

# Teoría de Circuitos 2022 Circuitos en Laplace

Licenciatura en Ingeniería Biológica Universidad de la República







#### Definición

Dada una función  $f: \mathbb{R} \to \mathbb{C}$ , se define la **transformada unilateral de Laplace** como:

$$F: \mathbb{C} \to \mathbb{C} / F(s) = \mathcal{L}[f(t)](s) = \int_0^{+\infty} f(t)e^{-st}dt$$

Condición de existencia de la transformada de Laplace:  $re(s) > \alpha$  (abscisa de convergencia)

$$D(F(s)) = \{s \in \mathbb{C}/re(s) > \alpha\}$$
 (semiplano de convergencia)

- Consideraciones acerca de f(t):
  - Si no se aclara lo contrario f(t)=0 para t<0
  - Si no se aclara lo contrario f(t)=0 para t<0 f(t)=f(t).Y(t) donde Y(t) es el escalón de Heavyside.

$$Y(t) = \begin{cases} 0 & \text{si } t < 0 \\ 1 & \text{si } t > 0 \end{cases}$$

#### Algunas propiedades

Linealidad

$$\mathcal{L}[\alpha f_1(t) + \beta f_2(t)](s) = \alpha F_1(s) + \beta F_2(s)$$

Traslación temporal

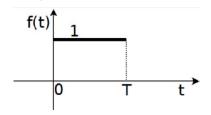
$$\mathcal{L}[Y(t-T)f(t-T)](s) = F(s)e^{-Ts}$$

• Traslación en frecuencia

$$\mathcal{L}[f(t)e^{-at}](s) = F(s+a)$$

#### Transformada de algunas funciones

Pulso rectangular



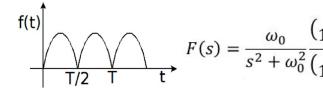
$$f(t) = Y(t) - Y(t - T)$$

$$f(t) = Y(t) - Y(t - T) \qquad \qquad \mathcal{L}[f(t)](s) = \frac{1 - e^{-sT}}{s}$$

Función periódica de periodo T  $(f(t+T)=f(t) \forall t)$ 

$$\mathcal{L}[f(t)](s) = \frac{F_1(s)}{1 - e^{-sT}} \quad f_1(t) = \begin{cases} f(t) \ si \ t \in (0, T) \\ 0 \ si \ no \end{cases}$$

Seno rectificado



#### Derivada temporal

• Sea f(t) derivable y transformable y sea  $f(0^+)$  su condición inicial.

$$\mathcal{L}[f'(t)](s) = sF(s) - f(0^+)$$

#### Integración temporal

• Sea f(t) transformable y sea g(t) tal que:  $g(t) = \int_0^t f(x) dx$ 

#### Derivada en frecuencia

• Sea f(t) transformable y sea F(s) su transformada.

$$\frac{d}{ds}\mathcal{L}[f(t)](s) = \mathcal{L}[-t.f(t)]$$

$$\mathcal{L}\left[\int_0^t f(x)dx\right](s) = \frac{F(s)}{s}$$

#### Teorema del valor inicial

• Enunciado: Sea f(t) transformable y  $f(0^+)$  su valor inicial, entonces se cumple que:

$$\lim_{s\to\infty} sF(s) = f(0^+)$$

#### Teorema del valor final

• Enunciado: Sea f(t) transformable y  $f(0^+)$  su valor inicial, entonces se cumple que:

$$\lim_{s\to 0} sF(s) = \lim_{t\to +\infty} f(t)$$

• Además del caso anterior, se le agrega la restricción de que la abscisa de convergencia sea menor a 0 (existencia de F(s) en s=0).

#### Transformadas de ecuaciones diferenciales ordinarias

• Sean x(t) n veces diferenciable y u(n), ambas transformables y sea la siguiente ecuación diferencial:

$$x^{(n)}(t) + a_{n-1}x^{n-1}(t) + \dots + a_1x'(t) + a_0x(t) = u(t)$$

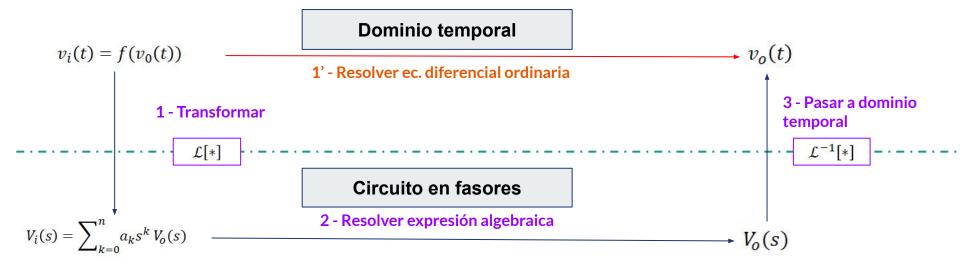
• Considerando condiciones iniciales nulas y aplicando transformada de Laplace en ambos lados se tiene que:

$$s^{n}X(s) + a_{n-1}s^{n-1}X(s) + \dots + a_{1}sX(s) + a_{0}X(s) \stackrel{a_{n}=1}{=} \left(\sum_{k=0}^{n} a_{k}s^{k}\right)X(s) = U(s)$$

• Observación: Al igual que en el caso de fasores, una ecuación diferencial se transforma en una expresión algebraica en el dominio de Laplace!!! Para hallar x(t) hay que antitransformar..

#### Metodología

Dado un circuito con entrada sinusoidal v<sub>i</sub>(t):



#### Antitransformada de Laplace

- Estrategia:
  - Aplicar fracciones simples hasta llegar a expresiones conocidas, ej:

$$\frac{1}{s+a}, \qquad \frac{\sqrt{1-\zeta^2}\omega_n^2}{s^2+2\zeta\omega_n s+\omega_n^2}, \qquad e^{-sT}.$$

Luego ir a la tabla y antitransformar

Pares de transformadas de Laplace

| 1 ares de transjormadas de Euplace                                                                                                               |                                                             |                                                                   |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------|--|--|
| f(t)                                                                                                                                             | $F(s) = \int_0^{+\infty} f(t)e^{-st}dt$                     | Semiplano de convergencia                                         |  |  |
| impulso unitario $\delta(t)$                                                                                                                     | 1                                                           | $\forall s \in \mathbb{C}$                                        |  |  |
| escalon unitario $Y(t)$                                                                                                                          | $\frac{1}{s}$                                               | $\operatorname{Re}\left\{ s\right\} >0$                           |  |  |
| t                                                                                                                                                | $\frac{1}{s^2}$                                             | $\operatorname{Re}\left\{ s\right\} >0$                           |  |  |
| $e^{-at}$                                                                                                                                        | $\frac{1}{s+a}$                                             | $\operatorname{Re}\left\{ s\right\} >-a$                          |  |  |
| $te^{-at}$                                                                                                                                       | $\frac{1}{(s+a)^2}$                                         | $\operatorname{Re}\left\{ s ight\} >-a$                           |  |  |
| $\sin{(\omega t)}$                                                                                                                               | $\frac{\omega}{s^2 + \omega^2}$                             | $\operatorname{Re}\left\{ s\right\} >0$                           |  |  |
| $\cos(\omega t)$                                                                                                                                 | $\frac{s}{s^2 + \omega^2}$                                  | $\operatorname{Re}\left\{ s\right\} >0$                           |  |  |
| $t^n$ , $(n = 1, 2, 3,)$                                                                                                                         | $\frac{n!}{s^{n+1}}$                                        | $\operatorname{Re}\left\{ s\right\} >0$                           |  |  |
| $t^n e^{-at}$ , $(n = 1, 2, 3,)$                                                                                                                 | $\frac{n!}{(s+a)^{n+1}}$                                    | $\operatorname{Re}\left\{ s\right\} >-a$                          |  |  |
| $\frac{1}{b-a}(e^{-at}-e^{-bt})$                                                                                                                 | $\frac{1}{(s+a)(s+b)}$                                      | $\operatorname{Re} \{s\} > \max\{-a, -b\}$                        |  |  |
| $\frac{1}{ab}\left[1 + \frac{1}{a-b}(be^{-at} - ae^{-bt})\right]$                                                                                | $\frac{1}{s(s+a)(s+b)}$                                     | $\operatorname{Re}\left\{s\right\}>\operatorname{máx}\{-a,-b,0\}$ |  |  |
| $e^{-at}\sin(\omega t)$                                                                                                                          | $\frac{\omega}{(s+a)^2 + \omega^2}$                         | $\operatorname{Re}\left\{ s\right\} >-a$                          |  |  |
| $e^{-at}\cos(\omega t)$                                                                                                                          | $\frac{(s+a)}{(s+a)^2 + \omega^2}$                          | $\operatorname{Re}\left\{ s\right\} >-a$                          |  |  |
| $\frac{1}{a^2}(at - 1 + e^{-at})$                                                                                                                | $\frac{1}{s^2(s+a)}$                                        | $\mathbb{R}e\left\{ s\right\} >\max\{-a,0\}$                      |  |  |
| $\frac{\omega_n}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin(\omega_n\sqrt{1-\zeta^2}t)$                                                           | $\frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}$   | $\operatorname{Re} \{s\} > -\zeta \omega_n$                       |  |  |
| $1 - \frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta \omega_n t} \sin(\omega_n \sqrt{1-\zeta^2}t + \phi)$ $\phi = \tan^{-1}(\frac{\sqrt{1-\zeta^2}}{\zeta})$ | $\frac{\omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)}$ | $\operatorname{Re} \{s\} > \max\{-\zeta \omega_n, 0\}$            |  |  |

#### Propiedades de la transformada de Laplace

| $\mathcal{L}\left[Af(t) ight]$                                                         | = | AF(s)                                                                                                           |
|----------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------|
| $\mathcal{L}\left[f_1(t) + f_2(t)\right]$                                              | = | $F_1(s) + F_2(s)$                                                                                               |
| $\mathcal{L}\left[\frac{d}{dt}f(t)\right]$                                             | = | sF(s) - f(0)                                                                                                    |
| $\mathcal{L}\left[\int_0^t f(t)dt\right]$                                              | = | $rac{F(s)}{s}$                                                                                                 |
| $\mathcal{L}\left[e^{-at}f(t)\right]$                                                  | = | F(s+a)                                                                                                          |
| $\mathcal{L}\left[Y(t-a)f(t-a)\right]$                                                 | = | $e^{-as}F(s)$                                                                                                   |
| $\mathcal{L}\left[tf(t) ight]$                                                         | = | $-\frac{dF(s)}{ds}$                                                                                             |
| $\mathcal{L}\left[f\left(\frac{t}{a}\right)\right]$                                    | = | aF(as)                                                                                                          |
| Teorema del valor inicial: $f(0^+)$                                                    | = | $\lim_{s\to +\infty} s F(s)$                                                                                    |
| Teorema del valor final: $f(t \to +\infty)$                                            | = | $\lim_{s\to 0^+} sF(s)$                                                                                         |
| Transformada de una función periódica de período $T$ : $\mathcal{L}\left[ f(t)\right]$ | = | $\frac{\mathcal{L}\left[f_{T}(t)\right]}{1-e^{-Ts}}\;,siendo\;f_{T}\;la\;restricción\;a\;un\;período\;de\;f(t)$ |
| Teorema de convolución: $\mathcal{L}\left[f_{1}(t)*f_{2}(t)\right]$                    | = | $F_1(s)F_2(s)$                                                                                                  |

#### Impulso de Dirac

- Consideremos el siguiente circuito:
- Su ecuación diferencial es:

$$\frac{d}{dt}v_o(t) + \frac{1}{RC}v_o(t) = \frac{d}{dt}v_i(t)$$



 $v_i(t) = E.Y(t)$ 

El objetivo es encontrar una expresión para la corriente que circula por la malla para todo ty R.

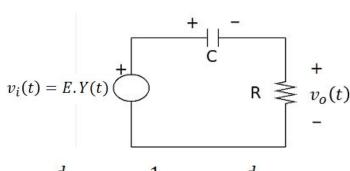
¿Qué ocurre en un entorno de t=0?

#### Impulso de Dirac

- La señal  $v_i$  no es derivable en 0, por lo tanto no es posible obtener una expresión de  $v_0(t)$ para todo t con la teoría que conocemos hasta ahora.
- Analicemos que ocurre cerca de t=0
- En el estado previo  $(t=0^-)$ :
  - Régimen de continua con *v*<sub>i</sub>=0

$$v_o(0^-)=0$$

 Se denomina dato previo al valor de cierta señal antes de que ocurra un cambio en el circuito.



$$\frac{d}{dt}v_o(t) + \frac{1}{RC}v_o(t) = \frac{d}{dt}v_i(t)$$

Ojo, no confundir con la condición inicial (ej.  $v_c(0^+)$ )

#### Impulso de Dirac

- Por lo general la condición inicial de un sistema no se conoce, pero sí el dato previo.
- La transformada de Laplace de la salida es:

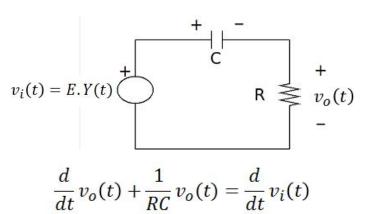
$$V_o(s) = \frac{sV_i(s) - v_i(0^+) + v_o(0^+)}{s + \frac{1}{RC}}$$

• En este caso, como la carga del capacitor se conserva:

$$v_c(0^+) = v_c(0^-) = 0 \rightarrow v_0(0^+) = v_i(0^+) = E$$

• Entonces:

$$V_o(s) = \frac{E}{s + \frac{1}{RC}} \rightarrow v_o(t) = Y(t)Ee^{-t/RC}$$



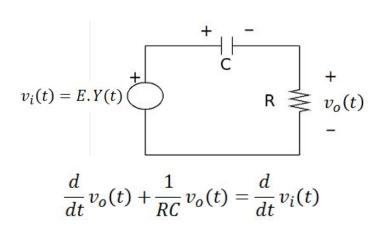
Veamos que ocurre en el capacitor

#### Impulso de Dirac

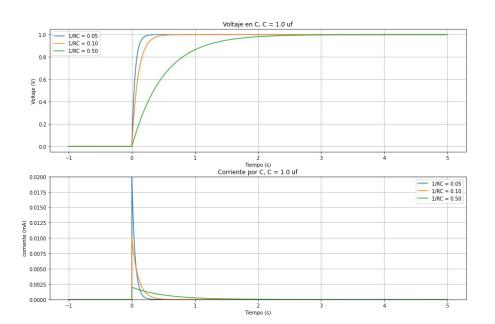
• Las ecuaciones en el capacitor son:

$$v_C(t) = Y(t)E\left(1 - e^{-t/RC}\right)$$
$$i(t) = C\frac{d}{dt}v_C(t) = Y(t)\frac{E}{R}e^{-t/RC}$$

• ¿Cómo se ven gráficamente estas expresiones en función de R?



#### Impulso de Dirac



#### Impulso de Dirac

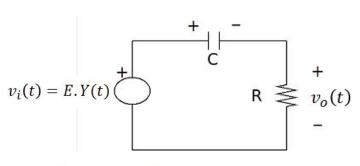
• Observar que el área bajo la curva de la corriente es constante:

$$\int_{-\infty}^{+\infty} i(t)dt = EC$$

 Por lo tanto, para R→ 0, el caso límite para el voltaje y corriente es:

$$v_{\mathcal{C}}(t) = \lim_{R \to 0} Y(t) E^{\left(1 - e^{-\frac{t}{RC}}\right)} = Y(t) E$$

$$i(t) = \lim_{R \to 0} EC \frac{d}{dt} Y(t) e^{-t/RC} = EC \frac{d}{dt} Y(t) = EC \delta(t)$$



$$\frac{d}{dt}v_o(t) + \frac{1}{RC}v_o(t) = \frac{d}{dt}v_i(t)$$

Delta de Dirac

#### Impulso de Dirac

- El delta de Dirac representa una extensión al espacio de funciones (función singular)
- Esta función da la completitud de la derivada del escalón en todo el dominio temporal.
- El impulso vale 0 en todo el dominio excepto en t=0 donde su valor "infinito" es tal que:

$$\int_{0^{-}}^{0^{+}} \delta(t)dt = 1$$

A partir de esto podemos extender el conjunto de funciones transformables

#### **Funciones regulares**

- Una función  $f:[0,\infty) \to \mathbb{G}$  es seccionalmente continua, si existe un conjunto finito K tal que:
  - o f es continua en [0,∞)\K
  - Existen los límites laterales para cada x∈ K
- f es regular si:
  - o f es seccionalmente suave (seccionalmente continua y  $C \infty$  en  $[0,\infty)\K)$
  - o para cada  $x \in K$  existen los datos previos para la derivada de todos los órdenes ( $f^{(n)}(x^{-})$ )

#### **Funciones singulares - Ejemplos**

• Delta de Dirac 
$$\delta(t)$$

• Impulso con asiento en T 
$$\delta_T(t) = \delta(t-T)$$

• Peine de Dirac 
$$\sum_{k=-\infty}^{+\infty} \delta(t-kT)$$

- Producto del impulso por una función:
  - $\circ$  sea f(t) regular, entonces se cumple:  $f(t)\delta_{t_0}(t)=f(t_0)\delta_{t_0}(t)$
- Derivada de una función singular:  $\left(f(t)\delta(t)\right)' = f(0)\delta'(t) + f'(0)\delta(t)$

#### **Funciones singulares**

• Una función singular f<sub>s</sub> es una combinación lineal de impulsos y sus derivadas:

$$f_{s}(t) = \sum_{k=0}^{+\infty} c_{n,k} \delta_{t_k}^{(n_k)}(t)$$

- Los  $t_{\nu}$  son los tiempos donde ocurren las singularidades.
- los c<sub>nk</sub> son las amplitudes de las discontinuidades de las derivadas n-ésimas (saltos).

#### Definición

• Una función generalizada se compone de una parte regular y una parte singular:

$$f(t) = f_r(t) + f_s(t)$$

- La parte regular es la que tiene la información del dato previo
- La derivada de la parte regular de f se extiende de la siguiente forma:

$$f_r'(t) = (f_r'(t))_r + \sum_{t_k \in K} [f_r(t_k^+) - f(t_k^-)]\delta(t - t_k)$$

• Donde K es el conjunto de discontinuidades (finitas) de  $f_r$ .

#### Transformada de Laplace

• La definición de transformada de Laplace se puede extender al dato previo 0<sup>-</sup>.

$$\mathcal{L}_{-}[f(t)](s) = \int_{0^{-}}^{+\infty} f(t)e^{-st}dt$$

• En el caso de la parte singular, la transformada de cada término se calcula como:

$$\mathcal{L}_{-}[\delta^{(n)}(t-t_{o})](s) \stackrel{def F'(s)}{=} s^{n} \mathcal{L}_{-}[\delta(t-t_{0})](s) = s^{n} \int_{0^{-}}^{+\infty} \delta(t-t_{0}) e^{-st} dt = s^{n} e^{-st_{0}}$$

• Notar que ahora se pueden antitransformar funciones reales racionales no estrictamente propias.

#### Extensión del teorema de la derivación

• La definición de derivación en Laplace se extiende como:

$$\mathcal{L}_{-}[f'(t)](s) = sF(s) - f(0^{-})$$

Notar que ahora depende del valor previo del circuito.

#### Impedancia

- La definición de impedancia en Laplace es similar al caso de Fasores
- La única diferencia es que hay que tener en cuenta las condiciones iniciales (respuesta natural del sistema)

#### Resistencia

• La ley de Ohm nos dice que:

$$v(t) = Ri(t)$$

Pasando a Laplace

$$V(s) = \mathcal{L}_{-}[v(t)](s) = \mathcal{L}_{-}[Ri(t)](s) = RI(s)$$

• A partir de la identidad se concluye que:

$$V(s) = RI(s)$$

+ V

La ley de ohm es invariante en Laplace

#### Capacitancia

• La ley de del elemento nos dice que:

$$i(t) = C\frac{dv}{dt}$$

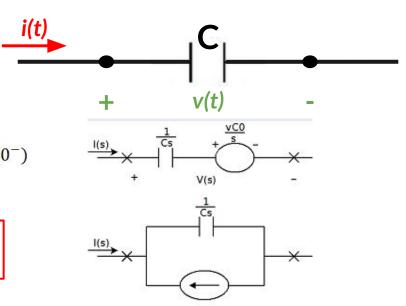
• Pasando a Laplace:

$$I(s) = \mathcal{L}_{-}[i(t)](s) = \mathcal{L}_{-}\left[C\frac{dv}{dt}\right](s) = CsV(s) - Cv(0^{-})$$

• A partir de la identidad se concluye que:

$$I(s) = CsV(s) - Cv(0^{-}), \qquad V(s) = \frac{I(s)}{Cs} + \frac{v(0^{-})}{s}$$

Esto responde a dos modelos.



V(s)

#### Inductancia

• La ley de del elemento nos dice que:

$$v(t) = L\frac{di}{dt}$$

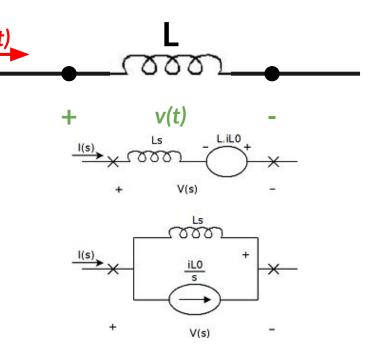
De forma simétrica al caso anterior:

$$V(s) = \mathcal{L}_{-}[v(t)](s) = \mathcal{L}_{-}\left[L\frac{di}{dt}\right](s) = LsI(s) - Ci(0^{-})$$

• A partir de la identidad se concluye que:

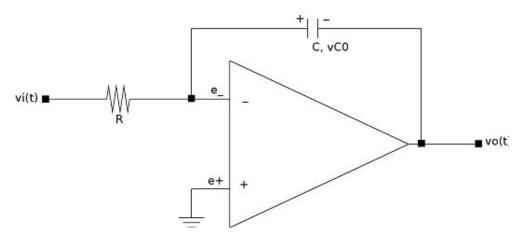
$$V(s) = LsI(s) - Li(0^{-}), \qquad I(s) = \frac{V(s)}{Ls} + \frac{i(0^{-})}{s}$$

Esto también responde a dos modelos.



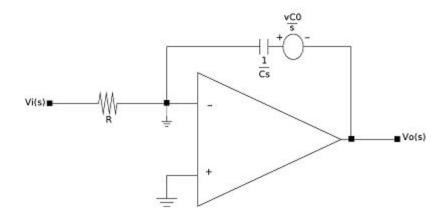
#### **Ejemplo**

• Resolver el siguiente circuito con dato previo:



#### **Ejemplo**

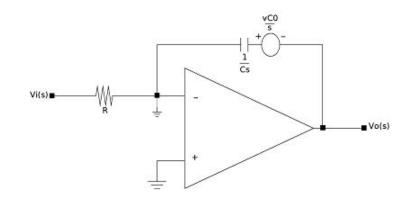
• El circuito equivalente en Laplace queda:



#### **Ejemplo**

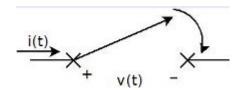
• Aplicando nudos en e<sup>-</sup>:

$$\frac{V_i(s)}{R} = \frac{-\left(\frac{v_{c_0}}{s} + V_o(s)\right)}{1/Cs} \rightarrow V_o(s) = -\underbrace{\frac{v_{c_0}}{s}}_{R.propia} - \underbrace{\frac{V_i(s)}{RCs}}_{R.forzada}$$



#### Elementos lineales a tramos

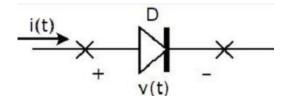
Llave



ON cortocircuito - OFF circuito abierto

#### Elementos lineales a tramos

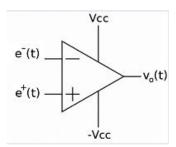
Diodo



| Estado | Suposición | Verificación |
|--------|------------|--------------|
| ON     | $v_D = 0$  | $i_D \ge 0$  |
| OFF    | $i_D = 0$  | $v_D \leq 0$ |

#### Elementos lineales a tramos

Comparador ideal



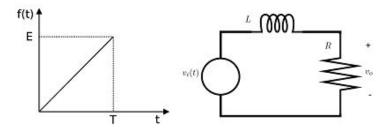
| Suposición      | Verificación    |  |
|-----------------|-----------------|--|
| $v_o = +V_{CC}$ | $e^{+} > e^{-}$ |  |
| $v_o = -V_{CC}$ | $e^{+} < e^{-}$ |  |

#### Circuitos lineales a tramos - Estrategia:

- 1. Definir los tramos donde el estado de los circuitos lineales a tramos se mantiene
- 2. Para cada tramo:
  - a. Determinar t=0 como el comienzo del tramo
  - b. Identificar los datos previos
  - c. Resolver el circuito
  - d. Identificar el final del tramo (estado previo del siguiente tramo)

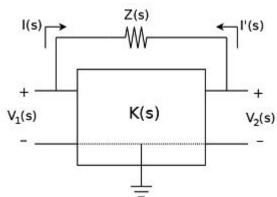
Ejercicio -Respuesta en régimen periódico

Resolver el siguiente circuito en régimen periódico de periodo T



#### Hipótesis

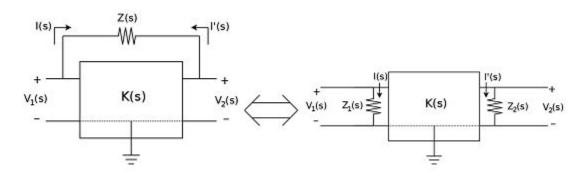
- Sea una caja negra con cuatro terminales (cuadripolo), dos de entrada y dos de salida.
- Dicha caja se realimenta con una impedancia Z(s)



 Sea K(s) la función de transferencia de la caja en lazo abierto (sin Z(s)), K(s) es independiente de Z(s)

#### **Tesis**

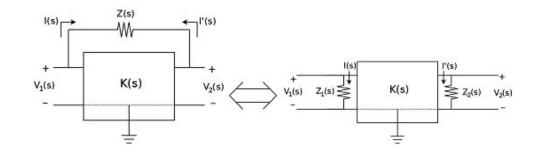
• Los siguientes circuitos son equivalentes.



Donde:

$$Z_1(s) = \frac{Z(s)}{1 - K}$$
 ,  $Z_2(s) = \frac{K \cdot Z(s)}{K - 1}$ 

Demostración



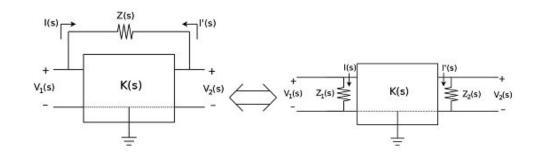
Calculando I₁:

$$I_1(s) = \frac{V_1(s) - V_2(s)}{Z(s)} = \frac{V_1(s) - KV_1(s)}{Z(s)} = \frac{V_1(s)}{\frac{Z(s)}{1 - K}}$$

• Entonces:

$$Z_1(s) = \frac{V_1(s)}{I_1(s)} = \frac{Z(s)}{1-K}$$

Demostración



• Calculando  $I'_1 = -I_1$ :

$$I_1'(s) = \frac{V_2(s) - V_1(s)}{Z(s)} = \frac{V_2(s) - \frac{V_2(s)}{K}}{Z(s)} = \frac{(K - 1)V_2(s)}{KZ(s)}$$

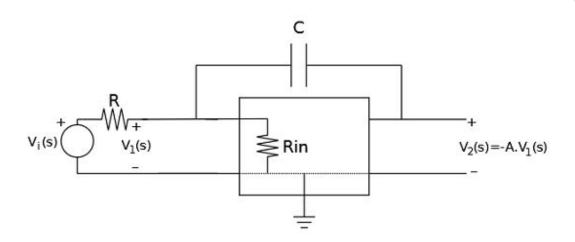
Entonces:

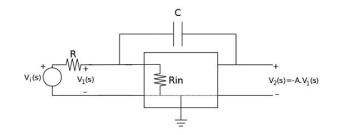
$$Z_2(s) = \frac{V_2(s)}{I_1'(s)} = \frac{KZ(s)}{K-1}$$

#### **Aplicación**

• Efecto capacitivo en amplificadores operacionales:

$$Z(s) = 1/Cs$$
$$K(s) = -A$$





Z(s) = 1/CsK(s) = -A

## Teorema de Miller

#### **Aplicación**

• Efecto capacitivo en amplificadores operacionales:

$$Z_v(s) = R + R_{in} || \frac{1}{(A+1)Cs} = R + \frac{1}{(A+1)C} \cdot \frac{1}{s + \frac{1}{(A+1)R_{in}C}}$$

• Se introduce un polo en:

$$\omega_0 = \frac{1}{(A+1)R_{in}C}$$

EFECTO CAPACITIVO (ojo con el polvillo)

# **FIN**