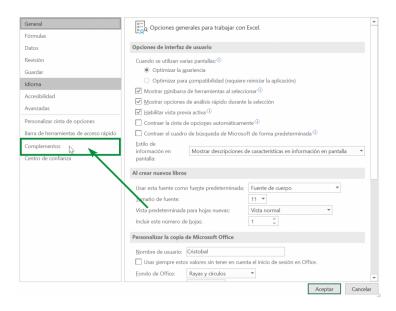
Modelos de optimización para aplicaciones forestales

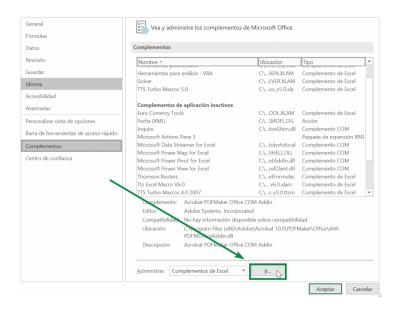
Clase 2 - Resolución de Problemas de Programación Lineal con Solver en Excel Solver

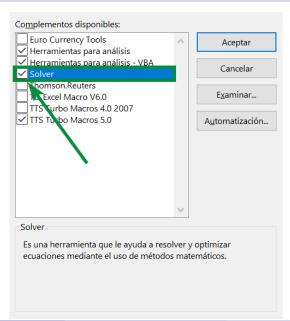
CENUR Noreste y Facultad de Ingeniería. UdelaR

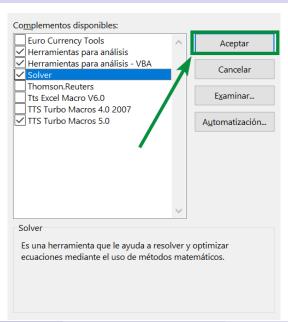
2025

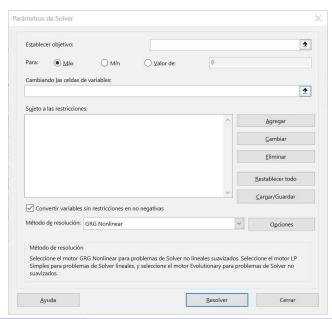
Contenido


O CONFIGURACIÓN DE EXCEL SOLVER


Habilitar el complemento Solver


- Ir a Archivo → Opciones → Complementos
- ② En el menú desplegable, seleccionar Complementos de Excel y hacer clic en Ir
- Marcar la casilla Solver y presionar Aceptar
- Verificar que aparezca en la pestaña Datos
 → Solver


Habilitando el Solver



Entender la ventana de Solver

Al abrir Solver, se presentan los siguientes campos clave:

- Establecer Objetivo: Celda que contiene la función objetivo
- Para: Opción para maximizar, minimizar o establecer un valor específico
- Cambiando celdas de variables: Celdas que Solver modificará para encontrar la solución óptima
- Restricciones: Limitaciones del problema que deben cumplirse
- **Método de resolución**: Simplex LP (para problemas lineales), GRG No Lineal o Evolutivo.

Entender la ventana de Solver (cont.)

Maximización de Beneficios en Producción de Madera

Contexto del problema:

Una empresa forestal produce dos tipos de productos a partir de madera procesada: vigas y tablones. Cada producto requiere tiempo de procesamiento en dos máquinas diferentes. La empresa desea maximizar sus beneficios semanales.

Producto	Máquina 1 (horas/unidad)	Máquina 2 (horas/unidad)	Beneficio (\$/unidad)
$\overline{\text{Vigas}(x_1)}$	2	1	40
Tablones (x_2)	1	2	30
Disponibilidad semanal	100 horas	80 horas	-

Formulación matemática

Variables de decisión:

- x_1 = número de vigas a producir
- x_2 = número de tablones a producir

Función objetivo:

Restricciones:

(no negatividad)

$$\max Z = 40x_1 + 30x_2$$

$$2x_1 + x_2 \leqslant 100$$

$$x_1 + 2x_2 \leqslant 80$$

$$x_1 + 2x_2 \leqslant 80$$

 $x_1, x_2 \geqslant 0$

$$x_1 + 2x_2 \leqslant 80$$

(disponibilidad Máquina 2)

(1)

(2)

(3)

(4)

13/14

Armando la planilla

D7	√ f _x Σ → = =SU	MA.PRODUCTO(B7:C	7;\$B\$3:\$C\$3)			
	A	В	С	D	E	F
1						
2	Variables de Decisión	x1 (vigas)	x2 (tablones)			
3		0	0			
4						
5	Función Objetivo	40	30			
6						
7	Restricción 1	2	1	0	<=	100
8	Restricción 2	1	2	0	<=	80
9						
10	Valor de la función	0				
11	objetivo	U				