

PRACTICO Nº 3

El objetivo de este práctico es ejercitar el uso de las estructuras de control y determinar la estructura más adecuada en cada caso. **RECOMENDACION**: 1) analizar en papel los ejercicios y 2) verificar en la computadora. Probar todos los ejercicios en el entorno Octave. Para la elección de la estructura, en los ejercicios de iteración, se debe procesar solamente los elementos indispensables para devolver el resultado.

Se desestimula el uso de los comandos **disp** e **input** al programar. En este práctico, **disp** e **input** se usan, PERO solamente como apoyo para entender las estructuras de control y selección. **Observar** que los **scripts** aquí presentados, son simples ejemplos de instrucciones de iteración, secuencia y selección.

Ejercicio 1

El siguiente código es un ejemplo de *script*, y se puede escribir de muchas formas diferentes a la presentada. Escriba por lo menos dos formas distintas a la presentada: una utilizando elseif y otra utilizando switch-case.

```
if Mes==1
    y= 'Mes de Enero';
end
if Mes==2
    y= 'Mes de Febrero';
end
if Mes==3
    y= 'Mes de Marzo';
end
disp(y)
```

Ejercicio 2

Para cada uno de los siguientes problemas, decidir cuál de las instrucciones de selección (if-else o if) es más apropiada y escribir la porción de código correspondiente.

- a) Los estudiantes que son candidatos para ser admitidos a un colegio mandan sus puntuaciones. Si una puntuación de un estudiante es mayor o igual a un cierto valor mínimo, entonces se imprime una carta de aceptación del estudiante. Si no, se envía una notificación de rechazo.
- b) Para los empleados que hayan trabajado más de 40 horas a la semana. Hay que calcular la paga extra y añadirlo a la paga regular.
- c) Al resolver una ecuación cuadrática, siempre que el valor del discriminante (b²-4ac) sea negativo, la computadora debe imprimir un mensaje que notifique que las raíces son imaginarias.
- d) En un aserradero controlado por computadora, si la sección de cruce de un tronco es mayor que ciertas dimensiones, la sierra ha de ajustarse para cortar 4x8 dientes. Si no, se ajusta para cortar 2x4.

Ejercicio 3

```
Indique
           qué
                         muestra
                                           pantalla,
                                                        al
                                                              ejecutar
                                                                          los
                                                                                 siguientes
                                                                                               scripts:
                                     en
a)
          = 1;
                                                       b)
          = 2;
                                                                a = 0;
           = 3;
                                                                    -1;
           = 0:
                                                                if a > 0
                                                                     z='A';
                                                                     if b < 0
                                                                             'C':
                                                                end
                                                               disp(z)
        end
        disp(w)
```

Versión 2.2.2

Ejercicio 4

Considere la siguiente proposición if anidada en el *script* que se plantea a continuación:

```
if a > b
    if a > c
        disp('A es el grande')
    end
end
```

Escriba una sola proposición if que sea equivalente a ésta pero que no esté anidada.

Ejercicio 5

Se desea construir un script que permita clasificar números reales, diciendo si pertenecen, o no, a los siguientes intervalos:

```
Intervalo 1: [-1,1]
Intervalo 2: [5,7]
Intervalo 3: [0,1]
Intervalo 4: [3,6]
```

a) Para esto, el script debe devolver el/los número/s de intervalo/s al cual pertenece el número de entrada. En caso de no pertenecer a ningún grupo, la solución debe de ser vacía.

Para resolver este problema, se propone el siguiente código:

```
x= input('Escribir el valor de x');
s = [];
if ((x >= -1) & (x <= 1))
    s = [s 1];
elseif ((x >= 5) & (x <= 7))
    s = [s 2];
elseif ((x >= 0) & (x <= 1))
    s = [s 3];
elseif ((x >= 3) & (x <= 6))
    s = [s 4];
end</pre>
```

Ejecute el código propuesto en Octave para los siguientes valores numéricos para x:

- 2
- 3
- 0.5
- 5.7
- -4
- 6

¿Qué sucede con los resultados?

b) Se propone también el siguiente código:

```
% Se carga x en la memoria
x= input('Escribir el valor de x');
s = [];
if ((x >= 3) & (x<= 6))
    s = [s 4];
elseif ((x >= 5) & (x<= 7))
    s = [s 2];
elseif ((x >= 0) & (x<= 1))
    s = [s 3];
elseif ((x >= -1) & (x<= 1))
    s = [s 1];
end</pre>
```

Ejecute el código propuesto en octave para los valores numéricos de la parte a) ¿Qué sucede con los resultados?

c) De ser necesario, reescriba el código para que cumpla con lo que se pide en la letra.

Para consultar el uso de input escribir help input en la consola.

Versión 2.2.2 2/6

Curso 2021

Ejercicio 6

```
a) ¿Cuáles son los contenidos de suma y numero al final de la ejecución del siguiente script?
   v=[5,6,-3,0,7,-4,5,8,9];
   n=8;
   suma=0;
   i=1;
   indicador=0;
   while (i<=n) & ~indicador
       numero = v(i);
       if numero > 0
          suma=suma+numero;
           if numero==0
              indicador = 1;
       end
       i=i+1:
   end
   disp(suma); disp(numero);
```

b) En este caso, ¿El uso de & o & & en la condición del while influye en el resultado de suma y numero para algún caso posible?

Ejercicio 7

Determinar qué se muestra en pantalla, al ejecutar los siguientes segmentos de scripts:

```
a) for b = 1:3
                               b)
                                                               c)
      if b <= 1
                                  bajo = 1;
          a = b - 1:
                                                                  alto = 4:
                                  for k = bajo:3
                                                                  for k = alto:-1:3
      if b <= 2
                                     bajo = bajo + 2;
                                                                     disp(k)
                                     disp(k)
                                                                     disp(alto)
          a = a - 1;
                                     disp(bajo)
                                                                  end
      end
      disp(a);
   end
```

Ejercicio 8

Escribir un script en Octave que despliegue en pantalla los números del 1 al 100 salvo que:

- el número sea múltiplo de 3; en este caso deberá imprimir "ELADIO" en lugar del número.
- el número sea múltiplo de 5; en este caso deberá imprimir "DIESTE" en lugar del número.

Aclaración: si el número es múltiplo de 3 y 5, se deberán imprimir los dos textos en lugar del número.

Ejercicio 9

Revise la estructura de control del siguiente programa y reescríbalo según los criterios presentados en Computación1:

```
suma=0;
cont=1;
while cont<=1000
    suma=suma+cont;
    cont=cont+1;
end</pre>
```

Versión 2.2.2

Ejercicio 10

Dado un vector v que contiene números ordenados de forma ascendente, se quiere cambiar el valor de los elementos que sean negativos a 0. Para ello se escribe el siguiente script:

```
n= length(v);
i=1;
while i<=n & v(i)<0
   v(i) = 0;
   i= i+1;
end</pre>
```

Dada la diferencia de funcionamiento entre & y && visto en el teórico. ¿Para qué caso de v el script mostrado se corrige utilizando && en la condición del while?

Ejercicio 11

Antes de hacer el ejercicio, lea en el "help" la descripción sobre las funciones sprintf y fprintf. Luego escriba el siguiente script Octave en un archivo llamado tabla_verdad_AND.m

Recordar que "disp" se usa en este programa, para que Ud vea la salida de la función *sprintf*. Cuando programa NO use disp, SALVO que quiera depurar el código (*debuggear*).

En Octave, defina como "directorio de trabajo" el que usó para salvar el archivo "tabla verdad AND.m" y luego,

a) Ejecute el siguiente comando:

```
>> tabla verdad AND
```

La salida obtenida debería ser similar a la siguiente:

```
x y | x & y
0 0 | 0
0 1 | 0
1 0 | 0
1 1 | 1
```

Este script, tal como su nombre lo indica, imprime en pantalla la tabla de verdad del operador AND.

b) Escriba ahora "tabla_verdad_OR" y "tabla_verdad_NOT", basándose en la versión "AND".

OBSERVAR que el operador NOT es unario y que los operadores AND y OR son binarios.

Ejercicio 12

```
a) ¿Qué mostrará el siguiente script, siendo el valor de la variable n igual a 11?
    numero=1;
    v=[];
    suma=0;
    while numero < n & suma <1000
        numero = numero + 1;
    v=[v,numero];
        suma=suma+numero;
    end
    disp(v)</pre>
```

 b) Cambiando simplemente el orden de las sentencias, hacer que el bucle devuelva un vector v con los números del 1 al 10.

Versión 2.2.2 4/6

Ejercicio 13

Escriba una instrucción *while* que se detenga cuando el valor de la variable booleana **hecho** se haga verdadero. El valor de esta variable se inicializa en falso y se actualiza con el resultado de llamar a la función **hacer** algo().

Ejercicio 14

Para cada uno de los casos escribir y probar en Octave.

- a) un script que cuente las veces que el número x se encuentra en un vector v, de largo 100.
- b) un script que encuentre el valor mínimo de los números contenidos en un vector dado v.
- c) un script que cuente y sume los primeros 10 números pares de un vector v.
- d) un *script* que devuelva el valor mínimo de un vector *v* que contiene números enteros no negativos. **Observar** que los números en *v* son mayores o iguales a 0. Utilizar esta propiedad para seleccionar la estructura adecuada.

Ejercicio 15

El costo de enviar por correo una carta es de \$ 22 para cartas que pesan hasta 30 grs (inclusive) y \$ 22 más \$ 17 por cada 30 grs adicionales o fracción para cartas que pesan más de 30 grs. Dado el peso de una carta como un número real en gramos, escribir un script "calculo_costo" que despliegue en pantalla el costo de enviarla.

Ejemplo en consola:

```
>>peso=31;
>>calculo_costo
>>costo_envio=
39
```

Otra forma de guardar valores en una variable desde la consola es utilizando el comando input. Por ejemplo, para guardar el peso, en el script se escribe: peso= input ('Escribir el peso').

Reescriba el script anterior usando input para guardar el valor de peso. Para consultar el uso de input escribir help input en la consola.

Ejercicio 16

El isótopo radiactivo plutonio-235 tiene una vida media de 26 minutos. La vida media es el tiempo que se necesita para que se degenere la mitad de la masa del isótopo. Por tanto, después de 26 minutos quedará la mitad, después de otros 26 minutos, quedará la mitad de esta mitad, o sea un cuarto de la cantidad inicial de masa. Escriba una función de Octave, utilizando estructuras de control, que determine en cuánto tiempo el plutonio-235 se degenerará hasta quedar un porcentaje determinado (ejemplo 16%) de su masa inicial, (pasado como parámetro).

Ejercicio 17

El siguiente código posee un error. Si bien funciona correctamente en Octave, no necesariamente lo hará en otros lenguajes o versiones del mismo programa. Encuentre el error y escriba otra versión que corrija el error encontrado.

```
a = 1;
ppar = 1;
for i=1:8
    if i/2==round(i/2)
        a = a+1;
    else
        i = i+a;
    end
    ppar = ppar*a;
end
```

Ejercicio 18

Los resultados de aplicar el siguiente script " factorial de n", no son los esperados; reescríbalo. Suponga que n está en la memoria de trabajo.

Versión 2.2.2 5/6

Curso 2021

Algunas preguntas de examen teórico

Hay una sola opción correcta para cada pregunta

Una estructura de control:

- a. es un mecanismo que permite modificar el flujo de ejecución de un programa
- **b.** son los datos que son manipulados por un programa (variables y constantes)
- c. es toda instrucción contenida dentro de un programa
- **d.** ninguna respuesta es correcta

Las estructuras de control **IF – ELSE y WHILE** tienen en común:

- a. ser estructuras de repetición
- b. ser estructuras de selección
- c. la evaluación de expresiones lógicas
- d. ninguna respuesta es correcta

Una variable es:

- **a.** un lugar de memoria cuyo valor y nombre pueden ser modificados durante la ejecución del programa
- **b.** un lugar de memoria, cuyo valor no puede ser modificado, pero su nombre sí, durante la ejecución del programa
- c. un lugar de memoria cuyo valor puede ser modificado, pero su nombre no, durante la ejecución del programa
- d. ninguna respuesta es correcta

Indique cuál de las siguientes afirmaciones es verdadera:

- a. la estructura IF puede reproducirse utilizando una estructura WHILE
- **b.** la estructura IF siempre puede reproducirse utilizando una estructura FOR
- c. la estructura IF no puede reproducirse con una estructura de iteración
- **d.** Ninguna de las anteriores

¿Qué instrucción utilizaría para cumplir con el siguiente requerimiento?

"Si se cumple una determinada condición C debe ejecutarse un grupo de instrucciones A, pero si la condición no se cumple debe ejecutarse otro grupo de instrucciones B, distinto del anterior".

- a. FOR
- **b.** IF-ELSE
- c. WHILE
- d. Ninguna respuesta es correcta

Versión 2.2.2