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Highly active antiretroviral therapy (HAART) reduces the viral burden in human
immunodeficiency virus type 1 (HIV-1) infected patients below the threshold of
detectability. However, substantial evidence indicates that viral replication persists
in these individuals. In this paper we examine the ability of several biologically
motivated models of HIV-1 dynamics to explain sustained low viral loads. At or
near drug efficacies that result in steady state viral loads below detectability, most
models are extremely sensitive to small changes in drug efficacy. We argue that if
these models reflect reality many patients should have cleared the virus, contrary to
observation. We find that a model in which the infected cell death rate is dependent
on the infected cell density does not suffer this shortcoming. The shortcoming is
also overcome in two more conventional models that include small populations of
cells in which the drug is less effective than in the main population, suggesting that
difficulties with drug penetrance and maintenance of effective intracellular drug
concentrations in all cells susceptible to HIV infection may underlie ongoing viral
replication.

c© 2002 Society for Mathematical Biology

1. INTRODUCTION

Highly active antiretroviral therapy (HAART), containing a combination of drugs
that inhibit the replication of human immunodeficiency virus type 1 (HIV-1), has
proven to be extremely effective at reducing the amount of virus in the blood and
tissues of infected patients. In many patients the viral load becomes undetectable,
and the possibility of eradicating the virus from the human body has been recog-
nized as a real goal. However, the currently available drugs still lack the potency to
completely stop HIV-1 replication and allow for the total decay of latently infected
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lymphocytes (Chunet al., 1997; Finzi et al., 1997; Wonget al., 1997; Ramratnam
et al., 2000; Siliciano and Siliciano, 2000) and HIV-1 trapped on follicular den-
dritic cells (Hlavaceket al., 1999, 2000a,b; Smithet al., 2001). The detection of
continued viral evolution and replicative intermediates, such as intracellular HIV-
1 mRNA and cDNA episomes, in infected patients with undetectable (i.e., below
50 copies of HIV-1 RNA per ml) plasma virus (Furtadoet al., 1999; Lewin et al.,
1999; Natarajanet al., 1999; Zhanget al., 1999; Sharkeyet al., 2000), as well
as detection of HIV-1 RNA in plasma by ultrasensitive assays (Dornadulaet al.,
1999; Yerly et al., 2000) in patients classified as having undetectable viral loads
by standard assays indicate that replication is ongoing despite the high efficacy
of HAART. Furthermore, intermittent episodes of detectable viremia, or ‘blips’ in
viral load are often observed in these otherwise well suppressed patients, and the
frequency of these episodes has been correlated with a slower decrease in the size
of the latently infected pool (Ramratnamet al., 2000).

The aim of this paper is to gain insight into the mechanisms responsible for
sustained, yet undetectable, viral loads.Bonhoefferet al. (1997) set the precedent
for this type of work by establishing that several models are insufficient to describe
the long term effects of reverse transcriptase (RT) inhibitor monotherapy because
the steady state viral load in these models is extremely sensitive to minor changes
in drug efficacy.

We will argue that the constraints on models of HIV-1 dynamics are more strin-
gent than those suggested byBonhoefferet al. (1997). This is due to the potency
of HAART, which reduces viral load by as many as four orders of magnitude, sub-
stantially more than the drops of only one to two orders of magnitude due to single
RT inhibitors studied by Bonhoefferet al. After reviewing several models that are
not suitable for simulating low steady states, we present three that are. In the first
the rate that governs infected cell clearance is a function of infected cell density,
rather than constant. Though we must choose the functional form to be slightly
different than what empirical evidence suggests (Holte et al., 2001), this model’s
ability to simulate a low steady state viral load highlights the importance of subtle
nonlinearities in the model form. The remaining two successful models make use
of heterogeneities in drug efficacy (either spatial or phenotypic) and we argue on
this basis that there is a growing need for further research to identify subcompart-
ments of target cells in which the currently available drugs are ineffective.

2. THE BASIC M ODEL

2.1. Steady state analysis.We begin by introducing a model that is the basis for
many mathematical studies of HIV-1 dynamics, in particular for extensions that
have been used to estimate virus and infected cell decay ratesin vivo (Ho et al.,
1995; Wei et al., 1995; Perelsonet al., 1996). As in Bonhoefferet al. (1997), we
will explain that a shortcoming of this model is its inability to describe sustained,
low level production of virus under antiretroviral pressure.



HIV-1 and Low Steady State Viral Loads 31

Let T represent CD4+ cells that are susceptible to infection,T∗ productively
infected cells,VI infectious virus, andVN I virus made noninfectious by the action
of protease inhibitors (Perelsonet al., 1996), respectively. The following equa-
tions represent the rates of change of these populations under the effect of RT and
protease inhibitors:

dT

dt
= λ − dT − (1 − κ)kVI T (2.1a)

dT∗

dt
= (1 − κ)kVI T − δT∗ (2.1b)

dVI

dt
= (1 − η)NTδT∗

− cVI (2.1c)

dVN I

dt
= ηNTδT∗

− cVN I . (2.1d)

The constantλ represents a source of susceptible cells, andd is their death rate.k is
the infection rate constant, and infection is assumed to occur at a rate proportional
to the product of the concentration of virus and target cells, an assumption which is
valid for a well-mixed system with relatively high concentrations of each product.
δ is the infected cell death rate,NT is the number of free viral particles produced
during the average infected T cell life span, andc is the rate at which free virus
is cleared. In the Appendix we provide motivation for the values used for these
parameters in model simulations.

RT inhibitors prevent HIV RNA from being converted into DNA, a crucial part
of the viral life cycle. Thus, the infectiousness of the virus,k, is reduced by the
quantity(1 − κ), whereκ represents the efficacy of RT inhibitors and 0≤ κ ≤ 1.
Protease inhibitors, on the other hand, do not directly inhibit the infectiousness of
virus. Rather, they alter part of the viral assembly process in the final stage of
the viral lifecycle, and as a result cause the production of defective, noninfectious
virus. Here,η, the protease inhibitor efficacy, is the fraction of total virus produced
that is noninfectious due to the action of the protease inhibitor, and 0≤ η ≤ 1.

Expressions for the steady state quantity of each variableT, T∗, VI andVN I , can
be found by setting the right-hand sides of equation (2.1) equal to zero and solving
the resulting algebraic equations. In terms of the parameters above, the amount of
virus present at this steady state is either

V = 0, (2.2)

or

V =
λNT

c
−

d

k(1 − (κ + η − κη))
, (2.3)

whereV ≡ VI + VN I . We shall refer to the first case as the trivial equilibrium, and
will focus on the behavior of the latter.
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Figure 1. Virus load vs drug efficacy for the basic model [equation (2.1)]. Fixed parameters
are defined in the Appendix. In addition,k = 8×10−7 day−1 andNT = 100 (solid curve),
k = 3.6 × 10−7 day−1 andNT = 119.6 (dotted curve), andk = 1.6 × 10−7 day−1 and
NT = 167.5 (dashed curve).

The composite parameter(κ+η−κη) represents the total combined drug efficacy
which we will henceforth refer to asε. Note that(1 − ε) = (1 − κ)(1 − η);
this rearrangement indicates that we are assuming the drugs act independently of
one another. The basic reproductive ratio prior to drug therapy for this system
is R0 = λNTk/cd. This quantity represents the average number of secondary
infected cells which will result from the introduction of a single infected cell into a
population of completely uninfected CD4+ cells (Anderson and May, 1991). When
0 < R0 < 1, the population is able to reproduce, but the death rate exceeds the
growth rate and the population size will asymptotically approach zero. In terms of
ε andR0, the steady state viral load is

V =
d

k

(
R0 −

1

1 − ε

)
. (2.4)

Figure1 depicts the relationship between steady state viral load and total drug
efficacy for three different choices of parameters. Increasing drug efficacy causes
the infection rate to decrease, which in turn increases the number of available target
cells. For efficacies far from the critical efficacy, this increase in the target cell pool
size allows the virus to maintain a large population despite its reduced infectious-
ness. It is at least in part due to this predator–prey relationship that the steady state
viral load curve in Fig.1 is flat for small efficacies. However, the general shape
of the curve is concave down; this results from the inverse relationship betweenV
andε.

It follows from the inverse relationship that a large range of the possible steady
state viral loads during drug therapy occurs in only a small range of efficacies. This
effect is apparent in Fig.1, and can be shown more precisely as follows: letV0 be
the steady state viral load in the absence of therapy, and letf be the fraction of
the pre-therapy steady state viral load present for a given drug efficacy, so that if
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drug therapy reduces the viral load by 2 logs,f would be 10−2, a 4 log drop would
correspond tof = 10−4, and so on. This can be written as

f =
V

V0
=

R0 −
1

1−ε

R0 − 1

which, when solved forε, yields

ε = 1 −
1

R0 − (R0 − 1) f
. (2.5)

We shall refer to the drug efficacy, which corresponds toV = 0 or equivalently
f = 0 as the ‘critical efficacy’ (ε0). Thus,

ε0 = 1 −
1

R0
. (2.6)

For ε > ε0 the infected steady state becomes negative and exchanges stability
with the uninfected steady state, i.e., the drug will extinguish the viral population,
even if the virus continues to replicate.

Equation (2.5) can be used to obtain an upper bound on the difference between
the critical efficacy and any other efficacy based on the factor of reduction of steady
state viral load, as follows:

ε0 − ε =
1

R0

(
1

1 −
R0−1

R0
f

− 1

)
<

1

1 − f
− 1 ∼ f (2.7)

where we have assumed thatR0 > 1 and f � 1. This means that for any choice
of R0, as long as the drop in virus load is more than 1 log (f < 0.1), the difference
between the critical efficacy and any other efficacy is smaller than the factor of
reduction. For example, the difference betweenε0 andε is less than 0.01 for a 2 log
drop in steady state viral load. Drops in viral load of at least this size are commonly
observed in clinical studies of patients on HAART, meaning that if this model is
correct, many patients experience drug efficacies extremely close to the critical
efficacy. However, because it appears that the viral population is not extinguished
in any patients studied thus far (Chunet al., 1999; Dornadulaet al., 1999; Furtado
et al., 1999; Lewin et al., 1999; Natarajanet al., 1999; Zhanget al., 1999; Sharkey
et al., 2000), one must conclude that no patients have experienced drug efficacies
greater than or equal to the critical efficacy.

These observations are in conflict. The results of the model indicate that extinc-
tion shouldoccur, because there must be a distribution of possible efficacies: the
drug will not be equally potent in every patient, and because the probability of ex-
periencing an efficacy extremely close to the critical efficacy is high, one would
expect that the tail of the distribution should include efficacies greater than the
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critical efficacy, and hence the virus should go extinct in at least some patients.
However, clinical results indicate that extinction of the viral population does not
occur under HAART. Thus, models with a concave down relationship between
steady state viral load and efficacy contradict clinical results. This presents the op-
portunity to search for models that do not bear this shortcoming, and consequently
gain insight into the mechanisms which do and do not play a role in maintaining
low viral loads under drug therapy.

Bonhoefferet al. (1997) argue that the shortcomings of this steady state relation-
ship can be alleviated by using models with a linear relationship between steady
state viral load and drug efficacy. Note, however, that a relationship very similar
to equation (2.7) holds for models with a linear relationship between steady state
viral load and drug efficacy. LetV = a − bε wherea andb are positive con-
stants. Then at the critical efficacyV = a − bε0 = 0 and soε0 = a/b. For this
relationship, the fraction of steady state viral load remaining after therapy would
be f = V/V0 = (a − bε)/a = 1 − ε/ε0, and thusε = (1 − f )ε0. So we can
write ε0 − ε = ε0 f < f . The final condition is identical to equation (2.7), mean-
ing that the constraints drug therapy places on models with a linear relationship
between steady state viral load and drug efficacy, while potentially less severe, are
nonetheless also poorly suited for modeling low steady state viral loads.

2.2. Decay rates as a function of drug efficacy in the basic model.If we turn
from steady states to look at the dynamic behavior of the model given by equa-
tion (2.1), we are presented with another difficulty. Figure2 shows therapy simula-
tions for drug efficacies that would result in a 1 log drop and a 2 log drop in steady
state viral load compared to a simulation with an efficacy that would extinguish the
virus. The minimum value of these trajectories, even in cases where the popula-
tions ultimately recover, is well below one viral particle in a patient, and on this
basis we would expect extinction in all three cases, not just when the efficacy is
greater than the critical efficacy. Beyond this shortcoming, these dynamics suggest
that steady state viral loads one order of magnitude lower than the set point would
not be observed until long after (e.g., 3 years) the initiation of therapy. On the
contrary, patients on RT inhibitor monotherapy typically show viral loads settling
very quickly to steady states 1 log below the original viral load (Bonhoefferet al.,
1997). The two other curves show that over the first 2 years of therapy the dynam-
ics that precede attaining a steady state with 2 log drop in viral load are practically
indistinguishable from those for which the virus would become extinct, and that
during the transient the viral load will likely remain below detectable levels for
well over 10 years.

This could be an explanation of sustained reductions in viral load: the true
steady state viral load could be detectable, but the time required to reach this
state is extremely long. In the mean time, the viral load would remain unde-
tectable. This would, however, still require that the drug efficacy be quite close
to the critical efficacy for sustained long term undetectability, and the arguments
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Figure 2. Decay of virus just above and below the critical efficacy,ε0 = 0.8375, as
predicted by the basic model [equation (2.1)]. Therapy starts att = 0. The dashed curve
follows the dynamics of a system that settles to a steady state viral load 1 log lower than the
pre-drug amount (ε = 0.82265), the solid curve is for a system that will ultimately settle
to a steady state 2 logs below the set point (ε = 0.83613), and the long-dashed line will
continue to decay indefinitely (ε = 0.8376). Other parameters are defined in the Appendix.
For these simulations it was assumed that drug efficacy was due solely to RT inhibitors,
i.e.,η = 0 and thusκ = ε. The thin dotted curve delineates 50 copies ml−1, the detection
threshold.

presented in Section2.1 would also apply here. Furthermore, if one takes this
behavior as correct, then it remains to be seen what mechanisms would lead to the
rapid convergence to steady state in patients receiving RT monotherapy (Bonhoef-
fer et al., 1997). Another difficulty we encounter with these dynamics is that the
minimum value of the oscillation is well below one virion/patient≈

1
20l × 10−3

L ml−1
= 5 × 10−5 virions/ml, where we have used the fact that a typical patient

has approximately 20 l of fluid in which HIV replicates. Thus if we interpret viral
loads below this amount as viral extinction, this model predicts extinction would
occur long before even a 1 log drop steady state is attained.

Though the parameters used in these simulations are derived directly from exper-
imental data (see Appendix), changing some or all of the parameters could alleviate
the problem of long convergence times. To understand in more detail the rates of
convergence to steady state, we can simplify equation (2.1) to a two-dimensional
system. OnceT∗ is determined, equation (2.1d) decouples from equation (2.1).
Furthermore, the production and decay of virus is fast enough that we can assume
viral load changes instantaneously with the number of infected cells, and thus sub-
stituteVI = (1 − η)NTδT∗/c and eliminate equation (2.1c) as well. This leads to

dT

dt
= λ − dT − (1 − ε)βT∗T (2.8a)

dT∗

dt
= (1 − ε)βT∗T − δT∗ (2.8b)

where we have usedβ = kNTδ/c. The number of target and infected cells at the
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nontrivial equilibrium is

T =
δ

β(1 − ε)
(2.9a)

T∗ =
λβ(1 − ε) − dδ

δβ(1 − ε)
. (2.9b)

Because the system is two dimensional, the eigenvalues for this fixed point are
readily obtainable. They are

3 =
−α ±

√
α2 − 4δ2(α − dδ)

δ
(2.10)

whereα = λβ(1− ε). If the eigenvalues are complex (as in the two curves that do
not lead to extinction in Fig.2), the real part of the eigenvalue simplifies to

<(3) = −
λβ(1 − ε)

δ
. (2.11)

Clearly, significant changes in any one of these parameters from their accepted
values would be necessary in order to alter the convergence time substantially.
Thus, we need to either find new ways to estimate the parameters for this model,
or revise the structure of the model itself. Given that the model has already been
criticized on the basis of the sensitivity of steady state viral load to changes in drug
efficacy, we will invest the remainder of this paper examining new model forms
and whether they alleviate these problems.

3. OTHER M ODELS WITH A NONROBUST L OW STEADY STATE V IRAL

L OAD

3.1. Models with inverse relationships betweenVVV and drug efficacy. We will
ultimately proceed to a model for which steady state viral load is less sensitive to
changes in drug efficacy, but first we examine some familiar models and show that
they also exhibit the inverse relationship between viral load and efficacy discussed
in the basic model above.

Notice that the relationship between total drug efficacy and virus load in equa-
tion (2.4) remains the same if the system uses RT inhibitors only (i.e.,η = 0) or
protease inhibitors only (κ = 0). Thus, for simplicity, in the following models we
will restrict the effect of the drug to reducing the infectiousness of the virus (as
with RT inhibitors), rather than including the effect of protease inhibitors as well.
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3.1.1. Examining the mass action assumption.The infection ratesk andβ in
equations (2.1) and (2.8), respectively, are composite parameters accounting for
three mechanisms: first, the rate at which virus and target cells collide, second,
the fraction of target cells which are activated and hence susceptible to infection
(Stevenson, 1996), and third, the fraction of interactions between activated target
cells and virus which result in a productive infection. All of these quantities have
been assumed constant, or in the case of virus–cell collision rates, dependent only
on the product of the concentrations of those two populations. This last notion, the
so-called ‘mass action principle’ is valid when the system is well mixed (i.e., there
are no significant spatial concentration heterogeneities) and there are significant
quantities of each reactant. However, interactions between two populations are
not always this simple, and the form of such an expression can change, among
other ways, as the relative and absolute population sizes vary (in Section5 we will
deal with the effect of spatial concentration heterogeneities using a compartmental
model). Consider the following model:

dT

dt
= λ − dT −

(1 − ε)kV T

α + νV + τT
(3.1a)

dT∗

dt
=

(1 − ε)kV T

α + νV + τT
− δT∗ (3.1b)

dV

dt
= NTδT∗

− cV. (3.1c)

The terms in the denominator of the infection term serve to ‘saturate’ the infec-
tion rate when eitherV or T gets large. For example, ifνV � α + τT , then
kV T/(α + νV + τT) ≈ kT/ν; the result is that the infection rate depends almost
exclusively on the number of available CD4+ cells when the amount of virus is
relatively large. A similar situation arises whenτT � α + νV , but in this case the
amount of virus present limits the infection rate. A similar ‘competitive saturation’
term has been used to describe cell growth in models of T cell proliferation and
HIV-1 immune control (De Boer and Perelson, 1995, 1998).

As with the basic model, there is only one nontrivial equilibrium. The steady
state viral load is

V =
(1 − ε)kλNT

c − (αd + τλ)

(1 − ε)k +
(
dν −

cτ
NT

) . (3.2)

This expression has linear multiples ofε in both the numerator and the denomi-
nator. Still, the exact nature of theV–ε curve will depend on parameter choices.
Because we have not specifiedν, τ andα, this is not immediately obvious. How-
ever, we can find the slope and concavity of theV–ε curve and compare them to
Fig. 1 (which is sloping downward and concave down). The slope of the curve is

dV

dε
= −

kd
( NT λν

c + α
)(

(1 − ε)k + dν −
cτ
NT

)2
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which is negative definite, assuming thatα and ν are positive. This is to be
expected, since increasingε should serve to decrease the viral load. The second
derivative ofV with respect toε is

d2V

dε2
= −2

k2d NT λν

c + α(
k + dν −

cτ
NT

)3 .

The steady state quantity of productively infected cells,T∗ = (λν + cα/NT )/(k +

dν − cτ/NT ), is greater than zero at the infected steady state. Hence(k + dν −

cτ/NT ) > 0 and sod2V/dε2 < 0, meaning that the curve is concave down. So the
relationship between steady state viral load and drug efficacy for equations (3.1a)–
(3.1c) is similar to that in equation (2.1). Note that we could chooseτ , α, andν

such that|d2V/dε2
| � 1, meaning that the relationship between drug efficacy and

viral load would be approximately linear. However, as explained in Section2, even
a linear relationship is not sufficient to explain the low virus loads which result
from HAART .

Similar arguments can be made for infection terms of the formkV2T/(1+ αV),
kV T2/(1 + αT), andk[V/(α + νV)][T/(β + τT)].

3.1.2. Logistic growth of target cells.There is evidence to suggest that target
cell populations are governed by logistic growth, where the rate of production of
cells is limited by the number of cells already present (Sachsenberget al., 1998).
To incorporate this into the basic model, we can replace the first two terms of
equation (2.1a), λ − dT, by rT (1− T/Tmax) wherer is the maximum growth rate
andTmax is the maximum sustainable number of target cells. For this system of
equations there is a single nontrivial equilibrium; the steady state viral load is

V =
r

(1 − ε)k

(
1 −

c

(1 − ε)kTmaxNT

)
. (3.3)

Near the critical efficacy, specifically forε > 1 − 2c/kTmaxNT , this function is
a downward sloping, concave down function ofε. Hence the incorporation of a
logistic growth term does not alleviate the sensitive dependence of viral load on
drug efficacy at low viral numbers.

Interestingly, forε < 1 − 2c/kTmaxNT , this expression is an increasing function
of ε; increasing drug efficacy actually increases steady state viral load. This may or
may not compromise the validity of this model, since parameters could be chosen
such that 1− 2c/kTmaxNT < 0. Then the above condition onε would never be
satisfied, because 0< ε < 1.

Other forms of target cell growth and death do not improve the relationship
between steady state viral load and drug efficacy (Bonhoefferet al., 1997). In par-
ticular, replacingλ−dT, in equation (2.1a) by rT (1− T/Tmax)−dT, λ+ rT (1−

T/Tmax) or λ + rT (1− T/Tmax) − dT still results in a concave down relationship.
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Usingλ/(1+ αT) − dT as the source term generates a concave down relationship
as well, however, asα becomes large, the relationship becomes nearly linear. In
Section3.2we will discuss more models which exhibit this type of relationship.

3.1.3. Quiescent cell populations.As we explained in Section3.1.1, the frac-
tion of target cells which are activated and thus permissive to infection are typically
considered to be constant and consequently absorbed into the infection rate con-
stantk. Here we relax this assumption by including a population of resting cells
from which activated cells are derived upon antigenic stimulation. Let the variable
Q represent this quiescent population of cells. Then we may write

d Q

dt
= λ − dQQ − θ(V + B)Q (3.4a)

dT

dt
= sθ(V + B)Q − dT − (1 − ε)kV T (3.4b)

dT∗

dt
= (1 − ε)kV T − δT∗ (3.4c)

dV

dt
= NTδT∗

− cV (3.4d)

wheredQ is the death rate of quiescent cells ands is the factor by which cells prolif-
erate upon activation. The termθ(V + B)Q represents the rate at which activation
occurs, and comes from assuming that HIV-1 and any other antigen (quantified
by the parameterB) interact with quiescent cells according to mass action and
activate these cells with a rate constantθ . An extended version of this model was
used previously to study the effect of the active cell population on multiple strain
competition and disease progression (Callawayet al., 1999).

Only one nontrivial equilibrium point exists for this system. The steady state
viral load is

V =
λ

γ θ
−

(dQ + θ B)

θ
, (3.5)

where

γ =
1

2

(
λ

dQ
+

cB

sNTdQ
+

c

sθ NT
−

dc

(1 − ε)ksNTdQ

)

−
1

2

√(
−

λ

dQ
−

cB

sNTdQ
−

c

sθ NT
+

dc

(1 − ε)ksNTdQ

)2

−
4cλ

sθ NTdQ
.

The manner in whichV depends onε is not immediately obvious from this result.
However, it is clear from Fig.3 that the relationship is similar to that observed for
equations (2.1a)–(2.1c), in particular, the slope of the curve continues to decrease
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Figure 3. Virus load vs drug efficacy for the quiescent cell model [equation (3.4)]. Param-
eters are defined in the Appendix, andB = 10,θ = 10−3 ands = 10 (solid curve),s = 7
(dotted curve) ands = 4 (dashed curve). The curve was insensitive to changes inB andθ .

to the point of virus extinction, implying that the steady state viral load becomes
increasingly sensitive to changes in drug efficacy. This is true for several parameter
combinations, suggesting that the result is not specific to one set of parameters.

3.1.4. Chronically infected cells.Drug perturbation studies have found that as
plasma HIV-1 decays under drug therapy, there are several observable phases of the
decay. The most rapid occurs as free virus is cleared from the blood (due to the rate
constantc) and establishes a quasi-steady state with the number of infected cells.
The next phase is due to the decline to productively infected cells, and has been
used to determine the rate constantδ. This phase is characterized by an exponen-
tial fall in V , and has been termed the ‘first’ (observable) phase. A later (second)
phase has been observed, and this has been attributed to the decay of ‘chronically’
infected cells, or cells which produce much smaller amounts of virus than the main
population of infected cells, and, perhaps as a consequence, die at a much slower
rate. A standard representation (Perelsonet al., 1997) of a system with this popu-
lation of infected cells included is

dT

dt
= λ − dT − (1 − ε)kV T (3.6a)

dT∗

dt
= (1 − α)(1 − ε)kV T − δT∗ (3.6b)

dC∗

dt
= α(1 − ε)kV T − µC∗ (3.6c)

dV

dt
= NTδT∗

+ NCµC∗
− cV (3.6d)

whereC∗ is the population of chronically infected cells. A fractionα of infection
events result in chronic infection, chronically infected cells die with a rate constant



HIV-1 and Low Steady State Viral Loads 41

0 200 400 600 800 1000
Time (days)

10

10

10

10

10

10

V
ir

al
 lo

ad
 (

co
pi

es
/m

l)

1 log drop, ε=0.7827
2 log drop, ε=0.7985
extinction, ε=0.8002

1

3

5

–5

–3

–1

Figure 4. Virus load vs time for the chronically infected cell model [equation (3.6)]. Note
that the minimum value of the oscillation is much higher than in the basic model. Param-
eters are defined in the Appendix, and the critical efficacy,ε0, is 0.8001. The thin line
represents 50 copies ml−1, the detection threshold.

µ, andNT and NC are the average number of virions produced in the lifetime of
short-lived and chronically infected cells, respectively.

As with the previous models, there is only one nontrivial fixed point. This gives
a steady state viral load of

V =
(1 − α)λNT + αλNC

c
−

d

(1 − ε)k
. (3.7)

Again, there is an inverse relationship between steady state viral load and drug
efficacy. However, the chronically infected population may play a different role in
preventing extinction. Figure4 shows that the addition of chronically infected cells
serves to dampen the oscillations in viral load predicted by the basic model (see
Fig. 2), and consequently prevents the minimum viral load from reaching values of
less than one per patient.

If we consider extinction to occur when the viral load is less than one virion/
patient, i.e.,V < 5 × 10−5 ml−1 (see Section2.2), Fig. 4 demonstrates that if
the drug efficacy is only slightly greater than the critical efficacy extinction will
occur within 1000 days, or approximately 3 years. Yet clinical trials have followed
patients on HAART for more than 3 years and evidence of extinction has yet to be
seen. Thus the results here do not support the possibility that the reason extinction
has not been observed is simply because the viral load has yet to decay completely.

3.1.5. Latently infected cells.A fraction of CD4+ cells with integrated HIV-1
provirus are in a latent state and do not produce virus until they have been activated.
Because of their latent state, these cells are not likely to be subject to immuno-
surveillance by HIV-specific T cells. Perhaps as a consequence, these cells persist
during drug therapy (Chunet al., 1997; Finzi et al., 1997; Wonget al., 1997), either
by replenishment from ongoing replication or an extremely long half-life. Latently
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infected cells thus pose a serious obstacle to eradicating the virus, suggesting that
this population of cells could play a crucial role in maintaining a low steady state
viral load during therapy. The following equations describe this mechanism:

dT

dt
= λ − dT − (1 − ε)kV T (3.8a)

dT∗

dt
= (1 − α)(1 − ε)kV T − δT∗

+ aL (3.8b)

dL

dt
= α(1 − ε)kV T − δL L − aL (3.8c)

dV

dt
= NTδT∗

− cV (3.8d)

whereL is the population of latently infected cells. The parameterα, the fraction
of infections which result in latency rather than the active production of HIV-1
particles, serves the same purpose as it did in the chronically infected cell model
[equation (3.6)]. The new parameters in this system area, the rate at which latently
infected cells become activated and produce virus andδL , the death rate of latently
infected cells.δL should be substantially smaller thanδ, since latently infected cells
are less susceptible to cell mediated killing and death due to viral cytopathicity.

There is a single nontrivial equilibrium, which gives a steady state viral load of

V =
λNT

c

(
1 −

δLα

δL + a

)
−

d

k(1 − ε)
, (3.9)

which bears the familiar inverse relationship between steady state viral load and
drug efficacy. As with chronically infected cells, the steady state remains sensitive
to the precise value of the drug efficacy. Yet because latently infected cells persist
after years of infection (Chunet al., 1997; Finzi et al., 1997; Wonget al., 1997),
it is possible that the steady state viral load is never obtained prior to the patient’s
death or discontinuation of therapy. Rather, the system is in a state of extremely
slow decay, suggesting that this model is not necessarily an incorrect representation
of the dynamics of HIV-1 infection under drug therapy. However, Fig.5 shows that,
although this slow decay could lead to persistence of the viral population, the kinds
of dynamics predicted by the model are also extremely sensitive to changes in drug
efficacy. Furthermore, as with the basic model, the time needed to reach a steady
state one order of magnitude below the set point is much longer than is observed
in patients on RT inhibitor monotherapy (Bonhoefferet al., 1997).

If we examine duration of time required to reach extinction (that is, the time re-
quired for the viral load to decay below 5× 10−5 ml−1, see Section2.2), then this
model could provide an explanation for why extinction has not yet been observed
in clinical studies. When the drug efficacy exceeds but is near the critical effi-
cacy, more than 10 years can pass before the viral load diminishes below one
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Figure 5. Virus load vs time for the latently infected cell model [equation (3.8)]. Param-
eters are defined in the Appendix,a = 0.01 day−1 andδL = 0.004 day−1. The thin line
represents 50 copies ml−1, the detection threshold.

virion/patient. Thus, this model predicts that it could take many years of obser-
vation before extinction is observed in a clinical setting.

3.1.6. Follicular dendritic cells. Follicular dendritic cells (FDC) reside in sec-
ondary lymphoid organs known as germinal centers and bind HIV–antibody com-
plexes. HIV-1 trapped on FDC is thought to be a significant viral reservoir (Pan-
taleoet al., 1993, 1994) and binds up to 1011 copies of HIV-1 RNA in untreated
patients (Haaseet al., 1996; Cavertet al., 1997). Consequently, FDC have been
cited as a possible impediment to HIV-1 eradication (Smithet al., 2001), and their
effect on viral dynamics has been addressed (Hlavaceket al., 1999, 2000a,b). To
understand what effect FDC could have on the steady state viral load, consider the
following model:

dT

dt
= λ − dT − (1 − ε)kV T (3.10a)

dT∗

dt
= (1 − ε)kV T − δT∗ (3.10b)

dV

dt
= NTδT∗

− (c + b)V uVb (3.10c)

dVb

dt
= bV − uVb − cbVb (3.10d)

whereVb represents HIV-1 particles bound to FDC. FDC bind free virus at rateb,
bound virus dissociates from FDC at rateu, and bound virus is cleared at ratecb.
Notice that clearance of free virus is now governed by two parameters, suggesting
that the clearance parameterc in previous models represents a composite of at least
two processes.

As we have seen with the preceding models, this system has only one nontrivial
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fixed point. It gives a steady state viral load of

V =
λNT (u + cb)

(uc+ cbc + cbb)
−

d

(1 − ε)k
, (3.11)

which is identical in itsε-dependence to equation (2.3), and thus has a sensitive
dependence on drug efficacy. However, as with the latency model [equation (3.8)],
if the decay from FDC is slow enough, the system may never reach steady state,
and the virus load would undergo a long, slow decline.

3.1.7. Differential drug effects.RT and protease inhibitors work by entering
CD4+ cells and disrupting part of the viral lifecycle. Consequently these drugs
need to work effectively within diverse cellular environments, since HIV-1 infects
multiple cell types (Gartneret al., 1986; Koeniget al., 1986). In fact, protease in-
hibitors are known to be less effective in some CD4+ subpopulations than in others
(Kim et al., 1998; Pernoet al., 1998; Pudduet al., 1999) since P-glycoprotein
pumps on the surface of some cell types reduce protease inhibitor concentrations
(and thus efficacy) within the cell. Reduced drug efficacy in a subpopulation of
cells is among the factors implicated in the cause of ongoing replication in the face
of HAART (Zhanget al., 1999), suggesting that accounting for this phenomenon
in a model might produce robust low steady state viral loads. One such model is as
follows:

dT

dt
= λ − dT − (p(1 − ε) + (1 − p))kV T (3.12a)

dT∗

dt
= p(1 − ε)kV T − δT∗ (3.12b)

dT∗

n

dt
= (1 − p)kV T − δT∗

n (3.12c)

dV

dt
= NTδ(T∗

+ T∗

n ) − cV. (3.12d)

Here, we assume the target cell population can be split into subpopulations, such
that in a fractionp the drug is active with efficacyε, while in the remaining frac-
tion (1 − p) the drug has no effect (e.g., it is pumped out).T∗ is the population of
infected cells derived from target cells in which the drug was effective, andT∗

n is
the population derived from target cells in which the drug had no effect. There is a
single nontrivial equilibrium, which gives a viral load of

V =
λNT

c
−

d

k(1 − pε)
, (3.13)

which differs from equation (2.3) by a factor ofp multiplied by the drug efficacy.
Hence the relationship between drug efficacy and steady state viral load remains
unchanged. In the following section we will discuss a model which groups cells
into those affected by the drug and those not, with a slightly more favorable result.
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3.2. Models with linear relationships between drug efficacy and steady state
viral load. Though we showed in Section2 that models with a linear relationship
between drug efficacy and steady state viral load are not sufficient to describe the
effects of drug therapy, such models still bring us a step closer to robustly modeling
the effects of drug therapy. We discuss several models of this nature in the present
section: one that describes the effect of RT inhibitors more explicitly than equa-
tion (2.1), one that characterizes the effect of cells such as cytotoxic T lymphocytes
(CTLs) on HIV-1 infected cells, and another that includes a term for virus induced
killing of uninfected cells.

3.2.1. Reverse transcriptase inhibitors.RT inhibitors prevent HIV-1 from in-
fecting CD4+ cells by hindering the reverse transcription of HIV-1 RNA into DNA.
A more precise way to model RT inhibitors than we did in equation (2.1) is to con-
sider the effect of the drug at the cellular level. The model in this section differs
from equation (3.12) in that we explicitly group the uninfected cells, rather than
the infected cells, into those which do and do not respond to the drug. The effect
of the drug is then measured both by the rate at which target cells are transferred to
a pool of infection resistant cells, and by the amount the viral infectivity is reduced
in the pool of infection resistant cells. A stronger drug increases the rate of transfer
to the pool of cells affected by the drug, decreases infectivity in cells affected by
the drug, or both.

Nucleoside analog RT inhibitors, such as AZT, need to be phosphorylated within
a cell before they become active. Thus, for concreteness, the rate of transfer
between the two uninfected T cell populations can be thought of as the rate of
phosphorylation of the RT inhibitor within the cell. LetT denote CD4+ cells that
remain susceptible to infection andTd denote cells containing active drug with
susceptibility to infection reduced by the factor 1− ε. Then we may write:

dT

dt
= λ − dT − kV T − rT (3.14a)

dTd

dt
= rT − dTd − (1 − ε)kV Td (3.14b)

dT∗

dt
= kV(T + (1 − ε)Td) − δT∗ (3.14c)

dV

dt
= NTδT∗

− cV (3.14d)

wherer is the rate at which cells are transferred to the infection resistant popula-
tion. If r is large enough it will outweigh the production of susceptible cells and
leave the virus with a small number of target cells.

The expression for steady state viral load is too cumbersome to display here.
However, we found that its dependence onε is inverse as in the models of the
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previous section. In order to determine howr affects the viral load, we setε = 1,
and find a single nontrivial equilibrium; the viral load is

V =
λNT

c
−

d + r

k
. (3.15)

As in the basic model, the viral infectiousnessk appears in the denominator of the
second term in equation (3.15). However, in this case the analog of drug efficacy,r ,
appears in the numerator, and this sets up a linear relationship between the strength
of the drug and steady state viral load.

This linear relationship is more appropriate for modeling the 1–2 log drops in
viral load observed during RT inhibitor monotherapy, because the steady state
viral load changes less appreciably near the critical efficacy (Bonhoefferet al.,
1997). Still, according to the argument in Section2 a linear relationship is not
good enough, particularly for the purposes of modeling HAART.

3.2.2. Cell mediated immunity.Cytotoxic T lymphocytes (CTLs) are T cells
which are capable of recognizing and killing cells infected with HIV, and are usu-
ally not susceptible to infection, since they generally lack the CD4+ receptor. A
way to generate a nearly linear relationship is by modeling the effect of the CTL
population on HIV-1 reproduction (Bonhoefferet al., 1997). Consider the follow-
ing model:

dT

dt
= λ − dT − (1 − ε)kV T (3.16a)

dT∗

dt
= (1 − ε)kV T − δT∗

− mET∗ (3.16b)

dV

dt
= NTδT∗

− cV (3.16c)

d E

dt
= ρT∗

− dE E. (3.16d)

Here, E represents the effector population of CTLs andm determines the rate
of killing of productively infected cells. Effectors are generated in the presence
of infected cells at rateρT∗, and die at ratedE per cell. As we will show in
Section3.3, the form of the effector generation term is crucial to the relationship
between steady state viral load and drug efficacy.

As with the preceding models there is only one nontrivial fixed point. The steady
state viral load is

V =
d

2(1 − ε)k

[√
(1 − R0(1 − ε)τ )2 + 4R2

0(1 − ε)2τ−(R0(1−ε)τ+1)

]
(3.17)

whereτ = δ2dE/λmρ andR0 = λNTk/dcas before. We have previously usedλ =

104 cells ml−1 day−1, and if the rate constant governing effector cell production
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is approximately equal to the rate of effector removal, thenτ ≈ δ2/m × 10−4.
Providedτ � 1, one can expand equation (3.17) aboutτ = 0. The leading order
term is:

V ≈
R0dτ(R0(1 − ε) − 1)

k
(3.18)

which is linear inε.
If the uninfected population is approximated to be constant, the relationship

becomes precisely linear (Bonhoefferet al., 1997):

V =
NδdE

cmρ

(
(1 − ε)kT NTδ

c
− δ

)
. (3.19)

Such linearity suggests that cell mediated killing does not play a role in the mainte-
nance of low steady state viral load. However, as we will show in Section4, if the
death rate of infected cells is density dependent (a plausible effect of the immune
response on the removal of infected cells) then robust low steady state viral loads
are obtainable.

3.2.3. Virus induced killing of uninfected cells.Uninfected cells in the vicinity
of infected cells are subject to killing by the formation of syncytia and interaction
with gp120 shed by infected cells (Lifson et al., 1986; Sodroskiet al., 1986; Yoffe
et al., 1987). We can model these phenomena by appending a death term to the
differential equation for target cells in the basic model, as follows (Bonhoefferet
al., 1997):

dT

dt
= λ − dT − (1 − ε)kV T − qT∗T (3.20a)

dT∗

dt
= (1 − ε)kV T − δT∗ (3.20b)

dV

dt
= NTδT∗

− cV. (3.20c)

There is one nontrivial equilibrium, and the corresponding viral load is

V =
(1 − ε)λkNT − dc

((1 − ε)k +
qc

NT δ
)c

, (3.21)

which, for q � k, is approximately linear inε. Note that models for which the
rate of killing of uninfected cells is proportional toV rather thanT∗ will have
similar behavior because at steady stateV is proportional toT∗, in particularV =

NTδT∗/c.
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3.3. Models with constant steady state viral load.Here we will briefly mention
a class of models for which drug efficacy does not haveany effect on the steady
state viral load. Consider the following model (Nowak and Bangham, 1996):

dT

dt
= λ − dT − (1 − ε)kV T (3.22a)

dT∗

dt
= (1 − ε)kV T − δT∗

− mET∗ (3.22b)

dV

dt
= NTδT∗

− cV (3.22c)

d E

dt
= ρT∗E − dE E. (3.22d)

This model differs from equations (3.16a) to (3.16d) only in the form of the growth
term of the effector cells. Here the effector cells grow at a rate that depends upon
the pre-existence of other effector cells and infected cells. This form is typical
of predator–prey dynamics, and is motivated by the notion that precursor CTLs
encounter infected cells and subsequently proliferate into mature effectors. Hence
E represents both the precursor and mature effector cell populations.

There are two nontrivial equilibria for the model; this is the only system in this
paper with more than one infected steady state. For the first,E = 0, and the viral
load in this case is given by equation (2.3), corresponding to the basic model.

The second fixed point occurs when effector cells are present, i.e., whenE 6= 0.
In this case the steady state viral load is

V =
NδdE

cρ
, (3.23)

which is independent of drug efficacy, or viral infectiousness.
Figure6 shows that for low drug efficacies, theE 6= 0 equilibrium is stable. As

ε increases, steady state viral load remains constant until theE = 0 equilibrium
becomes stable. As in the previous cases, ultimately the viral load goes to zero.

4. USING A DENSITY DEPENDENT I NFECTED CELL DEATH RATE CAN

L EAD TO A ROBUST L OW STEADY STATE V IRAL L OAD

In most of the models discussed here, the death rate of infected cells,δ, was
assumed to be constant. An exception to this occurred in Sections3.2.2and3.3,
in which the infected cells were cleared at a rate which depended on the density
of effector cells. We can also model this by assuming that the size of the effector
cell population is a function of the density of infected cells, and represent its effect
by choosing the infected cell death rate to be a function of infected cell density.
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Figure 6. Steady state viral load vs drug efficacy for a model that includes a cell meditated
immune response [equation (3.22)]. For low drug efficacies,E 6= 0 and the viral load is
constant (dashed curve). However, as efficacy increases the steady state that gives the viral
load in equation (3.23) loses stability; the viral load is then determined by equation (2.3)
(solid curve), andE = 0. Parameters used in this figure are defined in the Appendix,
exceptde = 0.05 day−1, andρ = m = 10−5 ml day−1 [taken fromNowak and Bangham
(1996)]. The value ofε at which the stability transition occurs increases withρ, such that
for these parameters, whenρ > 5 × 10−5, the E 6= 0 equilibrium is stable until viral
extinction occurs.

As suggested byHolte et al. (2001), one of the simplest ways to do this is via a
power law, and consequently, here we will replaceδ in previous models byδ(T∗) =

δ′T∗
ω

:

dT

dt
= λ − dT − (1 − ε)kV T (4.1a)

dT∗

dt
= (1 − ε)kV T − δ′T∗

ω
T∗ (4.1b)

dV

dt
= pT∗

− cV. (4.1c)

In previous models, the rate of production of free virus from infected cells was
NTδ, the average number of viral particles produced per infected cell times the
natural death rate of infected cells. In addition to viral bursting, in this caseδ(T∗)

accounts for death of infected cells due to immune system clearance, meaning in-
fected cells could be cleared prior to producing virus. ConsequentlyNTδ(T∗) =

NTδ′T∗
ω

overestimates the rate of production of free virus, and we use the para-
meterp instead.

There is a single nontrivial equilibrium. The associated steady state viral load is

V =
p

c
eγ , (4.2)

whereγ satisfies

ωγ + ln
λkp(1 − ε)

δ(cd + kp(1 − ε)eγ )
= 0. (4.3)
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Figure 7. (a) Virus load vs drug efficacy for density dependent infected cell death [equa-
tion (4.1)]. Parameters are defined in the Appendix, andω = 0.44,δ′

= 0.0155 day−1(ml
cell−1)ω (solid curve),ω = 0.25,δ′

= 0.0878 day−1(ml cell−1)ω (dotted curve)ω = 0.1,
δ′

= 0.3455 day−1(ml cell−1)ω (dashed curve) andω = 0.01, δ′
= 0.7863 day−1(ml

cell−1)ω (long dashed curve). The thin line delineates 50 copies ml−1, the detection
threshold. Asω decreases, the range of efficacies over which the virus persists below
the detection threshold increases. (b) The same figure on a semilog scale, demonstrating
that steady state viral load persists below 50 copies ml−1 for a broad range of efficacies.

If we choosep = NTδ = 70 day−1 (whereδ is the constant death rate para-
meter used in previous models),ω = 0.44 (Holte et al., 2001), and keep the
remainder of the parameters as defined in the Appendix, thenδ′ remains as the
only unknown. If we use the constraint thatV(ε = 0) = 5 × 104 copies ml−1,
then we findδ′

= 0.0155 day−1(ml cell−1)ω. The upper curve in Fig.7 shows how
the steady state viral load varies with drug efficacy for these parameter choices.
Figure7(a) illustrates that the curve becomes concave up as the steady state viral
load approaches zero, suggesting it is much less sensitive to changes in efficacy
for very low viral loads than any of the other models we have discussed so far.
However, in order for the steady state viral load to decline below 50 copies ml−1

for this combination of parameters, the efficacy must beε ≥ 0.991, which is an
unrealistically high value (Louieet al., 2001).

As we decreaseω toward zero, and continue choosingδ′ via the constraintV(ε =

0) = 5×104 copies ml−1, we find that the curve begins to appear more reasonable.
In particular, the steady state viral load is substantially reduced for drug efficacies
of 0.85 or even lower. Numerical calculations reveal that for the parameters used
in this section, the infected steady state is positive and stable for allε < 1. This
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Figure 8. Decay in virus load predicted by equation (4.1) for different drug efficacies. The
time required for convergence to low steady states is less than 1000 days, which is much
faster than in any of the previous models. Parameters are defined in the Appendix, with
ω = 0.01 andδ′

= 0.7863 day−1(ml cell−1)ω. The thin line delineates 50 copies ml−1,
the detection threshold.

indicates that unless the antiretroviral drug combination is 100% effective, viral
extinction is not possible. Note, however, that we have exchanged sensitivity to
drug efficacy with sensitivity to the size ofω as the steady state viral load becomes
very low. For example, whenω = 0.01, V(ε = 0.8132) = 50 copies ml−1.
However, if we fix the drug efficacy and increaseω to 0.02, the steady state viral
load isV(ε = 0.8132) = 864 copies ml−1, a 17-fold increase in the viral load.

Parametrization of the model from an empirical study in which it was assumed
ε = 1 (Holte et al., 2001) suggests that 0.4 < ω < 0.47, yet we find the model
behaves most reasonably by our criteria whenω = 0.01. Relaxing the assumption
ε = 1 could result in an estimate ofω that is closer to what we find reasonable here.
However, because a reduction in efficacy will reduce the model’s predicted rate of
virus decay, to fit the model to data one would expect that the exponentω would
need to increase (thus increasing the rate of infected cell removal) to compensate
for a reduction inε. Thus, allowingε < 1 should not lead to the low values
of ω that would make this model serve as a robust descriptor of low viral loads.
However, only one data set has been analyzed with this model, and estimates of
ω from other data sets need to be done before a more informed decision about the
relevance of this model can be made.

Despite these complicating factors, the dynamics of drug therapy simulation are
substantially improved from previously discussed models. In Fig.8 we show the
simulation of therapy for different values ofω andδ′ and the drug efficacy which
corresponds to a steady state of 50 copies ml−1 for each parameter combination.
Even for very low steady state viral loads, the time to convergence, though still
long, is much shorter than the times seen previously (see, for example, results in
Figs2, 4 and5).
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5. COMPARTMENTAL M ODELS WITH A ROBUST L OW STEADY STATE

V IRAL L OAD

In Sections3.1.7and3.2.1we introduced models in which infected cells were
distinguished according to whether or not they were affected by the drug. This
type of model is justified for two reasons. First, there is evidence that drug con-
centrations, and therefore efficacies, are reduced in certain physiologically distinct
sites in the body such as the testes and the brain (Lewis et al., 1996; Haworthet
al., 1998; Schlegel and Chang, 1998). Second,in vitro studies have demonstrated
that there can be heterogeneities in intracellular drug concentrations. For exam-
ple, monocyte cell lines are less susceptible to the effects of antiretroviral drugs
(Kim et al., 1998; Pernoet al., 1998; Pudduet al., 1999). Indeed, these mecha-
nisms have been suggested as possible explanations for the residual replication of
HIV-1 that persists in HAART patients (Zhanget al., 1999). For the models in
Sections3.1.7and3.2.1, near extinction the steady state viral load was extremely
sensitive to small changes in drug efficacy. Here we will show that if we model
two cocirculating populations of target cells with differing drug efficacies, or two
physiologically distinct compartments, one of which is a drug sanctuary such as
the brain or testes, a less sensitive relationship between drug effect and steady state
viral load results.

As we showed in Section2, if we simulate therapy using the basic model, the
viral load becomes unreasonably low as it oscillates about the steady state. This
problem was alleviated by including a subpopulation of chronically infected cells
(see Section3.1.4), and consequently the following two models include this sub-
population as well.

5.1. Drug sanctuary created by a physiological barrier.We extend the chron-
ically infected cell model in Section3.1.4by considering the infection process to
occur in two distinct compartments, with one regarded as a drug sanctuary. These
compartments are then coupled by allowing transport of virus between the com-
partments. The extended model is given by the following equations:

dT1

dt
= λ − dT1 − (1 − ε)kV1T1 (5.1a)

dT2

dt
= λ − dT2 − (1 − f ε)kV2T2 (5.1b)

dT∗

1

dt
= (1 − α)(1 − ε)kV1T1 − δT∗

1 (5.1c)

dT∗

2

dt
= (1 − α)(1 − f ε)kV2T2 − δT∗

2 (5.1d)
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dC∗

1

dt
= α(1 − ε)kV1T1 − µC∗

1 (5.1e)

dC∗

2

dt
= α(1 − f ε)kV2T2 − µC∗

2 (5.1f)

dV1

dt
= N∗

TδT∗

1 + NCµC∗

1 − cV1 + D1(V2 − V1) (5.1g)

dV2

dt
= N∗

TδT∗

2 + NCµC∗

2 − cV2 + D2(V1 − V2) (5.1h)

whereTi , T∗

i , C∗

i , andVi represent the concentration of HIV-1 target cells, short-
lived infected cells, long lived chronically infected cells, and free HIV-1 RNA,
respectively, wherei = 1 in the main compartment andi = 2 in the drug sanc-
tuary. We have not explicitly modeled transport of the drug from the main com-
partment to the sanctuary, rather, we define the parameterf as the factor by which
the drug efficacy is reduced in the sanctuary. The transport of virus between the
main compartment and the sanctuary is governed by the rate constantsD1 andD2

and the difference in virus concentration between the two compartments. Defini-
tions for all other parameters follow from the previous models. Notice that apart
from the different transport rates and responsiveness to drug therapy, we have as-
sumed that the two compartments are identical by using the same parameters in
each. This allows us to test the effect of compartmentalization alone without added
complexities. The model has been previously used to study the role drug concen-
tration heterogeneity plays on the generation of drug resistant mutants (Kepler and
Perelson, 1998).

There is a single nontrivial equilibrium, and though it can be found in closed
form, the expression is prohibitively long to be displayed here or, for that matter,
analyzed for its dependence onε. Instead, we have plotted the steady state viral
load as a function of drug efficacy, taking care to choose the parameters realistically
(see Appendix). Figure9 compares the steady state viral load vs main compartment
efficacy curve in the spatial two compartment model with theV–ε curve for the
basic one compartment model, equation (3.6), where the same parameters are used
in the main compartment. Due to transport from the drug sanctuary to the main
compartment, the virus in the main compartment is not eradicated, despite 100%
efficacy there. In fact, the curve is concave up near the point of critical efficacy in
the one compartment model (ε0 = 0.8), indicating that the steady state viral load
will not be sensitive to small changes in drug efficacy.

As discussed in Section2.2, in addition to the steady state the system ultimately
reaches, it is important to consider the dynamics that lead to it. Figure10 shows
the approach to steady state following initiation of therapy for several different
parameter choices. Figure10(a) compares the trajectories for the one compartment
model and the drug sanctuary model; in both cases the drug efficacy was chosen
such that the steady state would be 50 copies ml−1. Many years are required to
reach the steady state with the one compartment model, and hence only part of
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Figure 9. Relationship between steady state virus load and main compartment drug efficacy
for one compartment model in equation (2.1) (dashed curve) and the two compartment
model in equation (5.1) (solid line). In the drug sanctuary the drug efficacy is reduced by
a factor, f = 0.45; the remainder of the parameters are defined in the Appendix.
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Figure 10. Simulation of therapy with equation (5.1), beginning att = 0 days. The
dotted curve delineates 50 copies ml−1, the limit of detection for standard HIV-1 assays.
(a) Comparison between dynamics in the one compartment model (dashed curve) and the
sanctuary model (solid curve). Drug efficacy was chosen in each case so that the steady
state viral load was 50 copies ml−1 (ε = 0.79984 in the one compartment model;ε =

1.0 and f = 0.34 in the drug sanctuary model). The viral load in the one-compartment
model ultimately recovers and reaches 50 copies ml−1 but on a time scale longer than
that illustrated. (b) Effect of drug therapy in the sanctuary model for three choices of
the chronically infected cell decay rate,µ. Parameters are defined in the Appendix, with
ε = 1.0 and f = 0.34. In this case the model predicts that slower decay rates correlate
with smaller though more frequent blips.
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Figure 11. Reducing main compartment drug efficacy while fixing steady state viral load
reduces the blip size predicted by equation (5.1). In this case,f was chosen so that the
steady state viral load would be 30 copies ml−1. The remaining parameters are defined in
the Appendix.

the curve is shown. On the other hand, if the source of virus during therapy is
the drug sanctuary, we find that the viral load settles to steady state more rapidly,
and oscillates in the process. Since for the majority of the time the viral load
remains below the standard threshold of detection, the brief moments while the
viral load is above the threshold could serve as a possible explanation for intermit-
tent episodes of detectable viremia in patients whose viral load is otherwise well
suppressed (Callaway and Perelson, 2002). These ‘blips’ in viral load have previ-
ously been attributed to factors such as noncompliance on the part of the patient
to the drug regimen and activation of latently infected cells. While the results
here do not rule out these possibilities, they provide an additional mechanism to
account for the observation. Figure10(b) demonstrates that this oscillatory behav-
ior remains for different parameter choices, indicating that the model behavior is
robust to changes in parameters. Furthermore the blip size is typically less than
200 copies ml−1, consistent with findings in an analysis of 124 patient records
from several studies (DiMascio, Louie, Ho and Perelson, unpublished observa-
tion).

A few interesting predictions follow from the dynamics in Fig.10(Callaway and
Perelson, 2002). First, since the oscillations decay in time, blips are more likely to
occur early after treatment starts. Second, as the initial viral decay rate increases,
the peaks of the oscillations are larger; hence blips are more likely to be observed
in patients with faster initial viral decay rates.

Figure11demonstrates the effect of reducing the main compartment efficacy and
simultaneously changingf , the parameter governing drug penetrance in the sanc-
tuary, such that the steady state viral load was 30 copies ml−1. Not surprisingly,
blips are much more prominent when the sanctuary penetrance is low. The same
conclusion holds if we increasef without simultaneously reducingε.

The transport rate constantsD1 and D2 can be thought of as measures of the
relative size of the two compartments. In particular, if we defineu as the fraction
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of the sum of the volumes of two compartments which is occupied by the drug
sanctuary, then we have (Kepler and Perelson, 1998)

D1 =
uD2

1 − u
, (5.2)

which means, for the parameters in the Appendix,u = 0.0053, i.e., the volume of
the drug sanctuary is approximately 0.5% of the total volume.

5.2. Differential efficacy in cocirculating target cells.Drug efficacy may vary
by cell type, not just physiological location. Hence another model which accounts
for heterogeneous drug responsiveness is one in which two types of target cells
cocirculate in a single compartment, where in one population (i = 1) the drug
efficacy isε, while in the second (i = 2) the drug efficacyf ε is reduced by a
factor f < 1. In this case, the equations are similar to equation (5.1), with the
exception that we need only consider one virus population since there is only one
spatial compartment:

dT1

dt
= λ1 − d1T1 − (1 − ε)k1V T1 (5.3a)

dT2

dt
= λ2 − d2T2 − (1 − f ε)k2V T2 (5.3b)

dT∗

1

dt
= (1 − α)(1 − ε)k1V T1 − δT∗

1 (5.3c)

dT∗

2

dt
= (1 − α)(1 − f ε)k2V T2 − δT∗

2 (5.3d)

dC∗

1

dt
= α(1 − ε)k1V T1 − µC∗

1 (5.3e)

dC∗

2

dt
= α(1 − f ε)k2V T2 − µC∗

2 (5.3f)

dV

dt
= NTδ(T∗

1 + T∗

2 ) + NCµ(C∗

1 + C∗

2) − cV. (5.3g)

The definitions of all the variables and parameters are identical to those in equa-
tion (5.1). We have, however, used subscripts on several target cell dependent
parameters, in particular the infection rate,ki , target cell death rate constant,di , and
target cell production rateλi . In principle, the infected cell death rate constants,δ

andµ might also depend on the target cell type, but we have not introduced that
generalization here. As in the previous model, there is a single nontrivial equilib-
rium, yet the expression for viral load is too cumbersome to display; instead we
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show the relationship between drug efficacy and steady state viral load in Fig.12.
The main population parameters are defined in the Appendix, and we choseλ2,
k2 andd2 subject to the following constraints: (1) whenf = 0 andε = 1 (drug
efficacy= 0 in population 2 and efficacy= 1 in population 1),V = 100 copies
ml−1, (2) when f = 0.5 andε = 1, V = 0 copies ml−1, where the steady state
viral load whenε = 1 is given by

V(ε = 1) =
(1 − α)λ2NT + αλ2NC

c
−

d2

(1 − f )k2
. (5.4)

This is the same constraint used in the Appendix, and is motivated by needing
the second population to contribute a small amount to the steady state viral load
and do so over a range of drug efficacies. Using these constraints, we find that
λ2 = 31.98 cells ml−1 day−1, andd2/k2 = 100 copies ml−1. In the main popula-
tion we haved1/k1 = 12 500 copies ml−1, indicating that we must choosed2 and
k2 significantly different from the parameters for the main population. If we take
d2 = d1 = 0.01 day−1, thenk2 = 10−4 ml copies−1 day−1, more than two orders of
magnitude different fromk1 = 8×10−7 ml copies−1 day−1. Why the infection rate
would be so much higher in the second population could have to do with activa-
tion requirements. Most CD4+ T cells are not permissive to infection unless they
are in an activated state (Stevenson, 1996). However, for some cell types, such
as macrophages, it is believed that there is no activation requirement (Stevenson
and Gendelman, 1994), and hence the infection rate constant for such cells would
not need to account for the small fraction of cells that are activated and permis-
sive to infection (see Section3.1.3). Since approximately 1–3% of CD4+ T cells
are activated enough to be in cell cycle (Sachsenberget al., 1998), the infection
rate of macrophages could be as much as 100-fold higher if their were no activa-
tion requirement. Protease inhibitors have lower efficacy in chronically infected
macrophages than in chronically infected lymphocytes (Kim et al., 1998; Pernoet
al., 1998; Pudduet al., 1999), and hence these cells are a possible candidate for
the second population of target cells. Recent experiments in the macaque in fact
suggest that macrophages may be an important source of virus after CD4+ T cells
are depleted (Igarashiet al., 2001).

As indicated in Fig.12, the relationship between steady state viral load and drug
efficacy for this system is similar to the one in equation (5.1), providing additional
support to the notion that low steady state viral loads are supported only by a small
subpopulation of cells in which for some reason antiretroviral drug efficacy is re-
duced. Furthermore, as we show in Fig.13, there is a similar oscillatory behavior,
providing additional evidence to suggest that blips in viral load could be a natu-
ral consequence of population dynamics. Becausek2 is of questionable size, we
examined the effect of reducingk2 on the system’s dynamics. Just as increasingf
in the model defined by equation (5.1) reduces the blip size, so too does reducing
k2 in this model (results not shown).
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Figure 12. Relationship between steady state virus load and main compartment drug effi-
cacy for equation (5.3). All parameters except those with a subscript 2 are defined in the
Appendix, andλ2 = 31.98,d2 = 0.01,k2 = 10−4, and f = 0.34.
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Figure 13. Simulation of therapy, beginning att = 0 days, for equation (5.3). The dotted
curve delineates 50 copies ml−1, the limit of detection for standard HIV-1 assays. We have
varied the chronically infected cell decay rate,µ. Parameters are defined in the Appendix,
with ε = 1.0 and f = 0.34.

6. SUMMARY AND CONCLUSIONS

In order to faithfully describe the effects of antiretroviral therapy, models of
HIV-1 dynamics should be capable of simulating persistent, low level replication,
and extinction of the virus should be unlikely. We have explored the steady state
behavior of several models of HIV-1 infection to determine which are most consis-
tent with these features of drug therapy. For most models, the presence of low level
replication is extremely sensitive to small changes in drug efficacy. Consequently,
for very low viral loads, the probability of extinction is high if the efficacy were
to increase by a very small amount. Models which fail in this manner to robustly
describe drug therapy include not only the basic model in equation (2.1), but also
variants that account for cell mediated killing of infected cells, virus induced killing
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of uninfected cells, latently infected cells, quiescent target cells, the specific mech-
anisms of antiretroviral drug efficacy, and models in which we varied the form of
the terms for growth and infection of target cells. This suggests that, although these
mechanisms may be important for other aspects of HIV-1 replication, they are not
crucial in the maintenance of low viral loads.

Two classes of models do not exhibit extreme sensitivity of the steady state viral
load to changes in drug efficacy. In the first of these, the death rate of infected cells
is a function of their density. This form is motivated by the notion that infected cells
could be cleared by the immune response at a rate proportional to the frequency of
infected cells. Although we found thatω, the parameter that governs the size of
this effect on the death rate, must be much lower than experimentally estimated
values in order to generate this robust relationship, we did find that the dynamics
of therapy were much more realistic than in the other variants of the basic model
that we surveyed. This surprisingly suggests the immune system may have a role
in the persistence of HIV replication.

Models in which target cells respond differentially to antiretroviral drugs are also
capable of modeling persistent low steady state viral loads robustly. This points
in the direction of improving drug efficacy in all cell types in order to improve
the chances of ultimately eradicating HIV-1 from the human body. This could
mean developing drugs that cross physiological barriers better, drugs that inhibit
P-glycoprotein pumps, or drugs which, unlike protease inhibitors, are not easily
removed from the cell interior by efflux pumps (Kim et al., 1998; Pernoet al.,
1998; Pudduet al., 1999).

Examining the source of virus during blips could provide a means to support
the suggestion made here of differing target cell populations having different drug
susceptibilities. If a distinct cell type, with distinct cell surface markers, is the
source of residual replication and intermittent viremia, those surface markers will
be present on the viral membrane, since it is derived from the membrane of the
virus producing cell.

Two compartment models hold promise not only for identifying the population
of drug resistant cells, but also for timing optimal shifts in therapeutic regimens.
If the ‘blips’ observed in patient data and those in the dynamics of this model are
in fact one and the same, the model could be used to predict the timing of blips.
This is significant since blips indicate high levels of virus replication, and it is at
these times that drug resistant mutants are most likely to appear. This could guide
a clinician’s decision to change the drugs used in HAART for a particular patient.

7. APPENDIX

Several parameters were taken directly from the literature. In particular, the death
rate of infected CD4+ cells,δ = 0.7 day−1 (Perelsonet al., 1996), the clearance
rate of free virus particles,c = 13 day−1 (Fergusonet al., 1999; Mittler et al., 1999;
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Ramratnamet al., 1999), and the death rate of chronically infected cells, when
included in a model, wasµ = 0.07 day−1 (Perelsonet al., 1997). The death rate of
CD4+ in humans is not well characterized, and we tookd = 0.01 day−1, a value
derived from BrdU labeling in macaque monkeys (Mohri et al., 1998). Quiescent
cells are known to have an extremely long half-life (McLean and Michie, 1995),
and we useddQ = 0.001 day−1, corresponding to a half-life of approximately 2
years. The average number of virus particles produced during an infected cell life
span was taken asNT = 100 (Haaseet al., 1996).

In order to determine the remainder of the parameters, we used steady state
expressions from the two compartment drug sanctuary model in equation (5.1)
and the following constraints: (1) there are 1000 target cells per microliter in both
compartments in the absence of infection, (2) the steady state viral load in both
compartments in the absence of therapy is 5× 104 copies ml−1, (3) the density
of target cells in either compartment during infection in the absence of therapy is
2×105 cells ml−1, (4) chronically infected cells contribute to at least 1% of the total
steady state viral load (Perelsonet al., 1997), (5) in the absence of replication in
the main compartment (ε = 1), if no drug enters the second compartment (f = 0),
the main compartment steady state viral load is 100 copies ml−1, and (6) if the
drug is 50% effective in the second compartment and 100% effective in the main
compartment (f = 0.5 andε = 1), the viral load is zero everywhere. The purpose
of constraints (5) and (6) is to ensure that the steady state viral load persists over
a broad range of second compartment efficacies, despite complete drug efficacy
in the main compartment. Using these constraints and expressions for the steady
state viral load, we found thatλ = 104 cells ml−1 day−1, k = 8× 10−7 ml copy−1

day−1, α = 0.195,NC = 4.11, D1 = 0.1048 day−1, andD2 = 19.66 day−1.
Without intercompartment transport, for these parameters the critical efficacy in

each compartment would beε = 0.8. However, as we have chosen the parameters,
the transport term in the second compartment acts to increase the viral clearance
term fromcV2 to (c + D2)V2 (whenV1 � V2), meaning that extinction can occur
in the second compartment even whenf ε < 0.8. This is whyε = 1 and f = 0.5 is
sufficient to extinguish the virus in both compartments. In general, extinction will
be determined by a ‘critical curve’ in theε– f plane, connecting the points(ε, f ) =

(1.0, 0.5) and(0.8, 1.0). We have been unable to find this curve analytically.
For consistency we chose to use the same parameters with other models, where

applicable. This resulted in small changes in some of the steady state values. For
example, in the basic one compartment model in equation (2.1), the drug free
steady state viral load isV = 6.44× 104, rather than 5× 104 as in models with
chronically infected cells.

For the latently infected cell model, we choseα, the fraction of infection events
which result in a latently infected cell, by using the constraint that there are ap-
proximately five latently infected cells per million resting CD4+ cells (Chunet al.,
1997) at steady state. Using the parameters above withδL = 0.004 day−1 (Finzi et
al., 1999) anda = 0.01 day−1, this givesα = 1.5 × 10−6.
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