Optimización de la logística para la valorización de residuos de cosecha forestal Simposio de Informática Industrial e Investigación Operativa

Virginia Amor Delfino¹, Lucia Larrosa Gaso¹, Víctor Viana^{1,2}

1 Facultad de Ingeniería, Udelar, Uruguay 2 ITR Centro-Sur, UTEC, Uruguay

14 de agosto, 2024

Introducción

- Creciente sector forestal en Uruguay \longrightarrow 3 % del PIB nacional
- Oportunidad de aprovechar residuos de cosecha forestal
- Evitar riesgos de incendios al dejar residuos en el campo

Residuos forestales

Figura: Extraido de https://www.forestalmaderero.com

- Materiales orgánicos generados durante las operaciones de cosecha forestal, que no son extraídos
- Compuesto por ramas, cortezas, restos de tala
- Subutilizados o abandonados en frentes de cosecha

Composición de residuos forestales

Eucalyptus

Aserrío Pulpa

Madera	82%	75%
Corteza	6%	8%
Ramas	10%	14%
Hojas	3%	4%
Total residuo	19%	25%

Composición de residuos forestales

Aserrío	Pulpa
79%	72%

Madera	79%	72%
Corteza	7%	10%
Ramas	12%	15%
Hojas	3%	4%
Total residue	$\sim 21\%$	28%

Pino

Cantidad de residuos forestales disponibles

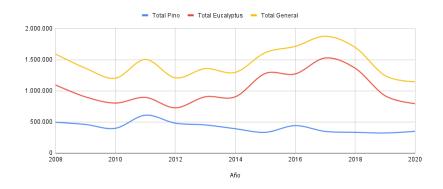


Figura: Totales nacionales de residuos forestales generados en campo proveniente de plantaciones para aserrío y pulpa en m^3 (Faroppa, 2010)

Envío del los residuos forestales a plantas de tratamiento

- La recolección y transporte conllevan altos costos debido a que es un material muy voluminoso y de bajo valor térmico (FAO, 2023)
- Es importante implementar métodos que optimicen la recolección, minimicen las costos del transporte y reduzcan el volumen de los residuos.

Pirólisis rápida

- Proceso termoquímico, descompone materiales orgánicos en ausencia de oxígeno.
- Temperaturas entre 600°C y 800°C
- Productos: bioaceite, vinagre de madera, gas de síntesis, biochar (Gorostidi and Akarregi, 2010)

Pirólisis rápida móvil

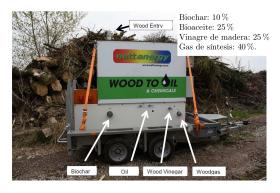
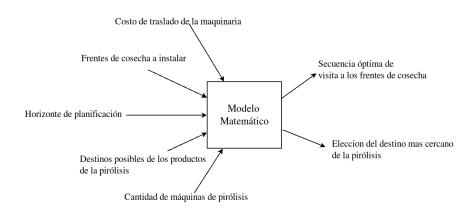



Figura: Máquina de pirólisis comercializada por Nettenergy (Nettenergy, 2024)

- Diseño compacto y fácil de trasladar
- Capacidad de 10 ton/día
- Incluye sistema de enfriamiento y alimentación

Problema a resolver

Modelo matemático

$$\begin{aligned} & \min \sum_{m=1}^{m} \sum_{i=0}^{i} \left(\sum_{j=0}^{j} ctm \cdot dl_{ij} \cdot x_{ijm} + cp \cdot tp_{i} \right. \\ & + \sum_{n=0}^{a} ctpt \cdot dc_{in} \cdot residuo_{i} \cdot frac \cdot z_{ia} \right) + \sum_{i=0}^{i} s_{i} \end{aligned}$$

$$\sum_{i=1,i\neq j}\sum_{m}x_{ijm}=1\ \forall j,\ j\neq 0$$

$$\sum_{i=1,i\neq j}\sum_{m}x_{ijm}=1\ \forall i,\ i\neq 0$$

$$u_{im} - u_{im} + n \cdot x_{iim} \le n - 1 \quad \forall i, j, i \ne j, i \ge 1, j \ge 1$$

$$\sum_{j\neq 0} x_{0jm} \leq 1 \ \forall m$$

$$\sum_{i \neq 0} x_{i0m} \leq 1 \ \forall m$$

$$\sum_{i \neq j} x_{ijm} = \sum_{k \neq j} x_{jkm} \ \forall m,j$$

$$s_i \ge pfc_i \ \forall i$$

$$s_i + tp_i - H \cdot (1 - \sum_m x_{ijm}) \leq s_j \ \forall i,j, \ j > 0, \ i \neq 0, \ j \neq i$$

$$s_i + tp_i \leq n_P \ \forall i, \ i \neq 0$$

$$\sum_{a=1} z_{ia} = 1 \quad \forall i$$

$$\sum y_{im} = 1 \ \forall i, i \neq \ 0$$

$$\sum_{i,j} x_{ijm} = y_{im} \ \forall m,i, \ i \neq 0$$

$$\sum_{i\neq j} x_{ijm} = y_{jm} \ \forall m,j, \ j\neq 0$$

 $\mathbf{I} = \{i_1, i_2, ..., i_n\},$ sitios de cosecha donde se trasladará la máquina de pirólisis móvil.

 $\mathbf{P}=\{p_1,p_2,...,p_{n_P}\},$ horizonte de planificación, conjunto de períodos de tiempo.

 $\mathbf{A}=\{a_1,a_2,...,a_{n_A}\},$ puntos de destino posibles para trasladar los productos obtenidos de la pirólisis.

 $M = \{m_1, m_2, ..., m_{n_M}\}$, máquinas de pirólisis móvil.

 dl_{ij} : distancia entre los lugares de cosecha i y j, $i \in I$, $j \in I$.

 dc_{ia} : distancia entre el lugar de cosecha i y el destino a de los productos de la pirólisis, $i\in I,\,a\in A.$

 pfc_i : período siguiente al que finaliza la cosecha del lugar de cosecha $i, i \in I$. tp_i : tiempo de pirólisis en el lugar de cosecha $i, i \in I$.

 r_i : cantidad de residuo en el lugar de cosecha $i,\,i\in I.$

frac: fracción de residuo que se transforma en producto comercializable.
cp: costo de realizar pirólisis en un período.

p: costo de realizar pirolisis en un periodo.

ctm: costo de traslado de la máquina de pirólisis.
ctnt: costo de traslado del producto terminado.

maq: cantidad de máquinas disponibles para realizar pirólisis.

 x_{ijm} : variable binaria para indicar el traslado de la máquina de pirólisis m del lugar de cosecha i al lugar de cosecha j, $i, j \in I$, $m \in M$.

 y_{im} : variable binaria para indicar la realización de pirólisis en el lugar de cosecha i con la máquina $m, \ i \in I, \ m \in M.$

 s_i : variable entera positiva para indicar el período en que comienza la pirólisis en el lugar de cosecha $i,\,i\in I.$

 z_{ia} : variable binaria utilizada para indicar el traslado del producto terminado del lugar de cosecha i al destino a, $i \in I$, $a \in A$.

 u_{im} : variable entera positiva auxiliar que genera la secuencia de visita de la máquina m a los lugares de cosecha $i, i \in I, m \in M$.

53JAIIO

Instancias de prueba

- 30 lugares de cosecha
 - 6488 toneladas de residuos forestales
 - periodo de cosecha (12, 18 y 24 meses)
- 3 maquinas de pirólisis rápida
- dos destinos de comercialización.

Costos	Monto en USD	Unidad
Arrendamiento de depósito	700	Mensual
Transporte de producto terminado	0,3	ton/km
Transporte máquina de pirólisis	0,44	ton/km
Costos laborales	1.177	Mensual

Resultados numéricos

Instan	cia Lugares de o	osecha Máqui	nas Períoc	los Lugare	s de destino #Variab	les #Restric	ciones Valor de la función ob	jetivo (U\$S) Tiempo(s
1	5	1	12	1	40	67	18819	0,046
2	5	1	18	1	41	68	18746	0,047
3	10	1	18	1	131	233	62901	0.062
4	10	1	18	2	151	243	48580	0,062
5	10	2	12	1	219	341	134636	0,046
6	10	2	12	2	239	351	105994	0.062
7	10	2	18	1	271	366	134661	0.062
8	10	2	18	2	291	376	105421	0,062
9	10	3	12	1	324	464	201442	0.078
10	10	3	12	2	344	474	158478	0.062
11	10	3	18	1	401	489	200600	0.063
12	10	3	18	2	421	499	157636	0.047
13	15	1	24	1	271	498	79788	0,094
14	15	1	24	2	301	513	59705	0,250
15	15	2	12	1	534	760	160738	9.687
16	15	2	12	2	564	775	120435	4,906
17	15	2	18	1	556	771	160258	0.172
18	15	2	18	2	586	786	129584	0,125
19	15	2	24	1	556	771	157504	0.079
20	15	2	24	2	586	786	117884	0.078
21	15	3	12	1	741	1001	254250	1,438
22	15	3	12	2	771	1016	193654	0.610
23	15	3	18	1	826	1029	252975	0.110
24	15	3	18	2	856	1044	193545	0.094
25	15	3	24	1	826	1029	252742	0.093
26	15	3	24	2	856	1044	193313	0.109
27	20	2	18	1	941	1326	199261	8.657
28	20	2	18	2	981	1346	157113	5.813
29	20	2	24	1	941	1326	198638	0.156
30	20	2	24	2	981	1346	156894	0,141
31	20	3	18	1	1401	1769	296993	0.219
32	20	3	18	2	1441	1789	234377	0,219
33	20	3	24	1	1401	1769	296910	0,172
34	20	3	24	2	1441	1789	234294	0.156
35	30	2	18	1	-	-	No factible	-
36	30	2	18	2	_	_	No factible	_
37	30	2	24	1	2011	2886	256435	25,906
38	30	2	24	2	2071	2916	208867	31,640
39	30	3	18	1	3001	3849	383774	97,360
40	30	3	18	2	3061	3879	311589	79,386
41	30	3	24	1	3001	3849	382028	0,406
42	30	3	24	2	3061	3879	310398	0.390

Factibilidad económica

Inversión	Monto en USD
Máquina pirólisis rápida	700.000
Chipeadora	2.600
Generador de gas	20.000
Total inversión	722.600

6488 ton. de residuos procesadas en 18 meses \longrightarrow genera productos por valor de U\$S 3.016.920

Conclusiones

- Enfoque integral: aspectos técnicos, logísticos y de optimización
- Planta de pirólisis móvil reduce costos de transporte
- Modelo resuelve instancias de tamaño moderado.
- Necesidad de explorar técnicas adicionales para instancias grandes
- Aplicable a otros residuos orgánicos

Próximos pasos

- Abordar instancias de mayor tamaño y complejidad
- Explorar heurísticas o métodos de descomposición
- Ampliar a otros tipos de residuos orgánicos
- Promover una economía circular más sostenible

Bibliografía

- C. Faroppa. 2010. Evaluación de la disponibilidad de residuos o subproductos de biomasa a nivel nacional.
- J. M. Gorostidi and R. F. Akarregi. 2010. Valorización de biomasa mediante pirólisis rápida. Bioenergy international. España, (7), 16-17.
- FAO. 2023. Conservación de energía en las industrias mecánicas forestales.
- Nettenergy. 2024. www.nettenergy.com