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Abstract
A Monte Carlo tumour model has been developed to simulate tumour cell
propagation for head and neck squamous cell carcinoma. The model aims to
eventually provide a radiobiological tool for radiation oncology clinicians to
plan patient treatment schedules based on properties of the individual tumour.
The inclusion of an oxygen distribution amongst the tumour cells enables the
model to incorporate hypoxia and other associated parameters, which affect
tumour growth. The object oriented program FORTRAN 95 has been used
to create the model algorithm, with Monte Carlo methods being employed to
randomly assign many of the cell parameters from probability distributions.
Hypoxia has been implemented through random assignment of partial oxygen
pressure values to individual cells during tumour growth, based on in vivo
Eppendorf probe experimental data. The accumulation of up to 10 million
virtual tumour cells in 15 min of computer running time has been achieved.
The stem cell percentage and the degree of hypoxia are the parameters which
most influence the final tumour growth rate. For a tumour with a doubling
time of 40 days, the final stem cell percentage is approximately 1% of the total
cell population. The effect of hypoxia on the tumour growth rate is significant.
Using a hypoxia induced cell quiescence limit which affects 50% of cells with
and oxygen levels less than 1 mm Hg, the tumour doubling time increases
to over 200 days and the time of tumour growth for a clinically detectable
tumour (109 cells) increases from 3 to 8 years. A biologically plausible
Monte Carlo model of hypoxic head and neck squamous cell carcinoma tumour
growth has been developed for real time assessment of the effects of multiple
biological parameters which impact upon the response of the individual patient
to fractionated radiotherapy.
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1. Introduction

1.1. Head and neck cancer and hypoxia

Squamous cell carcinoma of the head and neck (HNSCC) describes aggressive, malignant
disease affecting sites such as the oral cavity, pharynx, oropharynx, tongue, nasopharynx
and oesophagus. Cancers of the head and neck account for approximately 3% of all human
malignancies and approximately 500 000 HNSCC are diagnosed world wide each year, with the
majority being locally advanced at presentation (Bourhis et al 2006). Surgery, radiotherapy and
chemotherapy may be used alone or in combination to control the disease, with radiotherapy
being the most common form of treatment. Currently, radiotherapy local control rates are
approximately 80% for early stage disease, but this becomes significantly lower (often below
50%) for locally advanced tumours. Efforts to improve these statistics through dose and
fractionation modifications have been made in recent decades using different radiation dose
schedules but the prognosis has not improved significantly (Koukourakis et al 2006, Dinshaw
et al 2006, Stadler et al 1998).

Hypoxia, defined as a lack of an adequate supply of oxygen in tissue, occurs commonly in
HNSCC and is a significant cause of treatment failure because hypoxic cells are up to 3 times
more resistant to radiotherapy (Palcic et al 1984, Gray et al 1953). From a radiobiological
perspective, hypoxia of a cell is said to exist if partial oxygen pressure (pO2) is 10 mm Hg or
less. However, reports from clinical trials often express hypoxia as the percentage of cells in
the tumour with pO2 less than 5 or 2.5 mm Hg. The normal range of pO2 for healthy epithelial
cells may range from 20 to 100 mm Hg with an average of 40–50 mm Hg (Adelstein et al
2005, Adam et al 1999).

Hypoxia arises in the tumour mass if the oxygen supply is inefficient, which may be due
to effects such as the increased demand for oxygen in the rapidly proliferative cell population
and the irregular and chaotic nature of tumour vessel networks. Hypoxic regions may be
anywhere in the tumour mass but are most commonly observed at the tumour core, which
is likely to be located further from functioning blood vessels than at its periphery (chronic
hypoxia). Temporary hypoxia (acute hypoxia) may also be observed if there are temporary
shortages in blood flow, for reasons such as the fluctuation in mechanical pressures on the
tumour.

Approximately 70% of locally advanced head and neck tumours have been shown to have
hypoxic regions (Rischin et al 2006, Becker et al 1998) and there is direct evidence that the
hypoxic sub-volume and mean oxygen level have a direct influence on local control of head
and neck tumours (Nordsmark et al 2005, Dunst et al 2003, Stadler et al 1998, 1999, Brizel
et al 1999, Gatenby et al 1988). Further, up to 30% difference in time to recurrence and 10%
difference in death rates at 5 years has been found in clinical trials when separating patient
groups into low and high oxygenation groups (Adam et al 1999, Nordsmark et al 2005).

A large range in individual patient values for fractional hypoxic volumes within the
tumours exists. Furthermore, there is a wide distribution of oxygen levels within a single
tumour. These wide variations provide the basis for developing tumour models and treatment
planning algorithms based not only on the presence of hypoxia, but also on the individual
hypoxic tumour volumes and the oxygen distribution within the tumour. There is considerable
evidence in the literature supporting the value of modelling (Dutching and Vogelsaenger 1985,
Dionysiou et al 2004, Dasu et al 2005, Harting et al 2007) based oxygen distribution in the
tumour and clinical trial data which stratify for hypoxic volumes (Dunst et al 2003).

Tumour modelling has the potential for faster and more individualized radiotherapy
treatment planning. Modelling allows patient specific biological data to be considered, and
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allows for changes in parameter values and ranges to be evaluated for their affects on the entire
tumour system. Using Monte Carlo modelling methods, cell based parameter changes can be
implemented and their impact analysed by varying macroscopic tumour properties such as:
tumour growth rates/doubling times (TD), the percentages of cells differing proliferation
potential within the tumour population, the percentage of hypoxic cells and the rate of
repopulation and reoxygenation throughout treatment. A cell specific and multi-parameter
system such as this would not be feasible using an equation based deterministic method of
modelling.

1.2. Research aims

The broad aims of this study are to develop a HNSCC tumour growth computer model to
assess the major influences on tumour growth rate on an individual basis. The model should
provide a tool for not only growing a tumour much faster than in a living model, but also for
analysis and changes to be included any point in time. It should be relatively simple to use,
run efficiently in time and memory capacity and have the flexibility to allow further cell based
and global parameters to be applied to the model for further developments. It should also
have the flexibility to allow for the effect of individual radiotherapy fractionation schedules
and different degrees of tumour oxygenation as well as reoxygenation and repopulation
during RT.

1.3. Review of the tumour modelling literature

Many groups have undertaken the task of simulating the growth and subsequent treatment
of human tumours using mathematical and computer systems. They have done so through
various methods which have used either analytical deterministic or stochastic Monte Carlo type
approaches. For the more recent models include parameters of constituent tumour cell groups
or of individual cells, both methods have been used for an automaton approach to spatially
organize and visualize the tumour, or to concentrate purely on the temporal behaviour of the
system.

Based on previous work (Gray et al 1953) which showed that cells undergoing
radiotherapy are more resistant in the absence of oxygen, Thomlinson and Gray (Thomlinson
and Gray 1955) first used the theories of simple geometry and diffusion (Hill 1928) to
mathematically predict the presence and location of chronic hypoxia of tumour cell cords.
Their model was justified by experimental results which revealed no presence of central
necrosis in tumour cell cords in squamous cell carcinoma of the bronchus, which were less
than 160 µm in diameter. Work by Tannock followed in the late 1960s and early 1970s
which went on to describe the radiosensitivity of tumours based on the distribution of tissue
oxygenation (Tannock 1968, Tannock and Steel 1970, Tannock 1972).

Two of the earliest groups to describe the tumour system using stochastic methods and
individual cell or cell sub-group modelling were led by Donaghey (1980) and Dutching
(Dutching and Vogelsaenger 1981, 1985) during the late 1970s and early 1980s. This work led
to the progression into the first stochastic tumour population modelling algorithms (Donaghey
1980, Smolle and Stettner et al 1993, Qi et al 1993) and further into modelling the effects
of chronic hypoxia in tumours and how the potential doubling time and hypoxic cell life
span impacted on the extent of hypoxic in solid tumour segments (Maseide et al 1999). In
more recent times, tumour modelling has become more specific in terms of tumour site, cell
characteristics and also to include modelling of treatment parameters to a larger extent (Kocher
et al 2000, Dionysiou et al 2004, Borkenstein et al 2004, Harting et al 2007).
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The current model extends upon the work within Department of Medical Physics,
developed by Marcu et al (2002) at the Royal Adelaide Hospital and IMVS Research Facility.
This work analysed the mechanisms and influences of tumour growth kinetics and was extended
to consider the temporal aspects of chemotherapy in combination with radiotherapy and their
effects on tumour kinetics and treatment outcome. The work in this text contributes to the
tumour modelling literature by providing an individual tumour cell propagation model which
includes: an epithelial cell proliferative hierarchy, a plausible log-normal distribution of
oxygen amongst the individual tumour cells, oxygen and cell type dependent cell cycle times,
cell quiescence and radiosensitivity (for future radiotherapy studies). The model algorithm
has been written in FORTRAN 95 which has proven to be efficient for the type of coding
required in the model, and has been designed to be efficient and flexible for data handling
and storage. It may also be readily developed and extended to further investigations into
radiotherapy treatment effects on tumour cell kill for well oxygenated or for hypoxic tumours
of varying degrees of oxygenation.

2. Methods

2.1. Modelling tumour cell division

2.1.1. Carcinogenesis and cell hierarchy. There are many theories of how genetically
mutated cells progress to develop into a malignant tumour. In this work it has been assumed
that HNSCC is initiated by a single mutated stem cell. This cell type is typically found in the
basal (lower) layer of epithelial tissue (Leary et al 1984, Morris et al 2004). The cell hierarchy
structure used in the model was developed through the information provided by previous stem
cell biology and modelling work (Aarnaes et al 1990, Wright and Alison 1984, Marcu et al
2002).

Stem cells are self renewing cells, and are often also described as being clonogenic,
meaning that they divide indefinitely, and they are responsible for maintaining the integrity
of the epithelial tissue by boosting the cell population. Stem cells may be in a proliferative
(dividing) or quiescent state. In the lower and intermediate layers of the epithelium, cells
with limited proliferative capacity exist, called transit cells. These cells may undergo a
finite number of divisions, producing more transit cells or differentiating cells (post-mitotic
cells). In the higher layers, cells more specialized and eventually become fully differentiated.
Fully differentiated cells are eventually lost through natural cell death processes and replaced
through cell division from the layers below. Epithelial tissue of the structures of the head and
neck is primarily non-keratinizing (does not form the protein keratin, unlike skin), but like
skin it is also stratified, as shown in figure 1.

2.1.2. Cell type definitions programmed cell division structure. Although the layered
structure of normal epithelial tissue may be distorted in tumouros tissue, it has been assumed
in the model that the percentages of different cell types are approximately maintained. This
assumption is made on the premise that the HNSCC tumour system is one in which the balance
between cell production and cell loss no longer exists, although it retains cells of a wide range
of proliferative capacities (which may vary depending on tumour differentiation status).

In the model, a dividing stem cell always produces at least one daughter stem cell (a
property of self renewing stem cells), and the second daughter cell is either another stem cell,
a first generation ‘transit’ cell (‘T1’) or a differentiating cell (‘D1’, a differentiating cell that
would in healthy tissue be located in the basal layer). Stem cells may be in a quiescent or
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Figure 1. Epithelial non-keratinized stratified squamous cell structure (Henrikson et al 1997).

Figure 2. Epithelial cell proliferative hierarchy used in the model. The diagram shows the different
cell types modelled and their potential cell daughter products upon division.

cycling state. The ratio of the probabilities for the cell type of the second daughter cell is
called the ‘S:T1:D1’ ratio.

The modelled transit cells divide into two daughter transit cells, until a predefined
generation number (between 1 and 4) has been reached (generation number is described
as ‘T1’ for first generation, ‘T2’ for second generation etc), at which time the last generation
transit cell divides in to two differentiating cells (‘D1’ or ‘D2’).

The modelled differentiating cells go through three phases before cell death, the ‘D1’,
‘D2’ and ‘D3’ phases. The ‘D1’, ‘D2’ phase cells are produced from stem or transit cell
divisions. Both the ‘D1’ and ‘D2’ cells progress into the ‘D3’ phase. ‘D3’ cells are those
cells which have become fully differentiated and exist for a finite period before being lost
to natural cell death processes (Wright and Alison 1984, Aarnaes et al 1990, 1993). See
figure 2 for a diagram cell types and division products applied in the model.
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The primary difference between the healthy tissue and the modelled tumour tissue is the
increased probability of stem cell division where two daughter stem cells are produced. This
probability is called the stem cell symmetrical division probability and will be referred to as
S% (also as ‘S’ in the S:T1:D1 ratio).

Daughter cell products upon division of the various cell types have been determined in the
model based on literature data of the cell type percentages in the total cell population likely
to be present in normal epithelial tissue and therefore also in their malignant counterparts
(Aarnaes et al 1990, Wright and Alison 1984, Steel 2002, Appleton et al 2002, Marcu et al
2002). Aarnaes et al took great detail in mathematically and experimentally exploring the
percentages of proliferating and quiescent cells in the basal layer of the epithelium, as well
as the different cell cycle and phase durations in cells at different times of the day. The latter
parameter does not form part of the current study, although it merits consideration at a later
date owing to the impact on the redistribution of cells in the cell cycle during fractionated
radiotherapy.

A 12%–50% D1 population amongst the basal layer cells and an approximate 50%
proliferating population in the basal layer has been reported (Aarnaes et al 1990). This
group has also estimated the percentage of cells in the G0/G1 phase awaiting migration to
be approximately 20% in the basal layer. The total non-cycling population was assumed to
be 80%–90% of the total cell population, and that the differentiated group of cells had a high
probability of cell death (apoptotic and other natural death processes). These data were noted
while adjusting parameters so that the final cell type percentages were in plausible ranges
(results presented in section 3.1).

The approach of modelling the cells which do impact significantly on tumour growth
rate, more accurately reflects the biology and cell type percentages that have been previously
reported (Aarnaes et al 1990, Wright and Alison 1984, Marcu et al 2002). Consequently,
effects of parameter values and ranges on the cell populations have been made simpler to
analyse in terms of impact upon the cell type percentages.

It should be noted that no DNA or gene mutation information is modelled in this work
and only tumour cells (no normal tissue) have been considered. The model does not take into
account any spatial information about the cells, i.e., no specific layered structure, as temporal
information only is retained for each cell.

2.2. Monte Carlo modelling approach

2.2.1. Stochastic modelling technique and programming language. Monte Carlo modelling
techniques were employed so that multiple biological parameters could be considered
simultaneously, since many parameters involve the use of probability functions. The program
has been written in the FORTRAN 95 programming language and used in the Microsoft
Visual Studio 2003 environment. This language was chosen for this project because of the
computational speed achievable through the use of basic functions and commands. Early in
development, the program was written in the MATLAB programming language and compared
in terms of computational speed, using similar basic functions and a programming style. The
use of MATLAB showed more than a five fold decrease in computational efficiency.

The simulations that have produced the results in section 3 have used a total cell population
of 107 cells. This number was chosen to limit the time taken to produce the required results,
whilst acquiring a sufficient cell population to model the initiation of tumour hypoxia (106

cells). Note that the variations in model in terms of the cell population percentages and tumour
growth rates are negligible at this cell number, considering the fluctuations caused by altering
the random number seed.
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2.2.2. Algorithm design. The 95 edition of FORTRAN 95 has the advantage of being ‘object
oriented’. Each cell in the tumour model is declared as an object. Each object may have many
attributes assigned to it, each with a different numerical precision if required. For the model in
its current state, there are five such attributes stored as integers, in one 4-byte and three 1-byte
words. These attributes include: the cell type, generation number, cell cycling time, time at
which the cell is due to divide, and the oxygenation level.

The storage of cell data and data handling is structured using a large two-dimensional
array of cells. Each element in the array houses one cell or ‘object’. The algorithm is designed
such that as each cell divides, two new daughter cells emerge and the mother cell ceases to
exist. The two new cells are allocated their respective attributes and stored within the array.
Each row in the array houses a stack of cells and represents one hour of time (relative to the
tumour), i.e., cells which are due to divide within a certain hour are stored in the same stack
and remain there until the stack is due to divide. This is an efficient way of organizing the cell
data storage and for reading and writing data to computer memory.

The cell division algorithm was designed such that cells divide in chronological order
according to their assigned cell cycle time (CCT), followed by multiple parameter assignment
to the daughter cell products. All individual cell attributes in the growth model are allocated
upon creation of the cell and remain fixed through out its lifetime; however, one daughter cell
retains the mother cell oxygenation level, as it effectively replaces the position that the mother
cell used to reside. The second daughter cell will have a new oxygen value randomly allocated
from a probability distribution.

Stacks of cells are divided in chronological order, at which time daughter cells are created
and immediately stored in a new stack, corresponding to their allocated Cell Cycle Time (CCT)
and the current tumour time. There are 59 stacks in the array (maximum CCT = 59 h), and
when the current tumour time is 60 h or greater the array starts to have the stacks recycled.
See figure 3 for a flow chart of the cell division algorithm.

2.2.3. Modelled parameters. Many biological parameters are included in the model. These
are based on the literature average values wherever possible. These parameters include: the
distribution of values for CCT, necrotic cell death rates, cell repair probabilities, stem cell
symmetrical division probability etc. Quantitative values of some parameters are yet to be
identified experimentally, and consequently have been applied in the model through estimated
values or probability distributions. The applied parameters were then analysed for global
effects over a wide but reasonable range of values. See table 1 for parameter values and
references.

2.2.4. Algorithm efficiency. Care was taken to design the cell division algorithm with a high
computational efficiency. This meant designing the program code at a basic code level, with a
minimum number of modules and pointers to in-built functions. The method of using a two-
dimensional array (where each column stores cells that are due to divide within the same hour
of tumour time) to store cell data, was the most efficient way to store, access and manipulate
data as the modelled cells divide, die and accumulate in the program. Other methods were
explored (using other programming package, and using other linear vector approaches), but
alternative methods either created more data to store or were slower in their processing times.

2.3. Modelling hypoxia

2.3.1. The modelled tumour oxygen distribution. A lognormal distribution has been fitted
to literature data of pO2 versus frequency of measurement (histogram) from Eppendorf probe



4496 W Tuckwell et al

Figure 3. Cell division algorithm flow chart, where all references to time and in terms of time
relative to the tumour, in hours, and not the running time of the program.

data in clinical trials (Lartigau et al 1998, Adam et al 1999), as shown in figure 4. This
distribution is used in the Monte Carlo code which randomly assigns each cell a pO2 value.
As previously mentioned, as a cell divides one daughter cell receives the mother cell pO2 level
and the other daughter cell receives a value taken from the distribution shown in figure 4. To
avoid a bias, the mother cell pO2 level has an equal chance of being passed on to the first or
second daughter cell.

2.3.2. Assigning of oxygen levels to the cell population. The method of assigning oxygen
levels to each cell from a set probability distribution is in contrast to other models which tend
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Table 1. Key parameters in the growth model including the parameter value, range, distribution
and literature references.

Value used
Parameters in the model Range Reference Comments

G0 stem phase
duration

5 h Exponential,
mean = 5 h

Izquierdo and Gibbs
1972
Indirect: Wright and
Alison 1984, Potten
et al 1986, Hill and
Tannock 1998

Total average CCT (G0 and
cycling phases) is ∼33 h, with a
small number of cells remaining
in G0 for a relatively long time

Cell cycle time
(stem cell)

27 h Gaussian,
sigma = 3 h

Indirect: Wilson
et al 1988, Hill and
Tannock 1998, Begg
et al 1999, Steel
2002, Mantel et al
2001

The G0 phase adds to the length
of time before stem cell division

Cell cycle time
(transit cell)

33 h Gaussian,
sigma = 6 h

With 2 to 4 generations of
division

Differentiating Time:
D1 & D2 cells

D1: 36 h
D2: 36 h

Uniform:
range of
24–48 h

Indirect: Wright and
Alison 1984, Potten
1997

Estimate based on 1–2 week cell
turnover in epithelial tissue based
on 3 transit cell divisions

Fully differentiated
‘D3’ cell natural
death rate

D3: 80% Constant Indirect: Steel 2003
(∼85% cell loss
factor)

This cell loss rate for the fully
differentiated cells means that the
total aver age cell loss is ∼85%
for the whole population where
TD ∼ 40–45 days

Stem cell division
products i.e. the
S:T1:D1 ratio

S = 3%
T = 87%
D1 = 10%

Constant Steel 2003 This ratio produces an approxi-
mate 1% stem cell population in
the tumour

Oxygen distribution 5 mm Hg Log-normal Lartigau et al 1998,
Adam et al 1999,
Hall 2005

A log-normal describes the
literature data using Eppendorf
electrodes. Values range
between 1 and 100 mm Hg

Spontaneous death of
D1 & D2 cells upon
mother cell division

D1: 10%
D2: 10%

Constant Steel 1997 Aging and spontaneous apoptotic
death considered

Transit cell division
probability

D1: 80
D2: 20

Constant Aarnaes et al 1990

Low oxygen limit for
cell cycle arrest

1 mm Hg Constant Indirect: Alarcon
et al 2004,
Ljungkvist et al
2002

Hypoxic cell half life
(the time after which,
half of the extremely
hypoxic cells are
programmed to die
due to necrosis:
pO2 < 1 to 2 mm Hg)

4 days Constant Durand and Sham
1998 Ljungkvist
et al 2005

4 to 10 day hypoxic cell lifetime
in human colon carcinoma
spheroids 2 days in xenograft
HNSCC
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Figure 4. pO2 histogram data measured using the Eppendorf electrode technique.

Figure 5. Slowing of the cell cycle with pO2 (mm Hg), theory adapted from information from
Alarcon et al (2004) and fitted to an exponential curve using the formula f = y0 + a ∗ exp(−b ∗ x),
where y0 = 33.27, a = 58.88, b = 1.73, r2 = 0.993.

to use diffusion distances from uniformly spaced capillary cells (Borkenstein et al 2004, Dasu
et al 2005, McElwain et al 1979), or oxygen levels based on radial distances. The method has
the benefits of being flexible, in that it can be easily interchanged for different oxygen data
sets and because it can be changed during the growth period (or treatment) if required for a
single simulation. It is also a simple and randomized method of assigning each cell an oxygen
value, which is reasonable due to the spatial and temporal irregularity of hypoxia in advanced
in vivo tumour systems (Ljungkvist et al 2002).

Further, many models do not consider the range of oxygen levels which may lie between
0 and 100 mm Hg. The range is important due to the slowing of the cell cycle with decrease in
the oxygen levels (Alarcon et al 2004, Ljungkvist et al 2002, Wilson et al 1995, Gardner et al
2001, Hirst and Denekamp 1979). In the model, a threshold for cell cycle arrest was applied
for cells with very low oxygenation, as cells cannot survive in extreme hypoxic conditions
and eventually die of necrosis, after arrest in the G1 phase of the cell cycle (Koritzinsky et al
2001).

This threshold value was varied and the results analysed. Cells with oxygen levels above
this threshold had their allocated cell cycle time increased by a factor between 1 and 3,
according to the modelling work of Alarcon et al (2004) (figure 5). Cells with oxygen levels
below the threshold become quiescent and are programmed to die, using a half life parameter.
This parameter is modelled so that half of the hypoxic quiescent cells die at regular intervals.
This means that hypoxic quiescent cells do not need their entire attribute data stored, rather a
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(a) (b)

Figure 6. The percentages of cells of different proliferative hierarchy arising in the model (a)
in the total cell population, and (b) of cells that would normally reside in the basal layer of the
epithelium.

single counter parameter which counts the total number of cells can be utilized. This counter
then reduces to half at the predetermined regular interval desired.

3. Results and discussion

3.1. Cell division and tumour growth properties

3.1.1. Percentages of different cell types in the cell population. As mentioned in the previous
section, normal epithelial tissue consists of a small percentage of stem cells, transit cells,
differentiating cells and fully differentiated cells in the cell population. Assuming a relatively
close relationship between these percentages in normal tissue compared to tumour tissue,
the following cell type percentages resulted in the model, using the parameters displayed in
table 1, and as seen in figures 6(a) and (b).

3.1.2. Influence of symmetrical stem cell division probability on tumour growth. The results
which follow show the influence of the symmetrical stem cell division probability on the
tumour growth rate, tumour doubling times, total tumour growth times and the cell type
percentages in the population.

An increase in the symmetrical stem cell division probability (S%) parameter, has a major
effect on the tumour growth curve, the total tumour growth time and the tumour doubling
times. Altering the S% parameter to values between 1% and 5% resulted in a reduction in
average tumour doubling times ranging from 116 to 23 days (figure 7).

Average tumour doubling times were calculated using total cell numbers which were
recorded every 100 h, which were then averaged over the last 1000 h of tumour growth. Large
fluctuations in the tumour doubling time are evident until approximately 1 year of tumour
growth and may account for a 100 or more day difference in initial compared to the final
tumour doubling times. The inverse relationship between tumour doubling time and total
growth times with S% are shown in figures 8 and 9.

The choice for ‘S%’ of 3%, resulted in average tumour doubling times of approximately
40 ± 1 day in the model, which is consistent with the ranges reported in the literature of
for head and neck squamous cell carcinomas (40–45 days, Steel (2002) and Denham (2001)).
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Figure 7. Cell growth curves for various symmetrical stem cell division probabilities.

Figure 8. The influence of the stem cell symmetrical division probability on tumour doubling
time.

Figure 9. The relationship between the symmetrical stem cell division probability and time (106

cells) with all cells in the model fully oxygenated.

A doubling time close to the lower doubling times reported in the literature was chosen because
of the fully oxygenated state of the tumour during these simulations.

It is well known that when hypoxia begins to impact upon tumour growth, the doubling
time will correspondingly increase, and as the majority of head and neck cancers have some
hypoxic areas present at diagnosis, the true oxic tumour doubling time is likely to be even
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Figure 10. An example of the processing time (array initialization and reading/writing to
array elements) for the 2D object array versus 3D array data storage techniques, during model
development.

smaller than presented here. In any case, a wide variation in growth rates among patients has
been observed, and ideally a parameter set applicable to the individual patient should be used
in the model (along with consideration of the current oxygenation status and tumour size).

3.2. Impact of the algorithm design

3.2.1. Variations in tumour growth due to random number seed. The tumour growth program
was run for many different random number seeds. Regardless of the choice of seed, the tumour
doubling time settled to approximately 40–45 days, or 1.07 growth rate per 100 h (comparable
to results reported by Marcu et al (2002)) in all cases after 1.5 years of simulated tumour
growth with all seeds having similar amplitude fluctuations. Relatively large fluctuations in
the early stages of growth occur for most random seed choices, and were due to the small cell
numbers and therefore increased variance in the number of stem cells in the early population.

3.2.2. Algorithm efficiency. A two-dimensional (2D) array method for cell data storage
was compared for computation efficiency to a three-dimensional (3D) array approach. The
difference between to the two methods involves the use of ‘objects’ versus vectors to store cell
attribute data. In the 2D case, a single array was used, where each cell or ‘object’ contained
integer numbers. In the 3D case, an array of the same dimensions was declared, with the third
dimension equal to 3 array elements. Here, each element is stored as a single integer value.

Early in the model development (3 attributes per cell modelled only) array initialization
and read/write times were analysed, as shown in figure 10. Overall, the 2D object array
method was faster to process predominantly due to the large initialization time required for
the 3D array method. The difference between reading and writing data from either a 2D object
array or a 3D array was insignificant. The 3D approach had the disadvantage of requiring
each element to have the same numerical precision, which was a waste of computer memory
for those attributes requiring less than the standard single precision integers or real numbers
(4-bytes). Currently, up to 107 cells may be propagated in ten to fifteen minutes on a standard
PC using the 2D object approach to data storage, which has been a convenient for simulations.
This has been achieved whilst maintaining individualized cell data. The time required to run
the model increases approximately linearly with time. Currently, when cell numbers exceed
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(b)

(a)

Figure 11. Percentages of cells with various pO2 upper limits (a) from the program, (b) from
literature data.

108, the array required for data storage becomes too large for FORTRAN 95 to handle, unless
manual overrides are performed. This limitation will be looked into in the future, so that cell
propagation up to approximately 109 cells will become possible.

3.3. Modelling hypoxia

3.3.1. The distribution of oxygen in the modelled cell population. With the use of the
log normal shaped pO2 distribution and the gradual slowing of the assigned cell cycle time
according to pO2 (linear relationship), the effect on cell quiescence of extreme hypoxia was
investigated. It was found that only cells with pO2 values less then 1–2 mm Hg could be arrested
in the cell cycle, without causing tumour growth to slow too rapidly or stop completely, using
the oxygen distribution in figure 4.

The percentages of cells in the very low pO2 regions (< 1 to 2 mm Hg) is approximately
5%–10%, while the percentages <5 mm Hg and 10 mm Hg are 25% and 50%, respectively,
as shown in figure 11(a)). These figures are within the range of pO2 values recorded in the
literature from experimental studies predominantly using Eppendorf probes to measure in vivo
oxygen tension within human HNSCC hypoxic tumours (Stadler et al 1998, Lartigau et al
1998, Nordsmark et al 1998, Mason et al 1998) shown in figure 10(b)). Literature values for
these percentages often use 2.5, 5.0 or 10.0 mm Hg cut off points to define hypoxia; however,
since pO2 was assigned using integer values in the model, pO2 values of 2, 5, 10 and 20 mm
Hg were used as thresholds.
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Figure 12. Tumour growth curves comparing the set probability of quiescence (full cell cycle
arrest) of hypoxic cells and a quiescent hypoxic cell half life of 4 days.

3.3.2. The effects of hypoxia on tumour growth curves and doubling times. A range of
quiescence probabilities was assigned to cells with extreme hypoxia (<1 or 2 mm Hg), where
growth curves are shown in figure 12. The curve for 75% quiescence considering cells with
pO2 < 1 mm Hg is not considered plausible due to the reduction in cell numbers. It has been
assumed that a tumour which has reached the point of hypoxia initiation does not reduce in cell
number after this point in time. If this were the case, very few tumours would reach clinical
sizes, in a hypoxic state. Based on a 50% probability of hypoxic cell quiescence for cells with
a pO2 value less than 1 mm Hg, tumour growth time increases from 2 to 3.5 years for a tumour
of 107 cells. This probability hypoxic cell quiescence is estimated to be the most plausible,
considering the effect on tumour growth after it is applied. Probability values which produce
the effect of decreasing the number of tumour cells and were not considered plausible due to
the prevalence of tumours that do grow to clinical sizes that exhibit hypoxia. These limits are
approximately 70% if considering cell with pO2 < 1 mm Hg, or 25% if considering all cell
with pO2 < 2 mm Hg.

If extended to a tumour consisting of 109 cells (using interpolation) and the same
proliferative hierarchy and cell percentages, the total tumour growth time increases from
3 to 8 years. The precise value of pO2 for which a hypoxic cell becomes quiescent is not
clear from the literature. However, the level is likely to be low (0.2–1 mm Hg, Ljungkvist
et al 2002), which is further supported by the work previously mentioned and shown is in
figure 4 (Alarcon et al 2004). This likely low oxygen range for hypoxia induced cell
quiescence, highlights the likelihood of tumour cells be subjected to relatively low oxygen
pressures of 10 mm Hg or less (and consequential increase in radioresistance of 20% to 60%),
whilst maintaining division capability.

With a great proportion of cells having a high probability of being quiescent, and another
great proportion of cells having an oxygen level low enough to slow the cells cycle, it is
reasonable to conclude that the increase in tumour doubling time in hypoxic tumours should
be more than two-fold in poorly oxygenated tumours (since ∼50% of cells have a pO2 <

2.5 mm Hg in poorly oxygenated tumours, Dasu et al (2005)). Likely hypoxic quiescence
limits and probabilities are displayed in figure 13, where a 50% quiescence probability for
cells with a pO2 < 1 mm Hg increases TD from 40 to 220 days. This is within the range of
tumour doubling times (20–240 days) of a HNSCC patient whilst waiting for radiotherapy
treatment, which includes tumours with a variety of oxygenation levels (Jensen et al 2007).
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Figure 13. Tumour doubling times during growth for different probabilities of hypoxic quiescence
and a hypoxic quiescent half life of 4 days. Note that the curves for 25% of cells with pO2 < 1
mm Hg is very close to the curve for 10% for cells with pO2 <20 mm Hg.

Varying the quiescent hypoxic cell half life from 4 to 10 days did not make a significant
change to the tumour growth rate. This is because these cells are no longer cycling and do
not play a role in increasing tumour volume. The only difference between the cell population
statistics for simulation which vary this parameter is the overall increasing in quiescent hypoxic
cell number by 3%. However, the increase in growth time was non-significant compared to
variations seen through the variation in random number seed (<20 days).

Until more quantitative data are available, future simulations will be based on a 4 day
hypoxic cell half life and 50% extreme (pO2 < 1 mm Hg) hypoxic cell quiescence. This,
along with the log-normal pO2 distribution used results in an approximate 20% hypoxic
fraction (cells having pO2 < 10 mm Hg), with 9% of cells having a pO2 less than 2 mm Hg,
and 4% of the cell population in hypoxia induced cell cycle arrest. This tumour would fall
between the categories of poorly to moderately hypoxic (Dasu et al 2005) and is in line with
the median percentage of cells (15%) below 2.5 mm Hg in from a study by Nordsmark et al
(1996), involving 35 head and neck cancer patients.

4. Conclusions

A tumour growth model algorithm has been designed and implemented in the FORTRAN 95
programming language. It models the individual cell division of epithelial cells with a plausible
cell hierarchy structure and literature researched tumour cell parameters. The algorithm is
efficient in time and for memory capacity, which is achieved through an object oriented 2D cell
array approach to data storage. A plausible and experimentally verified oxygen distribution
has been used to randomly assign each cell a pO2 (mm Hg) value upon entry into the cell cycle,
where one daughter cells receives the mother cell pO2 and the second daughter cell receives a
random pO2 from the distribution. The distribution is log-normal in shape which agrees well
with in vivo data from the literature (Lartigau et al 1998, Adam et al 1999).

The stem cell population percentage dominates the rate of tumour growth for fully
oxygenated simulated tumours. There is a linear relationship between the stem cell population
percentage and the average tumour growth rate and an exponential relationship between stem
cell population percentage and the tumour doubling time. The implementation of a realistic
oxygen distribution among the tumour cells had the effect of increasing the tumour growth
time and tumour doubling time. This is due to the slowing of the cell cycle for moderately
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hypoxic cells and cell cycle arrest of cells under extreme hypoxia. The oxygenation attribute
was applied to all cell types equally and consequently slowed the growth due to a decreased
proliferation rate of stem and transit cells.

The pO2 limit for cell quiescence had a large impact on the decrease in tumour growth
rate. A plausible pO2 value for hypoxia induced quiescence has been found to lie above 0 mm
and below 2 mm Hg. Using a 50% probability for cells with a pO2 < 1 mm Hg to become
quiescent, the growth time was increased by 1.5 years for a 107 cell tumour and 5 years for
a 109 cell tumour. The corresponding tumour doubling time increased from around 40 days
to over 200 days for an oxygenated versus hypoxic tumour using this probability, which is a
plausible result for a hypoxic tumour (Jensen et al 2007).

This study has outlined the need for specific cellular based parameters, if individualized
tumour modelling is to become routine practice for radiotherapy planning. With such a large
range of plausible values and distributions, such as the distribution of oxygen, it is crucial that
more experimental studies be performed based on the development of relatively quick and
non-invasive procedures on cancer patients prior to treatment (as well as during treatment in the
cases of accelerated repopulation and reoxygenation). The lower limit for oxygen deprivation
induced cell cycle arrest needs further investigation to determine if the limit differs between
different cell types and tumours, as well as experimental and quantitative evidence of the
degree of cell cycle time increase for moderate levels of hypoxia.

It is the intention of the authors to perform in vivo xenograft studies to measure and
verify the pO2 distribution within the HNSCC tumour system before and during fractionated
radiotherapy. The model will also be extended to include response to radiotherapy, which can
be directly compared to clinical trial data on local control outcomes from specific stratified
patient groups (Nordsmark et al 2005, Dunst et al 2003, Stadler et al 1999). Reoxygenation
dynamics and accelerated repopulation phenomenon will be key features of future versions of
this tumour growth and radiotherapy model.

References

Aarnaes E et al 1990 Mathematical model analysis of mouse epidermal cell kinetics measured by bivariate DNA/anti-
bromodeoxyuridine flow cytometry and continuous [3H]-thymidine labelling Cell Tissue Kinet. 23 409–24

Aarnaes E et al 1993 Heterogeneity in the mouse epidermal cell cycle analysed by computer simulations Cell
Prolif. 26 205–19

Adam M F et al 1999 Tissue oxygen distribution in head and neck cancer patients Head Neck 21 146–53
Adelstein D J 2005 Squamous Cell Head and Neck Cancer (Totowa, NJ: Humana) pp 368
Alarcon T et al 2004 A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells

J. Theor. Biol. 229 395–411
Appleton D R et al 2002 Simulation of cell proliferation in mouse oral epithelium, and the action of epidermal growth

factor: evidence for a high degree of synchronization of the stem cells Cell Prolif. 35 68–77 (Suppl. 1)
Becker A et al 1998 Oxygenation of squamous cell carcinoma of the head and neck: comparison of primary tumors,

neck node metastases, and normal tissue Int. J. Radiat. Oncol. Biol. Phys. 42 35–41
Begg A C et al 1999 The value of pretreatment cell kinetic parameters as predictors for radiotherapy outcome in head

and neck cancer: a multicenter analysis Radiother. Oncol. 50 13–23
Borkenstein K et al 2004 Modeling and computer simulations of tumor growth and tumor response to radiotherapy

Radiat. Res. 162 71–83
Bourhis J et al 2006 Phase III randomized trial of very accelerated radiation therapy compared with conventional

radiation therapy in squamous cell head and neck cancer: a GORTEC trial J. Clin. Oncol. 24 2873–8
Brizel D M et al 1999 Oxygenation of head and neck cancer: changes during radiotherapy and impact on treatment

outcome Radiother. Oncol. 53 113–7
Dasu A et al 2005 The effects of hypoxia on the theoretical modelling of tumour control probability Acta

Oncol. 44 563–71
Denham J W and Kron T 2001 Extinction of the weakest Int. J. Radiat. Oncol. Biol. Phys. 51 807–19

http://dx.doi.org/10.1111/j.1365-2184.1993.tb00020.x
http://dx.doi.org/10.1002/(SICI)1097-0347(199903)21:2<146::AID-HED8>3.0.CO;2-U
http://dx.doi.org/10.1016/j.jtbi.2004.04.016
http://dx.doi.org/10.1046/j.1365-2184.35.s1.7.x
http://dx.doi.org/10.1016/S0360-3016(98)00182-5
http://dx.doi.org/10.1016/S0167-8140(98)00147-9
http://dx.doi.org/10.1667/RR3193
http://dx.doi.org/10.1200/JCO.2006.08.057
http://dx.doi.org/10.1016/S0167-8140(99)00102-4
http://dx.doi.org/10.1080/02841860500244435


4506 W Tuckwell et al

Dinshaw K A et al 2006 Radical radiotherapy in head and neck squamous cell carcinoma: an analysis of prognostic
and therapeutic factors Clin. Oncol. (R. Coll. Radiol.) 18 383–9

Dionysiou D D et al 2004 A four-dimensional simulation model of tumour response to radiotherapy in vivo: parametric
validation considering radiosensitivity, genetic profile and fractionation J. Theor. Biol. 230 1–20

Donaghey C E 1980 CELLSIM: cell cycle simulation made easy Int. Rev. Cytol. 66 171–210
Dutching W and Vogelsaenger T 1981 Three dimensional pattern generation applied to spheroidal tumor growth in a

nutrient medium Int. J. Biomed. Comput. 12 377–92
Dutching W and Vogelsaenger T 1985 Recent progress in modelling and simulation of three-dimensional tumor

growth and treatment Biosystems 18 79–91
Dunst J et al 2003 Tumor volume and tumor hypoxia in head and neck cancers. The amount of the hypoxic volume

is important Strahlenther. Onkol. 179 521–6
Durand R E and Sham E 1998 The lifetime of hypoxic human tumor cells Int. J. Radiat. Oncol. Biol. Phys.

42 711–5
Elkind M et al 1965 Oxygen, nitrogen, recovery and radiation therapy Cellular Radiation Biology: a Symp.

Considering Radiation Effects in the Cell and Possible Implications for Cancer Therapy. a Collection of Papers
Presented at the 18th Ann. Symp. on Fundamental Cancer Research (Baltimore, MD: Lippincott, Williams and
Wilkins)

Gardner L B et al 2001 Hypoxia inhibits G1/S transition through regulation of p27 expression J. Biol.
Chem. 276 7919–26

Gatenby R A et al 1988 Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome
of radiation therapy Int. J. Radiat. Oncol. Biol. Phys. 14 831–8

Gray L H et al 1953 The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in
radiotherapy Br. J. Radiol. 26 638–48

Hall E J and Giaccia A J 2005 Radiobiology for the Radiologist (Baltimore, MD: Lippincott Williams and Wilkins)
Harting C et al 2007 Single-cell-based computer simulation of the oxygen-dependent tumour response to irradiation

Phys. Med. Biol. 52 4775–89
Henrikson et al 1997 NMS Histology, Figure 5-1 (Baltimore, MD: Lippincott, Williams & Wilkins) p 49
Hill A V 1928 The diffusion of oxygen and lactic acid through tissues Proc. R. Soc. Lon. B 104 39–96
Hirst D G and Denekamp J 1979 Tumour cell proliferation in relation to the vasculature Cell Tissue Kinet. 12 31–42
Izquierdo J N and Gibbs S J 1972 Circadian rhythms of DNA synthesis and mitotic activity in hamster cheek pouch

epithelium Exp. Cell Res. 71 402–8
Jensen A R et al 2007 Tumor progression in waiting time for radiotherapy in head and neck cancer Radiother.

Oncol. 84 5–10
Kansal A R et al 2000 Simulated brain tumor growth dynamics using a three-dimensional cellular automaton J. Theor.

Biol. 203 367–82
Kirkpatrick J P et al 2004 Predicting the effect of temporal variations in pO2 on tumor radiosensitivity Int. J. Radiat.

Oncol. Biol. Phys. 59 822–33
Kocher M et al 2000 Computer simulation of cytotoxic and vascular effects of radiosurgery in solid and necrotic brain

metastases Radiother. Oncol. 54 149–56
Koritzinsky M et al 2001 Cell cycle progression and radiation survival following prolonged hypoxia and re-

oxygenation Int. J. Radiat. Biol. 77 319–28
Koukourakis M I et al 2006 Endogenous markers of two separate hypoxia response pathways (hypoxia inducible

factor 2 alpha and carbonic anhydrase 9) are associated with radiotherapy failure in head and neck cancer
patients recruited in the CHART randomized trial J. Clin. Oncol. 24 727–35

Lartigau E et al 1998 Variations in tumour oxygen tension (pO2) during accelerated radiotherapy of head and neck
carcinoma Eur. J. Cancer 34 856–61

Leary A G et al 1984 Single cell origin of multilineage colonies in culture. Evidence that differentiation of multipotent
progenitors and restriction of proliferative potential of monopotent progenitors are stochastic processes J. Clin.
Invest. 74 2193–7

Ljungkvist A S et al 2005 Hypoxic cell turnover in different solid tumor lines Int. J. Radiat. Oncol. Biol. Phys.
62 1157–68

Ljungkvist A S et al 2002 Vascular architecture, hypoxia, and proliferation in first-generation xenografts of human
head-and-neck squamous cell carcinomas Int. J. Radiat. Oncol. Biol. Phys. 54 215–28

Mantel C et al 2001 Steel factor regulates cell cycle asymmetry Stem Cells 19 483–91
Marcu L et al 2004 Modelling of post-irradiation accelerated repopulation in squamous cell carcinomas Phys. Med.

Biol. 49 3767–79
Marcu L et al 2002 Growth of a virtual tumour using probabilistic methods of cell generation Australas. Phys. Eng.

Sci. Med. 25 155–61

http://dx.doi.org/10.1016/j.jtbi.2004.03.024
http://dx.doi.org/10.1016/S0074-7696(08)61974-9
http://dx.doi.org/10.1007/s00066-003-1066-4
http://dx.doi.org/10.1016/S0360-3016(98)00305-8
http://dx.doi.org/10.1074/jbc.M010189200
http://dx.doi.org/10.1088/0031-9155/52/16/005
http://dx.doi.org/10.1016/0014-4827(72)90310-2
http://dx.doi.org/10.1016/j.radonc.2007.04.001
http://dx.doi.org/10.1006/jtbi.2000.2000
http://dx.doi.org/10.1016/j.ijrobp.2004.02.015
http://dx.doi.org/10.1016/S0167-8140(99)00168-1
http://dx.doi.org/10.1080/09553000010019278
http://dx.doi.org/10.1200/JCO.2005.02.7474
http://dx.doi.org/10.1016/S0959-8049(97)10172-1
http://dx.doi.org/10.1172/JCI111645
http://dx.doi.org/10.1016/j.ijrobp.2005.03.049
http://dx.doi.org/10.1016/S0360-3016(02)02938-3
http://dx.doi.org/10.1634/stemcells.19-6-483
http://dx.doi.org/10.1088/0031-9155/49/16/021


Efficient Monte Carlo modelling of individual tumour cell propagation for hypoxic head and neck cancer 4507

Maseide K and Rofstad E K 2000 Mathematical modeling of chronical hypoxia in tumors considering potential
doubling time and hypoxic cell lifetime Radiother. Oncol. 54 171–7

Mason R P et al 1998 Regional tumor oxygen tension: fluorine echo planar imaging of hexafluorobenzene reveals
heterogeneity of dynamics Int. J. Radiat. Oncol. Biol. Phys. 42 747–50

McElwain D L et al 1979 A model of vascular compression in solid tumors J. Theor. Biol. 78 405–15
Morris R J 2004 A perspective on keratinocyte stem cells as targets for skin carcinogenesis Differentiation 72 381–6
Nordsmark M et al 2005 Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation

therapy: an international multi-center study Radiother. Oncol. 77 18–24
Nordsmark M et al 1996 Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma

of the head and neck Radiother. Oncol. 41 31–9
Palcic B and Skarsgard L D 1984 Reduced oxygen enhancement ratio at low doses of ionizing radiation Radiat. Res.

100 328–39
Potten C S 1981 The cell kinetic mechanism for radiation-induced cellular depletion of epithelial tissue based on

hierarchical differences in radiosensitivity Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 40 217–25
Potten C S 1986 Cell cycles in cell hierarchies Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 49 257–78
Qi A S et al 1993 A cellular automaton model of cancerous growth J. Theor. Biol. 161 1–12
Rischin D et al 2006 Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor

hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without
tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02 J. Clin. Oncol. 24 2098–104

Smolle J and Stettner H 1993 Computer simulation of tumour cell invasion by a stochastic growth model J. Theor.
Biol. 160 63–72

Stadler P et al 1998 Changes in tumor oxygenation during combined treatment with split-course radiotherapy and
chemotherapy in patients with head and neck cancer Radiother. Oncol 48 157–64

Stadler P et al 1999 Influence of the hypoxic subvolume on the survival of patients with head and neck cancer Int. J.
Radiat. Oncol. Biol. Phys. 44 749–54

Steel G G 1997 Basic Clinical Radiobiology 2nd edn (London: Edward Arnold)
Steel G 2002 Basic Clinical Radiobiology 3rd edn (London: Edward Arnold)
Tannock I F 1968 The relation between cell proliferation and the vascular system in a transplanted mouse mammary

tumor Br. J. Cancer 22 258–73
Tannock I F 1972 Oxygen diffusion and the distribution of cellular radiosensitivity in tumors Br. J. Radiol. 45 515–24
Tannock I F and Steel G G 1970 Tumor growth and cell kinetics in chronically hypoxic animals J. Natl. Cancer Inst.

45 123–33
Tannock I and Hill R 1998 The Basic Science of Oncology 3rd edn (New York: McGraw-Hill)
Thomlinson R H and Gray L H 1955 The histological structure of some human lung cancers and the possible

implications for radiotherapy Br. J. Cancer 9 539–49
Webster L et al 1998 Cell cycle distribution of hypoxia and progression of hypoxic tumour cells in vivo Br. J. Cancer

77 227–34
Wilson G D et al 1995 Studies with bromodeoxyuridine in head and neck cancer and accelerated radiotherapy

Radiother. Oncol. 36 189–97
Wilson G D et al 1988 Measurement of cell kinetics in human tumours in vivo using bromodeoxyuridine incorporation

and flow cytometry Br. J. Cancer 58 423–31
Wright E A and Howard-Flanders P 1957 The influence of oxygen on the radiosensitivity of mammalian tissues Acta

radiol 48 26–32
Wright N and Alison M 1984 The Biology of Epithelial Cell Populations vol 1 (Oxford: Clarendon)

http://dx.doi.org/10.1016/S0167-8140(99)00154-1
http://dx.doi.org/10.1016/S0360-3016(98)00306-X
http://dx.doi.org/10.1016/0022-5193(79)90339-4
http://dx.doi.org/10.1111/j.1432-0436.2004.07208004.x
http://dx.doi.org/10.1016/j.radonc.2005.06.038
http://dx.doi.org/10.1080/09553008114551101
http://dx.doi.org/10.1080/09553008514552541
http://dx.doi.org/10.1006/jtbi.1993.1035
http://dx.doi.org/10.1200/JCO.2005.05.2878
http://dx.doi.org/10.1006/jtbi.1993.1004
http://dx.doi.org/10.1016/S0167-8140(98)00032-2
http://dx.doi.org/10.1016/S0360-3016(99)00115-7
http://dx.doi.org/10.1016/0167-8140(95)01567-Z

	1. Introduction
	1.1. Head and neck cancer and hypoxia
	1.2. Research aims
	1.3. Review of the tumour modelling literature

	2. Methods
	2.1. Modelling tumour cell division
	2.2. Monte Carlo modelling approach
	2.3. Modelling hypoxia

	3. Results and discussion
	3.1. Cell division and tumour growth properties
	3.2. Impact of the algorithm design
	3.3. Modelling hypoxia

	4. Conclusions
	References

