Ejercicios en SAGE: Cálculos en cuerpos finitos y extensiones

Ejercicio 1. Construcción de cuerpos finitos

- 1. Construí el cuerpo primo \mathbb{F}_7 .
- 2. Construí el cuerpo \mathbb{F}_{3^2} como $\mathbb{F}_3[x]/(x^2+1)$.
- 3. Construí el cuerpo \mathbb{F}_{2^4} usando un polinomio irreducible de grado 4 sobre \mathbb{F}_2 .

Comandos útiles en Sage:

```
GF(p)
GF(p^n, 'a')
```

Ejercicio 2. Elementos primitivos y generadores

- 1. En \mathbb{F}_7 , determiná si 3 es generador de \mathbb{F}_7^* .
- 2. Encontrá un elemento primitivo en \mathbb{F}_{2^4} .
- 3. Listá todos los generadores del grupo multiplicativo de \mathbb{F}_{11} .

Comandos útiles:

```
F = GF(7)
F.multiplicative_generator()
a.multiplicative_order()
```

Ejercicio 3. Trazas y normas

- 1. En \mathbb{F}_{3^3} , calculá la traza y la norma de un elemento.
- 2. Repetí el cálculo en \mathbb{F}_{2^4} .
- 3. Verificá que la traza es lineal y que la norma es multiplicativa.

Comandos útiles:

```
x.trace()
x.norm()
```

Ejercicio 4. Bases polinómicas y normales

- 1. Construí \mathbb{F}_{3^3} como extensión de \mathbb{F}_3 con un polinomio irreducible cúbico.
- 2. Escribí a un elemento cualquiera en la base polinómica estándar $\{1, \alpha, \alpha^2\}$.
- 3. Determiná si un elemento de \mathbb{F}_{3^3} genera una base normal.

Comandos útiles:

```
S=[a,a^3,a^9]

M=Matrix(GF(3), [[(x*y).trace() for y in S] for x in S])
```

Ejercicio 5. Determinación de base

- 1. En \mathbb{F}_{5^2} , considerá $\{1, \alpha\}$. ¿Es una base de \mathbb{F}_{25} sobre \mathbb{F}_5 ?
- 2. En \mathbb{F}_{2^4} , verificá si $\{1, \alpha^2, \alpha^3, \alpha^5\}$ es una base.

Comando útil:

K.vector_space()

Ejercicio 6. Estructura de subcampos

- 1. En \mathbb{F}_{2^6} , determiná todos los subcuerpos.
- 2. Identificá el subcuerpo isomorfo a \mathbb{F}_{2^3} .

Comando útil:

K.subfields()

Ejercicio 7. Polinomios irreducibles

- 1. Listá todos los polinomios irreducibles de grado 2 en $\mathbb{F}_5[x]$.
- 2. Verificá la factorización de $x^4 + 1$ en $\mathbb{F}_3[x]$.

Comandos útiles:

```
R.<x> = PolynomialRing(GF(5))
R.irreducible_element(2)
(x^4+1).factor()
```

Ejercicio 8.

- Construí \mathbb{F}_{2^8} (el cuerpo usado en AES en criptografía...próximamente).
- Encontrá un generador de su grupo multiplicativo.
- Calculá la traza y la norma de ese generador sobre \mathbb{F}_2 .
- Determiná si ese generador da lugar a una base normal.