. 2007 May 15;23(10):1289–91. Epub 2007 Mar 22)

• Emboss eprimer3 manual.
http://emboss.toulouse.inra.fr/cgi-bin/emboss/help/eprimer3

• Primer3 manual.
http://primer3.sourceforge.net/primer3_manual.htm

http://sourceforge.net/projects/primer3
http://emboss.toulouse.inra.fr/cgi-bin/emboss/help/eprimer3
http://primer3.sourceforge.net/primer3_manual.htm
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkm306
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkm306
http://sourceforge.net/projects/primer3

http://taylorandfrancis.com

C H A P T E R 18

Calculating Melting

Temperature from a Set of

Primers

CONTENTS

18.1 Problem Description . 335
18.1.1 Commented Source Code . 336

18.2 Additional Resources . 336

18.1 PROBLEM DESCRIPTION

In this case we have a text file full of PCR primers. These primers were obtained
from different sources, so their Tm was calculated under different programs and
conditions. A researcher may want to make the criteria of Tm of his set of primers
uniform.

The first version of the program will output the file formatted as a csv (comma-
separated values) file. This kind of file could be opened with a spreadsheet or
with a custom-made program. The second version will output the file as an Excel
spreadsheet (xls).

Proposed steps to get the melting temperatures of a set of primers:

1. Read the input file line by line.

2. For each line, calculate the melting temperature (Tm) by using the Melt-
ingTemp module from Biopython Bio.SeqUtils.

3. Print the primer sequence, a comma and, its Tm value.

4. In the Excel case, print the primer sequence in a cell and its Tm value in the
next cell in the same row, using xlwt.

335

336 � Python for Bioinformatics

18.1.1 Commented Source Code

Listing 18.1: fromtxt.py: Primer Tm calculation

1 from Bio.SeqUtils import MeltingTemp as MT

2

3 PRIMER_FILE = ’../../samples/primers.txt’

4 for line in open(PRIMER_FILE):

5 # prm stores the primer, without 5’- and -3’

6 prm = line[3:len(line)-4].replace(’ ’,’’)

7 # .2f is used to print up to decimals.

8 print(’{0},{1:.2f}’.format(prm, MT.Tm_staluc(prm)))

Version of the same code with Excel output:

Listing 18.2: toexcel.py: Primer Tm calculation, Excel output

1 from Bio.SeqUtils import MeltingTemp as MT

2 import xlwt

3

4 PRIMER_FILE = ’../../samples/primers.txt’

5 # w is the name of a newly created workbook.

6 w = xlwt.Workbook()

7 # ws is the name of a new sheet in this workbook.

8 ws = w.add_sheet(’Result’)

9 # These two lines writes the titles of the columns.

10 ws.write(0, 0, ’Primer Sequence’)

11 ws.write(0, 1, ’Tm’)

12 for index, line in enumerate(open(PRIMER_FILE)):

13 # For each line in the input file, write the primer

14 # sequence and the Tm

15 prm = line[3:len(line)-4].replace(’ ’,’’)

16 ws.write(index+1, 0, prm)

17 ws.write(index+1, 1, ’{0:.2f}’.format(MT.Tm_staluc(prm)))

18 # Save the spreadsheet into a file.

19 w.save(’primerout.xls’)

18.2 ADDITIONAL RESOURCES

• PCR primer design guidelines.
http://www.premierbiosoft.com/tech_notes/PCR_Primer_Design.html

http://www.premierbiosoft.com/tech_notes/PCR_Primer_Design.html

Calculating Melting Temperature from a Set of Primers � 337

• Molecular Biology Techniques Manual, Vernon E. Coyne, M. Diane James,
Sharon J. Reid, and Edward P. Rybicki, eds.
http://www.mcb.uct.ac.za/pcroptim.htm

• 10 tips for designing PCR primers that work.
http://smartnote.miraibio.com/blog/?p=12

• Nicolas Le Novère. MELTING, computing the melting temperature of nucleic
acid duplex. (Bioinformatics 2001 17: 1226–1227). doi: 10.1093/bioinformat-
ics/17.12.1226

http://www.mcb.uct.ac.za/pcroptim.htm
http://smartnote.miraibio.com/blog/?p=12

http://taylorandfrancis.com

C H A P T E R 19

Filtering Out Specific Fields

from a GenBank File

CONTENTS

19.1 Extracting Selected Protein Sequences . 339
19.1.1 Commented Source Code . 339

19.2 Extracting the Upstream Region of Selected Proteins 340
19.2.1 Commented Source Code . 340

19.3 Additional Resources . 341

Genomes for whole organisms are available at Genbank, the most complete genetic
sequence database. The National Center for Biotechnology Information (NCBI) at
the National Library of Medicine (NLM), National Institutes of Health (NIH), is
responsible for producing and distributing the GenBank Sequence Database. Gen-
bank is also the name of the format in which Genbank records are stored (GenBank
Flat File Format). Biopython has reading support for this kind of file (with the
Bio.SeqIO module).

19.1 EXTRACTING SELECTED PROTEIN SEQUENCES

A researcher wants to extract the protein sequences of each NADH found in the
Nicotiana tabacum mitochondria.

19.1.1 Commented Source Code

Listing 19.1: genbank1.py: Extract sequences from a Genbank file

1 from Bio import SeqIO, SeqRecord, Seq

2 from Bio.Alphabet import IUPAC

3

4 GB_FILE = ’../../samples/NC_006581.gb’

5 OUT_FILE = ’nadh.fasta’

6 with open(GB_FILE) as gb_fh:

7 record = SeqIO.read(gb_fh, ’genbank’)

339

340 � Python for Bioinformatics

8 seqs_for_fasta = []

9 for feature in record.features:

10 # Each Genbank record may have several features, the program

11 # will walk over all of them.

12 qualifier = feature.qualifiers

13 # Each feature has several parameters

14 # Pick selected parameters.

15 if ’NADH’ in qualifier.get(’product’,[’’])[0] and \

16 ’product’ in qualifier and ’translation’ in qualifier:

17 id_ = qualifier[’db_xref’][0][3:]

18 desc = qualifier[’product’][0]

19 # nadh_sq is a NADH protein sequence

20 nadh_sq = Seq.Seq(qualifier[’translation’][0],

21 IUPAC.protein)

22 # ’srec’ is a SeqRecord object from nadh_sq sequence.

23 srec = SeqRecord.SeqRecord(nadh_sq, id=id_,

24 description=desc)

25 # Add this SeqRecord object into seqsforfasta list.

26 seqs_for_fasta.append(srec)

27 with open(OUT_FILE, ’w’) as outf:

28 # Write all the sequences as a FASTA file.

29 SeqIO.write(seqs_for_fasta, outf, ’fasta’)

19.2 EXTRACTING THE UPSTREAM REGION OF SELECTED PROTEINS

Regulatory elements are found mostly upstream of the beginning of the genes. They
include polyadenylation signals, TATA box, enhancers, and more.

For this program we have a Genbank file and list of genes (cox2, atp6, atp9,
cob) whose sequences we want to extract plus the upstream region, up to 1000 base
pairs.

19.2.1 Commented Source Code

Listing 19.2: genbank2.py: Extract upstream regions

1 from Bio import SeqIO

2 from Bio.SeqRecord import SeqRecord

3

4 GB_FILE = ’../../samples/NC_006581.gb’

5 OUT_FILE = ’tg.fasta’

6 with open(GB_FILE) as gb_fh:

7 record = SeqIO.read(gb_fh, ’genbank’)

8 seqs_for_fasta = []

Filtering Out Specific Fields from a GenBank File � 341

9 tg = ([’cox2’],[’atp6’],[’atp9’],[’cob’])

10 for feature in record.features:

11 if feature.qualifiers.get(’gene’) in tg:

12 if feature.type==’gene’:

13 # Get the name of the gene

14 genename = feature.qualifiers.get(’gene’)

15 # Get the start position

16 startpos = feature.location.start.position

17 # Get the required slice

18 newfrag = record.seq[startpos-1000: startpos]

19 # Build a SeqRecord object

20 seq = genename[0] + ’ 1000bp upstream’

21 newrec = SeqRecord(newfrag, seq, ’’,’’)

22 seqs_for_fasta.append(newrec)

23 with open(OUT_FILE,’w’) as outf:

24 # Write all the sequences as a FASTA file.

25 SeqIO.write(seqs_for_fasta, outf, ’fasta’)

19.3 ADDITIONAL RESOURCES

• Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J., Wheeler D.L. Gen-
Bank. Nucleic Acids Res. 36(Database issue), D25–30 (2008).
http://www.ncbi.nlm.nih.gov/pubmed/18073190

• GenBank Flat File Format. Sample record with detailed specifications.
http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html

http://www.ncbi.nlm.nih.gov/pubmed/18073190
http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html

http://taylorandfrancis.com

C H A P T E R 20

Inferring Splicing Sites

CONTENTS

20.1 Problem Description . 343
20.1.1 Infer Splicing Sites with Commented Source Code 345
20.1.2 Sample Run of Estimate Intron Program . 347

20.1 PROBLEM DESCRIPTION

An expressed sequence tag or EST is a short sub-sequence of a transcribed spliced
nucleotide sequence (either protein-coding or not). They may be used to identify
gene transcripts, and are instrumental in gene discovery and gene sequence deter-
mination. The identification of ESTs has proceeded rapidly, with approximately 52
million ESTs now available in public databases (e.g., GenBank 5/2008, all species).

An EST is produced by one-shot sequencing of a cloned mRNA (i.e., sequencing
several hundred base pairs from an end of a cDNA clone taken from a cDNA library).
The resulting sequence is a relatively low-quality fragment whose length is limited
by current technology to approximately 500 to 800 nucleotides. Because these clones
consist of DNA that is complementary to mRNA, the ESTs represent portions of
expressed genes. They may be present in the database as either cDNA/mRNA
sequences or as the reverse complement of the mRNA, the template strand.

A way to find splicing sites in a plant sequence is to compare, using BLAST, this
sequence with the genome of a known species like Arabidopsis thaliana (AT). Then
we align our sequence with both the full sequence and the coding DNA sequence
(CDS) of the closest match. With this technique we could infer intron, exons, and
splicing sites. A script to accomplish this should first do a BLAST search, then use
the ID of the result to search the AT sequences in a database. This database, in
this case using SQLite, must made in advance. With all sequences, we use Multi-
pleAlignCL from Biopython to align them.

The full sequence and CDS can be downloaded from the TAIR website at https:
//www.arabidopsis.org/1

1Full sequences are at https://www.arabidopsis.org/download_files/Genes/TAIR10_

genome_release/TAIR10_blastsets/TAIR10_seq_20101214_updated. and CDS are at
https://www.arabidopsis.org/download_files/Genes/TAIR10_genome_release/TAIR10_

blastsets/TAIR10_cds_20101214_updated.

343

https://www.arabidopsis.org/
https://www.arabidopsis.org/download_files/Genes/TAIR10_genome_release/TAIR10_blastsets/TAIR10_seq_20101214_updated
https://www.arabidopsis.org/download_files/Genes/TAIR10_genome_release/TAIR10_blastsets/TAIR10_cds_20101214_updated
https://www.arabidopsis.org/
https://www.arabidopsis.org/download_files/Genes/TAIR10_genome_release/TAIR10_blastsets/TAIR10_seq_20101214_updated
https://www.arabidopsis.org/download_files/Genes/TAIR10_genome_release/TAIR10_blastsets/TAIR10_cds_20101214_updated

344 � Python for Bioinformatics

The preparatory program to make de SQLite database with full sequence and
CDS (Listing 20.1).

Listing 20.1: makedb.py: Convert data for entering into an SQLite database

1 import sqlite3

2 from Bio import SeqIO

3

4 seq_file = open(’../../samples/TAIR10_seq_20101214_updated’)

5 cds_file = open(’../../samples/TAIR10_cds_20101214_updated’)

6 AT_DB_FILE = ’AT.db’

7

8 at_d = {}

9 # Get all sequences from TAIR sequences file.

10 for record in SeqIO.parse(seq_file, ’fasta’):

11 sid = record.id

12 seq = str(record.seq)

13 at_d[sid] = [seq]

14 # Get all sequences from TAIR CDS file.

15 for record in SeqIO.parse(cds_file, ’fasta’):

16 sid = record.id

17 seq = str(record.seq)

18 at_d[sid].append(seq)

19 # Write to a CSV file only the entries of the dictionary that

20 # has data from both sources

21 conn = sqlite3.connect(AT_DB_FILE)

22 c = conn.cursor()

23 c.execute(’create table seq(id, cds, full_seq)’)

24 for seq_id in at_d:

25 if len(at_d[seq_id])==2:

26 # Write in this order: ID, CDS, FULL_SEQ.

27 c.execute(’INSERT INTO seq VALUES (?,?,?)’,

28 ((seq_id, at_d[seq_id][1], at_d[seq_id][0])))

29 conn.commit()

30 conn.close()

Listing 20.1 populates a new SQLite database called AT.db. This database has
a table (seq) and this table has three fields: id, cds and full_seq.

To format the TAIR cds database to BLAST, run:

$ makeblastdb -in TAIR10_cds_20101214_updated -dbtype nucl -out T10

Inferring Splicing Sites � 345

20.1.1 Infer Splicing Sites with Commented Source Code

Listing 20.2: estimateintrons.py: Estimate introns

1 #!/usr/bin/env python

2

3 import argparse

4 import os

5 import sqlite3

6

7 from Bio import SeqIO, SeqRecord, Seq

8 from Bio.Align.Applications import ClustalwCommandline

9 from Bio.Blast import NCBIXML

10 from Bio.Blast.Applications import NcbiblastnCommandline as bn

11 from Bio import AlignIO

12

13 AT_DB_FILE = ’AT.db’

14 BLAST_EXE = ’~/opt/ncbi-blast-2.6.0+/bin/blastn’

15 BLAST_DB = ’~/opt/ncbi-blast-2.6.0+/db/TAIR10’

16 CLUSTALW_EXE = ’../../clustalw2’

17

18 def allgaps(seq):

19 """Return a list with tuples containing all gap positions

20 and length. seq is a string."""

21 gaps = []

22 indash = False

23 for i, c in enumerate(seq):

24 if indash is False and c == ’-’:

25 c_ini = i

26 indash = True

27 dashn = 0

28 elif indash is True and c == ’-’:

29 dashn += 1

30 elif indash is True and c != ’-’:

31 indash = False

32 gaps.append((c_ini, dashn+1))

33 return gaps

34

35 def iss(user_seq):

36 """Infer Splicing Sites from a FASTA file full of EST

37 sequences"""

38

39 with open(’forblast’,’w’) as forblastfh:

40 forblastfh.write(str(user_seq.seq))

346 � Python for Bioinformatics

41

42 blastn_cline = bn(cmd=BLAST_EXE, query=’forblast’,

43 db=BLAST_DB, evalue=’1e-10’, outfmt=5,

44 num_descriptions=’1’,

45 num_alignments=’1’, out=’outfile.xml’)

46 blastn_cline()

47 b_record = NCBIXML.read(open(’outfile.xml’))

48 title = b_record.alignments[0].title

49 sid = title[title.index(’ ’)+1 : title.index(’ |’)]

50 # Polarity information of returned sequence.

51 # 1 = normal, -1 = reverse.

52 frame = b_record.alignments[0].hsps[0].frame[1]

53 # Run the SQLite query

54 conn = sqlite3.connect(AT_DB_FILE)

55 c = conn.cursor()

56 res_cur = c.execute(’SELECT CDS, FULL_SEQ from seq ’

57 ’WHERE ID=?’, (sid,))

58 cds, full_seq = res_cur.fetchone()

59 if cds==’’:

60 print(’There is no matching CDS’)

61 exit()

62 # Check sequence polarity.

63 sidcds = ’{0}-CDS’.format(sid)

64 sidseq = ’{0}-SEQ’.format(sid)

65 if frame==1:

66 seqCDS = SeqRecord.SeqRecord(Seq.Seq(cds),

67 id = sidcds,

68 name = ’’,

69 description = ’’)

70 fullseq = SeqRecord.SeqRecord(Seq.Seq(full_seq),

71 id = sidseq,

72 name=’’,

73 description=’’)

74 else:

75 seqCDS = SeqRecord.SeqRecord(

76 Seq.Seq(cds).reverse_complement(),

77 id = sidcds, name=’’, description=’’)

78 fullseq = SeqRecord.SeqRecord(

79 Seq.Seq(full_seq).reverse_complement(),

80 id = sidseq, name = ’’, description=’’)

81 # A tuple with the user sequence and both AT sequences

82 allseqs = (record, seqCDS, fullseq)

83 with open(’foralig.txt’,’w’) as trifh:

84 # Write the file with the three sequences

Inferring Splicing Sites � 347

85 SeqIO.write(allseqs, trifh, ’fasta’)

86 # Do the alignment:

87 outfilename = ’{0}.aln’.format(user_seq.id)

88 cline = ClustalwCommandline(CLUSTALW_EXE,

89 infile = ’foralig.txt’,

90 outfile = outfilename,

91)

92 cline()

93 # Walk over all sequences and look for query sequence

94 for seq in AlignIO.read(outfilename, ’clustal’):

95 if user_seq.id in seq.id:

96 seqstr = str(seq.seq)

97 gaps = allgaps(seqstr.strip(’-’))

98 break

99 print(’Original sequence: {0}’.format(user_seq.id))

100 print(’\nBest match in AT CDS: {0}’.format(sid))

101 acc = 0

102 for i, gap in enumerate(gaps):

103 print(’Putative intron #{0}: Start at position {1}, ’

104 ’length {2}’.format(i+1, gap[0]-acc, gap[1]))

105 acc += gap[1]

106 print(’\n{0}’.format(seqstr.strip(’-’)))

107 print(’\nAlignment file: {0}\n’.format(outfilename))

108

109 description = ’Program to infer intron position based on ’ \

110 ’Arabidopsis Thaliana genome’

111 parser = argparse.ArgumentParser(description=description)

112 ifh = ’Fasta formated file with sequence to search for introns’

113 parser.add_argument(’input_file’, help=ifh)

114 args = parser.parse_args()

115 seqhandle = open(args.input_file)

116 records = SeqIO.parse(seqhandle, ’fasta’)

117 for record in records:

118 iss(record)

20.1.2 Sample Run of Estimate Intron Program

$ python estimateintrons.py ../../samples/t3.fasta

Original sequence: secu3

Best match in AT CDS: AT1G14990.1

Putative intron #1: Start at position 171, length 95

Putative intron #2: Start at position 250, length 153

348 � Python for Bioinformatics

CTAGCCACTTCCAACGAGTTGGCCTTGAGATAGAAGGTGAGCCATGTATTGGGAGTGGTAAA<=

CGTATGGAGATTTTCCCTGGCGATCAAAATGCTTAGCCATTATGCAGAATTCAACAGGACCG<=

GAATCTTCAGATTCATAGCCTTTCCCAAGCGCCGCTTTGTACAGCTT---------------<=

--<=

------------------AGCTGTGTCGGTCAAAAGTTCGGTGCCAGCAGTCGAAGATGCAT<=

AAAACTGATCTCCCCTGGAATATCCTGCTCTTGTT---------------------------<=

--<=

--<=

--GTGTTGTTTGTATAGAAGAATGTGAGGGCAGCAGTGAAGCAGTAGAATCCGGCGTAAGAG<=

ACAGCCCGTCGTAGCTTCTGGATAATTATAACCTCTGAGCGGTCATCCAAGATCATCAT

Alignment file: secu3.aln

C H A P T E R 21

Web Server for Multiple

Alignment

CONTENTS

21.1 Problem Description . 349
21.1.1 Web Interface: Front-End. HTML Code . 349
21.1.2 Web Interface: Server-Side Script. Commented Source Code . . 351

21.2 Additional Resources . 353

21.1 PROBLEM DESCRIPTION

DNA sequences of different organisms are often related. The closer the species, the
more similar are their genomes. Some genes are highly conserved while others have
extensive arrangement and mutations. Sequence multiple alignment (MSA) helps
show the relationship between sequences and infer an evolutionary history.

There are several programs to perform MSA. It is out of the scope of this book
to review them, but there are pointers to several papers in “Additional Resources”
for those interested in MSA software.

One of these programs is MUSCLE (Multiple Sequence alignment by log-
expectation), which is characterized by its improved speed and accuracy over cur-
rently available programs. Since MUSCLE has no graphical user interface (GUI),
it is a command-line application, and we will build a GUI using a web server.

The advantage of using a web server it is not only the GUI, but the ability to
use it from several computers.

21.1.1 Web Interface: Front-End. HTML Code

The first step is to make the GUI in HTML. Before reinventing the wheel, I searched
for a Muscle web server and found one at the EBI website (http://www.ebi.ac.
uk/Tools/muscle). Inspired by this site, I made the form displayed in Figure 21.1.
The HTML code for this form is shown in Listing 21.1.

Listing 21.1: index.html: web interface to Muscle front end

1 <!DOCTYPE html><html lang="en">

349

http://www.ebi.ac.uk/Tools/muscle
http://www.ebi.ac.uk/Tools/muscle

350 � Python for Bioinformatics

Figure 21.1 Muscle Web interface.

2 <head><meta charset="utf-8">

3 <title>Muscle Web Interface</title>

4 <link href="css/bootstrap.min.css" rel="stylesheet">

5 </head>

6 <body style="background-color:#e7f5f5;">

7 <div class="container"><h1>Muscle Web Interface</h1>

8 <form action=’muscle_result’ method=’post’

9 enctype="multipart/form-data">

10 <div class="row"><div class="col-sm-8"><div

11 class="form-group"><label for="iterations">Maximum iterations:

12 </label><select name="iterat" id="iterations">

13 <option value="1" selected="selected">1</option>

14 <option value="4">4</option><option value="8">8</option>

15 <option value="10">10</option><option value="12">12</option>

16 <option value="14">14</option><option value="16">16</option>

17 </select>

18 <label for="format"> Output Format:</label>

19 <select name="output" id="format">

20 <option value="fasta" selected="selected">FASTA</option>

21 <option value="clw">ClustalW2</option>

22 <option value="clwstrict">ClustalW2 (Strict)</option>

23 <option value="html">HTML</option>

24 <option value="msf">MSF</option>

25 </select>

26 <label for="order">Output Order:</label>

27 <select name="outorder" id="order">

28 <option value="group" selected="selected">aligned</option>

29 <option value="stable">input</option>

Web Server for Multiple Alignment � 351

30 </select></div></div></div>

31 <div class="row"><div class="col-sm-6">

32 <div class="form-group"><label for="sq">

33 Enter a set of sequences in FASTA format:

34 </label>

35 <textarea name="seq" rows="5" cols="90" id="sq"></textarea>

36 </div></div></div><div class="row"><div class="form-group">

37 <div class="col-sm-3">

38 <label for="upfile">Or upload a file:</label>

39 <input type="file" name="upfile" id="upfile" />

40 </div><div class="col-sm-3">

41 <button type="submit" class="btn btn-primary">

42 Send to Muscle server</button></div></div></div>

43 </form></div></body></html>

Template for results page:

Listing 21.2: result.tpl: Template for the result of Muscle server

1 <html lang="en">

2 <head>

3 <meta charset="utf-8">

4 <title>Muscle Web Interface</title>

5 <link href="css/bootstrap.min.css" rel="stylesheet">

6 </head>

7 <body>

8 <div class="container">

9 % if bad_option:

10 <h1>Bad Request</h1>

11 Use the options provided in the form. Error in {{bad_opt}}

12 % elif not bad_option:

13 {{!result_output}}

14 % end

15 <p>Go back to the home page</p>

16 </div>

17 </body>

18 </html>

21.1.2 Web Interface: Server-Side Script. Commented Source Code

Listing 21.3: muscleserver.py: Web interface to Muscle

352 � Python for Bioinformatics

1 #!/usr/bin/env python

2

3 import os

4 import subprocess

5 from tempfile import mkstemp

6

7 from bottle import route, post, run, static_file, request, view

8

9 @route(’/’)

10 def index():

11 return static_file(’index.html’, root=’views/’)

12

13 @post(’/muscle_result’)

14 @view(’result’)

15 def result():

16 iterations = request.forms.get(’iterat’,’1’)

17 output_type = request.forms.get(’output’,’FASTA’)

18 order = request.forms.get(’outorder’,’group’)

19 sequence = request.forms.get(’seq’,’’)

20 if not sequence:

21 # If the textarea is empty, check the uploaded file

22 sequence = request.files.get(’upfile’).file.read()

23 badreq = ’’

24 # Verify that the user entered valid information.

25 try:

26 int(iterations)

27 except ValueError:

28 badreq = ’iterations’

29 valid_output = (’html’, ’fasta’, ’msf’, ’clw’, ’clwstrict’)

30 if output_type not in valid_output:

31 badreq = ’output’

32 if order not in (’group’, ’stable’):

33 badreq = ’outorder’

34 result_out = ’’

35 # Make a random filename for user entered data

36 fi_name = mkstemp(’.txt’,’userdata_’)[1]

37 with open(fi_name,’wb’) as fi_fh:

38 fi_fh.write(sequence)

39 fo_name = mkstemp(’.txt’,’outfile_’)[1]

40 with open(’muscle3_error.log’,’w’) as erfh:

41 cmd = [’muscle3.8.31_i86linux64’, ’-in’, fi_name,

42 ’-out’, fo_name, ’-quiet’, ’-maxiters’,

43 iterations, ’-{}’.format(output_type),

44 ’-{}’.format(order)]

Web Server for Multiple Alignment � 353

45 p = subprocess.Popen(cmd, stderr=erfh)

46 p.communicate()

47 # Remove the intput file

48 os.remove(fi_name)

49 with open(fo_name) as fout_fh:

50 result_out = fout_fh.read()

51 if output_type != ’html’:

52 result_out = ’<pre>{0}</pre>’.format(result_out)

53 # Remove the output file

54 os.remove(fo_name)

55 return {’bad_opt’:badreq, ’result_output’:result_out}

56

57 @route(’/css/<filename>’)

58 def css_static(filename):

59 return static_file(filename, root=’css/’)

60

61 run(host=’localhost’, port=8080)

Code explanation: Although the code is widely commented, I think it is worth
some explanation. There are two main methods: index() and result(). index()
is called when the user requests the site and it just displays an HTML form using
the static_file method. When the user completes the form and presses “Send to
Muscle Server.” a POST request is sent to the /muscle_result URL. The request
is handled by the result() method. This method calls the command line that
makes the alignment. There is a function to generate files with random names
(mkstemp()) and it is used instead of having a fixed name for each file. The
problem with fixed files is that a web program can be used simultaneously by
several users and there is a risk of data override. Temporary files are removed (lines
48 and 54).

21.2 ADDITIONAL RESOURCES

• Edgar, Robert C. (2004), MUSCLE: a multiple sequence alignment method
with reduced time and space complexity. BMC Bioinformatics 2004,
5:113doi:10.1186/1471-2105-5-113.

• Julie D. Thompson, Benjamin Linard, Odile Lecompte, Olivier Poch. A com-
prehensive benchmark study of multiple sequence alignment methods: current
vhallenges and future perspectives.
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.

0018093

• Notredame, C (2007). Recent evolutions of multiple sequence alignment
algorithms. PLOS Computational Biology 8(3):e123 doi: 10.1371/jour-
nal.pcbi.0030123.

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0018093
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0018093

http://taylorandfrancis.com

C H A P T E R 22

Drawing Marker Positions

Using Data Stored in a

Database

CONTENTS

22.1 Problem Description . 355
22.1.1 Preliminary Work on the Data . 355
22.1.2 MongoDB Version with Commented Source Code 357

22.1 PROBLEM DESCRIPTION

This program makes a graphical representation of a selected locus in five chro-
mosomes of Arabidopsis thaliana.1 The position data of the locus are stored in a
database, so the program has to connect such a database and retrieve the data be-
fore plotting it. In this case we use MongDB as the database back-end. The drawing
part is made by using the BasicChromosome class from Biopython.

In Figure 22.1 there is an example of what the output looks like.

22.1.1 Preliminary Work on the Data

The raw data used by this program are provided by the Arabidopsis Informa-
tion Resource2 (TAIR). The file is located at their FTP server and can be re-
trieved with any web browser from ftp://ftp.arabidopsis.org/home/tair/

Genes/TAIR7_genome_release/TAIR7_Transcripts_by_map_position.gz. It is a
gzipped compressed CSV file with more information than the locus position
into the chromosome. From this file we need four fields: Locus, Chromosome,
Map_start_coordinate and Map_end_coordinate.

Here is a brief sample of TAIR data:

Locus Locus_orientation_is_5 Genbank_acc external_id <=

1Arabidopsis thaliana (wall cress or mouse-ear cress) is a small flowering plant that is widely
used as a model organism in plant biology. It is used in this example because there are completed
physical and genetic maps available.

2TAIR website is available at http://www.arabidopsis.org.

355

ftp://ftp.arabidopsis.org/home/tair/
http://www.arabidopsis.org

356 � Python for Bioinformatics

Figure 22.1 Product of Listing 22.2, using the demo dataset (NODBDEMO).

Type(1=cDNA 2=EST) Chromosome Transcript_orientation_is_5 <=

Map_start_coordinate Map_end_coordinate

(... cut ...)

AT1G01280 1 BX814827 42472162 1 1 1 112263 113195

AT1G01280 1 BX814827 42472162 1 1 1 113279 113861

AT1G01280 1 AA720028 2733638 2 1 1 112341 112589

AT1G01280 1 AV535036 8695319 2 1 1 112300 112919

AT1G01280 1 AV532990 8693273 2 1 0 113720 113947

AT1G01280 1 BT022023 63003811 1 1 1 112283 113195

AT1G01280 1 BT022023 63003811 1 1 1 113279 113944

(... cut ...)

In this dataset, the lowest and highest positions are not properly marked. In
the small text snip displayed above, the lower position is 112263 and the highest is
113947, so this text should be translated into the following line:

AT1G01280,1,112263,113947

Therefore a custom-made script is needed to convert the data for entering into
a database.

Listing 22.1: createdb.py: Convert the data from a CSV file to insert it into
MongoDB

Drawing Marker Positions Using Data Stored in a Database � 357

1 import csv

2 import gzip

3 import os

4

5 from pymongo import MongoClient, TEXT

6

7 FILE_NAME = ’../../samples/TAIR7_Transcripts_by_map_position.gz’

8 CONNECTION_STRING = os.getenv(’MONGODB_CS’, ’localhost:27017’)

9

10 # Get a file handler of an uncompressed file:

11 with gzip.open(FILE_NAME, "rt", newline="") as f_unzip:

12 rows = csv.reader(f_unzip, delimiter=’\t’)

13 next(rows) # Skip the header

14 # Dictionary for storing markers and associated information:

15 at_d = {}

16 # Load the dictionary using the data in the file:

17 for row in rows:

18 if row[0] in at_d:

19 chromosome, left_val, right_val = at_d[row[0]]

20 c7 = int(row[7])

21 left = c7 if c7<int(left_val) else left_val

22 c8 = int(row[8])

23 right = c8 if c8>int(right_val) else right_val

24 at_d[row[0]] = (int(chromosome), left, right)

25 else:

26 at_d[row[0]] = (int(row[5]), int(row[7]),

27 int(row[8]))

28 # Make a list with dictionaries to be stored as documents in

29 # MongoDB

30 markers = []

31 for marker in at_d:

32 markers.append({’marker_id’: marker, ’chromosome’:

33 at_d[marker][0], ’start’: at_d[marker][1],

34 ’end’: at_d[marker][2]})

35 client = MongoClient(CONNECTION_STRING)

36 db = client.TAIRDB

37 collection = db.markers_map

38 collection.insert_many(markers)

39 collection.create_index([(’marker_id’, TEXT)])

358 � Python for Bioinformatics

22.1.2 MongoDB Version with Commented Source Code

With the database in place, we finally can make a program to retrieve the marker
information from the MongoDB database and plot the chromosomes in a PDF
document.

The program asks for a list of loci. It checks if each locus conforms to a spe-
cific pattern (lines 134 and 167 show how to check a pattern using regex) and then
retrieves the data from the database. This program also has two “test modes”: DB-
DEMO and NODBDEMO. These modes are used to test the program without
entering all loci by hand. The first mode uses a predefined list of loci (starting at line
148) and then retrieves them from the database. The second mode uses a built-in
list of loci with its positions (from line 153) to test the program without a database
connection.3 Note that the connection string is taken from an environmental vari-
able. If this variable is not present, is uses the string ’localhost:27017’. To set
up an environmental variable in a Linux/macOS system, use:

$ export MONGODB_CS=’mongodb://user:pass@dobdomain:port’

This program needs pymongo, biopython and reportlab to work:

Listing 22.2: drawmarker.py: Draw markers in chromosomes from data extracted
from a MongoDB database

1 import os

2 import re

3

4 from pymongo import MongoClient

5 from Bio.Graphics import BasicChromosome

6 from reportlab.lib import colors

7

8 CONNECTION_STRING = os.getenv(’MONGODB_CS’, ’localhost:27017’)

9

10 def sortmarkers(crms,end):

11 """ Sort markers into chromosomes """

12 i = 0

13 crms_o = [[] for r in range(len(end))]

14 crms_fo = [[] for r in range(len(end))]

15 for crm in crms:

16 for marker in crm:

17 # add the marker start position at each chromosome.

18 crms_fo[i].append(marker[1])

3Having the data inside the program is called hardcoding. In most cases it is not recommended
since it is a better idea to have the data in an easy-to-change external file. In this case the data is
hardcoded since this data is only for debugging purposes.

Drawing Marker Positions Using Data Stored in a Database � 359

19 crms_fo[i].sort() # Sort the marker positions.

20 i += 1

21 i = 0

22 for order in crms_fo:

23 # Using the marker order set in crms_fo, fill crms_o

24 # with all the marker information

25 for pos in order:

26 for mark in crms[i]:

27 try:

28 if pos==mark[1]:

29 crms_o[i].append(mark)

30 except:

31 pass

32 i += 1

33 return crms_o

34

35 def getchromo(crms_o,end):

36 """ From an ordered list of markers, generate chromosomes.

37 """

38 chromo = [[] for r in range(len(end))]

39 i = 0

40 for crm_o in crms_o:

41 j = 0

42 if len(crm_o)>1:

43 for mark in crm_o:

44 if mark==crm_o[0]: #first marker

45 chromo[i].append((’’,None,mark[1]))

46 chromo[i].append((mark[0],colors.red,

47 mark[2]-mark[1]))

48 ant = mark[2]

49 elif mark==crm_o[-1]: #last marker

50 chromo[i].append((’’,None,mark[1]-ant))

51 chromo[i].append((mark[0],colors.red,

52 mark[2]-mark[1]))

53 chromo[i].append((’’,None,end[i]-mark[2]))

54 else:

55 chromo[i].append((’’,None,mark[1]-ant))

56 chromo[i].append((mark[0],colors.red,

57 mark[2]-mark[1]))

58 ant=mark[2]

59 elif len(crm_o)==1: # For chromosomes with one marker

60 chromo[i].append((’’,None,crm_o[0][1]))

61 chromo[i].append((crm_o[0][0],colors.red,

62 crm_o[0][2]-crm_o[0][1]))

360 � Python for Bioinformatics

63 chromo[i].append((’’,None,end[i]-crm_o[0][2]))

64 else:

65 # For chromosomes without markers

66 # Add 3% of each chromosome.

67 chromo[i].append((’’,None,int(0.03*end[i])))

68 chromo[i].append((’’,None,end[i]))

69 chromo[i].append((’’,None,int(0.03*end[i])))

70 i += 1

71 j += 1

72 return chromo

73

74 def addends(chromo):

75 """ Adds a 3% of blank region at both ends for better

76 graphic output.

77 """

78 size = 0

79 for x in chromo:

80 size += x[2]

81 # get 3% of size of each chromosome:

82 endsize = int(float(size)*.03)

83 # add this size to both ends in chromo:

84 chromo.insert(0,(’’, None, endsize))

85 chromo.append((’’, None, endsize))

86 return chromo

87

88 def load_chrom(chr_name):

89 """ Generate a chromosome with information

90 """

91 cur_chromosome = BasicChromosome.Chromosome(chr_name[0])

92 chr_segment_info = chr_name[1]

93

94 for seg_info_num in range(len(chr_segment_info)):

95 label, color, scale = chr_segment_info[seg_info_num]

96 # make the top and bottom telomeres

97 if seg_info_num == 0:

98 cur_segment = BasicChromosome.TelomereSegment()

99 elif seg_info_num == len(chr_segment_info) - 1:

100 cur_segment = BasicChromosome.TelomereSegment(1)

101 ## otherwise, they are just regular segments

102 else:

103 cur_segment = BasicChromosome.ChromosomeSegment()

104 if label != "":

105 cur_segment.label = label

106 cur_segment.label_size = 12

Drawing Marker Positions Using Data Stored in a Database � 361

107 if color is not None:

108 cur_segment.fill_color = color

109 cur_segment.scale = scale

110 cur_chromosome.add(cur_segment)

111

112 cur_chromosome.scale_num = max(END) + (max(END)*.04)

113 return cur_chromosome

114

115 def dblookup(atgids):

116 """ Code to retrieve all marker data from name using MongoDB

117 """

118 client = MongoClient(CONNECTION_STRING)

119 db = client.pr4

120 collection = db.markers_map4

121 markers = []

122 for marker in atgids:

123 mrk = collection.find_one({ "marker_id": marker})

124 if mrk:

125 markers.append((marker, (mrk[’chromosome’],

126 mrk[’start’], mrk[’end’])))

127 else:

128 print(’Marker {0} is not in the DB’.format(marker))

129 return markers

130

131 # Size of each chromosome:

132 END = (30427563, 19696817, 23467989, 18581571, 26986107)

133 gids = []

134 rx_rid = re.compile(’^AT[1-5]G\d{5}$’)

135 print(’’’Enter AT ID or press ’enter’ to stop entering IDs.

136 Valid IDs:

137 AT2G28000

138 AT3G03020

139

140 Also you can enter DBDEMO to use predefined set of markers

141 fetched from a MongoDB database. Enter NODBDEMO to use a

142 predefined set of markers without database access.’’’)

143 while True:

144 rid = input(’Enter Gene ID: ’)

145 if not rid:

146 break

147 if rid==’DBDEMO’:

148 gids = [’AT3G14890’,’AT1G66160’,’AT3G55260’,’AT5G59570’,

149 ’AT4G32551’,’AT1G01430’,’AT4G26000’,’AT2G28000’,

150 ’AT5G21090’,’AT5G10470’]

362 � Python for Bioinformatics

151 break

152 elif rid==’NODBDEMO’:

153 samplemarkers=[(’AT3G14890’, (3, 5008749, 5013275)),

154 (’AT1G66160’, (1, 24640827, 24642411)),

155 (’AT3G55260’, (3, 20500225, 20504056)),

156 (’AT1G10960’, (1, 3664385, 3665040)),

157 (’AT5G23350’, (5, 7857646, 7859280)),

158 (’AT5G15250’, (5, 4950414, 4952780)),

159 (’AT1G55700’, (1, 20825263, 20827306)),

160 (’AT5G21090’, (5, 7164583, 7167257)),

161 (’AT5G10470’, (5, 3289228, 3297249)),

162 (’AT2G28000’, (2, 11933524, 11936523)),

163 (’AT3G03020’, (3, 680920, 682009)),

164 (’AT4G26000’, (4, 13197255, 13199845)),

165 (’AT4G32551’, (4, 15707516, 15713587))]

166 break

167 if rx_rid.match(rid):

168 gids.append(rid)

169 else:

170 print("Bad format, please enter it again")

171

172 if rid!=’NODBDEMO’:

173 samplemarkers = dblookup(gids)

174

175 crms = [[] for r in range(len(END))]

176 for x in samplemarkers:

177 crms[int(x[1][0])-1].append((x[0], x[1][1], x[1][2]))

178

179 crms_o = sortmarkers(crms, END)

180 chromo = getchromo(crms_o, END)

181 all_chr_info = [("I", chromo[0]), ("II", chromo[1]),

182 ("III", chromo[2]), ("IV", chromo[3]),

183 ("V", chromo[4])]

184

185 pdf_organism = BasicChromosome.Organism()

186 for chr_info in all_chr_info:

187 newcrom = (chr_info[0], addends(chr_info[1]))

188 pdf_organism.add(load_chrom(newcrom))

189

190 pdf_organism.draw(’at.pdf’,’Arabidopsis thaliana’)

IV
Appendices

363

http://taylorandfrancis.com

A P P E N D I X A

Collaborative Development:

Version Control with GitHub

CONTENTS

A.1 Introduction to version control . 366
A.2 Version your code . 367
A.3 Share your code . 375
A.4 Contribute to other projects . 381
A.5 Conclusion . 382
A.6 Methods . 384
A.7 Additional Resources . 384

Introduction to the Appendix
While programs usually start as a single file handled by a single developer, some-
times these grow to include tens or hundreds of files shared by many people work-
ing in different places in different time zones. Without some software to handle this
workflow, more than one developer might work on the same portion of code or using
an outdated version. There is also the case where there is a single programmer who
may want to work from different locations (like home and work) and keep track of
different versions, without moving files from one location to another. This kind of
problem can apply to any text file, not only computer code. So solutions found on
this appendix can apply in any document.1

In the mid-1980s, a professor of Vrije University (Amsterdam), created Con-
current Versions System (CVS) while he was working in a C compiler with two
students. They faced the type of problem described above, because they were not
working together since they all had different schedules. One of the reasons for its
popularity, apart from being the first program of its kind, is that it was adopted by
high-profile projects such as the development of the Linux kernel. Fast forward to
2017, a new generation of “version control software” as they are generically known

1There are several services for collaborative editing of text documents like Overleaf (https://
www.overleaf.com), ShareLatex (https://www.sharelatex.com/), Google Docs (https://docs.
google.com/).

365

https://www.overleaf.com
https://www.sharelatex.com/
https://docs.google.com/
https://docs.google.com/
https://www.overleaf.com

366 � Python for Bioinformatics

are being used. Today most used program of its kind is Git, also created by the
author of the Linux kernel, Linus Torvalds.

In this appendix we reprint a paper called “A Quick Introduction to Version
Control with Git and GitHub.”

Citation: Blischak JD, Davenport ER, and Wilson G (2016). A Quick Introduc-
tion to Version Control with Git and GitHub. PLoS Comput Biol 12(1): e1004668.
doi:10.1371/journal.pcbi.1004668.

A.1 INTRODUCTION TO VERSION CONTROL

Many scientists write code as part of their research. Just as experiments are logged
in laboratory notebooks, it is important to document the code you use for analysis.
However, a few key problems can arise when iteratively developing code that make
it difficult to document and track which code version was used to create each result.
First, you often need to experiment with new ideas, such as adding new features
to a script or increasing the speed of a slow step, but you do not want to risk
breaking the currently working code. One often utilized solution is to make a copy
of the script before making new edits. However, this can quickly become a problem
because it clutters your file system with uninformative filenames, e.g. analysis.sh,
analysis_02.sh, analysis_03.sh, etc. It is difficult to remember the differences
between the versions of the files, and more importantly which version you used to
produce specific results, especially if you return to the code months later. Second,
you will likely share your code with multiple lab mates or collaborators and they
may have suggestions on how to improve it. If you email the code to multiple people,
you will have to manually incorporate all the changes each of them sends.

Fortunately, software engineers have already developed software to manage these
issues: version control. A version control system (VCS) allows you to track the
iterative changes you make to your code. Thus you can experiment with new ideas
but always have the option to revert to a specific past version of the code you used to
generate particular results. Furthermore, you can record messages as you save each
successive version so that you (or anyone else) reviewing the development history
of the code is able to understand the rationale for the given edits. Also, it facilitates
collaboration. Using a VCS, your collaborators can make and save changes to the
code, and you can automatically incorporate these changes to the main code base.
The collaborative aspect is enhanced with the emergence of websites that host
version controlled code.

In this quick guide, we introduce you to one VCS, Git (https://git-scm.com/),
and one online hosting site, GitHub (https://github.com), both of which are cur-
rently popular among scientists and programmers in general. More importantly,
we hope to convince you that although mastering a given VCS takes time, you can
already achieve great benefits by getting started using a few simple commands. Fur-
thermore, not only does using a VCS solve many common problems when writing
code, it can also improve the scientific process. By tracking your code development

https://github.com
https://git-scm.com/

Appendix A � 367

Table A.1 Resources

Distributed VCS
Git (https://git-scm.com)
Mercurial (https://www.mercurial-scm.org/)
Baazar (http://bazaar.canonical.com/)

Hosting Site

Github (https://github.com)
Bitbucket (https://bitbucket.org)
Gitlab (https://about.gitlab.com/about/)
Source Forge (https://sourceforge.net/)

Git installation https://git-scm.com/downloads

Git Tutorials

Software Carpentry (https://swcarpentry.github.io/
git-novice/)
Pro Git (https://git-scm.com/book/)
A Visual Git Reference (https://marklodato.github.io/
visual-git-guide/)
tryGit (https://try.github.io)

Graphical User
Interface for Git

https://git-scm.com/downloads/guis

with a VCS and hosting it online, you are performing science that is more transpar-
ent, reproducible, and open to collaboration. 23 There is no reason this framework
needs to be limited only to code; a VCS is well-suited for tracking any plain-text
files: manuscripts, electronic lab notebooks, protocols, etc.

A.2 VERSION YOUR CODE

The first step is to learn how to version your own code. In this tutorial, we will run
Git from the command line of the Unix shell. Thus we expect readers are already
comfortable with navigating a file system and running basic commands in such an
environment. You can find directions for installing Git for the operating system
running on your computer by following one of the links provided in Table A.1
There are many graphical user interfaces (GUIs) available for running Git [Table
A.1], which we encourage you to explore, but learning to use Git on the command
line is necessary for performing more advanced operations and using Git on a remote
machine.

To follow along, first create a folder in your home directory named thesis.
Next download the three files provided in Supporting Information and place them
in the thesis directory. Imagine that as part of your thesis you are studying the
transcription factor CTCF, and you want to identify high-confidence binding sites
in kidney epithelial cells. To do this, you will utilize publicly available ChIP-seq

2Ram K. Git can facilitate greater reproducibility and increased transparency in science. Source

Code Biol Med. 2013 Feb;8:7. doi: 10.1186/1751-0473-8-7. pmid:23448176.
3Wilson G, Aruliah D, Brown C, Chue HN, Davis M, Guy R, et al. Best practices for scientific

computing. PLoS Biol. 2014 Jan;12:e1001745. doi: 10.1371/journal.pbio.1001745. pmid:24415924.

https://git-scm.com/downloads
https://swcarpentry.github.io/git-novice/
https://marklodato.github.io/visual-git-guide/
https://git-scm.com/downloads/guis
https://www.mercurial-scm.org/
https://git-scm.com
http://bazaar.canonical.com/
https://github.com
https://bitbucket.org
https://about.gitlab.com/about/
https://sourceforge.net/
https://swcarpentry.github.io/git-novice/
https://marklodato.github.io/visual-git-guide/
https://try.github.io
https://git-scm.com/book/

368 � Python for Bioinformatics

data produced by the ENCODE consortium.4 ChIP-seq is a method for finding
the sites in the genome where a transcription factor is bound, and these sites are
referred to as peaks.5 process.sh downloads the ENCODE CTCF ChIP-seq data
from multiple types of kidney samples and calls peaks (S1_Data), clean.py filters
peaks with a fold change cutoff and merges peaks from the different kidney samples
(S2_Data), and analyze.R creates diagnostic plots on the length of the peaks and
their distribution across the genome (S3_Data).

If you have just installed Git, the first thing you need to do is provide some
information about yourself, since it records who makes each change to the file(s).
Set your name and email by running the following lines, but replacing “First Last”
and “user@domain” with your full name and email address, respectively.

$ git config --global user.name "First Last"

$ git config --global user.email "user@domain"

To start versioning your code with Git, navigate to your newly created directory,
~/thesis. Run the command git init to initialize the current folder as a Git
repository [Figures A.1, A.2A]. A repository (or repo, for short) refers to the current
version of the tracked files as well as all the previously saved versions (Box 1).
Only files that are located within this directory (and any subdirectories) have the
potential to be version controlled, i.e. Git ignores all files outside of the initialized
directory. For this reason, projects under version control tend to be stored within
a single directory to correspond with a single Git repository. For strategies on how
to best organize your own projects, see Noble, 2009. 6

$ cd ~/thesis

$ ls

analyze.R clean.py process.sh

$ git init

Initialized empty Git repository in ~/thesis/.git/

Box 1: Definitions.

• Version Control System (VCS): (noun) a program that tracks changes to
specified files over time and maintains a library of all past versions of those
files

4ENCODE Project Consortium, Bernstein B, Birney E, Dunham I, Green E, Gunter C, et al.
An integrated encyclopedia of DNA elements in the human genome. Nature. 2012 Sep;489:57–74.
doi: 10.1038/nature11247. pmid:22955616.

5Bailey T, Krajewski P, Ladunga I, Lefebvre C, Li Q, Liu T, et al. Practical guidelines
for the comprehensive analysis of ChIP-seq data. PLoS Comput Biol. 2013 null;9:e1003326. doi:
10.1371/journal.pcbi.1003326. pmid:24244136

6Noble W. A quick guide to organizing computational biology projects. PLoS Comput Biol. 2009
Jul;5:e1000424. doi: 10.1371/journal.pcbi.1000424. pmid:19649301.

Appendix A � 369

Figure A.1 The git add/commit process: To store a snapshot of changes in your
repository, first git add any files to the staging area you wish to commit (for
example, you’ve updated the process.sh file). Second, type git commit with a
message. Only files added to the staging area will be committed. All past commits
are located in the hidden .git directory in your repository.

• Git: (noun) a version control system

• repository (repo): (noun) folder containing all tracked files as well as the
version control history

• commit: (noun) a snapshot of changes made to the staged file(s); (verb) to
save a snapshot of changes made to the staged file(s)

• stage: (noun) the staging area holds the files to be included in the next
commit; (verb) to mark a file to be included in the next commit

• track: (noun) a tracked file is one that is recognized by the Git repository

• branch: (noun) a parallel version of the files in a repository (Box 7)

• local: (noun) the version of your repository that is stored on your personal
computer

• remote: (noun) the version of your repository that is stored on a remote
server, for instance on GitHub

• clone: (verb) to create a local copy of a remote repository on your personal
computer

• fork: (noun) a copy of another user’s repository on GitHub; (verb) to copy a
repository, for instance from one user’s GitHub account to your own

• merge: (verb) to update files by incorporating the changes introduced in new
commits

370 � Python for Bioinformatics

Figure A.2 Working with a local repository: (A) To designate a directory on your
computer as a Git repo, type the command git init. This initializes the repository
and will allow you to track the files located within that directory. (B) Once you
have added a file, follow the git add/commit cycle to place the new file first into
the staging area by typing git add to designate it to be committed, and then git

commit to take the snapshot of that file. The commit is assigned a commit identifier
(d75es) that can be used in the future to pull up this version or to compare different
committed versions of this file. (C) As you continue to add and change files, you
should regularly add and commit those changes. Here, an additional commit was
done, and the commit log now shows two commit identifiers: d75es (from step B)
and f658t (the new commit). Each commit will generate a unique identifier, which
can be examined in reverse chronological order using git log.

• pull: (verb) to retrieve commits from a remote repository and merge them
into a local repository

• push: (verb) to send commits from a local repository to a remote repository

• pull request: (noun) a message sent by one GitHub user to merge the com-
mits in their remote repository into another user’s remote repository

Appendix A � 371

Now you are ready to start versioning your code [Figure A.1]. Conceptually, Git
saves snapshots of the changes you make to your files whenever you instruct it to.
For instance, after you edit a script in your text editor, you save the updated script
to your thesis folder. If you tell Git to save a snapshot of the updated document,
then you will have a permanent record of the file in that exact version even if you
make subsequent edits to the file. In the Git framework, any changes you have made
to a script, but have not yet recorded as a snapshot with Git, reside in the working
directory only [Figure A.1]. To follow what Git is doing as you record the initial
version of your files, use the informative command git status.

$ git status

On branch master

Initial commit

Untracked files:

(use "git add <file>..." to include in what will be committed)

analyze.R

clean.py

process.sh

nothing added to commit but untracked files present (use "git add" <=

to track)

There are a few key things to notice from this output. First, the three scripts
are recognized as untracked files because you have not told Git to start tracking
anything yet. Second, the word “commit” is Git terminology for snapshot. As a noun
it means “a version of the code,” e.g. “the figure was generated using the commit
from yesterday” (Box 1). This word can also be used as a verb, in which case it
means “to save,” e.g. “to commit a change.” Lastly, the output explains how you
can track your files using git add. Start tracking the file process.sh.

$ git add process.sh

And check its new status.

$ git status

On branch master

Initial commit

Changes to be committed:

372 � Python for Bioinformatics

(use "git rm --cached <file>..." to unstage)

new file: process.sh

Untracked files:

(use "git add <file>..." to include in what will be committed)

analyze.R

clean.py

Since this is the first time that you have told Git about the file process.sh,
two key things have happened. First, this file is now being tracked, which means
Git recognizes it as a file you wish to be version controlled (Box 1). Second, the
changes made to the file (in this case the entire file because it is the first commit)
have been added to the staging area [Figure A.1]. Adding a file to the staging area
will result in the changes to that file being included in the next commit, or snapshot
of the code (Box 1). As an analogy, adding files to the staging area is like putting
things in a box to mail off, and committing is like putting the box in the mail.

Since this will be the first commit, or first version of the code, use git add to
begin tracking the other two files and add their changes to the staging area as well.
Then create the first commit using the command git commit.

$ git add clean.py analyze.R

$ git commit -m "Add initial version of thesis code."

[master (root-commit) 660213b] Add initial version of thesis code.

3 files changed, 154 insertions(+)

create mode 100644 analyze.R

create mode 100644 clean.py

create mode 100644 process.sh

Notice the flag -m was used to pass a message for the commit. This message
describes the changes that have been made to the code and is required. If you do
not pass a message at the command line, the default text editor for your system will
open so you can enter the message. You have just performed the typical development
cycle with Git: make some changes, add updated files to the staging area, and
commit the changes as a snapshot once you are satisfied with them [Figure A.2].

Since Git records all of the commits, you can always look through the complete
history of a project. To view the record of your commits, use the command git log.
For each commit, it lists the unique identifier for that revision, author, date, and
commit message.

$ git log

commit 660213b91af167d992885e45ab19f585f02d4661

Author: First Last <user@domain>

Date: Fri Aug 21 14:52:05 2015 -0500

Appendix A � 373

Add initial version of thesis code.

The commit identifier can be used to compare two different versions of a file,
restore a file to a previous version from a past commit, and even retrieve tracked
files if you accidentally delete them.

Now you are free to make changes to the files knowing that you can always
revert them to the state of this commit by referencing its identifier. As an example,
edit clean.py so that the fold change cutoff for filtering peaks is more stringent.
Here is the current bottom of the file.

$ tail clean.py

Filter based on fold-change over control sample

fc_cutoff = 10

epithelial = epithelial.filter(filter_fold_change,

fc = fc_cutoff).saveas()

proximal_tube = proximal_tube.filter(filter_fold_change,

fc = fc_cutoff).saveas()

kidney = kidney.filter(filter_fold_change,

fc = fc_cutoff).saveas()

Identify only those sites that are peaks in all three tissue types

combined = pybedtools.BedTool().multi_intersect(

i = [epithelial.fn, proximal_tube.fn, kidney.fn])

union = combined.filter(lambda x: int(x[3]) == 3).saveas()

union.cut(range(3)).saveas(data + "/sites-union.bed")

Using a text editor, increase the fold change cutoff from 10 to 20.

$ tail clean.py

Filter based on fold-change over control sample

fc_cutoff = 20

epithelial = epithelial.filter(filter_fold_change,

fc = fc_cutoff).saveas()

proximal_tube = proximal_tube.filter(filter_fold_change,

fc = fc_cutoff).saveas()

kidney = kidney.filter(filter_fold_change,

fc = fc_cutoff).saveas()

Identify only those sites that are peaks in all three tissue types

combined = pybedtools.BedTool().multi_intersect(

i = [epithelial.fn, proximal_tube.fn, kidney.fn])

union = combined.filter(lambda x: int(x[3]) == 3).saveas()

union.cut(range(3)).saveas(data + "/sites-union.bed")

Because Git is tracking clean.py, it recognizes that the file has been changed
since the last commit.

374 � Python for Bioinformatics

$ git status

On branch master

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working<=

directory)

#

modified: clean.py

#

no changes added to commit (use "git add" and/or "git commit -a")

The report from git status indicates that the changes to clean.py are not
staged, i.e. they are in the working directory [Figure A.1]. To view the unstaged
changes, run the command git diff.

$ git diff

diff --git a/clean.py b/clean.py

index 7b8c058..76d84ce 100644

--- a/clean.py

+++ b/clean.py

@@ -28,7 +28,7 @@ def filter_fold_change(feature, fc = 1):

return False

Filter based on fold-change over control sample

-fc_cutoff = 10

+fc_cutoff = 20

epithelial = epithelial.filter(filter_fold_change,

fc = fc_cutoff).saveas()

proximal_tube = proximal_tube.filter(filter_fold_change,

fc = fc_cutoff).saveas()

kidney = kidney.filter(filter_fold_change,

fc = fc_cutoff).saveas()

Any lines of text that have been added to the script are indicated with a + and
any lines that have been removed with a -. Here, we altered the line of code which
sets the value of fc_cutoff. git diff displays this change as the previous line
being removed and a new line being added with our update incorporated. You can
ignore the first five lines of output because they are directions for other software
programs that can merge changes to files. If you wanted to keep this edit, you could
add clean.py to the staging area using git add and then commit the change
using git commit, as you did above. Instead, this time undo the edit by following
the directions from the output of git status to “discard changes in the working
directory” using the command git checkout.

$ git checkout -- clean.py

Appendix A � 375

$ git diff

Now git diff returns no output because git checkout undid the unstaged
edit you had made to clean.py. And this ability to undo past edits to a file is not
limited to unstaged changes in the working directory. If you had committed multiple
changes to the file clean.py and then decided you wanted the original version from
the initial commit, you could replace the argument -- with the commit identifier of
the first commit you made above (your commit identifier will be different; use
git log to find it). The -- used above was simply a placeholder for the first
argument because by default git checkout restores the most recent version of
the file from the staging area (if you haven’t staged any changes to this file, as is
the case here, the version of the file in the staging area is identical to the version
in the last commit). Instead of using the entire commit identifier, use only the first
seven characters, which is simply a convention since this is usually long enough for
it to be unique.

$ git checkout 660213b clean.py

At this point, you have learned the commands needed to version your code with
Git. Thus you already have the benefits of being able to make edits to files without
copying them first, to create a record of your changes with accompanying messages,
and to revert to previous versions of the files if needed. Now you will always be able
to recreate past results that were generated with previous versions of the code (see
the command git tag for a method to facilitate finding specific past versions) and
see the exact changes you have made over the course of a project.

A.3 SHARE YOUR CODE

Once you have your files saved in a Git repository, you can share it with your col-
laborators and the wider scientific community by putting your code online [Figure
A.3]. This also has the added benefit of creating a backup of your scripts and pro-
vides a mechanism for transferring your files across multiple computers. Sharing a
repository is made easier if you use one of the many online services that host Git
repositories [Figure A.1], e.g. GitHub. Note, however, that any files that have not
been tracked with at least one commit are not included in the Git repository, even
if they are located within the same directory on your local computer (see Box 2 for
advice on the types of files that should not be versioned with Git and Box 3 for
advice on managing large files).

Box 2: What not to version control. You can version control any file that you put
in a Git repository, whether it is text-based, an image, or giant data files. However,
just because you can version control something, does not mean you should. Git
works best for plain text based documents such as your scripts or your manuscript
if written in LaTeX or Markdown. This is because for text files, Git saves the entire

376 � Python for Bioinformatics

file only the first time you commit it and then saves just your changes with each
commit. This takes up very little space and Git has the capability to compare
between versions (using git diff). You can commit a non-text file, but a full copy
of the file will be saved in each commit that modifies it. Over time, you may find
the size of your repository growing very quickly. A good rule of thumb is to version
control anything text based: your scripts or manuscripts if they are written in plain
text. Things not to version control are large data files that never change, binary
files (including Word and Excel documents), and the output of your code.

In addition to the type of file, you need to consider the content of the file.
If you plan on sharing your commits publicly using GitHub, ensure you are not
committing any files that contain sensitive information, such as human subject
data or passwords.

To prevent accidentally committing files you do not wish to track, and to remove
them from the output of git status, you can create a file called .gitignore. In
this file, you can list subdirectories and/or file patterns that Git should ignore. For
example, if your code produced log files with the file extension .log, you could
instruct Git to ignore these files by adding *.log to .gitignore. In order for these
settings to be applied to all instances of the repository, e.g. if you clone it onto
another computer, you need to add and commit this file.

Box 3: Managing large files Many biological applications require handling large
data files. While Git is best-suited for collaboratively writing small text files,
nonetheless collaboratively working on projects in the biological sciences necesi-
tates managing this data.

The example analysis pipeline in this tutorial starts by downloading data files
in BAM format which contain the alignments of short reads from a ChIP-seq exper-
iment to the human genome. Since these large, binary files are not going to change,
there is no reason to version them with Git. Thus hosting them on a remote http
(as ENCODE has done in this case) or ftp site allows each collaborator to down-
load it to her machine as needed, e.g., using wget, curl, or rsync. If the data files
for your project are smaller, you could also share them via services like Dropbox
(www.dropbox.com) or Google Drive (https://www.google.com/drive/).

However, some intermediate data files may change over time, and the practical
necessity to ensure all collaborators are using the same data set may override the
advice to not put code output under version control, as described in Box 2. Again
returning to the ChIP-seq example, the first step calling the peaks is the most dif-
ficult computationally because it requires access to a Unix-like environment and
sufficient computational resources. Thus for collaborators that want to experiment
with clean.py and analyze.R without having to run process.sh, you could ver-
sion the data files containing the ChIP-seq peaks (which are in BED format). But
since these files are larger than that typically used with Git, you can instead use one

www.dropbox.com
https://www.google.com/drive/

Appendix A � 377

of the solutions for versioning large files within a Git repository without actually
saving the file with Git, e.g. git-annex (https://git-annex.branchable.com/) or
git-fat (https://github.com/jedbrown/git-fat/). Recently GitHub has created
their own solution for managing large files called Git Large File Storage (LFS)
(https://git-lfs.github.com/). Instead of committing the entire large file to
Git, which quickly becomes unmanageable, it commits a text pointer. This text
pointer refers to a specific file saved on a remote GitHub server. Thus when you
clone a repository, it only downloads the latest version of the large file. And if
you check out an older version of the repository, it automatically downloads the
old version of the large file from the remote server. After installing Git LFS, you
can manage all the BED files with one command: git lfs track "*.bed". Then
you can commit the BED files just like your scripts, and they will automatically
be handled with Git LFS. Now if you were to change the parameters of the peak
calling algorithm and re-run process.sh, you could commit the updated BED files
and your collaborators could pull the new versions of the files directly to their local
Git repositories.

Below we focus on the technical aspects of sharing your code. However, there
are also other issues to consider when deciding if and how you are going to make
your code available to others. For quick advice on these subjects, see Box 4 on
how to license your code, Box 5 on concerns about being scooped, and Box 6 on
the increasing trend of journals to institute sharing policies that require authors to
deposit code in a public archive upon publication.

Box 4: Choosing a license Putting software and other material in a public place
is not the same as making it publicly usable. In order to do that, the authors must
also add a license, since copyright laws in some jurisdictions require people to treat
anything that isn’t explicitly open as being proprietary.

While dozens of open licenses have been created, the two most widely used are
the GNU Public License (GPL) and the MIT/BSD family of licenses. Of these, the
MIT/BSD-style licenses put the fewest requirements on re-use, and thereby make
it easier for people to integrate your software into their project.

For an excellent short discussion of these issues, and links to more information,
see Jake Vanderplas’s blog post from March 2014 at http://www.astrobetter.

com/blog/2014/03/10/the-whys-and-hows-of-licensing-scientific-code/.
For a more in-depth discussion of the legal implications of different licenses, see

Morin et al., 2012.7

7Morin A, Urban J, Sliz P. A quick guide to software licensing for the scientist-programmer.
PLoS Comput Biol. 2012 null;8:e1002598. doi: 10.1371/journal.pcbi.1002598. pmid:22844236.

https://git-annex.branchable.com/
https://github.com/jedbrown/git-fat/
https://git-lfs.github.com/
http://www.astrobetter.com/blog/2014/03/10/the-whys-and-hows-of-licensing-scientific-code/
http://www.astrobetter.com/blog/2014/03/10/the-whys-and-hows-of-licensing-scientific-code/

378 � Python for Bioinformatics

Box 5: Being Scooped One concern scientists frequently have about putting work
in progress online is that they will be scooped, e.g., that someone will analyze
their data and publish a result that they themselves would have, but hadn’t yet. In
practice, though, this happens rarely if at all: in fact, the authors are not aware of
a single case in which this has actually happened, and would welcome pointers to
specific instances. In practice, it seems more likely that making work public early in
something like a version control repository, which automatically adds timestamps
to content, will help researchers establish their priority.

Box 6: Journal Policies Sharing data, code, and other materials is quickly mov-
ing from “desired” to “required.” For example, PLOS’s sharing policy (http:
//journals.plos.org/plosone/s/materials-and-software-sharing) already
says, “We expect that all researchers submitting to PLOS will make all relevant
materials that may be reasonably requested by others available without restric-
tions upon publication of the work.” Its policy on software is more specific:

We expect that all researchers submitting to PLOS submissions in which
software is the central part of the manuscript will make all relevant
software available without restrictions upon publication of the work.
Authors must ensure that software remains usable over time regardless
of versions or upgrades. . .

It then goes on to specify that software must be based on open source standards,
and that it must be put in an archive which is large or long-lived. Granting agencies,
philanthropic foundations, and other major sponsors of scientific research are all
moving in the same direction, and to our knowledge, none has relaxed or reduced
sharing requirements in the last decade.

To begin using GitHub, you will first need to sign up for an account. For the
code examples in this tutorial, you will need to replace username with the username
of your account. Next choose the option to “Create a new repository” (Fig. A.3B, see
https://help.github.com/articles/create-a-repo/). Call it “thesis” because
that is the directory name containing the files on your computer, but note that you
can give it a different name on GitHub if you wish. Also, now that the code will
be existing in multiple places, you need to learn some more terminology (Box 1).
A local repository refers to code that is stored on the machine you are using, e.g.
your laptop; whereas, a remote repository refers to the code that is hosted online.
Thus, you have just created a remote repository.

Now you need to send the code on your computer to GitHub. The key to this
is the URL that GitHub assigns your newly created remote repository. It will
have the form https://github.com/username/thesis.git (see https://help.

github.com/articles/cloning-a-repository/). Notice that this URL is using

https://help.github.com/articles/create-a-repo/
https://github.com/username/thesis.git
https://help.github.com/articles/cloning-a-repository/
http://journals.plos.org/plosone/s/materials-and-software-sharing
http://journals.plos.org/plosone/s/materials-and-software-sharing
https://help.github.com/articles/cloning-a-repository/

Appendix A � 379

Figure A.3 Working with both a local and remote repository as a single user: (A) On
your computer, you commit to a Git repository (commit d75es). (B) On GitHub,
you create a new repository called thesis. This repository is currently empty and
not linked to the repo on your local machine. (C) The command git remote add

connects your local repository to your remote repository. The remote repository
is still empty, however, because you have not pushed any content to it. (D) You
send all the local commits to the remote repository using the command git push.
Only files that have been committed will appear in the remote repository. (E)
You repeat several more rounds of updating scripts and committing on your local
computer (commit f658t and then commit xv871). You have not yet pushed these
commits to the remote repository, so only the previously pushed commit is in the
remote repo (commit d75es). (F) To bring the remote repository up to date with
your local repository, you git push the two new commits to the remote repository.
The local and remote repositories now contain the same files and commit histories.

380 � Python for Bioinformatics

the HTTPS protocol, which is the quickest to begin using. However it requires you
to enter your username and password when communicating with GitHub, so you’ll
want to consider switching to the SSH protocol once you are regularly using Git
and GitHub (see https://help.github.com/articles/generating-ssh-keys/

for directions). In order to link the local thesis repository on your computer to the
remote repository you just created, in your local repository you need to tell Git
the URL of the remote repository using the command git remote add [[Figure
A.3C].

$ git remote add origin https://github.com/username/thesis.git

The name “origin” is a bookmark for the remote repository so that you do not
have to type out the full URL every time you transfer your changes (this is the
default name for a remote repository, but you could use another name if you like).

Send your code to GitHub using the command git push [Figure A.3D].

$ git push origin master

You first specify the remote repository, “origin.” Second, you tell Git to push to
the “master” copy of the repository we will not go into other options in this tutorial,
but Box 7 discusses them briefly.

Box 7: Branching Do you ever make changes to your code, but are not sure you will
want to keep those changes for your final analysis? Or do you need to implement
new features while still providing a stable version of the code for others to use?
Using Git, you can maintain parallel versions of your code that you can easily
bounce between while you are working on your changes. You can think of it like
making a copy of the folder you keep your scripts in, so that you have your original
scripts intact but also have the new folder where you make changes. Using Git,
this is called branching and it is better than separate folders because 1) it uses a
fraction of the space on your computer, 2) keeps a record of when you made the
parallel copy (branch) and what you have done on the branch, and 3) there is a way
to incorporate those changes back into your main code if you decide to keep your
changes (and a way to deal with conflicts). By default, your repository will start with
one branch, usually called “master.” To create a new branch in your repository, type
git branch new_branch_name. You can see what branches a current repository has
by typing git branch, with the branch you are currently in being marked by a star.
To move between branches, type git checkout branch_to_move_to. You can edit
files and commit them on each branch separately. If you want combine the changes
in your new branch with the master branch, you can merge the branches by typing
git merge new_branch_name while in the master branch.

Pushing to GitHub also has the added benefit of backing up your code in

https://help.github.com/articles/generating-ssh-keys/
https://github.com/username/thesis.git

Appendix A � 381

case anything were to happen to your computer. Also, it can be used to manu-
ally transfer your code across multiple machines, similar to a service like Dropbox
(www.dropbox.com), but with the added capabilities and control of Git. For exam-
ple, what if you wanted to work on your code on your computer at home? You can
download the Git repository using the command git clone.

$ git clone https://github.com/username/thesis.git

By default, this will download the Git repository into a local directory named
“thesis.” Furthermore, the remote “origin” will automatically be added so that you
can easily push your changes back to GitHub. You now have copies of your repos-
itory on your work computer, your GitHub account online, and your home com-
puter. You can make changes, commit them on your home computer, and send
those commits to the remote repository with git push, just as you did on your
work computer.

Then the next day back at your work computer, you could update the code with
the changes you made the previous evening using the command git pull.

$ git pull origin master

This pulls in all the commits that you had previously pushed to the GitHub
remote repository from your home computer. In this workflow, you are essen-
tially collaborating with yourself as you work from multiple computers. If you
are working on a project with just one or two other collaborators, you could
extend this workflow so that they could edit the code in the same way. You
can do this by adding them as Collaborators on your repository (Settings -
> Collaborators -> Add collaborator, see https://help.github.com/articles/

adding-collaborators-to-a-personal-repository/). However, with projects
with lots of contributors, GitHub provides a workflow for finer-grained control of
the code development.

With the addition of a GitHub account and a few commands for sending and
receiving code, you can now share your code with others, transfer your code across
multiple machines, and set up simple collaborative workflows.

A.4 CONTRIBUTE TO OTHER PROJECTS

Lots of scientific software is hosted online in Git repositories. Now that you know
the basics of Git, you can directly contribute to developing the scientific software
you use for your research [Figure A.4]. From a small contribution like fixing a typo
in the documentation to a larger change such as fixing a bug, it is empowering to
be able to improve the software used by you and many other scientists.

When contributing to a larger project with many contributors, you will not be
able to push your changes with git push directly to the project’s remote repository.
Instead you will first need to create your own remote copy of the repository, which on
GitHub is called a fork (Box 1). You can fork any repository on GitHub by clicking

www.dropbox.com
https://github.com/username/thesis.git
https://help.github.com/articles/adding-collaborators-to-a-personal-repository/
https://help.github.com/articles/adding-collaborators-to-a-personal-repository/

382 � Python for Bioinformatics

the button “Fork” on the top right of the page (see https://help.github.com/

articles/fork-a-repo/).
Once you have a fork of a project’s repository, you can clone it to your computer

and make changes just like a repository you created yourself. As an exercise, you will
add a file to the repository that we used to write this paper. First, go to https://

github.com/jdblischak/git-for-science and choose the “Fork” option to create
a git-for-science repository under your GitHub account [Figure A.4B]. In order to
make changes, download it to your computer with the command git clone from
the directory you wish the repo to appear in [Figure A.4C].

$ git clone https://github.com/username/git-for-science.git

Now that you have a local version, navigate to the subdirectory readers and
create a text file named as your GitHub username (Fig. A.4D).

$ cd git-for-science/readers

$ touch username.txt

Add and commit this new file (Fig. A.4D), and then push the changes back to
your remote repository on GitHub (Fig. A.4E).

$ git add username.txt

$ git commit -m "Add username to directory of readers."

$ git push origin master

Currently, the new file you created, readers/username.txt, only exists in your
fork of git-for-science. To merge this file into the main repository, send a pull request
using the GitHub interface (Pull request -> New pull request -> Create pull request;
Fig. A.4F; see https://help.github.com/articles/using-pull-requests). Af-
ter the pull request is created, we can review your change and then merge it into
the main repository. Although this process of forking a project’s repository and
issuing a pull request seems like a lot of work to contribute changes, this workflow
gives the owner of a project control over what changes get incorporated into the
code. You can have others contribute to your projects using the same workflow.

The ability to use Git to contribute changes is very powerful because it al-
lows you to improve the software that is used by many other scientists and also
potentially shape the future direction of its development.

A.5 CONCLUSION

Git, albeit complicated at first, is a powerful tool that can improve code devel-
opment and documentation. Ultimately the complexity of a VCS not only gives
users a well-documented “undo” button for their analyses, but it also allows for
collaboration and sharing of code on a massive scale. Furthermore, it does not need

https://help.github.com/articles/fork-a-repo/
https://github.com/username/git-for-science.git
https://help.github.com/articles/using-pull-requests
https://help.github.com/articles/fork-a-repo/
https://github.com/jdblischak/git-for-science
https://github.com/jdblischak/git-for-science

Appendix A � 383

Figure A.4 Contributing to open source projects: (A) Using your internet browser,
navigate to https://github.com/jdblischak/git-for-science. (B) Click on
the Fork button to create a copy of this repo on GitHub under your user-
name. (C) On your computer, type git clone https://github.com/username/

git-for-science.git. (D) Navigate to the readers directory by typing cd

git-for-science/readers/. Create an empty file that is titled with your GitHub
username by typing touch username.txt. Commit that new file by adding it to
the staging area (git add username.txt) and committing with a message (git
commit -m "Add username"). (E) You have committed your new file locally, and
the next step is to push that new commit up to the git-for-science repo under your
username on GitHub. To do so, type git push origin master. (F) To request
to add your commits to the original git-for-science repo, issue a pull request from
the git-for-science repo under your username on GitHub. Once your Pull Request is
reviewed and accepted, you will be able to see the file you committed in the original
git-for-science repository.

https://github.com/jdblischak/git-for-science
https://github.com/username/git-for-science.git
https://github.com/username/git-for-science.git

384 � Python for Bioinformatics

to be learned in its entirety to be useful. Instead, you can derive tangible ben-
efits from adopting version control in stages. With a few commands (git init,
git add, git commit), you can start tracking your code development and avoid
a file system full of copied files [Figure A.2]. Adding a few additional commands
(git push, git clone, git pull) and a GitHub account, you can share your code
online, transfer your changes across machines, and collaborate in small groups [Fig-
ure A.3]. Lastly, by forking public repositories and sending pull requests, you can
directly improve scientific software [Figure A.4].

A.6 METHODS

We collaboratively wrote the article in LaTeX (http://www.latex-project.org/)
using the online authoring platform Authorea (https://www.authorea.com). Fur-
thermore, we tracked the development of the document using Git and GitHub.
The Git repo is available at https://github.com/jdblischak/git-for-science,
and the rendered LaTeX article is available at https://www.authorea.com/users/
5990/articles/17489.

Copyright for this article © 2016 Blischak et al. This is an open access article
distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited

A.7 ADDITIONAL RESOURCES

• Code School GitHun course.
https://try.github.io/levels/1/challenges/1

• Hello World, a 10 minutes Git tutorial.
https://guides.github.com/activities/hello-world/

• Git cheat sheet.
http://cheat.errtheblog.com/s/git

• Improving collaboration with forks.
https://goo.gl/bUkjQV

• GVFS: Git Virtual File System.
https://github.com/Microsoft/GVFS

https://www.authorea.com
https://github.com/jdblischak/git-for-science
https://www.authorea.com/users/5990/articles/17489
https://try.github.io/levels/1/challenges/1
https://guides.github.com/activities/hello-world/
http://cheat.errtheblog.com/s/git
http://www.latex-project.org/
https://www.authorea.com/users/5990/articles/17489
https://goo.gl/bUkjQV
https://github.com/Microsoft/GVFS

A P P E N D I X B

Install a Bottle App in

PythonAnywhere

CONTENTS

B.1 PythonAnywhere . 385
B.1.1 What Is PythonAnywhere . 385
B.1.2 Installing a Web App in PythonAnywhere . 385

B.1 PYTHONANYWHERE

B.1.1 What Is PythonAnywhere

PythonAnywhere is a web service that allows you to host, run, and code Python in
the cloud. It is different from a hosting service because it has some extra services.
One service is the “console,” where you can run bash or Python commands. In
fact you can choose from Bash, Python, IPython, PyPy, MySQL, and PostgreSQL
consoles. You can have a console open in one machine at work, do some work,
turn off your machine, go back home and connect to the same console and keep on
working from the point you left.

When you enter your account you see a dashboard with the Consoles tab
already selected (see Figure B.1).

Another advantage of PythonAnywhere is a “wizard” that guides you to set up
a web app. The following section is about how to deploy a Bottle web app using
this wizard.

B.1.2 Installing a Web App in PythonAnywhere

To create a web app, go to the “Web” tab and press “Add a new web app” (see
Figure B.2).

This will lead you to the screen seen in Figure B.3 where you can choose between
upgrading your account to use a custom domain or keeping the free option with the
form your-account-name.pythonanywhere.com. Click “Next” if you are OK with
the free option.

In Listing 10.13 (page 230) we have a program we could try to install in Pytho-
nAnywhere. The program can’t be installed as is; it would required a minor modi-
fication.

385

386 � Python for Bioinformatics

Figure B.1 “Consoles” tab, where you can launch new consoles or resume existing
ones.

Figure B.2 The “Web” tab in PythonAnywhere, where you can create a web app.

The next step is to select a web framework (Figure B.4). Choose Bottle.
Then select a Python version (Figure B.5). Choose 3.5 or better if available.
The next step is to enter the path of the Python file with the app. A sample

app will be installed in this file, so enter a non-existent, file name. In this case I
entered /home/sbassi/protcharge/index.py (Figure B.6). If the directory does
not exist, it will be created.

This will lead to a page like the one in Figure B.7. You can try go-
ing to your domain using your web browser to see if it is working. The do-
main is http://your-account-name.pythonanywhere.com (in my case is http:

http://your-account-name.pythonanywhere.com

Appendix B � 387

Figure B.3 Screen to opt for upgrading domain type or keeping the free one.

//sbassi.pythonanywhere.com). You will see a “Hello from Bottle!” page. The
next step is to change the provided sample source file so we can run our web app
instead.

In order to change the content of the index.py file, go to the “File” tab and click
on the file to edit. You should see the contents as in Figure B.8. From that file, you
can delete everything except the last line (line 9, application = default_app()).
In its place, copy the code in Listing 10.13 (from page 230) with two changes:
Delete the last line (line 36 in the original, the one that starts with run) and add
default_app in the import line. The resulting index.py file can be found in the
Github project associated with the book.1

Once the code is deployed, the templates and auxiliary files must be uploaded.
Go to the “Files” tab and create a new directory called views (see Figure B.9).

On this directory, upload the protchargeformbottle.html and result.html

files. This should look like the screenshot in Figure B.10.
Using the same method, create a css directory and upload the bootstrap file

(bootstrap.min.css).
Now the web app is ready to use. Just go to your domain (http://

1The Github project is at https://github.com/Serulab/Py4Bio and this file is at https://

github.com/Serulab/Py4Bio/blob/master/code/ch10/index.py.

https://github.com/Serulab/Py4Bio
https://github.com/Serulab/Py4Bio/blob/master/code/ch10/index.py
https://github.com/Serulab/Py4Bio/blob/master/code/ch10/index.py

388 � Python for Bioinformatics

Figure B.4 Select a web framework screen, select Bottle.

your-account-name.pythonanywhere.com) and you should see a screen like the
one in Figure B.11.

If there is any error, go to the “Web” tab and look for the logs files. They have
information that may be useful to debug any issue that may arise.

Appendix B � 389

Figure B.5 Select a Python and Bottle version.

390 � Python for Bioinformatics

Figure B.6 Form to enter the path of the web app.

Figure B.7 The sample web app is ready to use.

Appendix B � 391

Figure B.8 The “File” tab.

Figure B.9 Form to create a new directory in PythonAnywhere.

Figure B.10 View and upload files into your account.

392 � Python for Bioinformatics

Figure B.11 Front-end of the program to calculate charge of a protein using Bottle
and hosted in PythonAnywhere.

A P P E N D I X C

Scientific Python Cheat

Sheet

CONTENTS

C.1 Pure Python . 394
Types . 394
Lists . 395
Dictionaries . 396
Sets . 396
Strings . 397
Operators . 397
Control Flow . 398
Functions, Classes, Generators, Decorators . 399

C.2 Virtualenv . 400
Create a new virtualenv . 400
Use (activate) a virtualenv . 401
Deactivate a virtualenv . 401
Install a program inside a virtualenv . 401
Get list of programs installed inside a virtualenv . 401
Install a list of programs from a text file . 402

C.3 Conda . 402
Create a new Conda environment . 402
Get a list of all installed environments . 402
Use (activate) a Conda environment . 402
Deactivate a Conda environment . 403
Install a program inside a Conda environment . 403
Get list of programs installed inside a Conda environment 403
Install a list of programs from a text file . 403

C.4 IPython . 403
Console . 403
debugger . 404
command line . 405

C.5 NumPy . 405
Array initialization . 405
Indexing . 406
Array properties and operations . 406
Boolean arrays . 407

393

394 � Python for Bioinformatics

Elementwise operations and math functions . 407
Inner/outer products . 408
Linear algebra/ matrix math . 409
Reading/ writing files . 409
Interpolation, integration, optimization . 409
FFT (Discrete Fourier Transform) . 409
Rounding . 410
Random variables . 410

C.6 Matplotlib . 410
Figures and axes . 410
Figures and axes properties . 411
Plotting routines . 411

C.7 Scipy . 412
Interpolation . 412
Integration . 412
Linear algebra . 413

C.8 Pandas . 413
Data structures . 413
DataFrame . 413

This appendix is a reference material. It is based on the Scientific Python Cheat
Sheet, available at https://ipgp.github.io/scientific_python_cheat_sheet/.

Copyright for this article © 2016 Institut de Physique du Globe de Paris. This
is an open access article distributed under the terms of the Creative Commons
Attribution 4.0 License, Permits almost any use subject to providing credit and
license notice.

C.1 PURE PYTHON

This section shows references for basic Python operation. It covers roughly from
data typer (Chapter 2) to flow control (Chapter 2). There is also a subsection with
information on functions and classes, that corresponds with Chapter 6 and 8.

Types

integer

a = 2

float

b = 5.0

exponential

https://ipgp.github.io/scientific_python_cheat_sheet/

Appendix C � 395

c = 8.3e5

complex

d = 1.5 + 0.5j

boolean

e = 4 > 5

string

f = ’word’

Lists

manually initialization

a = [’red’, ’blue’, ’green’]

initialize from iteratable

b = list(range(5))

list comprehension

c = [nu**2 for nu in b]

conditioned list comprehension

d = [nu**2 for nu in b if nu < 3]

access element

e = c[0]

access a slice of the list

f = c[1:2]

access last element

g = c[-1]

list concatenation

h = [’re’, ’bl’] + [’gr’]

repeat a list

i = [’re’] * 5

returns index of ’re’

[’re’, ’bl’].index(’re’)

add new element to end of list

a.append(’yellow’)

add elements from list ‘b‘ to end of list ‘a‘

a.extend(b)

insert element in specified position

a.insert(1, ’yellow’)

true if ’re’ in list

’re’ in [’re’, ’bl’]

true if ’fi’ not in list

’fi’ not in [’re’, ’bl’]

returns sorted list

sorted([3, 2, 1])

remove and return item at index (default last)

a.pop(2)

396 � Python for Bioinformatics

Dictionaries

dictionary

a = {’red’: ’rouge’, ’blue’: ’bleu’}

translate item

b = a[’red’]

true if dictionary a contains key ’red’

’red’ in a

loop through contents

c = [value for key, value in a.items()]

return default

d = a.get(’yellow’, ’no translation found’)

init key with default

a.setdefault(’extra’, []).append(’cyan’)

update dictionary by data from another one

a.update({’green’: ’vert’, ’brown’: ’brun’})

get list of keys

a.keys()

get list of values

a.values()

get list of key-value pairs

a.items()

delete key and associated with it value

del a[’red’]

remove specified key and return the corresponding value

a.pop(’blue’)

Sets

initialize manually

a = {1, 2, 3}

initialize from iteratable

b = set(range(5))

add new element to set

a.add(13)

discard element from set

a.discard(13)

update set with elements from iterable

a.update([21, 22, 23])

remove and return an arbitrary set element

a.pop()

true if 2 in set

2 in {1, 2, 3}

true if 5 not in set

Appendix C � 397

5 not in {1, 2, 3}

test whether every element in a is in b

a.issubset(b)

issubset in operator form

a <= b

test whether every element in b is in a

a.issuperset(b)

issuperset in operator form

a >= b

return the intersection of two sets as a new set

a.intersection(b)

return the difference of two or more sets as a new set

a.difference(b)

difference in operator form

a - b

return the symmetric difference of two sets as a new set

a.symmetric_difference(b)

return the union of sets as a new set

a.union(b)

the same as set but immutable

c = frozenset()

Strings

assignment

a = ’red’

access individual characters

char = a[2]

string concatenation

’red ’ + ’blue’

split string into list

’1, 2, three’.split(’,’)

concatenate list into string

’.’.join([’1’, ’2’, ’three’])

Operators

assignment

a = 2

change and assign

a += 1 (*=, /=)

addition

3 + 2

398 � Python for Bioinformatics

integer (python2) or float (python3) division

3 / 2

integer division

3 // 2

multiplication

3 * 2

exponent

3 ** 2

remainder

3 % 2

absolute value

abs(a)

equal

1 == 1

larger

2 > 1

smaller

2 < 1

not equal

1 != 2

logical AND

1 != 2 and 2 < 3

logical OR

1 != 2 or 2 < 3

logical NOT

not 1 == 2

test if a is in b

’a’ in b

test if objects point to the same memory (id)

a is b

Control Flow

if/elif/else

a, b = 1, 2

if a + b == 3:

print(’True’)

elif a + b == 1:

print(’False’)

else:

print(’?’)

for

a = [’red’, ’blue’, ’green’]

Appendix C � 399

for color in a:

print(color)

while

number = 1

while number < 10:

print(number)

number += 1

break

number = 1

while True:

print(number)

number += 1

if number > 10:

break

continue

for i in range(20):

if i % 2 == 0:

continue

print(i)

Functions, Classes, Generators, Decorators

Function groups code statements and possibly

returns a derived value

def myfunc(a1, a2):

return a1 + a2

x = myfunc(a1, a2)

Class groups attributes (data)

and associated methods (functions)

class Point(object):

def __init__(self, x):

self.x = x

def __call__(self):

print(self.x)

x = Point(3)

Generator iterates without

creating all values at once

400 � Python for Bioinformatics

def firstn(n):

num = 0

while num < n:

yield num

num += 1

x = [i for i in firstn(10)]

Decorator can be used to modify

the behaviour of a function

class myDecorator(object):

def __init__(self, f):

self.f = f

def __call__(self):

print("call")

self.f()

@myDecorator

def my_funct():

print(’func’)

my_funct()

C.2 VIRTUALENV

Virtualenv allows the user to create isolated Python environments. With these
environments the developers can have different projects and each project will not
share any library, avoiding conflicts that may arise when one project requires a
library that is incompatible with the requirements of another project.

Create a new virtualenv

virtualenv venv_name

This command creates a directory in relation to where is executed. If you are
in /home/name/, the resulting directory will be /home/name/venv_name.

If you want a virtualenv that runs a specific Python version, do

virtualenv --python=/usr/bin/python2.7 venv_name

Change /usr/bin/python2.7 to the location of you desired Python executable.
This way you can run a Python version different than the one you have installed
as default.

Appendix C � 401

Use (activate) a virtualenv

Once a virtualenv is created, it can be activated in macOS and Linux with:

. venv_name/bin/activate

In Windows,

venv_name\Scripts\activate

In any case (Windows, macOS or Linux), this will turn you command line
prompt to:

(venv_name)

The (venv_name) label tells you that the virtualenv is activated. From now on,
each Python program you install will be isolated from other installations.

Deactivate a virtualenv

To stop using a virtualenv, and go back to standard environment, use the deactivate
command, in macOS or Linux,

. venv_name/bin/deactivate

In Windows,

venv_name\Scripts\deactivate

Install a program inside a virtualenv

In macOS and Linux,

(venv_name) $ pip install program_name

In Windows,

(venv_name) $ venv_name\Scripts\pip install program_name

Get list of programs installed inside a virtualenv

(venv_name) $ pip freeze

If you want to export this list, redirect the output to a file,

(venv_name) $ pip freeze > filename

402 � Python for Bioinformatics

Install a list of programs from a text file

(venv_name) $ pip install -r filename

By convention, the file with all the associates libraries is called requirements.txt.

C.3 CONDA

Conda is the pip and virtualenv equivalent from the Anaconda Python distribution.
If you know how to use pip and virtualenv, you will understand this tool without
additional effort.

Create a new Conda environment

Virtual environment in Conda is called “Conda environments”, and are created with,

$ conda create -n venv_name

You can also create a Conda environment and install a library with one com-
mand:

$ conda create -n venv_name program_name

Get a list of all installed environments

$ conda info --envs

Use (activate) a Conda environment

In macOS and Linux,

$ source activate venv_name

In Windows,

$ activate venv_name

This will turn you command line prompt to:

(venv_name)

The (venv_name) label tells you that the virtualenv is activated. From now on,
each Python program you install will be isolated from other installations.

Appendix C � 403

Deactivate a Conda environment

To stop using a Conda environment, and go back to standard environment, type in
macOS and Linux:

$ source deactivate venv_name

In Windows,

$ deactivate venv_name

Install a program inside a Conda environment

(venv_name) $ conda install program_name

If the program is not available from conda install, you can use pip install

inside a Conda environment.

Get list of programs installed inside a Conda environment

(venv_name) $ conda list

If you want to export this list, there is a specific command for this,

(venv_name) $ conda env export > environment.yml

Install a list of programs from a text file

$ conda env create -f environment.yml

C.4 IPYTHON

IPython is an interactive shell. Now is part of the Jupyter Notebook, an open-
source web application used to create and share documents that contain live code,
equations, visualizations and text. It is mentioned in page 21 because the code of
this books is available as a Jupyter Notebook.

Console

Information about the object

<object>?

tab completion

<object>.<TAB>

run scripts / profile / debug

404 � Python for Bioinformatics

%run myscript.py

measure runtime of statement

%timeit range(1000)

measure script execution time

%run -t myscript.py

run statement with profiler

%prun <statement>

sort by key, e.g. "cumulative" or "calls"

%prun -s <key> <statement>

profile script

%run -p myfile.py

run script in debug mode

%run -d myscript.py

jumps to the debugger after an exception

%debug

run debugger automatically on exception

%pdb

examine history

%history

lines 1-5 of last session

%history ~1/1-5

run shell commands

!make # prefix command with "!"

clean namespace

%reset

run code from clipboard

%paste

debugger

execute next line

n

set breakpoint in the main file at line 42

b 42

set breakpoint in ’myfile.py’ at line 42

Appendix C � 405

b myfile.py:42

continue execution

c

show current position in the code

l

print the ’data’ variable

p data

pretty print the ’data’ variable

pp data

step into subroutine

s

print arguments that a function received

a

show all variables in local scope

pp locals()

show all variables in global scope

pp globals()

command line

debug after exception

ipython --pdb -- myscript.py argument1 --option1

console after finish

ipython -i -- myscript.py argument1 --option1

C.5 NUMPY

NumPy is the fundamental package for scientific computing with Python. Provides
a N-dimensional array object, tools to integrating with C and Fortran and several
mathematical related capabilities.

import numpy as np

Array initialization

direct initialization

np.array([2, 3, 4])

single precision array of size 20

np.empty(20, dtype=np.float32)

initialize 200 zeros

np.zeros(200)

3 x 3 integer matrix with ones

np.ones((3,3), dtype=np.int32)

406 � Python for Bioinformatics

ones on the diagonal

np.eye(200)

array with zeros and the shape of a

np.zeros_like(a)

100 points from 0 to 10

np.linspace(0., 10., 100)

points from 0 to <100 with step 2

np.arange(0, 100, 2)

100 log-spaced from 1e-5 -> 1e2

np.logspace(-5, 2, 100)

copy array to new memory

np.copy(a)

Indexing

initialization with 0 - 99

a = np.arange(100)

set the first three indices to zero

a[:3] = 0

set indices 2-4 to 1

a[2:5] = 1

set all but last three elements to 2

a[:-3] = 2

general form of indexing/slicing

a[start:stop:step]

transform to column vector

a[None, :]

return array with values of the indices

a[[1, 1, 3, 8]]

transform to 10 x 10 matrix

a = a.reshape(10, 10)

return transposed view

a.T

transpose array to new axis order

b = np.transpose(a, (1, 0))

values with elementwise condition

a[a < 2]

Array properties and operations

a tuple with the lengths of each axis

a.shape

length of axis 0

Appendix C � 407

len(a)

number of dimensions (axes)

a.ndim

sort array along axis

a.sort(axis=1)

collapse array to one dimension

a.flatten()

return complex conjugate

a.conj()

cast to integer

a.astype(np.int16)

convert (possibly multidimensional) array to list

a.tolist()

return index of maximum along a given axis

np.argmax(a, axis=1)

return cumulative sum

np.cumsum(a)

True if any element is True

np.any(a)

True if all elements are True

np.all(a)

return sorted index array along axis

np.argsort(a, axis=1)

return indices where cond is True

np.where(cond)

return elements from x or y depending on cond

np.where(cond, x, y)

Boolean arrays

returns array with boolean values

a < 2

elementwise logical and

(a < 2) & (b > 10)

elementwise logical or

(a < 2) | (b > 10)

invert boolean array

~a

Elementwise operations and math functions

multiplication with scalar

a * 5

408 � Python for Bioinformatics

addition with scalar

a + 5

addition with array b

a + b

division with b (np.NaN for division by zero)

a / b

exponential (complex and real)

np.exp(a)

a to the power b

np.power(a, b)

sine

np.sin(a)

cosine

np.cos(a)

arctan(a/b)

np.arctan2(a, b)

arcsin

np.arcsin(a)

degrees to radians

np.radians(a)

radians to degrees

np.degrees(a)

variance of array

np.var(a)

standard deviation

np.std(a, axis=1)

Inner/outer products

inner product: a_mi b_in

np.dot(a, b)

einstein summation convention

np.einsum(’ij,kj->ik’, a, b)

sum over axis 1

np.sum(a, axis=1)

return absolute values

np.abs(a)

outer sum

a[None, :] + b[:, None]

outer product

a[None, :] * b[:, None]

outer product

np.outer(a, b)

matrix norm

Appendix C � 409

np.sum(a * a.T)

Linear algebra/ matrix math

Find eigenvalues and eigenvectors

evals, evecs = np.linalg.eig(a)

np.linalg.eig for hermitian matrix

evals, evecs = np.linalg.eigh(a)

Reading/ writing files

ascii data from file

np.loadtxt(fname/fobject, skiprows=2, delimiter=’,’)

write ascii data

np.savetxt(fname/fobject, array, fmt=’%.5f’)

binary data from file

np.fromfile(fname/fobject, dtype=np.float32, count=5)

write (C) binary data

np.tofile(fname/fobject)

save as numpy binary (.npy)

np.save(fname/fobject, array)

load .npy file (memory mapped)

np.load(fname/fobject, mmap_mode=’c’)

Interpolation, integration, optimization

integrate along axis 1

np.trapz(a, x=x, axis=1)

interpolate function xp, yp at points x

np.interp(x, xp, yp)

solve a x = b in least square sense

np.linalg.lstsq(a, b)

FFT (Discrete Fourier Transform)

complex fourier transform of a

np.fft.fft(a)

fft frequencies

f = np.fft.fftfreq(len(a))

shifts zero frequency to the middle

np.fft.fftshift(f)

real fourier transform of a

410 � Python for Bioinformatics

np.fft.rfft(a)

real fft frequencies

np.fft.rfftfreq(len(a))

Rounding

rounds to nearest upper int

np.ceil(a)

rounds to nearest lower int

np.floor(a)

rounds to neares int

np.round(a)

Random variables

100 normal distributed

from np.random import normal, seed, rand, uniform, randint

normal(loc=0, scale=2, size=100)

resets the seed value

seed(23032)

200 random numbers in [0, 1)

rand(200)

200 random numbers in [1, 30)

uniform(1, 30, 200)

300 random integers in [1, 16)

randint(1, 16, 300)

C.6 MATPLOTLIB

A 2D plotting library, somehow similar to Bokeh. Available at https://

matplotlib.org/.

import matplotlib.pyplot as plt

Figures and axes

initialize figure

fig = plt.figure(figsize=(5, 2))

save png image

fig.savefig(’out.png’)

fig and 5 x 2 nparray of axes

fig, axes = plt.subplots(5, 2, figsize=(5, 5))

https://matplotlib.org/
https://matplotlib.org/

Appendix C � 411

add second subplot in a 3 x 2 grid

ax = fig.add_subplot(3, 2, 2)

multi column/row axis

ax = plt.subplot2grid((2, 2), (0, 0), colspan=2)

add custom axis

ax = fig.add_axes([left, bottom, width, height])

Figures and axes properties

big figure title

fig.suptitle(’title’)

adjust subplot positions

fig.subplots_adjust(bottom=0.1, right=0.8, top=0.9, wspace=0.2,

hspace=0.5)

adjust subplots to fit into fig

fig.tight_layout(pad=0.1, h_pad=0.5, w_pad=0.5, rect=None)

set xlabel

ax.set_xlabel(’xbla’)

set ylabel

ax.set_ylabel(’ybla’)

sets x limits

ax.set_xlim(1, 2)

sets y limits

ax.set_ylim(3, 4)

sets the axis title

ax.set_title(’blabla’)

set multiple parameters at once

ax.set(xlabel=’bla’)

activate legend

ax.legend(loc=’upper center’)

activate grid

ax.grid(True, which=’both’)

returns the axes bounding box

bbox = ax.get_position()

bounding box parameters

bbox.x0 + bbox.width

Plotting routines

plots a line

ax.plot(x,y, ’-o’, c=’red’, lw=2, label=’bla’)

scatter plot

ax.scatter(x,y, s=20, c=color)

412 � Python for Bioinformatics

fast colormesh

ax.pcolormesh(xx, yy, zz, shading=’gouraud’)

slower colormesh

ax.colormesh(xx, yy, zz, norm=norm)

contour lines

ax.contour(xx, yy, zz, cmap=’jet’)

filled contours

ax.contourf(xx, yy, zz, vmin=2, vmax=4)

histogram

n, bins, patch = ax.hist(x, 50)

show image

ax.imshow(matrix, origin=’lower’, extent=(x1, x2, y1, y2))

plot a spectrogram

ax.specgram(y, FS=0.1, noverlap=128, scale=’linear’)

write text

ax.text(x, y, string, fontsize=12, color=’m’)

C.7 SCIPY

A collection of open source software for scientific computing in Python, it includes
most libraries mentioned in this book (Numpy, Matplotlib, IPython, and others).

import scipy as sci

Interpolation

interpolate data at index positions:

from scipy.ndimage import map_coordinates

pts_new = map_coordinates(data, float_indices, order=3)

simple 1d interpolator with axis argument:

from scipy.interpolate import interp1d

interpolator = interp1d(x, y, axis=2, fill_value=0.,

bounds_error=False)

y_new = interpolator(x_new)

Integration

definite integral of python

from scipy.integrate import quad

function/method

value = quad(func, low_lim, up_lim)

Appendix C � 413

Linear algebra

from scipy import linalg

Find eigenvalues and eigenvectors

evals, evecs = linalg.eig(a)

linalg.eig for hermitian matrix

evals, evecs = linalg.eigh(a)

Matrix exponential

b = linalg.expm(a)

Matrix logarithm

c = linalg.logm(a)

C.8 PANDAS

A library that provides high-performance, easy-to-use data structures and data
analysis tools Python.

import pandas as pd

Data structures

series

s = pd.Series(np.random.rand(1000), index=range(1000))

time index

index = pd.date_range("13/06/2016", periods=1000)

DataFrame

df = pd.DataFrame(np.zeros((1000, 3)), index=index,

columns=["A", "B", "C"])

DataFrame

The DataFrame object is used to hold data for further processing. The usual path
is to read the data from a CSV file into a DataFrame (using a method provided by
this object). Once the data is loaded into the DataFrame, multiple transformation
can be made. In this book this is used in Chapter 14

read and load CSV file in a DataFrame

df = pd.read_csv("filename.csv")

get raw data out of DataFrame object

raw = df.values

get list of columns headers

cols = df.columns

get data types of all columns

414 � Python for Bioinformatics

df.dtypes

get first 5 rows

df.head(5)

get basic statisitics for all columns

df.describe()

get index column range

df.index

#column slicing

(.loc[] and .ix[] are inclusive of the range of values selected)

select column values as a series by column name (not optimized)

df.col_name

select column values as a dataframe by column name (not optimized)

df[[’col_name’]]

select column values as a series by column name

df.loc[:, ’col_name’]

select column values as a dataframe by column name

df.loc[:, [’col_name’]]

select by column index

df.iloc[:, 0]

select by column index, but as a dataframe

df.iloc[:, [0]]

hybrid approach with column name

df.ix[:, ’col_name’]

hybrid approach with column index

df.ix[:, 0]

row slicin

print first 2 rows of the dataframe

print(df[:2])

select first 2 rows of the dataframe

df.iloc[0:2, :]

select first 3 rows of the dataframe

df.loc[0:2,’col_name’]

select first 3 rows of the 3 different columns

df.loc[0:2, [’col_name1’, ’col_name3’, ’col_name6’]]

select fisrt 3 rows and first 3 columns

Again, .loc[] and .ix[] are inclusive

df.iloc[0:2,0:2]

Dicin

select all rows where col_name < 7

Appendix C � 415

df[df.col_name < 7]

combine multiple boolean indexing conditionals using bit-wise

logical operators.

Regular Python boolean operators (and, or) cannot be used here.

Be sure to encapsulate each conditional in parenthesis to

make this work.

df[(df.col_name1 < 7) & (df.col_name2 == 0)]

writing to slice

df[df.recency < 7] = -100

http://taylorandfrancis.com

Index

.ace, 204

.phd.1, 203

.py, 30

.pyc, 30

.pyo, 30

.pyw, 30
__getitem__, 151
__init__, 142
__iter__, 151
__len__, 149
__repr__, 151
__setitem__, 152
__str__, 150

Ace.read, 204
alignment, 180
Anaconda, 35, 248
Apache, 215
append(), 47
array, 406
Atom, 33
attributes, 141

BasicChromosome, 355
batch mode, 27
BeautifulSoup, 248
Bio.Align, 167
Bio.AlignInfo, 170
Bio.AlignIO, 169, 176
Bio.Alphabet, 163
Bio.Blast.Applications, 178
Bio.Blast.NCBIXML, 180, 323
Bio.Clustalw, 172
Bio.Data.CodonTable, 188
Bio.Data.IUPACData, 188
Bio.Graphics, 358
Bio.PDB, 195
Bio.Restriction, 198

Bio.Seq.back_transcribe, 164
Bio.SeqIO, 173, 315, 317, 320
Bio.SeqIO.parse(), 174
Bio.SeqIO.read, 339
Bio.SeqRecord, 315
Bio.Sequencing, 204
Bio.SeqUtils, 335
Bio.SeqUtils.CheckSum, 201
Bio.SeqUtils.MeltingTemp, 201
Bio.SeqUtils.ProtParam, 202
Biopython, 158
BLAST, 43, 44, 177, 326
BLAST record object, 180
block string, 41
Bokeh, 299, 300
Bottle, 385
break, 78, 79

Canopy, 16
CAP3, 204
capturing groups, 291
cElementTree, 246
CGI, 215
cgi.FieldStorage, 218
checksum, 201
class variables, 141
cloning vector, 321
ClustalW, 171
ClustalX, 172
comment, 29
comments, 29
conda, 402
conditional expressions, 74
Cord Diagram, 309
cPython, 15
crc32, 201
crc64, 201
CSV, 90

417

418 � Index

csv, 336
csv.reader, 92
csv.Sniffer(), 92
cursor, 275

data type, sequence, 40
data type, unordered, 40
data types, 40
database, 256
database data types, 260
database, DELETE, 273
database, UPDATE, 273
DataFrame, 307, 413
debugger, 404
dict, 55
dictionaries, 396
dictionary, 54
dictionary views, 57
difference, 61
dir(), 25
division, 26
DNA melting temperature, 201
docstring, 113
DOM, 246

EAFP, 131
editor, 32
elif, 71
encapsulation, 142
encoding comment, 29
endonuclease, 197
Entrez, 190
Entrez.esearch, 193
Entrez.esummary, 193
Entrez.read, 193
EOF, 134
EOL, 41
EST, 343
eUtils, 190
Excel, 335, 336
Excel (Read csv), 92
Excel (Read from an Excel file), 92
except, 131
exceptions, 131

exit(), 27
extend(), 47
extensions, 30

False, 72
FASTA, 87, 102, 174, 315, 319
FFT, 409
file, open, 86, 89
flow control, 69
for loop, 75, 79
frameworks, 232
frozenset, 63
functions, 106
funtion, scope, 108

GC content, 200
gcg checksum, 201
GenBank, 167
Genbank, 339
generator, 113, 318
getcwd(), 98
Google, 14
Google App Engine, 235
gzip, 196
gzip.GzipFile, 356

HeatMap, 309
heatmap, 308
hello world, 11
hits, 180
HSP, 180
HTML form, 219, 349

if-else, 69
import, 115
indentation, 30
indexing, 51
inheritance, 141, 145
input, 24
insert(), 47
Interactive mode, 23
Intersection, 60
IPython, 403
IronPython, 15
Iterparse, 246

Index � 419

IUPACAmbiguousDNA, 147
IUPACUnambiguousDNA, 147

join(), 44
Jupyter Notebook, 22
Jython, 15

Kodos, 293

LBYL, 129
len(), 53
Linux, 27
List comprehension, 46
list(), 45, 54, 62
Lists, 44
lists, 395
lower(), 42, 139

macOS, 22
makeblastdb, 326
mathematical operations, 26
Matplotlib, 410
max(), 53
MeltingTemp, 335
methods, 141
min(), 53
module, testing, 125
modules, 114
MongoDB, 278, 355
multi-paradigm, 10
MultipleSeqAlignment, 168
MUSCLE, 349
Muscle, 351
MutableSeq, 148, 165
MySQL, 257, 262, 385

next(), 187
None, 72

objects paradigm, 139
OOP, 140
open, 86

read(), 86
readline(), 86
readlines(), 86

os, 98
chdir(), 98
getcwd(), 86
mkdir(), 99
remove(), 98, 351

os.rename(), 98

Pandas, 307
parse, 85
pass, 74
path.exists(), 99
path.isdir(), 98
path.isfile(), 98
path.py, 98
path.split(), 99
path.splitext(), 99
PDB, 194
pickle, 94
pip, 117, 118, 401
polymorphism, 141
pop(), 47
PostgreSQL, 385
pprint, 203
primary key, 259
primer, 329
Primer3, 329
Primer3Commandline, 332
print, 23
procedural, 139
program, 7
PROSITE, 196, 295
PyCharm, 34
pymongo, 279
pymysql, 274
PyMySQL, module, 274
PyPy, 15, 385
Python hosting, 234
Python prompt, 23
PythonAnywhere, 21, 385
PYTHONPATH, 119

quote, double, 41
quote, single, 41
quote, triple, 41

420 � Index

raise, 135
random.randint, 315
range(), 76
RDBMS, 257
re, 287

findall, 288
finditer, 289
group(), 288
match, 289
search, 288
sub, 294
subn, 294

REGEX, 285, 292
relational database, 258
reportlab.lib, 358
requests, 249
restriction, 197
Restriction.RestrictionBatch, 199
Restriction.Analysis, 199

SAX, 246
Scatter Plot, 307
scatterplot, 306
Scipy, 412
ScriptAlias, 215
seguid, 201
SELECT, 269
separator, 24
Seq, 147, 163
Seq.tomutable(), 165
Seq.transcribe, 163
seq.translate, 163
SeqRecord, 166
sequences types, 40
SeqUtils, 200
set, 59
set operations, 60
sets, 396
setup.py, 124
shebang, 27
shutil, 98, 99
slicing, 52
Spyder, 35
SQLite, 257, 258, 277, 344

Stackless, 15
StopIteration, 319
str(), 25
string, 40

count(), 42
find(), 43
index(), 43
replace(), 42
split(), 43

strings, 397
Sublime, 32
subprocess, 351
SwissProt, 205
sys

argv, 293
exc_info(), 134

TAIR, 343
tempfile.mkstemp, 351
translate, 187
True, 72
try, 131
tuple, 49

Unicode, 41
union, 60

VecScreen, 321
virtualenv, 119, 400
Visual Studio, 36

Web framework, 386
while loop, 77
Windows, 20, 29, 120
WinPython, 35
WSGI, 221

xlrd, 93
xlwt, 94, 335, 336
XML, 179, 237

yield, 113, 318

	Cover�������������������������������
	Half Title��
	Chapman & Hall/crc��
	Published Titles��
	Title�������������������������������
	Copyright���
	Contents��
	List Of Figures���
	List Of Tables��
	Preface To The First Edition��
	Preface To The Second Edition���
	Acknowledgments���
	Section I Programming���
	Chapter 1 Introduction���
	1.1 Who Should Read This Book���
	1.1.1 What The Reader Should Already Know���

	1.2 Using This Book���
	1.2.1 Typographical Conventions���
	1.2.2 Python Versions���
	1.2.3 Code Style��
	1.2.4 Get The Most From This Book Without Reading It All��
	1.2.5 Online Resources Related To This Book���

	1.3 Why Learn To Program��
	1.4 Basic Programming Concepts��
	1.4.1 What Is A Program���

	1.5 Why Python��
	1.5.1 Main Features Of Python���
	1.5.2 Comparing Python With Other Languages���
	1.5.3 How Is It Used��
	1.5.4 Who Uses Python���
	1.5.5 Flavors Of Python���
	1.5.6 Special Python Distributions��

	1.6 Additional Resources��

	Chapter 2 First Steps With Python���
	2.1 Installing Python���
	2.1.1 Learn Python By Using It��
	2.1.2 Install Python Locally��
	2.1.3 Using Python Online���
	2.1.4 Testing Python��
	2.1.5 First Use���

	2.2 Interactive Mode��
	2.2.1 Baby Steps��
	2.2.2 Basic Input And Output��
	2.2.3 More On The Interactive Mode��
	2.2.4 Mathematical Operations���
	2.2.5 Exit From The Python Shell��

	2.3 Batch Mode��
	2.3.1 Comments��
	2.3.2 Indentation���

	2.4 Choosing An Editor��
	2.4.1 Sublime Text��
	2.4.2 Atom��
	2.4.3 Pycharm���
	2.4.4 Spyder Ide��
	2.4.5 Final Words About Editors���

	2.5 Other Tools���
	2.6 Additional Resources��
	2.7 Self-evaluation���

	Chapter 3 Basic Programming: Data Types���
	3.1 Strings���
	3.1.1 Strings Are Sequences Of Unicode Characters���
	3.1.2 String Manipulation���
	3.1.3 Methods Associated With Strings���

	3.2 Lists���
	3.2.1 Accessing List Elements���
	3.2.2 List With Multiple Repeated Items���
	3.2.3 List Comprehension��
	3.2.4 Modifying Lists���
	3.2.5 Copying A List��

	3.3 Tuples��
	3.3.1 Tuples Are Immutable Lists��

	3.4 Common Properties Of The Sequences��
	3.5 Dictionaries��
	3.5.1 Mapping: Calling Each Value By A Name���
	3.5.2 Operating With Dictionaries���

	3.6 Sets��
	3.6.1 Unordered Collection Of Objects���
	3.6.2 Set Operations��
	3.6.3 Shared Operations With Other Data Types���
	3.6.4 Immutable Set: Frozenset��

	3.7 Naming Objects��
	3.8 Assigning A Value To A Variable Versus Binding A Name To An Object���
	3.9 Additional Resources��
	3.10 Self-evaluation��

	Chapter 4 Programming: Flow Control���
	4.1 If-else���
	4.1.1 Pass Statement��

	4.2 For Loop��
	4.3 While Loop��
	4.4 Break: Breaking The Loop��
	4.5 Wrapping It Up��
	4.5.1 Estimate The Net Charge Of A Protein��
	4.5.2 Search For A Low-degeneration Zone��

	4.6 Additional Resources��
	4.7 Self-evaluation���

	Chapter 5 Handling Files��
	5.1 Reading Files���
	5.1.1 Example Of File Handling��

	5.2 Writing Files���
	5.2.1 File Reading And Writing Examples���

	5.3 Csv Files���
	5.4 Pickle: Storing And Retrieving The Contents Of Vari- Ables���
	5.5 Json Files��
	5.6 File Handling: Os, Os.path, Shutil, And Path.py Module��
	5.6.1 Path.py Module��
	5.6.2 Consolidate Multiple Dna Sequences Into One Fasta File��

	5.7 Additional Resources��
	5.8 Self-evaluation���

	Chapter 6 Code Modularizing���
	6.1 Introduction To Code Modularizing���
	6.2 Functions���
	6.2.1 Standard Way To Make Python Code Modular��
	6.2.2 Function Parameter Options��
	6.2.3 Generators��

	6.3 Modules And Packages��
	6.3.1 Using Modules���
	6.3.2 Packages��
	6.3.3 Installing Third-party Modules��
	6.3.4 Virtualenv: Isolated Python Environments��
	6.3.5 Conda: Anaconda Virtual Environment���
	6.3.6 Creating Modules��
	6.3.7 Testing Modules���

	6.4 Additional Resources��
	6.5 Self-evaluation���

	Chapter 7 Error Handling��
	7.1 Introduction To Error Handling��
	7.1.1 Try And Except��
	7.1.2 Exception Types���
	7.1.3 Triggering Exceptions���

	7.2 Creating Customized Exceptions��
	7.3 Additional Resources��
	7.4 Self-evaluation���

	Chapter 8 Introduction To Object Orienting Programming (oop���
	8.1 Object Paradigm And Python��
	8.2 Exploring The Jargon��
	8.3 Creating Classes��
	8.4 Inheritance���
	8.5 Special Methods���
	8.5.1 Create A New Data Type Using A Built-in Data Type���

	8.6 Making Our Code Private���
	8.7 Additional Resources��
	8.8 Self-evaluation���

	Chapter 9 Introduction To Biopython���
	9.1 What Is Biopython���
	9.1.1 Project Organization��

	9.2 Installing Biopython��
	9.3 Biopython Components��
	9.3.1 Alphabet��
	9.3.2 Seq���
	9.3.3 Mutableseq��
	9.3.4 Seqrecord���
	9.3.5 Align���
	9.3.6 Alignio���
	9.3.7 Clustalw��
	9.3.8 Seqio���
	9.3.9 Alignio���
	9.3.10 Blast��
	9.3.11 Biological Related Data��
	9.3.12 Entrez���
	9.3.13 Pdb��
	9.3.14 Prosite��
	9.3.15 Restriction��
	9.3.16 Sequtils���
	9.3.17 Sequencing���
	9.3.18 Swissprot��

	9.4 Conclusion��
	9.5 Additional Resources��
	9.6 Self-evaluation���

	Section Ii Advanced Topics��
	Chapter 10 Web Applications���
	10.1 Introduction To Python On The Web��
	10.2 Cgi In Python��
	10.2.1 Configuring A Web Server For Cgi���
	10.2.2 Testing The Server With Our Script���
	10.2.3 Web Program To Calculate The Net Charge Of A Protein (cgi Version���

	10.3 Wsgi���
	10.3.1 Bottle: A Python Web Framework For Wsgi��
	10.3.2 Installing Bottle��
	10.3.3 Minimal Bottle Application���
	10.3.4 Bottle Components��
	10.3.5 Web Program To Calculate The Net Charge Of A Protein (bottle Version��
	10.3.6 Installing A Wsgi Program In Apache��

	10.4 Alternative Options For Making Python-based Dynamic Web Sites���
	10.5 Some Words About Script Security���
	10.6 Where To Host Python Programs��
	10.7 Additional Resources���
	10.8 Self-evaluation��

	Chapter 11 Xml��
	11.1 Introduction To Xml��
	11.2 Structure Of An Xml Document���
	11.3 Methods To Access Data Inside An Xml Document��
	11.3.1 Sax: Celementtree Iterparse��

	11.4 Summary��
	11.5 Additional Resources���
	11.6 Self-evaluation��

	Chapter 12 Python And Databases���
	12.1 Introduction To Databases��
	12.1.1 Database Management: Rdbms���
	12.1.2 Components Of A Relational Database��
	12.1.3 Database Data Types��

	12.2 Connecting To A Database���
	12.3 Creating A Mysql Database��
	12.3.1 Creating Tables��
	12.3.2 Loading A Table��

	12.4 Planning Ahead���
	12.4.1 Pythonu: Sample Database���

	12.5 Select: Querying A Database��
	12.5.1 Building A Query���
	12.5.2 Updating A Database��
	12.5.3 Deleting A Record From A Database��

	12.6 Accessing A Database From Python���
	12.6.1 Pymysql Module���
	12.6.2 Establishing The Connection��
	12.6.3 Executing The Query From Python��

	12.7 Sqlite���
	12.8 Nosql Databases: Mongodb���
	12.8.1 Using Mongodb With Pymongo���

	12.9 Additional Resources���
	12.10 Self-evaluation���

	Chapter 13 Regular Expressions��
	13.1 Introduction To Regular Expressions (regex���
	13.1.1 Regex Syntax���

	13.2 The Re Module��
	13.2.1 Compiling A Pattern��
	13.2.2 Regex Examples���
	13.2.3 Pattern Replace��

	13.3 Regex In Bioinformatics��
	13.3.1 Cleaning Up A Sequence���

	13.4 Additional Resources���
	13.5 Self-evaluation��

	Chapter 14 Graphics In Python���
	14.1 Introduction To Bokeh��
	14.2 Installing Bokeh���
	14.3 Using Bokeh��
	14.3.1 A Simple X-y Plot��
	14.3.2 Two Data Series Plot���
	14.3.3 A Scatter Plot���
	14.3.4 A Heatmap��
	14.3.5 A Chord Diagram��

	Section Iii Python Recipes With Commentedsource Code3���
	Chapter 15 Sequence Manipulation In Batch���
	15.1 Problem Description��
	15.2 Problem One: Create A Fasta File With Random Se- Quences��
	15.2.1 Commented Source Code��

	15.3 Problem Two: Filter Not Empty Sequences From A Fasta File���
	15.3.1 Commented Source Code��

	15.4 Problem Three: Modify Every Record Of A Fasta File���
	15.4.1 Commented Source Code��

	Chapter 16 Web Application For Filtering Vector Contamination���
	16.1 Problem Description��
	16.1.1 Commented Source Code��

	16.2 Additional Resources���

	Chapter 17 Searching For Pcr Primers Using Primer3��
	17.1 Problem Description��
	17.2 Primer Design Flanking A Variable Length Region��
	17.2.1 Commented Source Code��

	17.3 Primer Design Flanking A Variable Length Region, With Biopython���
	17.4 Additional Resources���

	Chapter 18 Calculating Melting Temperature From A Set Of Primers��
	18.1 Problem Description��
	18.1.1 Commented Source Code��

	18.2 Additional Resources���

	Chapter 19 Filtering Out Specific Fields From A Genbank File��
	19.1 Extracting Selected Protein Sequences��
	19.1.1 Commented Source Code��

	19.2 Extracting The Upstream Region Of Selected Pro- Teins���
	19.2.1 Commented Source Code��

	19.3 Additional Resources���

	Chapter 20 Inferring Splicing Sites���
	20.1 Problem Description��
	20.1.1 Infer Splicing Sites With Commented Source Code��
	20.1.2 Sample Run Of Estimate Intron Program��

	Chapter 21 Web Server For Multiple Alignment��
	21.1 Problem Description��
	21.1.1 Web Interface: Front-end. Html Code��
	21.1.2 Web Interface: Server-side Script. Commented Source Code���

	21.2 Additional Resources���

	Chapter 22 Drawing Marker Positions Using Data Stored In A Database���
	22.1 Problem Description��
	22.1.1 Preliminary Work On The Data���
	22.1.2 Mongodb Version With Commented Source Code���

	Section Iv Appendices���
	Appendix A Collaborative Development: Version Control With Github��
	A.1 Introduction To Version Control���
	A.2 Version Your Code���
	A.3 Share Your Code���
	A.4 Contribute To Other Projects��
	A.5 Conclusion��
	A.6 Methods���
	A.7 Additional Resources��

	Appendix B Install A Bottle App In Pythonanywhere���
	B.1 Pythonanywhere��
	B.1.1 What Is Pythonanywhere��
	B.1.2 Installing A Web App In Pythonanywhere��

	Appendix C Scientific Python Cheat Sheet��
	C.1 Pure Python���
	C.2 Virtualenv��
	C.3 Conda���
	C.4 Ipython���
	C.5 Numpy���
	C.6 Matplotlib��
	C.7 Scipy���
	C.8 Pandas��

	Index�������������������������������

