Física Térmica - Edición 2024

Práctico 8: Exergía

Ejercicio 1.

- (a) Un recipiente cerrado contiene una masa m de cierto gas perfecto (C_p , C_v constantes) a temperatura T y presión P. El recipiente se encuentra ubicado en un ambiente a temperatura T_0 y presión P_0 . Calcule la exergía del gas en términos de las cantidades anteriores y muestre que es no negativa. ¿En qué caso/s la exergía del sistema es nula?
- (b) Demuestre que, sea cual sea la sustancia contenida en el recipiente, la exergía es siempre una cantidad no negativa.

Sugerencia: Considere un proceso sin trabajo (posiblemente en etapas) que lleve el gas de su estado inicial al estado muerto, y recuerde la relación entre la exegía y el trabajo reversible que podría obtenerse de ese proceso.

Ejercicio 2.

Considere una fuente térmica a temperatura T_F que intercambia calor a una tasa \dot{Q}^F directamente con el ambiente a temperatura $T_0 < T_F$.

- (a) Calcule la tasa de generación de entropía y la potencia reversible que podría obtenerse de este proceso. Verifique el resultado por otro camino y esquematice cómo podría obtenerse esa potencia.
- (b) ¿A qué tasa pierde exergía la fuente? ¿Se compensa este cambio con un incremento de la exergía del ambiente? Explique.

Ejercicio 3.

Un sistema cilindro - pistón contiene $1 \,\mathrm{kg}$ de vapor de agua a $500 \,\mathrm{kPa}$ y una calidad del $50 \,\%$. Se entrega calor desde una fuente a $700 \,^{\circ}\mathrm{C}$ hasta que la temperatura del agua alcanza los $600 \,^{\circ}\mathrm{C}$. Considere que el ambiente se encuentra a $100 \,\mathrm{kPa}$ y $20 \,^{\circ}\mathrm{C}$.

- (a) Determine el estado final del agua.
- (b) Indique todos los flujos de exergía involucrados en el proceso y calcule la variación de exergía del agua y del entorno.
- (c) Obtenga la exergía destruída durante el proceso, por dos caminos:
 - (i) a partir de su definición,
 - (ii) por medio de un balance de exergía.

Nota: Puede dar respuesta a estas preguntas usando los resultados del ejercicio que ya fue propuesto en el práctico 7.

Ejercicio 4.

Una turborreactor operando en régimen permanente toma aire en condiciones atmosféricas a razón de 8 kg , y lo libera a presión atmosférica a una temperatura de 380 °C. El proceso incluye una etapa de calentamiento en la que el aire recibe calor proveniente de una fuente a $T_H = 1200\,^{\circ}\mathrm{C}$, a una tasa de 4800 kW. El resto de los dispositivos involucrados en el proceso son adiabáticos.

- (a) Calcule la potencia neta producida.
- (b) Indique todos los flujos de exergía hacia y desde el sistema.
- (c) Verifique el resultado de la parte a) efectuando un balance de exergía.

Ejercicio 5.

Considere un tanque aislado de volumen V en el que se ha generado vacío. El ambiente se encuentra a temperatura T_0 y presión P_0 .

- a) Explique por qué, a pesar de que la masa en el interior del tanque es despreciable, la exergía del mismo es diferente de cero y calcúlela.
- b) El tanque anterior es conectado a una línea de suminsitro que transporta aire a 1 MPa y 200 °C. La conexión se realiza a través de una válvula que se cierra una vez que la presión en el tanque es la mitad de la presión en la línea. Considere que el tanque tiene 1 m³ de volumen y que el ambiente se encuentra en las condiciones atmosféricas usuales.
 - i) Halle la masa de aire que ingresó al tanque y la temperatura final en su interior.
 - ii) Calcule la variación de exergía del tanque.
 - iii) Calcule la entropía generada y la exergía destruída durante el proceso.
 - iv) Verifique que se satisface la ecuación de balance de exergía.

Ejercicio 6.

Considere el tramo de una planta de generación mostrado en la Fig. (1), que emplea agua como fluído de trabajo. En la entrada al sistema (estado 1) se tiene un flujo de $1 \frac{kg}{s}$ de vapor saturado a 1 MPa. El agua atraviesa un regenerador antes de recibir calor de una fuente a 800°C, hasta alcanzar los 600°C (estado 3). Posteriormente, el agua produce potencia al atravesar una turbina adiabática e internamente reversible, para finalmente abandonar el sistema a presión atmosférica (estado 5). Se sabe que la entropía generada por unidad de masa circulante debido al intercambio de calor con la reserva térmica es $0.5 \frac{kJ}{k\sigma K}$.

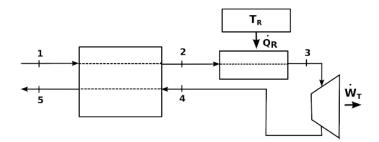


Figura 1: Problema 6.

- a) Halle la potencia producida por la turbina.
- b) Calcule la tasa de producción de entropía en el regenerador.
- c) Determine:
 - i) la variación de extalpía (exergía de flujo) del agua entre la entrada y la salida;
 - ii) la tasa de cambio de exergía de la reserva térmica.
- d) Indique cómo se vinculan los resultados de las partes anteriores y verifique dicha relación numéricamente.

Ejercicio 7.

Considere un dispositivo cilindro-pistón conectado a una línea de suministro de vapor de agua a $800\,\mathrm{kPa}$ y $400\,^\circ\mathrm{C}$ a través de una válvula. El recipiente está inicialmente vacío, y la presión requerida para elevar el pistón es de $600\,\mathrm{kPa}$. Se abre la válvula perimitiendo que el vapor ingrese lentamente, hasta que el volumen del cilindro alcanza los $17,6\,\mathrm{m}^3$, instante en que se cierra la válvula. El sistema intercambia calor únicamente con una fuente térmica a $200\,^\circ\mathrm{C}$, con la que se asume que permanece en equilibrio térmico durante todo el proceso.

- (a) Halle el trabajo útil realizado por el vapor y la entropía generada durante el proceso.
- (b) Halle la variación de exergía de:
 - (i) el recipiente cilíndrico;
 - (ii) la línea de suministro;
 - (iii) la fuente de calor.
- (d) ¿Cómo se relacionan las magnitudes calculadas en las partes anteriores? Verifique dicha relación numéricamente.
- (e) Indique dónde ocurre destrucción de exergía y especifique las causas.