
P-13

Describing Pressure (§3.1)

3.1 In units of mH2O gage, what pressure corresponds to an 
absolute pressure of 3 atm?

(a) 28 (b) 32 (c) 21 (d) 25 (e) 37
3.2 The depth of water in an open container is 2 ft. What is the 
maximum absolute pressure in units of atmospheres? > Answer

(a) 23/17 (b) 2/17 (c) 1/17 (d) 18/17 (e) 4/17
3.3 Local atmospheric pressure is 1.0 bar. The gage pressure at 
point A is −9 × 103

 Pa. Consider the following statements about 
the pressure at A:

 I. The vacuum pressure is 1.3 psia
 II. The gage pressure is −36.1 inches of water
 III. The absolute pressure is 9

100 bar
 IV. The absolute pressure is 1900 psf

The true statements are: (a) all except I (b) all except III  
(c) II and IV (d) all except II (e) I and II
3.4 From smallest to largest, rank order the following values of 
absolute pressure. > Answer

1. 0.12 MPa
2. 10.3 psi
3. 630 psf
4. 17 ftH2O
5. 200,000 Pa

The rank order is:
a. (3, 5, 1, 2, 4)
b. (3, 4, 2, 1, 5)
c. (4, 2, 5, 3, 1)
d. (1, 3, 4, 2, 5)
e. (4, 3, 1, 2, 5) 

3.5 From memory, list the standard value of patm. 
a. ______________________ kPa
b. ______________________ bar
c. ______________________ atm
d. ______________________ mH2O
e. ______________________ ftH20
f. ______________________ psia
g. ______________________ psfa
h. ______________________ mmHg
i. ______________________ inHg

3.6 Apply the grid method (§1.7) to each situation. > Answer

a.  If the pressure is 15 inches of water (vacuum), what is the 
gage pressure in kPa?

b.  If the pressure is 140 kPa abs, what is the gage pressure in psi?
c.  If a gage pressure is 0.55 bar, what is absolute pressure in psi?
d.  If a person’s blood pressure is 119 mm Hg gage, what is their 

blood pressure in kPa abs? 

3.7 A 93-mm diameter sphere contains an ideal gas at 20°C.  
Apply the grid method to calculate the density in units  
of kg/m3.  

a.  The gas is helium. The gage pressure is 36 in H2O.
b.  The gas is methane. The vacuum pressure is 8.8 psi.

3.8 For the questions below, assume standard atmospheric pressure.
a.  For a vacuum pressure of 43 kPa, what is the  > Answer  

absolute pressure? Gage pressure?
b.  For a pressure of 15.6 psig, what is the pressure in psia?
c.  For a pressure of 190 kPa gage, what is the absolute pressure 

in kPa?
d.  Give the pressure 100 psfg in psfa.

3.9 The local atmospheric pressure is 91 kPa. A gage on an oxy-
gen tank reads a pressure of 250 kPa gage. What is the pressure 
in the tank in kPa abs? 
3.10 (T/F) The gage pressure at a depth of 34 meters of water is 
about 1 bar. > Answer

3.11 The gage tester shown in the figure is used to calibrate or 
to test pressure gages. When the weights and the piston together 
weigh 132 N, the gage being tested indicates 197 kPa. If the piston 
diameter is 30 mm, what percentage of error exists in the gage?

Weights

Piston

Air

Oil

Problem 3.11

3.12 As shown, a mouse can use the mechanical advantage pro-
vided by a hydraulic machine to lift up an elephant. > Answer

a.  Derive an algebraic equation that gives the mechanical  
advantage of the hydraulic machine shown. Assume the 
pistons are frictionless and massless.

b.  A mouse can have a mass of 25 g and an elephant a mass of 
7500 kg. Determine a value of D1 and D2 so that the mouse 
can support the elephant.

Hydraulic fluid

Piston 
(two places)

Mouse with 
mass m1

Elephant with 
mass m2

D2
D1

Problem 3.12

Chapter 3 Problems
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3.13 A point is located at an elevation of 3 km in the atmosphere. 
In SI units, what are the properties as given by the standard 
atmosphere model?

a. patm =  __________________________

b. Tatm =  __________________________

c. ρ = __________________________

d. μ = __________________________

e. ν = __________________________

3.14 Which equation gives the mechanical advantage of this 
hydraulic bottle jack? > Answer
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Check valve

Lifter

Problem 3.14

3.15 What is the mechanical advantage for the pictured system? 
The mass of the weight W is 2000 kg. The diameter D1 is 100 mm.  
The force F is 375 N

(a) 39 (b) 52 (c) 30 (d) 5 (e) 18

F

Oil

D2

D1

W

Problem 3.15

3.16 Find a parked automobile for which you have information  
on tire pressure and weight. Measure the area of tire contact  
with the pavement. Next, using the weight information and  
tire pressure, use engineering principles to calculate the contact 
area. Compare your measurement with your calculation and 
discuss.

The Hydrostatic Equation (§3.2)

3.17 To derive the hydrostatic equation, which of the following 
must be assumed? Select all that are correct:

a. The specific weight is constant.
b. The fluid has no charged particles.
c. The fluid is at equilibrium.

3.18 Write a definition of piezometric pressure using the  
standard structure of a definition.
3.19 Write a definition of hydrostatic conditions using the  
standard structure of a definition.
3.20 Imagine two tanks. Tank A is filled to depth h with water. 
Tank B is filled to depth h with oil. Which tank has the largest 
pressure? Why? Where in that tank does the largest pressure 
occur? > Answer

3.21 Consider Figure 3.11.
a. Which fluid has the larger density?
b.  If you graphed pressure as a function of z in these two lay-

ered liquids, in which fluid does the pressure change more 
with each incremental change in z?

3.22 Apply the grid method with the hydrostatic equation (∆p = 
γ∆z) to each of the following cases: > Answer

a.  Predict the pressure change ∆p in kPa for an elevation 
change ∆z of 6.8 ft in a fluid with a density of 90 lbm/ft3.

b.  Predict the pressure change in psf for a fluid with SG = 1.3 
and an elevation change of 22 m.

c.  Predict pressure change in inches of water for a fluid with a 
density of 1.2 kg/m3 and an elevation change of 2500 ft.

d.  Predict the elevation change in millimeters for a fluid with  
SG = 1.4 that corresponds to a change in pressure of 1/6 atm.

3.23 Using §3.2 and other resources, answer the following  
questions. Strive for depth, clarity, and accuracy while also  
combining sketches, words, and equations in ways that enhance 
the effectiveness of your communication.

a.  What does hydrostatic mean? How do engineers identify 
whether a fluid is hydrostatic?

b.  What are the common forms on the hydrostatic equation? 
Are the forms equivalent or are they different?

c.  What is a datum? How do engineers establish a datum?
d.  What are the main ideas of Eq. (3.10)? That is, what is the 

meaning of this equation?
e.  What assumptions need to be satisfied to apply the hydro-

static equation?
3.24 The pressure at the bottom of a lake is 20 psia. What is the 
depth of the lake in units of meters? > Answer

(a) 14.1 (b) 5.3 (c) 4.7 (d) 3.7 (e) 2.3
3.25 Apply the grid method to each of the following situations:

a.  What is the change in air pressure in pascals between  
the floor and the ceiling of a room with walls that are  
8 ft tall?

b.  A diver in the ocean (SG = 1.03) records a pressure of 1.5 atm 
on her depth gage. How deep is she?

c.  A hiker starts a hike at an elevation where the air pressure 
is 960 mbar, and he ascends 1240 ft to a mountain summit. 
Assuming the density of air is constant, what is the pressure 
in mbar at the summit?

d.  Lake Pend Oreille, in northern Idaho, is one of the deepest 
lakes in the world, with a depth of 370 m in some locations. 
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This lake is used as a test facility for submarines. What is the 
maximum gage pressure that a submarine could experience 
in this lake?

e.  A 55-m tall standpipe (a vertical pipe that is filled with water 
and open to the atmosphere) is used to supply water for fire-
fighting. What is the maximum gage pressure in the standpipe?

3.26 A tank that is open to the atmosphere contains 120 cm of oil 
(SG = 0.8) floating on top of 70 cm of water. The datum is situ-
ated at the oil and water interface.
What is the piezometric pressure at the bottom of the tank in 
units of kPa gage? > Answer

(a) 9.4 (b) 11.8 (c) 16.3 (d) 19.6 (e) 21.4
3.27 (T/F) In a lake, the pressure in units of atmospheres at a 
depth d is approximately equal to d/10, when d is expressed  
in SI units.
3.28 A tank that is open to the atmosphere contains water that is 
34 feet deep. What is the maximum pressure in the water in units 
of psia? > Answer

(a) 29 (b) 15 (c) 34 (d) 10 (e) 22 
3.29 (T/F) If you plot the hydrostatic equation with z on the 
vertical axis and p on the horizontal axis, the result is a straight 
line with a slope of −1/γ
3.30 The plot shows the pressure variation in a stationary body of 
water on a planet named Kylerkin.

Gage pressure (bar)

z (m)

4

3

2

1

0
0.0 0.5 1.0

Problem 3.30

In units of m/s2, what is the value of g  on Kylerkin? > Answer

(a) 25 (b) 17 (c) 11 (d) 32 (e) 29 
3.31 An open tank is filled with a stationary liquid (SG = 0.7).  
Using the axes that follow, plot elevation in m as a function of 
gage pressure in kPa. The free surface, where patm prevails, is situ-
ated at z = 45 m.

Gage pressure (kPa)

z (m)

0
0

Problem 3.31

3.32 The air pressure on the summit of a mountain is 700 mmHg. 
For this task, you can model the atmosphere as a constant density 
gas with ρ = 1.2 kg/m3.
In units of meters, what is the elevation above sea level at the summit? 
> Answer

(a) 160 (b) 490 (c) 200 (d) 680 (e) 540 

3.33 As shown, an air space above a long tube is pressurized to 
50 kPa vacuum. Water (20°C) from a reservoir fills the tube to 
a height h. If the pressure in the air space is changed to 25 kPa 
vacuum, will h increase or decrease, and by how much? Assume 
atmospheric pressure is 100 kPa.

Air space

Waterh

Problem 3.33

3.34 As water flows through a valve, it is cavitating. The mini-
mum pressure inside the value is −0.3 bar.
What is the water temperature in units of Rankine? > Answer

(a) 750 (b) 850 (c) 650 (d) 950 (e) 1050 
3.35 An engineer is designing a pump to suck mud (SG = 1.8)  
up a 3-m-long vertical pipe. The engineer will model the mud as 
a liquid in which hydrostatic conditions apply. The pressure at 
the bottom of the pipe is atmospheric.
In kPa, what is the vacuum pressure at the top of the pipe?

(a) 53 (b) 37 (c) 29 (d) 24 (e) 18
3.36 A field test is used to measure the density of crude oil 
recovered during a fracking* operation. The crude oil recovered 
is mixed with brine. The oil and brine mixture are placed in an 
open tank and allowed to separate. After separation, a 1.0-m layer 
of oil floats on top of 0.55 m of brine. The density of the brine is 
1030 kg/m3 and the pressure at the bottom of the tank is 14 kPa 
gage. Find the density of the oil. > Answer

3.37 For the closed tank with Bourdon-tube gages tapped into 
it, what is the specific gravity of the oil and the pressure reading 
on gage C?

0.5 m

1.0 m

Air

0.5 m

1.0 m

A

B

C

pA = 50.0 kPa

pB = 58.5 kPa

pC = ?

Oil

Water

T = 10°C

Problem 3.37

*Hydraulic fracturing (or “fracking”) is a method that is used to recover gas 
and oil. Fracking creates fractures in rocks by injecting high-pressure liquids 
containing particulate additives into smaller cracks and forcing the cracks to 
widen. The larger cracks allow more petroleum products to flow through the 
formation to the well. A density test as described here could be performed to 
determine the approximate makeup of the oil. The brine must be disposed of 
after fracking.
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3.38 A tube with an ID of 2 mm is situated in a container of mer-
cury (SG = 13.6). The contact angle is 140°. The surface tension 
of mercury is 490 mN ∙ m−1. > Answer

In units of millimeters, what is the capillary depression? 
(a) 5.6 (b) 4.2 (c) 1.1 (d) 3.1 (e) 2.1

3.39 A tube with an ID (inside diameter) of 1 mm is situated 
in a container of mercury (SG = 13.6). The surface tension of 
mercury is 0.49 N/m. As shown, the angle between the tube and 
the mercury is 40°.
In units of millimeters, what is the capillary depression?

(a) 6 (b) 42 (c) 11 (d) 31 (e) 21

40o

Problem 3.39

3.40 For the given problem, which equation gives h? > Answer

a. 
2σcosα
γmd

b. 
4σcosα
γmd

c. 
2σsinα
γmd

d. 
8σcosα
γmd

e. 
4σsinα
γmd

PROBLEM STATEMENT

 A tube with an ID (inside diameter) of d = 1 mm is situated in 
a container of mercury. The specific weight of mercury is
γm = 130 kN/m3. The surface tension of mercury is 
σ = 0.49 N/m. As shown, the angle between the tube and the 
mercury is α =  40°. Calculate the capillary depression h.

40o

Problem 3.40

3.41 A liquid (SG = 0.9) is flowing in a pipe. At point A, the gage 
pressure is −12 kPa and the elevation is 7 m.
In SI units, the piezometric head at A is:

(a) 5.6 (b) 2.2 (c) 9.9 (d) 1.1 (e) 6.8
3.42 A closed tank contains air that is pressurized to 1.3 bar 
abs above a liquid (SG = 0.8) that is 4 meters deep. What is the 
maximum pressure in the liquid in units of kPa gage? > Answer

(a) 30 (b) 61 (c) 130 (d) 69 (e) 110

3.43 This manometer contains water at room temperature. The glass 
tube on the left has an inside diameter of 1 mm (d = 1.0 mm). The 
glass tube on the right is three times as large. For these conditions, 
the water surface level in the left tube will be (a) higher than the 
water surface level in the right tube, (b) equal to the water surface 
level in the right tube, or (c) less than the water surface level in the 
right tube. State your main reason or assumption for your choice.

d 3d

Problem 3.43

3.44 If a 390 N force F1 is applied to the piston with the 4-cm 
diameter, what is the magnitude of the force F2 that can be 
resisted by the piston with the 10-cm diameter? Neglect the 
weights of the pistons. > Answer

4 cm diameter

F1

F2

2 m

2.2 m

Vertical

Oil (SG = 0.85)

10 cm diameter

Problem 3.44

3.45 Regarding the hydraulic jack in Problem 3.44 which ideas 
were used to analyze the jack? Select all that apply: 

a.  pressure = (force)(area)
b.  pressure increases linearly with depth in a fluid with a 

constant density
c.  the pressure at the bottom of the 4-cm chamber is larger 

than the pressure at the bottom of the 10-cm chamber
d.  when a body is stationary, the sum of forces on the body is zero
e.  when a body is stationary, the sum of moments on the  

body is zero
f.  differential pressure = (weight/volume)(change in elevation)

3.46 Water occupies the bottom 1.2 m of a cylindrical tank. 
On top of the water is 0.8 m of kerosene, which is open to the 
atmosphere. If the temperature is 20°C, what is the gage pressure 
at the bottom of the tank? > Answer

3.47 A tank with an attached manometer contains water at 20°C. 
The atmospheric pressure is 100 kPa. There is a stopcock located 
1 m from the surface of the water in the manometer. The stop-
cock is closed, trapping the air in the manometer, and water is 
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added to the tank to the level of the stopcock. Find the increase 
in elevation of the water in the manometer assuming the air in 
the manometer is compressed isothermally.

Open Closed

∆! = ?

1 m

Initial Final
Problem 3.47

3.48 A tank that is open to the atmosphere contains 40 cm of oil 
(SG = 0.8) floating on top of 30 cm of water.
What is the gage pressure at the bottom of the tank in units of 
pascals? > Answer

(a) 4500 (b) 8400 (c) 5700 (d) 7600 (e) 6100
3.49 A stationary body of liquid has a variable density given by 
ρ = c + ah, where c = 1.9 slug/ft3, a = 0.01 slug/ft4, and h is the 
distance in feet measured from the free surface.
What is the pressure in psfg at a point that is 50 ft below the free 
surface?

(a) 5400 (b) 2700 (c) 3500 (d) 5900 (e) 1400
3.50 A stationary body of liquid has a variable density given by 
ρ = c + ah, where c = 1000 kg/m3, a = 20 kg/m4, and h is the 
distance in meters measured from the free surface.
What is the pressure in kPa at a point that is 25 m below the free 
surface? > Answer

(a) 240 (b) 310 (c) 280 (d) 90 (e) 480
3.51 As shown, a weight sits on a piston of diameter D1. The 
piston rides on a reservoir of oil of depth h1 and specific gravity 
SG. The reservoir is connected to a round tube of diameter D2 
and oil rises in the tube to height h2. The oil in the tube is open to 
atmosphere. Derive an equation for the height h2 in terms of the 
weight W of the load and other relevant variables. Neglect the 
weight of the piston. 
3.52 As shown, a weight of mass 5 kg is situated on a piston of 
diameter D1 = 120 mm. The piston rides on a reservoir of oil of 
depth h1 = 42 mm and specific gravity SG = 0.8. The reservoir is 
connected to a round tube of diameter D2 = 5 mm, and oil rises in 
the tube to height h2. Find h2. Assume the oil in the tube is open to 
atmosphere, and neglect the weight of the piston. > Answer

Weight
Oil

Piston

h2

h1

D1

W

Problems 3.51, 3.52

3.53 What is the maximum gage pressure in the odd tank  
shown in the figure? Where will the maximum pressure  
occur? What is the pressure force acting on the top (CD)  
of the last chamber on the right-hand side of the tank?  
Assume T = 10°C.

Air

Air

Liquid

Water

SG = 3.0

Open to atmosphere

DC

A B

EE

Elevation view

1 m

1 m

1 m

2 m

2 m

1 m

Closed topOpen to
atmosphere

Plan view (view E-E)

1 m

Problem 3.53

3.54 The steel pipe and steel chamber shown in the figure 
together weigh 600 lbf. What force will have to be exerted on the 
chamber by all the bolts to hold it in place? The dimension ℓ is 
equal to 2.5 ft. Note: There is no bottom on the chamber—only a 
flange bolted to the floor.  > Answer

Steel chamber

d =     

D = !!

4!

!1/4

Steel pipe

Liquid (SG = 1.2)

Problem 3.54

3.55 The piston shown weighs 8 lbf. In its initial position, the pis-
ton is restrained from moving toward the bottom of the cylinder  
by means of the metal stop. Assuming there is neither friction 
nor leakage between piston and cylinder, what volume of oil  
(SG = 0.85) would have to be added to the 1 in. tube to cause the 
piston to rise 1 in. from its initial position?
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6 in

4 in 4 in

Piston

1 in (ID) tube

4 in (ID) cylinder

Oil (SG = 0.85)

Stop

Problem 3.55

3.56 Consider an air bubble rising from the bottom of a lake.  
Neglecting surface tension, determine the ratio of the density 
of the air in the bubble at a depth of 34 ft to its density at a 
depth of 8 ft. > Answer

Measuring Pressure (§3.3)

3.57 Match the following pressure-measuring devices with the 
correct name. The device names are: barometer, Bourdon gage, 
piezometer, manometer, and pressure transducer.

a.  A U-shaped tube in which changes in pressure cause changes 
in relative elevation of a liquid that is usually denser than the 
fluid in the system measured; can be used to measure vacuum.

b.  Typically contains a diaphragm, a strain gage, and conver-
sion to an electric signal.

c.  A round face with a scale to measure needle deflection, in 
which the needle is deflected by changes in extension of a 
coiled hollow tube.

d.  A vertical tube in which a liquid rises in response to a posi-
tive gage pressure.

e.  An instrument used to measure atmospheric pressure; can 
be of various designs.

3.58 (T/F) A liquid filled U-tube manometer can be used to 
measure vacuum pressure in a gas. > Answer

3.59 What types of pressure can be measured with a piezometer 
or with several piezometers?

 I. gage
 II. vacuum
 III. differential
 IV. absolute
 V. atmospheric

The correct responses are: (a) I and III (b) I only (c) I, II, and III 
(d) all except IV (e) all except V
3.60 To measure differential pressure in a horizontal pipe, an 
engineer will use two piezometers placed 1 m apart. Water is 
flowing in the pipe. The steel pipe ID (inside diameter) is 32 cm 
and the OD (outside diameter) is 38 cm. The piezometers, made 
of acrylic, have an ID of 2 cm. The absolute pressure in the pipe 
at the upstream point, which is point A, is 110 kPa. The absolute 
pressure in the pipe at the downstream point, which is point B, is 
105 kPa. Local atmospheric pressure is 1 bar.

Your task is to (a) sketch the system approximately to scale, and 
then to (b) label the significant features.
3.61 A barometer, similar in design to a mercury barometer, 
uses a liquid with S = 6 and pν = 20 kPa. The local atmospheric 
pressure is 0.9 bar.
What is the column height, in cm, for this barometer? 

(a) 120 (b) 140 (c) 160 (d) 180 (e) 210
3.62 (T/F) A pressure gauge measures gage pressure. > Answer

Applying the Manometer Equations (§3.3)

3.63 As shown, gas at pressure pg raises a column of liquid to a 
height h. The gage pressure in the gas is given by pg = γliquidh. 
Apply the grid method to each situation that follows.

a.  The manometer uses a liquid with SG = 1.4. Calculate  
pressure in psia for h = 2.3 ft.

b.  The manometer uses mercury. Calculate the column rise in 
mm for a gage pressure of 0.5 atm.

c.  The liquid has a density of 22 lbm/ft3. Calculate pressure in 
psfg for h = 6 inches.

d.  The liquid has a density of 800 kg/m3. Calculate the gage 
pressure in bar for h = 2.3 m.

h

Gas at pressure pg

Problem 3.63

3.64 Is the gage pressure at the center of the pipe (a) negative, 
(b) zero, or (c) positive? Neglect surface tension effects and state 
your rationale. > Answer

30 in

12 in

6 in

Specific gravity = 1.00

Specific gravity = 2.00

Problem 3.64
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3.65 Situation: The sketch shows a manometer. Scale: 1 grid  
unit = 1 cm.

Mercury
SG = 13.6

Water

Scale
1 cm

Air

Problem 3.65

(T/F) The air pressure is pA = 3 cmH2O + 2 cmHg = 3 kPa.
3.66 Determine the gage pressure at the center of the pipe (point A) 
in pounds per square inch when the temperature is 70°F with  
h1 = 16 in. and h2 = 2 in. > Answer

Mercury

Water
h1

h2

A

Pipe (section view)

Problem 3.66

3.67 Situation: An engineer is analyzing a manometer that con-
tains three fluids: nitrogen, mercury, and water.
(T/F) The engineer would let pA = pB.

Mercury
SG = 13.6

Water

Water

Nitrogen

A

B

Problem 3.67

3.68 (T/F) Because the sketch shows that points A, B, and C are at 
the same elevation, the pressures at these points are equal. Thus, 
pA = pB = pC. > Answer

Mercury
SG = 13.6

Water

Water

Nitrogen

A B C

Problem 3.68

3.69 Considering the effects of surface tension, estimate the gage 
pressure at the center of pipe A for h = 120 mm and T = 20°C.

Glass tube (0.5 mm ID, 4 mm OD)

Water level in tube

A

h

Problem 3.69

3.70 What is the pressure at the center of pipe B? > Answer

B

50 cm

50 cm10 cm

3
4

 = 10 kN/m3γ

γ = 20 kN/m3

Problem 3.70

3.71 The manometer deflection is 9 cm. The manometer fluid is 
mercury, which has a specific gravity of 13.6. Elevation 1 is 9 m, 
and elevation 2 is 10 m.
In kPa, the differential pressure Δp = p1 − p2 is

(a) 34 (b) 11 (c) 16 (d) 21 (e) 40

1

2

Water
Problem 3.71
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3.72 The ratio of container diameter to tube diameter is 8. When 
air in the container is at atmospheric pressure, the free surface 
in the tube is at position 1. When the container is pressurized, 
the liquid in the tube moves 40 cm up the tube from position 
1 to position 2. What is the container pressure that causes this 
deflection? The liquid density is 1200 kg/m3. > Answer

3.73 The ratio of container diameter to tube diameter is 10. 
When air in the container is at atmospheric pressure, the 
free surface in the tube is at position 1. When the container 
is pressurized, the liquid in the tube moves 3 ft up the tube 
from position 1 to position 2. What is the container pressure 
that causes this deflection? The specific weight of the liquid 
is 50 lbf/ft3.

2

1

Container

Air
Tube

10°

!

Liquid

Problems 3.72, 3.73

3.74 A device for measuring the specific weight of a liquid 
consists of a U-tube manometer as shown. The manometer tube 
has an internal diameter of 0.5 cm and originally has water in 
it. Exactly 2 cm3 of unknown liquid is then poured into one 
leg of the manometer, and a displacement of 5 cm is measured 
between the surfaces as shown. What is the specific weight of the 
unknown liquid? > Answer

Water

0.5 cm

5 cm
Unknown liquid

Problem 3.74

3.75 Mercury is poured into the tube in the figure until the 
mercury occupies 375 mm of the tube’s length. An equal vol-
ume of water is then poured into the left leg. Locate the water 
and mercury surfaces. Also determine the maximum pressure 
in the tube.

160 mm

Uniform
diameter tube

Problem 3.75

3.76 Find the pressure at the center of pipe A. T = 10°C. > Answer

A

Oil (SG = 0.8)

Water
Water

Mercury
(SG = 13.6)

90 cm

30 cm

30 cm

150 cm

Problem 3.76

3.77 Determine (a) the difference in pressure and (b) the differ-
ence in piezometric head between points A and B. The elevations 
zA and zB are 10 m and 11 m, respectively, ℓ1 = 1 m, and the 
manometer deflection ℓ2 is 50 cm.

Air

Oil (SG = 0.85)

Elevation = zB

Elevation = zA

A

B

!2

!1

Problem 3.77

3.78 What is the differential pressure in kPa? > Answer

(a) 2.9 (b) 0.2 (c) 0.3 (d) 1.2 (e) 2.1

Problem 3.78

3.79 Differential pressure is being measured between points A 
and B in two pipes. In pascals, what is Δp = pA − pB?

(a) −490 (b) −350 (c) −770 (d) −630 (e) −530
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100

250

75

50

Problem 3.79

3.80 (T/F) The column height h in this manometer is related to 
the differential pressure by h =

pa − pb

gρ
 > Answer

h

Problem 3.80

3.81 A vertical conduit is carrying oil (SG = 0.95). A differential 
mercury manometer is tapped into the conduit at points A and 
B. Determine the difference in pressure between A and B when 
h = 3 in. What is the difference in piezometric head between A 
and B? 

Mercury

Oil
B

A

2 in

h = 3 in

18 in

Problem 3.81

3.82 Two water manometers are connected to a tank of air.  
One leg of the manometer is open to 100 kPa pressure  
(absolute) while the other leg is subjected to 90 kPa.  
Find the difference in deflection between both manometers,  
∆ha – ∆hb. > Answer

0.9patm patm

∆ha ∆hb

Air

Problem 3.82

3.83 A novelty scale for measuring a person’s weight by having the 
person stand on a piston connected to a water reservoir and stand 
pipe is shown in the diagram. The level of the water in the stand 
pipe is to be calibrated to yield the person’s weight in pounds force. 
When the person stands on the scale, the height of the water in 
the stand pipe should be near eye level so the person can read it. 
There is a seal around the piston that prevents leaks but does not 
cause a significant frictional force. The scale should function for 
people who weigh between 60 and 250 lbf and are between 4 and 
6 feet tall. Choose the piston size and standpipe diameter. Clearly 
state the design features you considered. Indicate how you would 
calibrate the scale on the standpipe. Would the scale be linear?

Water

Piston

Problem 3.83
3.84 For the given situation, (a) sketch the pressure distribution 
on line AB and (b) describe the significant features of your sketch.

SITUATION
Water is contained in a closed cylindrical tank. The air above 
the water is pressurized to an absolute pressure of 11

10 atm. 
The heights are y1 = 1 m and y2 = 3 m. The points A and B 
identify a vertical line.

B

A
Air

Water

y1

y2

Problem 3.84

3.85 A stationary body of liquid creates a pressure distribution 
on a vertical flat panel.
(T/F) The pressure acting on the panel is uniform.
3.86 A stationary body of liquid creates a pressure distribution 
on a horizontal flat panel.
(T/F) The pressure acting on the panel is uniform. > Answer
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3.87 Gas inside a rectangular tank creates a pressure distribution 
on a vertical wall of the tank.
(T/F) This pressure distribution is uniform.

Pressure Forces on Panels (Flat Surfaces) (§3.4)

3.88 Using §3.4 and other resources, answer the questions below. 
Strive for depth, clarity, and accuracy while also combining 
sketches, words, and equations in ways that enhance the  
effectiveness of your communication.

a.  For hydrostatic conditions, what do typical pressure  
distributions on a panel look like? Sketch three examples 
that correspond to different situations.

b.  What is a center of pressure (CP)? What is a centroid of 
area?

c.  In Eq. (3.28), what does p mean? What factors influence the 
value of p?

d.  What is the relationship between the pressure distribution 
on a panel and the resultant force?

e.  How far is the CP from the centroid of area? What factors 
influence this distance?

3.89 Part 1. Consider the equation for the distance between the 
CP and the centroid of a submerged panel (Eq. (3.33)). In that 
equation, ycp is

a.  the vertical distance from the water surface to the CP.
b.  the slant distance from the water surface to the CP.

Part 2. Consider the figure shown. For case 1, the flat  
viewing window on the front of a submersible exploration  
vehicle is at a depth of y1. For case 2, the submersible has  
moved deeper in the ocean, to y2. As a result of this increased 
overall depth of the submersible and its window, does the  
spacing between the CP and centroid (a) get larger, (b) stay the 
same, or (c) get smaller?

y1

Case 2Case 1

y2

Problem 3.89

3.90 If a hydrostatic force acts on a flat panel, then the center 
of pressure is always (a) above the centroid (b) at or above the 
centroid (c) at the centroid (d) below the centroid (e) at or below 
the centroid. > Answer

3.91 Regarding the given statements, which of these statements 
are true? (a) I, II, III, IV (b) all are true (c) II, III, and IV  
(d) III only (e) all except V 

STATEMENTS ABOUT THE PANEL EQUATIONS

 I. The magnitude of I
yA  is greater than zero

 II.  The term ycp − y is the vertical distance from the 
centroid to the CP

 III. [I ] = L4

 IV.  The parameter p is the gage pressure evaluated at the 
depth of the CP

 V. The centroid and the CP are coincident
3.92 Two cylindrical tanks have bottom areas A and 4A  
respectively, and are filled with water to the depths shown.

a.  Which tank has the higher pressure at the bottom of the 
tank?

b.  Which tank has the greater force acting downward on the 
bottom circular surface? > Answer

h

h/2

Tank 1 Tank 2
Area A Area 4A

Problem 3.92

3.93 A vertical plexiglass wall on an aquarium has a height of 
5 m and a width of 10 m. At state 1, the depth of water in the 
aquarium is 2 m. At state 2, the depth is 4 m.
What is ratio of pressure forces F2/F1 that act on the wall?

(a) 2 (b) 3 (c) 4 (d) 6 (e) 8
3.94 (T/F) When a liquid exerts a pressure force on a vertical 
panel, both the pressure force and the location of the center of 
pressure depend on the shape of the panel. > Answer

3.95 (T/F) When a liquid exerts a pressure force on a panel, the 
pressure force depends on the shape of the panel. 
3.96 What is the force acting on the gate of an irrigation  
ditch if the ditch and gate are 2 ft wide, 2 ft deep, and the ditch  
is completely full of water? There is no water on the other side  
of the gate. The weather has been hot for weeks, so the water  
is 70°F. > Answer

3.97 An irrigation ditch is full, with slack (V = 0 m/s) water  
(T = 5°C) restrained by a closed gate. The ditch and gate are both 
2 m wide by 1.5 m deep. Find the force acting on the gate and the 
location of center of pressure on the gate as measured from the 
bottom of the ditch. There is no water on the downstream  
side of the gate.
3.98 Consider the two rectangular gates shown in the figure. They 
are both the same size, but gate A is held in place by a horizontal 
shaft through its midpoint and gate B is cantilevered to a shaft 
at its top. Now consider the torque T required to hold the gates 
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in place as H is increased. Choose the valid statement(s): (a) TA 
increases with H. (b) TB increases with H. (c) TA does not change 
with H. (d) TB does not change with H. > Answer

3.99 For gate A, choose the statements that are valid: (a) The 
hydrostatic force acting on the gate increases as H increases.  
(b) The distance between the CP on the gate and the centroid of 
the gate decreases as H increases. (c) The distance between the 
CP on the gate and the centroid of the gate remains constant as H 
increases. (d) The torque applied to the shaft to prevent the gate 
from turning must be increased as H increases. (e) The torque 
applied to the shaft to prevent the gate from turning remains 
constant as H increases.

Gate A
ShaftH

Water
Gate B

Atmospheric
pressure

Atmospheric
pressure

H

Water
Shaft

Problems 3.98, 3.99

3.100 As shown, water (15°C) is in contact with a square panel;  
d = 2.3 m and h = 2 m. > Answer

a.  Calculate the depth of the centroid.
b.  Calculate the resultant force on the panel.
c.  Calculate the distance from the centroid to the CP.

Panel

d

h

Problem 3.100

3.101 As shown, a round viewing window of diameter D =
0.5 m is situated in a large tank of seawater (SG = 1.03). The 
top of the window is 1.5 m below the water surface, and the 
window is angled at 60° with respect to the horizontal. Find 
the hydrostatic force acting on the window, and locate the 
corresponding CP. 

h

D
Seawater

Window

60°

Problem 3.101

3.102 Find the force of the gate on the block as shown, where  
d = 12 m, h = 6 m, and w = 6 m. > Answer

Pivot

Block

h × w gate

h/2

h/2

Water

d

Problem 3.102

3.103 A rectangular gate is hinged at the water line, as shown. 
The gate has h = 4 ft of its length below the waterline, L = 1 ft 
above the waterline, and is 8 ft wide. The specific weight of water 
is 62.4 lbf/ft3. Find the force (lbf) applied at the bottom of the 
gate necessary to keep the gate closed. 

Hinge

Water

F

L

Water

h

Problem 3.103

3.104 The gate shown is rectangular and has dimensions height  
h = 6 m by width b = 4 m. The hinge is d = 3 m below the 
water surface. What is the force at point A? Neglect the weight 
of the gate. > Answer

Hinge

Atmospheric
pressure

Stop30°

Water

A

h

d

Problem 3.104

3.105 Determine the force P necessary to just start opening the 
2-m wide gate.
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Hinge

Water

2 m-wide gate

1 m

P

4 m

3 m
Problem 3.105

3.106 The square gate shown is eccentrically pivoted so that it 
automatically opens at a certain value of h. What is that value in 
terms of ℓ? > Answer

Pivot

Stop

Square gate

Water

0.40!

0.60!

h Atmospheric
pressure

Problem 3.106

3.107 This butterfly valve (D = 12 ft) is used to control the flow 
in a 12-ft diameter outlet pipe in a dam. In the position shown, 
the valve is closed. The valve is supported by a horizontal shaft 
through its center. The shaft is located H = 60 ft below the water 
surface. What torque would have to be applied to the shaft to 
hold the valve in the position shown?

30°

Shaft

Butterfly
valve

Atmospheric 
pressure

Diameter = D

Water

H

Problem 3.107

3.108 For the gate shown, α = 45°, y1 = 1 m, and y2 = 4 m. Will 
the gate fall or stay in position under the action of the hydrostatic 
and gravity forces if the gate itself weighs 150 kN and is 1.0 m wide? 
Assume T = 10°C. Use calculations to justify your answer. > Answer

3.109 For this gate, α = 45°, y1 = 3 ft, and y2 = 6 ft. Will the gate 
fall or stay in position under the action of the hydrostatic and 
gravity forces if the gate itself weighs 18,000 lb and is 3 ft wide? 
Assume T = 50°F. Use calculations to justify your answer.

Hinge

Gate

Water
Atmospheric

pressure

y1

y2

α

Problems 3.108, 3.109

3.110 Determine the hydrostatic force F on the triangular gate, 
which is hinged at the bottom edge and held by the reaction RT  
at the upper corner. Express F in terms of γ, h, and W. Also  
determine the ratio RT/F. Neglect the weight of the gate. > Answer

Hinge

View A-A

Hinge

Water

A

A

F
RT

W

h

h

60°

Problem 3.110

3.111 What depth of water in meters will cause this concrete 
(SG = 2.4) gate to start to rotate about the pin at A? The lengths 
are a = 3 m and b = 4 m. Neglect friction at both of the gate 
supports.

h

a

b

Concrete

A

Problem 3.111

3.112 Water creates a load on a gate. The dimensions are a = 6 ft,  
b = 4 ft, and c = 10 ft . What is the magnitude of the torque in 
ft·kips that needs to be applied to the hinge at A to keep this gate 
closed? > Answer

(a) 7 (b) 23 (c) 36 (d) 11 (e) 14

Problem 3.112

Gate: height = a 
width = b 

a
c

Water

A

3.113 Water creates a load on a gate. The dimensions are a = 3 m,  
b = 2 m, and c = 5 m. In unit of kN ∙ m, what is the magnitude 
of the torque that needs to be applied to the hinge at A to keep 
this gate closed?

(a) 310 (b) 590 (c) 270 (d) 350 (e) 140
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Gate: height = a 
width = b 

a
c

Water

A

Problem 3.113
3.114 A body of water creates a pressure force on a vertical panel. 
The panel has the shape of a triangle, and the 6-m wide base of 
the panel is aligned with the free surface. The tip of the panel is  
6-m below the free surface.
In units of meters, what is the vertical distance from the free 
surface to the center of pressure (CP)? > Answer

(a) 2.5 (b) 3.0 (c) 2.0 (d) 3.5 (e) 4.5
3.115 In constructing dams, the concrete is poured in lifts of ap-
proximately 1.8 m (y1 = 1.8 m). The forms for the face of the dam 
are reused from one lift to the next. The figure shows one such 
form, which is bolted to the already cured concrete. For the new 
pour, what moment will occur at the base of the form per meter of 
length (normal to the page)? Assume that concrete acts as a liquid 
when it is first poured and has a specific weight of 24 kN/m3.

New pour levelCantilevered
form

Old pour level

Cured
concrete

Bolts

60°
y1

Problem 3.115
3.116 The plane rectangular gate can pivot about the support at 
B. For the conditions given, is it stable or unstable? Neglect the 
weight of the gate. Justify your answer with calculations. > Answer

Gate

Water

B

A

45°3.5
 m

8 m

Problem 3.116

3.117 Oil (SG = 0.8) and water in an open tank cause a pressure 
force to act on the rectangular wall AB. The width of AB is 2.5 m.

B

A

0.9 m

0.5 m
Water

Oil

Problem 3.117

In kN, what is the pressure force on wall AB?

Pressure Force on a Curved Surface (§3.5)

3.118 Two hemispheric shells are perfectly sealed together, and 
the internal pressure is reduced to 25% of atmospheric pressure. 
The inner radius is 10.5 cm and the outer radius is 10.75 cm. The 
seal is located halfway between the inner and outer radius. If the 
atmospheric pressure is 101.3 kPa, what force is required to pull 
the shells apart? > Answer

3.119 This spherical pressure vessel contains a gas at an absolute 
pressure of 10 bar. The pressure vessel has a diameter of 0.6 m.  
The surface ABC is the interior surface of the left half of the pres-
sure vessel.
In kN, what is the pressure force acting on surface ABC?

(a) 120 (b) 180 (c) 250 (d) 200 (e) 280

A

B

C
gas

Problem 3.119

3.120 A spherical metal tank (aka a pressure vessel) is filled with 
a gas at pressure p. This tank has an inner radius r and a wall 
thickness t. The wall is thin, which generally means that the wall 
thickness is less than one-tenth of the radius: t < r/10. The aver-
age stress in the wall is defined as the ratio of force to area.
The average stress in the wall is: > Answer

(a) 
pt
2r

 (b) 
pt
4r

 (c) 
pr
4t

 (d) 
pr
2t

 (e) 
πpt
2r

3.121 This spherical tank contains propane. The tank diameter is 
4 m. The depth of the liquid propane is 3 m. The temperature is 
38°C, and the vapor pressure of the propane is 1307 kPa.  
The density of the liquid propane is 471 kg/m3.
Sketch the pressure distribution on surface ABC. Describe the 
significant features of your sketch. Note that surface ABC is the 
curved interior surface of the left half of the tank.

A

B

C

Propane
(vapor)

Propane
(liquid)

Problem 3.121

3.122 A plug in the shape of a hemisphere is inserted in a hole 
in the side of a tank as shown in the figure. The plug is sealed by 
an O-ring with a radius of 0.2 m. The radius of the hemispherical 
plug is 0.25 m. The depth of the center of the plug is 2 m in fresh 
water. Find the horizontal and vertical forces on the plug due to 
hydrostatic pressure. > Answer
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0.2 m

2 m

0.25 m

O-ring

Problem 3.122

3.123 This dome (hemisphere) is located below the water surface 
as shown. Determine the magnitude and sign of the force com-
ponents needed to hold the dome in place and the line of action 
of the horizontal component of force. Here, y1 = 1 m and y2 =
2 m. Assume T = 10°C.

Water

Atmospheric
pressure

Hemi-
spherical

dome
y2

y1

Problem 3.123

Calculating Buoyant Forces (§3.6)

3.124 A rock weighs 980 N in air and 609 N in water. Find its 
volume. > Answer

3.125 (T/F) an object is floating in water, then the location of 
the center of pressure will be coincident with the centroid of the 
object.
3.126 You are at an estate sale and trying to decide whether to 
bid on a gold pendant that is said to be 24-carat (pure) gold. The 
pendant looks like gold, but you would like to check. You are 
permitted to make some measurements, and collect the following 
data: The pendant has a mass of 100 g in air and an apparent 
mass of 94.8 g when submerged in water. You know that the SG 
of 24-carat gold is 19.3, and the SG of 22-carat gold is 17.8; you 
decide to bid on anything that has SG > 19.0. Find the SG of the 
pendant, and decide whether you will bid. > Answer

3.127 As shown, a cube (L = 94 mm) suspended in carbon  
tetrachloride is exactly balanced by an object of mass m1 = 610 g. 
Find the mass m2 of the cube.

Block with 
mass m1

Cube with mass m2

Balance beam scale

Carbon tetrachloride

L

Problem 3.127

3.128 As shown, a uniform-diameter rod is weighted at one 
end and is floating in a liquid. The liquid (a) is lighter than 
water, (b) must be water, or (c) is heavier than water. Show 
your work. > Answer

L

2Lρ = ρwater

ρ = 2ρwater

Problem 3.128

3.129 An 150-m-long freighter weighs 300 × 106 N, and the area 
defined by its waterline is 2600 m2. Will the ship ride higher or 
deeper in the water when traveling from fresh water to salt water 
as it leaves the harbor for the open ocean? How much (in m) will 
it settle or rise?
3.130 A submerged spherical steel buoy that is 1.2 m in diameter 
and weighs 1800 N is to be anchored in salt water 50 m below 
the surface. Find the weight of scrap iron that should be sealed 
inside the buoy in order that the force on its anchor chain will 
not exceed 5 kN. > Answer

3.131 A block of material of unknown volume is submerged 
in water and found to weigh 300 N (in water). The same block 
weighs 700 N in air. Determine the specific weight and volume  
of the material. 
3.132 A 1-ft diameter cylindrical tank is filled with water to a 
depth of 2 ft. A cylinder of wood 5 in. in diameter and 6.0 in. 
long is set afloat on the water. The weight of the wood cylinder is 
3.5 lbf. Determine the change (if any) in the depth of the water in 
the tank. > Answer

3.133 The floating platform shown is supported at each cor-
ner by a hollow sealed cylinder 1 m in diameter. The platform 
itself weighs 30 kN in air, and each cylinder weighs 1.0 kN per 
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meter of length. What total cylinder length L is required for 
the platform to float 1 m above the water surface? Assume that 
the specific weight of the water (brackish) is 10,000 N/m3. The 
platform is square in plan view.

10 m
Floating
platform

Weight = 30 kN

L = ?

1 m

Diameter = 1 m

Problem 3.133

3.134 To what depth d will this rectangular block (with density 
0.75 times that of water) float in the two-liquid reservoir? > Answer

y

SG = 1.2

3L
d = ?

6L

L SG = 1.0

ρ = 0.75ρwater

Problem 3.134

3.135 Determine the minimum volume of concrete (γ = 23.6 kN/m3)  
needed to keep the gate (1 m wide) in a closed position, with  
𝓁 = 2 m. Note the hinge at the bottom of the gate. 

Water Hinge

Submerged
concrete

block

!1/4

Stop

!

Problem 3.135

3.136 A person is working in an office. This person has the size 
and weight of an average US adult. In SI units, the buoyant force 
on this person is: > Answer

(a) 5 (b) 2 (c) 1 (d) 3 (e) 4 
3.137 A concrete (SG = 2.3) weight will be attached to an object  
(SG = 0.6) so that the object will sink in fresh water. The volume 
of the object is 4 m3. The cost of the concrete is $80 US dollars 
per cubic yard. How much will the concrete cost? 

(a) $40 (b) $130 (c) $70 (d) $110 (e) $50
3.138 A cylindrical container 4-ft high and 2-ft in diameter 
holds water to a depth of 2 ft. How much does the level of the 
water in the tank change when a 5-lb block of ice is placed in the 
container? Is there any change in the water level in the tank when 
the block of ice melts? Does it depend on the specific gravity of 
the ice? Explain all the processes. > Answer

3.139 The partially submerged wood pole is attached to the 
wall by a hinge as shown. The pole is in equilibrium under the 
action of the weight and buoyant forces. Determine the density 
of the wood.

Water

Hinge

Pole

30°

2/3L

1/3L

Problem 3.139

3.140 A gate with a circular cross section is held closed by a 
lever 1-m long attached to a buoyant cylinder. The cylinder is 
25 cm in diameter and weighs 200 N. The gate is attached to 
a horizontal shaft so it can pivot about its center. The liquid is 
water. The chain and lever attached to the gate have negligible 
weight. Find the length of the chain such that the gate is just on 
the verge of opening when the water depth above the gate hinge 
is 10 m. > Answer

Pivot

0.25 m

1 m

10 m

1 m

?

Problem 3.140

Measuring 𝛒, 𝛄, and SG with Hydrometers (§3.6)

3.141 The hydrometer shown weighs 0.015 N. If the stem sinks 
7.2 cm in oil (z = 7.2 cm), what is the specific gravity of the oil?

A = 0.1 cm2

z 

V = 1.0 cm3

Problems 3.141

3.142 A common commercial hydrometer for measuring the 
amount of antifreeze in the coolant system of an automobile engine 
consists of a chamber with differently colored balls. The system 
is calibrated to give the range of specific gravity by distinguishing 
between the balls that sink and those that float. The specific gravity 
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of an ethylene glycol–water mixture varies from 1.012 to 1.065 for 
10% to 50% by weight of ethylene glycol. Assume there are six balls, 
1 cm in diameter each, in the chamber. What should the weight of 
each ball be to provide a range of specific gravities between 1.01 
and 1.06 with 0.01 intervals? > Answer

3.143 A hydrometer with the configuration shown has a bulb 
diameter of 2 cm, a bulb length of 8 cm, a stem diameter of 1 cm, 
a length of 8 cm, and a mass of 40 g. What is the range of specific 
gravities that can be measured with this hydrometer?
(Hint: Liquid levels range between bottom and top of stem.)

1 cm diameter

2 cm
diameter

8 cm

Problem 3.143

Predicting Stability (§3.7)

3.144 A barge 20 ft wide and 40 ft long is loaded with rocks as 
shown. Assume that the center of gravity of the rocks and barge is 
located along the centerline at the top surface of the barge. If the 
rocks and the barge weigh 400,000 lbf, will the barge float upright or 
tip over? > Answer

8 ft

20 ft

G

Problem 3.144

3.145 A floating body has a square cross section with side w as 
shown in the figure. The center of gravity is at the centroid of the 
cross section. Find the location of the water line, ℓ/w, where the 
body would be neutrally stable (GM = 0). If the body is floating 
in water, what would be the specific gravity of the body material?

w

!

Problem 3.145

3.146 A cylindrical block of wood 1 m in diameter and 1 m long 
has a specific weight of 7500 N/m3. Will it float in water with its 
axis vertical? > Answer

3.147 A cylindrical block of wood 1 m in diameter and 1 m long 
has a specific weight of 5000 N/m3. Will it float in water with the 
ends horizontal?
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Fluid Statics
CHAPTER ROAD MAP This chapter introduces concepts related to pressure and describes how to calcu-
late forces associated with distributions of pressure. The emphasis is on fluids in hydrostatic equilibrium.  
A traditional application of fluid statics is described in Fig. 3.1.

CHAPTERTHREE

FIGURE 3.1
The first man-made structure to exceed the masonry 
mass of the Great Pyramid of Giza was Hoover Dam. 
The design of dams involves calculations of hydrostatic 
forces. (U.S. Bureau of Reclamation.)

LEARNING OUTCOMES

PRESSURE (§3.1)
●  Define pressure and convert pressure units. 
●  Describe atmospheric pressure and select an appropriate value. 
●  Define and apply gage, absolute, vacuum, and differential  

pressure. 
●  Know the main ideas about hydraulic machines and solve relevant 

problems.

THE HYDROSTATIC EQUATIONS (§3.2)
●  Define hydrostatic equilibrium. 
●  Know the main ideas about the hydrostatic differential equation. 
●  Know the main ideas about the hydrostatic algebraic equation and 

solve relevant problems. 

PRESSURE MEASUREMENT (§3.3)
●  Explain how common scientific instruments work and do relevant 

calculations (this LO applies to the mercury barometer, piezometer, 
manometer, and Bourdon tube gage). 

THE PRESSURE FORCE (§3.4)
●  Define the center of pressure. 
●  Sketch a pressure distribution. 
●  Explain or apply the gage pressure rule. 
●  Calculate the force due to a uniform pressure distribution. 
●  Know the main ideas about the panel equations and be able to 

apply these equations. 

CURVED SURFACES (§3.5)
●  Solve problems that involve curved surfaces that are acted on by 

uniform or hydrostatic pressure distributions.

BUOYANCY (§3.6)
●  Know the main ideas about buoyancy and be able to apply these 

ideas to solve problems.
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3.1 Describing Pressure
Because engineers use pressure in the solution of nearly all fluid mechanics problems, this 
section introduces fundamental ideas about pressure.

Pressure
Pressure is the ratio of the normal force due to a fluid to the area that this force acts on, in the 
limit as this area shrinks to zero.

 p =
magnitude of normal force

unit area ⎸at a point
 due to a fluid

= lim
ΔA→0

∆Fnormal

∆A
 (3.1)

Pressure is defined at a point because pressure typically varies with each (x, y, z) location in a 
flowing fluid. 

Pressure is a scalar that produces a resultant force by its action on an area. The resultant 
force is normal to the area and acts in a direction toward the surface (compressive).

Pressure is caused by the molecules of the fluid interacting with the surface. For example, 
when a soccer ball is inflated, the internal pressure on the skin of the ball is caused by air mol-
ecules striking the wall.

Units of pressure can be organized into three categories:

• Force per area. The SI unit is the newtons per square meter or pascals (Pa). The traditional 
units include psi, which is pounds-force per square inch, and psf, which is pounds-force per 
square foot.

• Liquid column height. Sometimes pressure units give an equivalent height of a column of liquid. 
For example, pressure in a balloon will push a water column upward about 20 cm (Fig. 3.2). An 
engineer would state that the gage pressure inside the balloon is p = 20 cmH2O. When a 
pressure unit is given as a height of a liquid column, the pressure value can be converted to 
other units by using the conversion ratios from Table F.1. For example, a typical pressure in 
a balloon is

p = (20 cmH2O)(9.807 Pa/mmH2O)(10 mm/1.0cm) = 1960 Pa gage

• Atmospheres. Sometimes pressure units are stated in terms of atmospheres where 1.0 atm is 
the air pressure at sea level at standard conditions. Another common unit is the bar, which 
is very nearly equal to 1.0 atm. (1.0 bar = 105 kPa) 

Atmospheric Pressure
This subsection explains how to select an accurate value of atmospheric pressure (patm) because 
a value of patm is often needed in calculations. 

The atmosphere of the earth is an extremely thin layer of air that extends from the surface 
of the earth to the edge of space. The atmosphere is held in place by gravitational force. 
According to NASA, “if the earth were the size of a basketball, a tightly held pillowcase would 
represent the thickness of the atmosphere.”*

If you look at data, it is evident that patm is strongly influenced by elevation:†

• At London (EL = 35 m): patm = 101 kPa
• At Denver, Colorado, USA (EL = 1650 m), patm = 83.4 kPa
• Near the summit of Mount Everest, Nepal (EL = 8000 m): patm = 35.6 kPa
• At a typical cruise altitude of a jetliner (EL = 12,190 m): patm = 18.8 kPa

∆h = 20 cm

FIGURE 3.2

Pressure in a balloon causing 
a column of water to rise  
20 cm.

*http://www.grc.nasa.gov/WWW/k-12/airplane/atmosmet.html.
†The value of atmospheric pressure is an absolute pressure. Thus, engineers commonly say that patm = 101 kPa instead 
of saying that patm = 101 kPa abs.
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The reason that patm changes with elevation is explained in Fig. 3.3.
In addition to elevation, other variables influence patm. As elevation increases, the average 

temperature of the atmosphere decreases. For example, in the Alps, the average temperature on 
the summit of a mountain is lower than the average temperature in a town situated in a valley. Local 
weather influences patm. Good weather is associated with higher values of atmospheric pressure 
and bad weather with lower values. As the atmosphere is heated during the day and cooled during 
the night, the atmospheric pressure varies in response to temperature changes. Fortunately, it is 
simple to select an appropriate value of patm. Three methods that we recommend are as follows:

Method #1. If you lack information about elevation, select the standard value of atmo-
spheric pressure at sea level,* which is

 patm(sea level) = 1.000 atm = 101.3 kPa = 14.70 psi = 2116 psf = 33.90 ft-H2O
 = 760.0 mm-Hg = 29.92 in-Hg = 1.013 bar

Method #2. If you have information about elevation, you can calculate a typical value of 
atmospheric pressure using the standard atmosphere. The U.S. standard atmosphere is a math 
model that gives values of parameters such as temperature, density, and pressure correspond-
ing to average conditions. The model, developed by NASA,†  is valid from the earth’s surface to 
an elevation of 1000 km. Regarding calculations, the equations of the math model are complicated, 
so we recommend using the Digital Dutch online calculator.‡

Method #3. The most accurate way to find atmospheric pressure is to measure the value using 
a barometer. This method might be needed, for example, if you are processing experimental data 
and you want to know the exact value of atmospheric pressure at the time your data were recorded. 
As an alternative to using a barometer, you can look up a locally measured value on the Internet. Be 
careful when using the Internet as a resource, however, because many sites adjust the local atmo-
spheric pressure to a value that the given location would have if it was situated at sea level.

EXAMPLE. What value of atmospheric pressure should be used for a project that will be 
built in Mexico City? Reasoning. (1) The elevation of Mexico City is 2250 m. (2) Using 
the U.S. standard atmosphere, as calculated with the Digital Dutch calculator,§  shows that 
patm = 77.1 kPa at an elevation of 2250 m. Claim. Use patm = 77 kPa.

Absolute Pressure, Gage Pressure, Vacuum Pressure,  
and Differential Pressure
Professionals use four different pressure scales which are

1. Absolute pressure is pressure measured relative to absolute pressure.
2. Gage pressure is pressure above or below the local atmospheric pressure.

Edge of the atmosphere;
 p = 0 abs

Earth

W

pAA

Column 
of air

Atmosphere

FIGURE 3.3

Claim. Atmospheric pressure (patm) decreases as elevation increases.

Reasoning. (1) Select a system comprised of air that extends from the 
earth’s surface to the upper edge of the atmosphere. (2) Model the system 
as a stationary column. (3) Because the column is stationary, the forces must 
sum to zero. (4) Thus, statics shows that atmospheric pressure equals the 
weight of the column divided by the section area. (5) At a higher elevation, 
the fluid column is shorter and thus has less weight.

*We recommend that you add these values to your working knowledge. As always, memorize the approximate values 
not the exact values. We recommend memorizing to two to three significant digits.
†The most recent version was published in 1976.
‡http://www.digitaldutch.com/atmoscalc.
§ibid.
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3. Vacuum pressure is the magnitude of the pressure below local atmospheric pressure.
4. Differential pressure is the pressure difference between two points.

Absolute pressure is referenced to regions such as outer space, where the pressure is 
essentially zero because the region is devoid of gas. The pressure in a perfect vacuum is 
called absolute zero, and pressure measured relative to this zero pressure is termed absolute 
pressure.

When pressure is measured relative to prevailing local atmospheric pressure, the pres-
sure value is called gage pressure.* For example, when a tire pressure gage gives a value of 
300 kPa (44 psi), this means that the absolute pressure in the tire is 300 kPa greater than local 
atmospheric pressure. To convert gage pressure to absolute pressure, add the local atmospheric 
pressure. For example, a gage pressure of 50 kPa recorded in a location where the atmospheric 
pressure is 100 kPa is expressed as either

 p = 50 kPa gage  or  p = 150 kPa abs (3.2)

In SI units, gage and absolute pressures are identified after the unit as shown in Eq. (3.2). In 
traditional units, gage pressure is identified by adding the letter g to the unit symbol. For 
example, a gage pressure of 10 pounds per square foot is designated as 10 psfg. Similarly, the 
letter a is used to denote absolute pressure. For example, an absolute pressure of 20 pounds 
force per square inch is designated as 20 psia. 

When pressure is less than atmospheric, the pressure can be described using vacuum 
pressure. Vacuum pressure is defined as the difference between atmospheric pressure and 
actual pressure. Vacuum pressure is a positive number and equals the absolute value of gage 
pressure (which will be negative). For example, if patm = 101 kPa and a gage connected to 
a tank indicates a vacuum pressure of 31.0 kPa, this can also be stated as 70.0 kPa abs, or 
–31.0 kPa gage.

Fig. 3.4 provides a visual description of the three pressure scales. Notice that pB = 7.45 psia 
is equivalent to –7.25 psig and +7.25 psi vacuum. Notice that pA = of 301 kPa abs is equivalent 
to 200 kPa gage. Gage, absolute, and vacuum pressure can be related using equations labeled 
as the “pressure equations.”

  pgage = pabs − patm (3.3a)

  pvacuum = patm − pabs (3.3b)

  pvacuum = −pgage  (3.3c)

p = 0 Pa abs
( p = 0 psia)

p = pB

p = pA

p = 0 Pa gage = 101 kPa abs
( p = 0 psig = 14.7 psia)

Absolute zero (          )absolute
ref.

Local atmospheric pressure (gage ref.)

pA = 301 kPa abs
( pA = 43.6 psia)

pA = 200 kPa gage
( pA = 28.9 psig)

pB = –50 kPa gage
( pB = –7.25 psig or 7.25 psi vacuum)

patm = 101 kPa abs
( patm = 14.7 psia)

pB = 51.0 kPa abs
( pB = 7.45 psia)

FIGURE 3.4

Example of pressure relations.

*There are two correct spellings used in the literature: gage pressure and gauge pressure.
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EXAMPLE. Convert 5 psi vacuum to absolute pressure in SI units.

Solution. First, convert vacuum pressure to absolute pressure.
pabs = patm − pvacuum = 14.7 psi − 5 psi = 9.7 psia.

Second, convert units by applying a conversion ratio from Table F.1.

p = (9.7 psi)(101.3 kPa
14.7 psi ) = 66,900 Pa absolute.

Recommendation. It is good practice, when writing pressure units, to specify whether 
the pressure is absolute, gage, vacuum, or differential.

EXAMPLE. Suppose that the pressure in a car tire is specified as 3 bar. Find the absolute 
pressure in units of kPa.
Solution. Recognize that tire pressure is commonly specified in gage pressure. Thus, con-
vert the gage pressure to absolute pressure.

pabs = patm + pgage = (101.3 kPa) + (3 bar) (101.3 kPa)
(1.013 bar) = 401 kPa absolute

Another way to describe pressure is to use differential pressure, which is defined as the differ-
ence in pressure between two points and is given the symbol ∆p (Fig. 3.5).

Some useful facts about differential pressure follow. 
• The points (A and B) are typically selected so that differential pressure is positive; that is, ∆p > 0.
• Differential pressure refers to the difference in pressure between two points, not to a “differ-

ential pressure” in the sense of a differential in calculus.
• The unit symbol psid stands for pounds-force per square inch differential. Similarly, psfd 

refers to a differential pressure. 

Hydraulic Machines
A hydraulic machine uses a fluid to transmit forces or energy to assist in the performance of a 
human task. An example of a hydraulic machine is a hydraulic car jack in which a user can supply 
a small force to a handle and lift an automobile. Other examples of hydraulic machines include 
braking systems in cars, forklift trucks, power steering systems in cars, and airplane control systems.

The hydraulic machine provides a mechanical advantage (Fig. 3.6). Mechanical 
advantage is defined as the ratio of output force to input force:

 (mechanical advantage) ≡
(output force)
(input force)  (3.4)

Mechanical advantage of a lever (Fig. 3.6) is found by summing moments about the fulcrum to 
give F1L1 = F2L2, where L denotes the length of the lever arm.

 (mechanical advantage; lever) ≡
(output force)
(input force) =

F2

F1
=

L1

L2
 (3.5)

To find mechanical advantage of the hydraulic machine, apply force equilibrium to each piston 
(Fig. 3.6) to give F1 = p1A1 and F2 = p2A2, where p is pressure in the cylinder and A is face area 
of the piston. Next, recognize that p1 = p2 and then solve for the mechanical advantage

 (mechanical advantage; hydraulic machine) ≡
(output force)
(input force) =

F2

F1
=

A2

A1
=

D 2
2

D 2
1
 (3.6)

The hydraulic machine is often used to illusrate Pascal’s principle. This principle states that when 
there is an increase in pressure at any point in a confined fluid, there is an equal increase at every 
other point in the container. This principle is evident when a balloon is inflated because the balloon 
expands evenly in all directions. The principle is also evident in the hydraulic machine (Fig. 3.7).

Water

∆ p = pA −  pB 

A B

2.0 m

FIGURE 3.5

An example of differential 
pressure for flow in a pipe. 
Points A and B are located 
on the centerline. The 
differential pressure (∆p) 
is the magnitude of the 
pressure at point A minus the 
magnitude of the pressure at 
point B.

F1

F1

F2

F2

Hydraulic
fluid

Piston

FIGURE 3.6

Both the lever and hydraulic 
machine provide a 
mechanical advantage.
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Pascal’s principle. An applied 
force creates a pressure 
change that is transmitted to 
every point in the fluid and to 
the walls of the container

FIGURE 3.7

This figure shows how a hydraulic machine can be used to 
illustrate Pascal's principle.

EXAMPLE 3.1

Applying Force Equilibrium to a Hydraulic Jack

Problem Statement

A hydraulic jack has the dimensions shown. If one exerts a 
force F of 100 N on the handle of the jack, what load, F2, can 
the jack support? Neglect lifter weight.

30 cm

F

B C

3.0 cm

1.5 cm diameter

A1 A2

Check valve

5 cm diameter

Lifter

F2

Define the Situation

A force of F = 100 N is applied to the handle of a jack.
Assumption: The weight of the lifter (see sketch) is negligible.

State the Goal

F2(N) ➡ load that the jack can lift

Generate Ideas and Make a Plan

Because the goal is F2, apply force equilibrium to the lifter. 
Then, analyze the small piston and the handle. The plan is as 
follows:

1.  Calculate force acting on the small piston by applying 
moment equilibrium.

2.  Calculate pressure p1 in the hydraulic fluid by applying 
force equilibrium.

3.  Calculate the load F2 by applying force equilibrium.

Take Action (Execute the Plan)

1. Moment equilibrium (handle):

 ∑ Mc = 0

 (0.33 m) × (100 N) − (0.03 m) F1 = 0

 F1 =
0.33 m × 100 N

0.03 m
= 1100 N

2. Force equilibrium (small piston):

 ∑ Fsmall piston = p1A1 − F1 = 0

 p1A1 = F1 = 1100 N
            Thus,

p1 =
F1

A1
=

1100 N
πd 2/4

= 6.22 × 106 N/m2

3. Force equilibrium (lifter):

∑ Flifter = F2 − p1A2 = 0

F2 = p1A2 = (6.22 × 106 N
m2 ) (π

4
× (0.05 m)2) =  12.2 kN

             Note that p1 = p2 because they are at the same elevation 
(this fact will be established in the next section).

Review the Results and the Process

1.  Discussion. The jack in this example, which combines a 
lever and a hydraulic machine, provides an output force 
of 12,200 N from an input force of 100 N. Thus, this 
jack provides a mechanical advantage of 122 to 1.

2.  Knowledge. Hydraulic machines are analyzed by applying 
force and moment equilibrium. The force of pressure is 
typically given by F = pA.
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3.2 The Hydrostatic Equations
This section explains how to calculate the pressure for problems in which a fluid is in hydro-
static equilibrium. There are two main results:

• The hydrostatic differential equation, which is applied to problems in which density varies
• The hydrostatic algebraic equation, which is applied to problems in which density is constant

The Hydrostatic Condition
The equations in this section apply only if the fluid in your problem is in hydrostatic equilib-
rium. To tell if this condition applies, select a fluid particle, select a coordinate direction, and 
draw a free body diagram (FBD) that shows only the forces in the coordinate direction that you 
selected. If the acceleration of the fluid particle is zero in the coordinate direction you chose 
and if the only forces on the particle are the pressure force and the weight, then the hydrostatic 
condition applies on a plane that is parallel to your coordinate direction.

If a fluid is stationary (e.g., water in a lake as in Fig. 3.8), then the hydrostatic equation 
will always apply. The reason is that the acceleration of any fluid particle is zero and the only 
possible forces that can balance the weight of the fluid particle are the pressure force and the 
viscous force. However, the viscous force must be zero because of the definition of a fluid; that 
is, a fluid will deform continuously under the action of a viscous stress. Thus, the only force 
available to balance the weight of the fluid particle is the pressure force.

If a fluid is flowing, then the hydrostatic equation will sometimes apply (Fig 3.9). For situa-
tions similar to those shown in the figure, you can apply the hydrostatic equation Δp = −ρgΔz 
to points situated in a plane.

The Hydrostatic Differential Equation (Variable Density)
This subsection shows how to derive dp/dz = −γ. This equation is important for understanding 
the theory and for solving problems that involve varying density. 

To begin the derivation, visualize any region of static fluid (e.g., water behind a dam), isolate 
a cylindrical body, and then sketch an FBD, as shown in Fig. 3.10. Notice that the cylindrical 

Pressure
distribution

Weight

Weight

Fluid particle

Net force
of pressure

FIGURE 3.8

This example shows how to check to 
see if the hydrostatic condition applies. 
For this case, hydrostatic conditions 
do apply because the weight of the 
fluid particle is exactly balanced by the 
pressure force.

FIGURE 3.9

This sketch shows examples of when hydrostatic 
conditions apply to a flowing fluid. The reason why is 
that the pressure force balances the weight force for 
each fluid particle that is situated on one of the planes 
shown in the figure. 

Flow

Pipe

Piezometer
(open type)

Hydrostatic conditions
prevail on this plane

And also on this plane
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body is oriented so that its longitudinal axis is parallel to an arbitrary ℓ direction. The body is 
∆ℓ long, ∆A in cross-sectional area, and inclined at an angle α with the horizontal. Apply force 
equilibrium in the ℓ direction:

 ∑ Fℓ = 0

 FPressure − FWeight = 0

 pΔA − (p + Δp) ΔA − γΔAΔℓsinα = 0

Simplify and divide by the volume of the body ∆ℓ∆A to give

Δp
Δℓ

= −γ sin α

From Fig. 3.10, the sine of the angle is given by

sin α =
Δz
Δℓ

Combining the previous two equations and letting ∆z approach zero gives

lim
Δz→0

Δp
Δz

= −γ

The final result is

 
dp
dz

= −γ    (hydrostatic differential equation) (3.7)

Eq. (3.7) means that changes in pressure correspond to changes in elevation. If one travels upward 
in the fluid (positive z direction), the pressure decreases; if one goes downward (negative z), 
the pressure increases; if one moves along a horizontal plane, the pressure remains constant. 
Of course, these pressure variations are exactly what a diver experiences when ascending or 
descending in a lake or pool.

The Hydrostatic Algebraic Equation (Constant Density)
Because modeling a fluid as if the density is constant is often well justified, it is useful to solve 
the hydrostatic differential equation for the special case of constant density. The resulting equa-
tion is called the hydrostatic algebraic equation, and we shorten this name to the hydrostatic 
equation (HE). The hydrostatic equation is one of the most useful equations in fluid mechan-
ics; thus, we recommend that you learn this equation well. To derive the equation, begin by 
integrating Eq. (3.7) for the case of constant density to give

 p + γz = pz = constant (3.8)

Weight = γ ∆A∆!

∆!

p∆A

( p + ∆p)∆A ∆z

z

∆! !
α

α

α

FIGURE 3.10

The system used to derive the 
hydrostatic differential equation.
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where the term z is the elevation (vertical distance) above a fixed horizontal reference plane 
called a datum, and pz is piezometric pressure. Dividing Eq. (3.8) by γ gives

 
pz

γ = (p
γ + z) = h = constant (3.9)

where h is the piezometric head. Because h is constant, Eq. (3.9) can be written as

 
p1

γ + z1 =
p2

γ + z2 (3.10a)

where the subscripts 1 and 2 identify any two points in a static fluid of constant density. 
Multiplying Eq. (3.10a) by γ gives

 p1 + γz1 = p2 + γz2 (3.10b)

In Eq. (3.10b), letting ∆p = p2 – p1 and letting ∆z = z2 – z1 gives

 Δp = −γΔz (3.10c)

The hydrostatic equation is given by Eqs. (3.10a), (3.10b), or (3.10c). These three equa-
tions are equivalent because any one of the equations can be used to derive the other two. The 
hydrostatic equation is valid for any constant density fluid in hydrostatic equilibrium.

Notice that the hydrostatic equation involves

  piezometric head = h ≡ ( p
γ + z) (3.11)

  piezometric pressure = pz ≡ ( p + γz)  (3.12)

To calculate piezometric head or piezometric pressure, an engineer identifies a specific loca-
tion in a body of fluid and then uses the value of pressure and elevation at that location. Piezo-
metric pressure and head are related by

 pz = hγ (3.13)

Piezometric head, h, a property that is widely used in fluid mechanics, characterizes hydro-
static equilibrium. When hydrostatic equilibrium prevails in a body of fluid of constant den-
sity, then h will be constant at all locations. For example, Fig. 3.11 shows a container with oil 
floating on water. Because piezometric head is constant in the water, ha = hb = hc. Similarly, 
the piezometric head is constant in the oil: hd = he = hf. Notice that piezometric head is not 
constant when density changes. For example, hc ≠ hd because points c and d are in different 
fluids with different values of density.

Hydrostatic Equation (Working Equations)
To apply the hydrostatic equation, first check that the assumptions listed in Table 3.1 are valid. 
Then, select the most useful form of the hydrostatic equation. We recommend using the head 
form or the differential pressure form. We also recommend that you learn the meaning of the 
variables given in the third column because these names are used throughout fluid mechanics. 
For many problems, you will find the following two rules useful: 

The fluid interface rule states that for a planar interface (e.g., Fig. 3.12) the pressure is con-
stant across the interface (i.e., p1 = p2 at the interface). Reasoning. (1) The fluid interface is not 
moving, so ∑F = 0. (2) Select an infinitesimally thin system so that the weight can be neglected. 
(3) Thus, the only forces on the interface are the pressure forces, and algebra shows that p1 = p2.

FIGURE 3.11

Oil floating on water.

b

c

d

e

f

a

Oil

Water

System

Fluid 1 ΣF = 0

Fluid 2

p1 p2=

Ap1

Ap2

!

FIGURE 3.12

To prove the fluid interface rule (1) select an infinitesimally thin system 
on the interface and note that the weight of this system is negligible. 
(2) Apply ΣF = 0 to show that pressure is constant across the 
interface.
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TABLE 3.1 The Hydrostatic Equation (Working Equations and Assumptions)

Name (Physical  
Interpretation)

 
Equation

 
Variables in the Equation

Head form (the piezometric  
  head is constant at every 

point)

p1

γ
+ z1 =

p2

γ
+ z2 Eq. (3.10a) •  p = pressure (N/m2) (use absolute or gage pressure;  

not vacuum pressure)
• γ = specific weight (N/m3)
• p/γ = pressure head (m)
• z = elevation or elevation head (m)
• (p/γ + z) = piezometric head (m)

Differential pressure form  
  (the differential pressure 

is linear with elevation 
change)

∆p = γ∆z Eq. (3.10b) • ∆p = differential pressure (N/m2)
• ∆z = difference in elevation (m)

Piezometric pressure form  
  (the piezometric pressure 

is constant at every point)

p1 + γz1 = p2 + γz2 Eq. (3.10c) • (p + γz) = piezometric pressure (Pa)

Assumptions to check before you apply the  
 hydrostatic equation

1.  You can only apply the HE to a single fluid that has constant 
density. For problems that have multiple fluids (e.g., oil floating 
on water), the HE is applied successively to each fluid.

2.  You can only apply the HE if the hydrostatic condition applies.

EXAMPLE 3.2

Applying the Hydrostatic Equation to Find Pressure in 
a Tank

Problem Statement

What is the water pressure at a depth of 35 ft in the tank shown?

2

1

Water
T = 50°F

Elevation = 200 ft

Elevation = 250 ft

35 ft

Define the Situation

Water is contained in a tank that is 50 ft deep.
Properties: Water (50°F, 1 atm, Table A.5): γ = 62.4 lbf/ft3

State the Goal

p2 (psig) ➡ water pressure at point 2

Generate Ideas and Make a Plan

Apply the idea that piezometric head is constant. The plan 
steps are as follows:

1.  Equate piezometric head at elevation 1 with piezometric 
head at elevation 2 (i.e., apply Eq. 3.10a).

2. Analyze each term in Eq. (3.10a).
3. Solve for the pressure at elevation 2.

Take Action (Execute the Plan)

1. Hydrostatic equation (Eq. 3.10a):

p1

γ
+ z1 =

p2

γ
+ z2

2. Term-by-term analysis of Eq. (3.10a) yields:
 • p1 = patm = 0 psig
 • z1 = 250 ft
 • z2 = 215 ft
3. Combine steps 1 and 2; solve for p2:

 
p1

γ
+ z1 =

p2

γ
+ z2

 0 + 250 ft =
p2

62.4 lbf/ft3 + 215 ft

 p2 = 2180 psfg =  15.2 psig

Review the Solution and the Process

1.  Validation. The calculated pressure change (15 psig) is 
slightly greater than 1 atm (14.7 psi). Because one atmo-
sphere corresponds to a water column of 33.9 ft and this 
problem involves 35 feet of water column, the solution 
appears correct.

2.  Skill. This example shows how to write down a 
governing equation and then analyze each term.  
This skill is called term-by-term analysis.
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The gas pressure change rule states that the hydrostatic pressure change for a gas can 
usually be neglected. Reasoning. (1) The hydrostatic pressure change in a gas for a one- 
meter change of elevation is given by Δp/Δz = ρg. (2) The given equation shows, for example, 
that the pressure change in air at room conditions is about 12 pascals/meter. (3) A pressure 
change of about 12 pascals/meter is typically negligible as compared to other relevant pres-
sure changes. Conclusion. The hydrostatic pressure change in a gas can usually be neglected.

Example 3.3 shows how to find pressure by applying the idea of constant piezometric head 
to a problem involving several fluids. Notice the application of the fluid interface rule.

3.  Knowledge. The gage pressure at the free surface of a 
liquid in contact with the atmosphere is zero (p1 = 0 in 
this example).

4.  Skill. Label a pressure as absolute or gage or vacuum. 
For this example, the pressure unit (psig) denotes a gage 
pressure.

5.  Knowledge. The hydrostatic equation is valid when  
density is constant. This condition is met on this  
problem.

EXAMPLE 3.3

Applying the Hydrostatic Equation to Oil and  
Water in a Tank

Problem Statement

Oil with a specific gravity of 0.80 forms a layer 0.90 m deep in 
an open tank that is otherwise filled with water (10°C). The 
total depth of water and oil is 3 m. What is the gage pressure at 
the bottom of the tank?

Problem Definition

Oil and water are contained in a tank.

2

1

2.10 m

0.90 mOil

Water
T = 10°C

3

Properties:
• Water: (10°C, 1 atm, Table A.5): γwater = 9810 N/m3

• Oil: γoil = Sγwater, 4°C = 0.8(9810 N/m3) = 7850 N/m3

State the Goal

p3 (kPa gage) ➡ pressure at bottom of the tank

Generate Ideas and Make a Plan

Because the goal is p3, apply the hydrostatic equation to the 
water. Then, analyze the oil. The plan steps are as follows:

1. Find p2 by applying the hydrostatic equation (3.10a).
2. Equate pressures across the oil–water interface.
3.  Find p3 by applying the hydrostatic equation given in 

Eq. (3.10a).

Solution

1. Hydrostatic equation (oil):

 
p1

γoil
+ z1 =

p2

γoil
+ z2

 
0 Pa
γoil

+ 3 m =
p2

0.8 × 9810 N/m3 + 2.1 m

 p2 = 7.063 kPa

2. Oil–water interface:
p2 1oil = p2 1water = 7.063 kPa

3. Hydrostatic equation (water):

 
p2

γwater
+ z2 =

p3

γwater
+ z3

 
7.063 × 103 Pa

9810 N/m3 + 2.1 m =
p3

9810 N/m3 + 0 m

 p3 = 27.7 kPa gage

Review

Validation: Because oil is less dense than water, the answer 
should be slightly smaller than the pressure corresponding 
to a water column of 3 m. From Table F.1, a water column of 
10 m ≈ 1 atm. Thus, a 3 m water column should produce a 
pressure of about 0.3 atm = 30 kPa. The calculated value  
appears correct.
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3.3 Measuring Pressure
When engineers design and conduct experiments, pressure nearly always needs to be measured. 
Thus, this section describes five scientific instruments for measuring pressure.

Barometer
An instrument that is used to measure atmospheric pressure is called a barometer. The most 
common types are the mercury barometer and the aneroid barometer. A mercury barometer is 
made by inverting a mercury-filled tube in a container of mercury, as shown in Fig. 3.13. The 
pressure at the top of the mercury barometer will be the vapor pressure of mercury, which is 
very small: pv = 2.4 × 10–6 atm at 20°C. Thus, atmospheric pressure will push the mercury up 
the tube to a height h. The mercury barometer is analyzed by applying the hydrostatic equation:

 patm = γHg h + pv ≈ γHg h (3.20)

Thus, by measuring h, local atmospheric pressure can be determined using Eq. (3.20).
An aneroid barometer works mechanically. An aneroid is an elastic bellows that has been 

tightly sealed after some air was removed. When atmospheric pressure changes, this causes the 
aneroid to change size, and this mechanical change can be used to deflect a needle to indicate 
local atmospheric pressure on a scale. An aneroid barometer has some advantages over a mer-
cury barometer because it is smaller and allows data recording over time.

Bourdon-Tube Gage
A Bourdon-tube gage,* Fig. 3.14, measures pressure by sensing the deflection of a coiled tube. 
The tube has an elliptical cross section and is bent into a circular arc, as shown in Fig. 3.14b. When 
atmospheric pressure (zero gage pressure) prevails, the tube is undeflected, and for this condition 
the gage pointer is calibrated to read zero pressure. When pressure is applied to the gage, the curved 
tube tends to straighten (much like blowing into a party favor to straighten it out), thereby actuating 
the pointer to read a positive gage pressure. The Bourdon-tube gage is common because it is low 
cost, reliable, easy to install, and available in many different pressure ranges. Bourdon-tube gages 
have some disadvantages: dynamic pressures may not be measured accurately; accuracy of the gage 
can be lower than other instruments; and the gage can be damaged by excessive pressure pulsations.

Piezometer
A piezometer is a vertical tube, usually transparent, in which a liquid rises in response to a 
positive gage pressure. For example, Fig. 3.15 shows a piezometer attached to a pipe. Pressure 

Atmospheric
pressure
pushes
down.

Vapor
pressure
of Hg

Column of
mercury rises
to height h.

h

FIGURE 3.13

A mercury barometer.

Pointer

Bourdon-tube
springA

A

Pinion
Sector

Pivot

Socket

Section A-A
through tube

Link

(b)

(a)

FIGURE 3.14

Bourdon-tube gage. (a) View of a typical gage 
(photo by Donald Elger). (b) Internal mechanism 
(schematic).

*Gage in this context means a scientific instrument. This word can also be correctly spelled as gauge.
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in the pipe pushes the water column to a height h, and the gage pressure at the center of the 
pipe is p = γh, which follows directly from the hydrostatic equation (3.10c). The piezometer 
has several advantages: simplicity, direct measurement (no need for calibration), and accuracy. 
However, a piezometer cannot easily be used for measuring pressure in a gas, and a piezometer 
is limited to low pressures because the column height becomes too large at high pressures.

Manometer
A manometer (often shaped like the letter “U”) is a device for measuring pressure by raising 
or lowering a column of liquid. For example, Fig. 3.16 shows a U-tube manometer that is being 
used to measure pressure in a flowing fluid. In the case shown, positive gage pressure in the 
pipe pushes the manometer liquid up a height ∆h. To use a manometer, engineers relate the 
height of the liquid in the manometer to pressure, as illustrated in Example 3.4.

Once one is familiar with the basic principle of manometry, it is straightforward to write a 
single equation rather than separate equations as was done in Example 3.4. The single equation 
for evaluation of the pressure in the pipe of Fig 3.16 is

0 + γmΔh − γℓ = p4

One can read the equation in this way: Zero pressure at the open end, plus the change 
in pressure from point 1 to 2, minus the change in pressure from point 3 to 4, equals the 

h

Flow

FIGURE 3.15

Piezometer attached to a 
pipe.

∆h

4

3

1

2

m(manometer liquid)γ

Flow

!

FIGURE 3.16

U-tube manometer.

EXAMPLE 3.4

Pressure Measurement (U-Tube Manometer)

Problem Statement

Water at 10°C is the fluid in the pipe of Fig. 3.16, and mercury 
is the manometer fluid. If the deflection ∆h is 60 cm and ℓ is 
180 cm, what is the gage pressure at the center of the pipe?

Define the Situation

Pressure in a pipe is being measured using a U-tube manometer.

Properties:
• Water (10°C), Table A.5: γ = 9810 N/m3

• Mercury, Table A.4: γ = 133,000 N/m3

State the Goal

Calculate gage pressure (kPa) in the center of the pipe.

Generate Ideas and Make a Plan

Start at point 1 and work to point 4 using ideas from Eq. (3.10c). 
When fluid depth increases, add a pressure change. When 
fluid depth decreases, subtract a pressure change.

Take Action (Execute the Plan)

1.  Calculate the pressure at point 2 using the hydrostatic 
equation (3.10c):

 p2 = p1 + pressure increase between 1 and 2 = 0 + γmΔh12

 = γm(0.6 m) = (133,000 N/m3)(0.6 m)
 = 79.8 kPa
2. Find the pressure at point 3:
 • The hydrostatic equation with z3 = z2 gives

p31water = p21water = 79.8 kPa

 •  When a fluid−fluid interface is flat, pressure is 
constant across the interface. Thus, at the oil–water 
interface

p31mercury = p31water = 79.8 kPa

3.  Find the pressure at point 4 using the hydrostatic  
equation given in Eq. (3.10c):

 p4 = p3 − pressure decrease between 3 and 4 = p3 − γw𝓁
 = 79,800 Pa − (9810 N/m3)(1.8 m)
 = 62.1 kPa gage
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pressure in the pipe. The main concept is that pressure increases as depth increases and 
decreases as depth decreases.

The general equation for the pressure difference measured by the manometer is

 p2 = p1 + ∑
down

γi hi − ∑
up

γi hi (3.21)

where γi and hi are the specific weight and deflection in each leg of the manometer. It does not 
matter where one starts, that is, where one defines the initial point 1 and final point 2. When liq-
uids and gases are both involved in a manometer problem, it is well within engineering accuracy 
to neglect the pressure changes due to the columns of gas. This is because γliquid ≫ γgas. Example 
3.5 shows how to apply Eq. (3.21) to perform an analysis of a manometer that uses multiple fluids.

Because the manometer configuration shown in Fig. 3.17 is common, it is useful to derive 
an equation specific to this application. To begin, apply the manometer equation (3.21) between 
points 1 and 2:

 p1 + ∑
down

γi hi − ∑
up

γi hi = p2

 p1 + γA(Δy + Δh) − γBΔh − γA(Δy + z2 − z1) = p2

EXAMPLE 3.5

Manometer Analysis

Problem Statement

What is the pressure of the air in the tank if ℓ1 = 40 cm, ℓ2 = 
100 cm, and ℓ3 = 80 cm?

Air

Air

!1

Oil

(S = 0.8)

Mercury
!2 !3

12

Define the Situation

A tank is pressurized with air.
Assumptions: Neglect the pressure change in the air column.

Properties:
• Oil: γoil = Sγwater = 0.8 × 9810 N/m3 = 7850 N/m3

• Mercury, Table A.4: γ = 133,000 N/m3

State the Goal

Find the pressure (kPa gage) in the air.

Generate Ideas and Make a Plan

Apply the manometer equation (3.21) from location 1 to  
location 2.

Take Action (Execute the Plan)

Manometer equation:

p1 + ∑
down

γi hi −∑
up
γi hi = p2

p1 + γmercuryℓ3 − γairℓ2 + γoilℓ1 = p2

0 + (133,000 N/m3)(0.8 m) − 0 + (7850 N/m3)(0.4 m) = p2

p2 = pair = 110 kPa gage

g

1

Flow

Fluid A

Fluid B

∆h

z2 – z1

∆y

2 FIGURE 3.17

Apparatus for determining change in piezometric 
head corresponding to flow in a pipe.
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Simplifying gives
( p1 + γAz1) − ( p2 + γAz2) = Δh(γB − γA)

Dividing through by γA gives

( p1

γA
+ z1) − ( p2

γA
+ z2) = Δh(γB

γA
− 1)

Recognize that the terms on the left side of the equation are piezometric head and rewrite to 
give the final result:

 h1 − h2 = Δh(γB

γA
− 1) (3.22)

Equation (3.22) is valid when a manometer is used to measure differential pressure. Example 3.6 
shows how this equation is used.

Summary of the Manometer Equations
These manometer equations are summarized in Table 3.2. Because the equations were derived 
from the hydrostatic equation, they have the same assumptions: constant fluid density and 
hydrostatic conditions. The process for applying the manometer equations is as follows:

Step 1.  For measurement of pressure at a point, select Eq. (3.21). For measurement of pres-
sure or head change between two points in a pipe, select Eq. (3.22).

Step 2.  Select points 1 and 2 where you know information or where you want to find  
information.

Step 3. Write the general form of the manometer equation.
Step 4. Perform a term-by-term analysis.

EXAMPLE 3.6

Change in Piezometric Head for Pipe Flow

Problem Statement

A differential mercury manometer is connected to two pressure 
taps in an inclined pipe as shown in Fig. 3.17. Water at 50°F 
is flowing through the pipe. The deflection of mercury in the 
manometer is 1 inch. Find the change in piezometric pressure 
and piezometric head between points 1 and 2.

Define the Situation

Water is flowing in a pipe.
Properties:

• Water (50 °F): Table A.5, γwater = 62.4 lbf/ft3.
• Mercury: Table A.4, γHg = 847 lbf/ft3.

State the Goal

Find the following:
• Change in piezometric head (ft) between points 1 and 2
• Change in piezometric pressure (psfg) between 1 and 2

Generate Ideas and Make a Plan

1. Find difference in the piezometric head using Eq. (3.22).
2.  Relate piezometric head to piezometric pressure using 

Eq. (3.13).

Take Action (Execute the Plan)

1. Difference in piezometric head:

 h1 − h2 = Δh( γHg

γwater
− 1) = ( 1

12
 ft)( 847 lbf/ft3

62.4 lbf/ft3 − 1)
 =  1.05 ft

2. Piezometric pressure:

 pz = hγwater

 = (1.05 ft)(62.4 lbf/ft3) =  65.5 psf
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The Pressure Transducer
A pressure transducer (PT) is a device that converts pressure to an electrical signal. For 
example, Fig. 3.18 shows a strain–gage pressure transducer. Pressure transducers have many 
advantages, such as the following:

• In general, PTs have high levels of accuracy as compared to other devices, such as Bourdon-
tube gages and manometers.

• A PT can be used to measure gage pressure, absolute pressure, vacuum pressure, or differen-
tial pressure.

• Most PTs can measure pressure as a function of time and can be applied to electronic data 
logging.

• A PT is available for almost any pressure range you want to measure. 

Pressure transducers also have some disadvantages, such as the following:

• Higher costs. 
• Longer setup times because they are more complicated. 
• In general, PTs need to be calibrated and used carefully.

3.4 The Pressure Force on a Panel (Flat Surface)
Many problems require a calculation of the pressure force on a panel. Thus, this section 
explains how to do this calculation for two cases: 

• A uniform pressure distribution
• A hydrostatic pressure distribution

A panel is any surface that is flat or that can be idealized as if it were flat (e.g., face of a dam, a 
surface on an airplane wing, or the cross section inside a pressure vessel).

TABLE 3.2 Summary of the Manometer Equations

Description Equation Terms

Gage pressure analysis. Use this  
  equation for a manometer that is 

being applied to measure gage  
pressure (e.g., see Fig. 3.16).

p2 = p1 + ∑
down

γihi − ∑
up

γihi (3.21) p1 = pressure at point 1 (N/m2)
p2 = pressure at point 2 (N/m2)
γi =  specific weight of fluid i (N/m3)
hi = deflection of fluid in leg i (m)

Differential pressure analysis. Use  
  this equation for a manometer 

that is being applied to measure 
differential pressure in a pipe with 
a flowing fluid (e.g., see Fig. 3.17).

h1 − h2 = Δh(γB

γA
− 1) (3.22)

h1 = p1/γA + z1 = piezometric head at point 1 (m)
h2 = p2/γA + z2 = piezometric head at point 2 (m) 
∆h = deflection of the manometer fluid (m)
γA = specific weight of the flowing fluid (N/m3)
γB = specific weight of the manometer fluid (N/m3)

Pipe containing
water under pressure

Amplifier

PressureStrain gage Diaphragm

50.17 kPa

FIGURE 3.18

A strain gage pressure transducer operates as follows: 
(1) Pressure deforms a diaphragm. (2) The diaphragm 
deflection is sensed with a strain gage. (3) The voltage 
from the strain gage is amplified and then converted to 
a pressure value via software. (4) The pressure value is 
displayed.
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The Uniform Pressure Distribution
Fig. 3.19 shows a uniform pressure distribution and the associated pressure force Fp. The value 
of Fp is calculated using

 Fp = pA (3.23)

where p is the gage pressure and A is the surface area of the panel. The pressure force acts at 
a location called the center of pressure (CP). For a uniform pressure, the CP is located at the 
centroid of the panel. The direction of the pressure force is normal to the panel. The reason-
ing for why Eq. (3.23) is true is as follows: (1) The pressure force on any surface is given by 
Fp = ∫A− p n dA.  (2) Because the pressure is constant for a uniform pressure distribution, 
Fp = p∫A − n dA = pA(−n) . Conclusion: The magnitude of Fp is Fp = pA. The direction  
of Fp is the (−n) direction. Thus, Eq. (3.23) is true.

Some useful facts about pressure distributions follow.
• A uniform pressure distribution is commonly used to idealize the pressure distribution due 

to a gas and the pressure distribution due to a liquid when a panel is horizontal.
• Gage pressure (not absolute pressure) is used in Eq. (3.23) because of the gage pressure rule. 
This rule is explained in Fig 3.20.

• To analyze a pressure vessel, apply the pressure vessel force balance method. This method is 
explained in Fig. 3.21.

The Hydrostatic Pressure Distribution
A hydrostatic pressure distribution (Fig. 3.22) describes the distribution of pressure when 
pressure varies only with elevation z according to dp/dz = −γ. When hydrostatic conditions 
prevail, any panel that is not horizontal is subjected to a hydrostatic pressure distribution.

Uniform
pressure
distribution

(a) (b)

Line of action

Center of
pressure
(CP)

= Pressure forceF
p

FIGURE 3.19

This example shows (a) a uniform pressure distribution and (b) the 
associated pressure force.

Body

A = the area on the outside
of the body

patm

A

Fp dApatmn == − 0

FIGURE 3.20

Gage pressure rule: When a uniform atmospheric pressure acts on a body, 
integrating this pressure over area shows that the net pressure force is zero. Thus, 
use gage pressure when analyzing the pressure force.
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A pressure force acts at a point called the center of pressure, which is calculated so that 
the torque due to the pressure force is exactly the same as the torque due to the pressure 
distribution. In other words, if you want to replace the pressure distribution with a statically 
equivalent force that acts at a point, the correct point is the center of pressure. In this text, the 
symbol for the CP is a circle with a plus symbol inside: ⊕.

The centroid of an area can be thought of as the balance point of an area (see Fig. 3.23). 
In general, the equations for finding the centroid are integrals such as xc = (∫ xdA)/A. For 
common shapes, the equations have been solved, and engineers look up the value. In this text, 
centroid formulas are presented in the appendix, Fig. A.1.

Sketching a Pressure Distribution
As an engineer, you should be able to sketch a pressure distribution. Some guidelines are as 
follows: (1) draw each arrow so that its length represents the magnitude of the pressure, (2) 
sketch gage pressure, not absolute pressure, (3) draw each arrow so that the arrow is normal to 
the surface, and (4) draw each arrow to represent compression.

Theory: Force Caused by a Hydrostatic  
Pressure Distribution
Next, we will show how to find the force on one face of a panel that is acted on by a hydro-
static pressure distribution. To begin, sketch a panel of arbitrary shape submerged in a liquid  

Hydrostatic
pressure distribution

Line of action

Center of pressure
Centroid

(a) (b)

pressure forceFp =

FIGURE 3.22

An example showing (a) a hydrostatic pressure distribution 
on a rectangular panel and (b) the corresponding pressure 
force.

FIGURE 3.23

An example of the centroid for a triangular panel. The idea 
here is to (1) imagine making a model of the panel and then  
(2) the centroid is the point at which the model would balance 
on the tip of a pencil. This example assumes that the model 
has a uniform density and that the gravity field is uniform.

A tank  filled with a fluid
at uniform pressure;

gage pressurepi =

Ac = Section area
Fc

Fp

Fc = =Fp piAc

=Fc piAc

FIGURE 3.21

The pressure vessel force balance is a 
method for analyzing the force (Fc) needed to 
clamp a pressure vessel together. To derive an 
equation, take the following steps: (1) Imagine 
cutting the tank where it is clamped.  
(2) Sketch an FBD of the cut portion of the 
tank. (3) Balance the pressure force with the 
clamping force to show that Fc = pi Ac.
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(Fig. 3.24). Line AB is the edge view of a panel. The plane of the panel intersects the horizontal 
liquid surface at axis 0-0 with an angle α. The distance from the axis 0-0 to the horizontal axis 
through the centroid of the area is given by y. The distance from 0-0 to the differential area 
dA is y.

The force due to pressure is given by

 Fp =  ∫
A

pdA (3.24)

In Eq. (3.24), the pressure can be found with the hydrostatic equation:

 p = −γ∆z = γy sin α (3.25)

Combine Eqs. (3.24) and (3.25) to give

 Fp =∫
A

pdA =∫
A

γy  sin α dA = γ  sin α∫
A

ydA (3.26)

Because the integral on the right side of Eq. (3.26) is the first moment of the area, replace the 
integral by its equivalent, yA. Therefore,

 Fp = γy A sin α = (γy sin  α)A (3.27)

Apply the hydrostatic equation to show that the variables within the parentheses on the right 
side of Eq. (3.27) are the pressure at the centroid of the area. Thus,

 Fp = pA (3.28)

Equation (3.28) shows that the hydrostatic force on a panel of arbitrary shape (e.g., rectangular, 
round, elliptical) is given by the product of the panel area and the pressure at the elevation of 
the centroid.

A

Centroid

Center of pressure

View C-C

BC

C

dA

F

p = γy sin α

x

y

y
ycp

0

0

α

FIGURE 3.24

Distribution of hydrostatic pressure on a plane surface.
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Theory: The Center of Pressure for a Hydrostatic  
Pressure Distribution
This subsection shows how to derive an equation for the vertical location of the CP. For the 
panel shown in Fig. 3.24 to be in moment equilibrium, the torque due to the resultant force Fp 
must balance the torque due to each differential force:

ycp 
Fp =∫ y dF

Note that ycp is the “slant” distance from the center of pressure to the surface of the liquid. The 
label “slant” denotes that the distance is measured in the plane that runs through the panel. The 
differential force dF is given by dF = p dA; therefore,

ycp 
F =∫

A
yp dA

Also, p = γy sin α, so

 ycp 
F =∫

A
γy2 sin α dA (3.29)

Because γ and sin α are constants,

 ycp 
F = γ sin α∫

A
y2 dA (3.30)

The integral on the right-hand side of Eq. (3.30) is the second moment of the area (often called 
the area moment of inertia). This shall be identified as I0. However, for engineering applica-
tions, it is convenient to express the second moment with respect to the horizontal centroidal 
axis of the area. Hence by the parallel-axis theorem,

 I0 = I + y 2A (3.31)

Substitute Eq. (3.31) into Eq. (3.30) to give

ycp F = γ sin α(I + y 2 A)

However, from Eq. (3.25), F = γy sin αA. Therefore,

  ycp(γy sin α A) = γ sin  α(I + y 2A) (3.32)

 ycp = y +
I

yA

  ycp − y =
I

yA
 (3.33)

In Eq. (3.33), the area moment of inertia I  is taken about a horizontal axis that passes 
through the centroid of area. Formulas for I  are presented in Fig. A.1. The slant distance y 
measures the length from the surface of the liquid to the centroid of the panel along an axis 
that is aligned with the “slant of the panel,” as shown in Fig. 3.24.

Equation (3.33) shows that the CP will be situated below the centroid. The distance 
between the CP and the centroid depends on the depth of submersion, which is characterized 
by y, and on the panel geometry, which is characterized by I /A.
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TABLE 3.3 Summary of the Panel Equations

Purpose of the Equation Equation Variables

Predict the magnitude of  
  the hydrostatic force

Fp = pA (3.28) Fp = pressure force (N)
p = gage pressure evaluated at the depth of the centroid (Pa)
A = surface area of the plate (m2)

Calculate the location of the  
  center of pressure (CP) ycp − y =

I
yA

 (3.33) (ycp − y) = slant distance from the centroid to the CP (m)
I  = area moment of inertia of the panel about its centroidal  
 axis (m4; for formulas, see Fig. A.1 in the appendix)
y = slant distance from the centroid to the liquid surface (m)

This figure defines variables 

p = gage pressure
at the centroid

Fp y = slant distance
between centroid
and surface

( ycp – y) = slant distance between CP and centroid
                (this distance) 

Check these assumptions: 1.  The problem involves only one fluid. This fluid has a constant density.
 2.  The pressure distribution is hydrostatic.
 3.  The pressure at the free surface is zero gage.
 4.  The panel is symmetric about an axis parallel to the slant distance.

EXAMPLE 3.7

Hydrostatic Force Due to Concrete

Problem Statement

Determine the force acting on one side of a concrete form  
2.44 m high and 1.22 m wide (8 ft by 4 ft) that is used for 
pouring a basement wall. The specific weight of concrete is 
23.6 kN/m3 (150 lbf/ft3).

Define the Situation

Concrete in a liquid state acts on a vertical surface.
The vertical wall is 2.44 m high and 1.22 m wide
Assumptions: Freshly poured concrete can be represented as 
a liquid.
Properties: Concrete: γ = 23.6 kN/m3

State the Goal

Find the resultant force (kN) acting on the wall.

Plan

Apply the panel equation (3.28).

Solution

1. Panel equation:
F = pA

2. Term-by-term analysis:
• p = pressure at depth of the centroid

 p = (γconcrete)(zcentroid) = (23.6 kN/m3)(2.44/2 m)
 = 28.79 kPa

• A = area of panel
 A = (2.44 m)(1.22 m) = 2.977 m2

3. Resultant force:
F = pA = (28.79 kPa)(2.977 m2) =  85.7 kN

Due to assumptions in the derivations, Eqs. (3.28) and (3.33) have several limitations. 
First, they only apply to a single fluid of constant density. Second, the pressure at the liquid 
surface needs to be p = 0 gage to correctly locate the CP. Third, Eq. (3.33) gives only the vertical 
location of the CP, not the lateral location.

Panel Force Working Equations (Summary)
In Table 3.3, we have summarized information that is useful for applying the panel equations. 
Notice that this table gives the equations, the variables, and the main assumptions. These  
equations are applied in Examples 3.7 and 3.8.
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EXAMPLE 3.8

Force to Open an Elliptical Gate

Problem Statement

An elliptical gate covers the end of a pipe 4 m in diameter. If 
the gate is hinged at the top, what normal force F is required 
to open the gate when water is 8 m deep above the top of the 
pipe and the pipe is open to the atmosphere on the other side? 
Neglect the weight of the gate.

F

Water

Hinge

Atmospheric
pressure

5 m

8 m

4 m diameter

Define the Situation

Water pressure is acting on an elliptical gate.
Properties: Water (10°C): Table A.5, γ = 9810 N/m3

Assumptions:
1. Neglect the weight of the gate.
2.  Neglect friction between the bottom on the gate and the 

pipe wall.

State the Goal

F(N) ➡ force needed to open gate

Generate Ideas and Make a Plan

1. Calculate resultant hydrostatic force using F = pA.
2.  Find the location of the center of pressure using  

Eq. (3.33).
3. Draw an FBD of the gate.
4. Apply moment equilibrium about the hinge.

Take Action (Execute the Plan)

1. Hydrostatic (resultant) force:
• p = pressure at depth of the centroid

p = (γwater)(zcentroid) = (9810 N/m3)(10 m) = 98.1 kPa
•  A = area of elliptical panel (using Fig. A.1 to find 

formula)

 A = πab
 = π(2.5 m)(2 m) = 15.71 m2

• Calculate resultant force:

Fp = pA = (98.1 kPa)(15.71 m2) =  1.54 MN
2. Center of pressure:

•  y = 12.5 m, where y is the slant distance from the 
water surface to the centroid

•  Area moment of inertia I  of an elliptical panel using 
a formula from Fig. A.1:

I =
πa3b

4
=

π(2.5 m)3(2 m)
4

= 24.54 m4

•  Finding center of pressure:

ycp − y =
I

yA
=

25.54 m4

(12.5 m)(15.71 m2)
= 0.125 m

3. FBD of the gate:

2.625 m

Hinge

5 m

F

Hy

Fp
Hx

4. Moment equilibrium:

∑ Mhinge = 0

1.541 × 106 N × 2.625 m − F × 5 m = 0
F =  809 kN

3.5 Calculating the Pressure Force on a  
Curved Surface
As engineers, we calculate pressure forces on curved surfaces when we are designing compo-
nents such as tanks, pipes, and curved gates. Thus, this topic is described in this section.

Consider the curved surface AB in Fig. 3.25a. The goal is to represent the pressure dis-
tribution with a resultant force that passes through the center of pressure. One approach is to 
integrate the pressure force along the curved surface and find the equivalent force. However, 
it is easier to sum forces for the free body shown in the upper part of Fig. 3.25b. The lower 
sketch in Fig. 3.25b shows how the force acting on the curved surface relates to the force 
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FIGURE 3.25

(a) Pressure distribution and equivalent force.
(b) Free body diagram and action–reaction 
force pair.
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F acting on the free body. Using the FBD and summing forces in the horizontal direction 
shows that

 Fx = FAC (3.34)

The line of action for the force FAC is through the center of pressure for side AC.
The vertical component of the equivalent force is

 Fy = W + FCB (3.35)

where W is the weight of the fluid in the free body, and FCB is the force on the side CB.
The force FCB acts through the centroid of surface CB, and the weight acts through the 

center of gravity of the free body. The line of action for the vertical force may be found by sum-
ming the moments about any convenient axis.

Example 3.9 illustrates how curved surface problems can be solved by applying equilib-
rium concepts together with the panel force equations.

The central idea of this section is that forces on curved surfaces may be found by applying 
equilibrium concepts to systems comprised of the fluid in contact with the curved surface. Notice 
how equilibrium concepts are used in each of the situations discussed ahead.

Consider a sphere holding a gas pressurized to a gage pressure pi, as shown in Fig. 3.26. 
The indicated forces act on the fluid in volume ABC. Applying equilibrium in the vertical 
direction gives

F = pi AAC + W

Because the specific weight for a gas is quite small, engineers usually neglect the weight of 
the gas:

 F = pi 
AAC (3.36)

Another example is finding the force on a curved surface submerged in a reservoir of liquid, 
as shown in Fig. 3.27a. If atmospheric pressure prevails above the free surface and on the outside 
of surface AB, then force caused by atmospheric pressure cancels out, and equilibrium gives

 F = γVABCD = W↓ (3.37)

Hence, the force on surface AB equals the weight of liquid above the surface, and the arrow 
indicates that the force acts downward.

Now consider the situation in which the pressure distribution on a thin, curved surface 
comes from the liquid underneath, as shown in Fig. 3.27b. If the region above the surface, vol-
ume abcd, were filled with the same liquid, then the pressure acting at each point on the upper 
surface of ab would equal the pressure acting at each point on the lower surface. In other words, 
there would be no net force on the surface. Thus, the equivalent force on surface ab is given by

 F = γVabcd = W↓ (3.38)

where W is the weight of liquid needed to fill a volume that extends from the curved surface 
to the free surface of the liquid.

FIGURE 3.26

Pressurized spherical tank 
showing forces that act on the 
fluid inside the marked region.
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EXAMPLE 3.9

Hydrostatic Force on a Curved Surface

Problem Statement

Surface AB is a circular arc with a radius of 2 m and a width 
of 1 m into the paper. The distance EB is 4 m. The fluid above 
surface AB is water, and atmospheric pressure prevails on the 
free surface of the water and on the bottom side of surface AB. 
Find the magnitude and line of action of the hydrostatic force 
acting on surface AB.

B

ED

C

FV

FH

W

FA

2 m

4 m

Define the Situation

Situation: A body of water is contained by a curved surface.
Properties: Water (10°C): Table A.5, γ = 9810 N/m3

State the Goal

Find:
1. Hydrostatic force (in newtons) on the curved surface AB
2. Line of action of the hydrostatic force

Generate Ideas and Make a Plan

Apply equilibrium concepts to the body of fluid ABC:

1.  Find the horizontal component of F by applying  
Eq. (3.34).

2. Find the vertical component of F by applying Eq. (3.35).
3.  Find the line of action of F by finding the lines of action 

of components and then using a graphical solution.

Take Action (Execute the Plan)

1. Force in the horizontal direction:

 Fx = FH = pA = (5 m)(9810 N/m3)(2 × 1 m2)
 = 98.1 kN

2. Force in the vertical direction:
• Vertical force on side CB:

FV = p0 A = 9.81 kN/m3 × 4 m × 2 m × 1 m = 78.5 kN

• Weight of the water in volume ABC:

 W = γVABC = (γ)(1
4πr2)(w)

 = (9.81 kN/m3) × (0.25 × π × 4 m2)(1 m) = 30.8 kN
• Summing forces:

Fy = W + FV = 109.3 kN
3. Line of action (horizontal force):

ycp = y +
I

yA
= (5 m) + ( 1 × 23/12

5 × 2 × 1
m)

ycp = 5.067 m

4.  The line of action (xcp) for the vertical force is found by 
summing moments about point C: 

xcpFy = FV × 1 m + W × xw

The horizontal distance from point C to the centroid 
of the area ABC is found using Fig. A.1:  xW =
4r/3π = 0.849 m. Thus,

 xcp =
78.5 kN × 1 m + 30.8 kN × 0.849 m

109.3 kN
= 0.957 m

5.  The resultant force that acts on the curved surface is 
shown in the following figure:

0.957 m

1.067 m

98.1 kN

109.3 kN Fresult = 146.9 kN

tan θ = = 1.11

θ = 48°

109.3
98.1

θ

FIGURE 3.27

Curved surface with (a) liquid above and (b) liquid 
below. In (a), arrows represent forces acting on the 
liquid. In (b), arrows represent the pressure distribution 
on surface ab.
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3.6 Calculating Buoyant Forces
Engineers calculate buoyant forces for applications such as the design of ships, sediment 
transport in rivers, and fish migration. Buoyant forces are sometimes significant in problems 
involving gases (e.g., a weather balloon). This section describes how to calculate the buoyant 
force on an object.

A buoyant force is defined as an upward force (with respect to gravity) on a body that is 
totally or partially submerged in a fluid, either a liquid or gas. Buoyant forces are caused by the 
hydrostatic pressure distribution.

The Buoyant Force Equation
To derive an equation, consider a body ABCD submerged in a liquid of specific weight γ 
(Fig. 3.28). The sketch on the left shows the pressure distribution acting on the body. As shown 
by Eq. (3.38), pressures acting on the lower portion of the body create an upward force equal to 
the weight of liquid needed to fill the volume above surface ADC. The upward force is

Fup = γ(Vb + Va)

where Vb is the volume of the body (i.e., volume ABCD) and Va is the volume of liquid above 
the body (i.e., volume ABCFE). As shown by Eq. (3.37), pressures acting on the top surface of 
the body create a downward force equal to the weight of the liquid above the body:

Fdown = γVa

Subtracting the downward force from the upward force gives the net or buoyant force FB acting 
on the body:

 FB = Fup − Fdown = γVb (3.39)

Hence, the net force or buoyant force (FB) equals the weight of liquid that would be needed to 
occupy the volume of the body.

Consider a body that is floating as shown in Fig. 3.29. The marked portion of the object 
has a volume VD. Pressure acts on curved surface ADC, causing an upward force equal to the 
weight of liquid that would be needed to fill volume VD. The buoyant force is given by

 FB = Fup = γVD (3.40)

Hence, the buoyant force equals the weight of liquid that would be needed to occupy the volume 
VD. This volume is called the displaced volume. Comparison of Eqs. (3.39) and (3.40) shows 
that one can write a single equation for the buoyant force:

 FB = γVD (3.41a)

In Eq. (3.41a), VD is the volume that is displaced by the body. If the body is totally submerged, 
the displaced volume is the volume of the body. If a body is partially submerged, the displaced 
volume is the portion of the volume that is submerged.

FIGURE 3.28

Two views of a body immersed in a liquid.
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Eq. (3.41b) is only valid for a single fluid of uniform density. The general principle of 
buoyancy is called Archimedes’ principle:

 (buoyant force) = FB = (weight of the displaced fluid) (3.41b)

The buoyant force acts at a point called the center of buoyancy, which is located at the center 
of gravity of the displaced fluid.

The Hydrometer
A hydrometer (Fig. 3.30) is an instrument for measuring the specific gravity of a liquid. It 
is typically made of a glass bulb that is weighted on one end so the hydrometer floats in an 
upright position. A stem of constant diameter is marked with a scale, and the specific weight of 
the liquid is determined by the depth at which the hydrometer floats. The operating principle 
of the hydrometer is buoyancy. In a heavy liquid (i.e., high γ), the hydrometer will float more 
shallowly because a lesser volume of the liquid must be displaced to balance the weight of the 
hydrometer. In a light liquid, the hydrometer will float deeper.

A

B

C

D Volume VD

FIGURE 3.29

A body partially submerged in a liquid.

Lead
weight

Graduated
scale for

indication
of specific

gravityStem

Bulb

FIGURE 3.30

Hydrometer

EXAMPLE 3.10

Buoyant Force on a Metal Part

Problem Statement

A metal part (object 2) is hanging by a thin cord from a  
floating wood block (object 1). The wood block has a specific 
gravity S1 = 0.3 and dimensions of 50 × 50 × 10 mm. The 
metal part has a volume of 6600 mm3. Find the mass m2 of the 
metal part and the tension T in the cord.

Define the Situation

A metal part is suspended from a floating block of wood.
Properties:

• Water (15°C): Table A.5, γ = 9800 N/m3

• Wood: S1 = 0.3

State the Goal

• Find the mass (in grams) of the metal part.
• Calculate the tension (in newtons) in the cord.

2.5 mm

H2O, 15°C

1

2

10 mm

Generate Ideas and Make a Plan

1. Draw FBDs of the block and the part.
2. Apply equilibrium to the block to find the tension.

3.  Apply equilibrium to the part to find the weight of the 
part.

4. Calculate the mass of the metal part using W = mg.
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3.7 Predicting Stability of Immersed  
and Floating Bodies
Engineers need to calculate whether an object will tip over or remain in an upright position 
when placed in a liquid (e.g., for the design of ships and buoys). Thus, stability is presented in 
this section.

Immersed Bodies
When a body is completely immersed in a liquid, its stability depends on the relative positions 
of the center of gravity of the body and the centroid of the displaced volume of fluid, which is 
called the center of buoyancy. If the center of buoyancy is above the center of gravity (see Fig. 
3.31a), any tipping of the body produces a righting couple, and consequently the body is stable. 
Alternatively, if the center of gravity is above the center of buoyancy, any tipping produces 

Take Action (Execute the Plan)

1. FBDs:

FB1

T + W1

T + FB2

W2

2. Force equilibrium (vertical direction) applied to block:

T = FB1 − W1

•  Buoyant force FB1 = γVD1, where VD1 is the  
submerged volume:

 FB1 = γVD1

 = (9800 N/m3)(50 × 50 × 7.5 mm3)(10−9 m3/mm3)
 = 0.184 N

• Weight of the block:
 W1 = γS1V1

 = (9800 N/m3)(0.3)(50 × 50 × 10 mm3)(10−9 m3/mm3)
 = 0.0735 N

• Tension in the cord:
T = (0.184 − 0.0735) =  0.110 N

3.  Force equilibrium (vertical direction) applied to metal 
part:
• Buoyant force:

FB2 = γV2 = (9800 N/m3)(6600 mm3)(10−9) = 0.0647 N

• Equilibrium equation:

W2 = T + FB2 = (0.110 N) + (0.0647 N)

4. Mass of metal part:

m2 = W2/g =  17.8 g

Review the Solution and the Process

Discussion. Notice that tension in the cord (0.11 N) is less than 
the weight of the metal part (0.18 N). This result is consistent 
with the common observation that an object will weigh less in 
water than in air.
Tip. When solving problems that involve buoyancy, draw an 
FBD.

Center of
buoyancy

Weight

C
G

C G C
G

(a) (b) (c)

FIGURE 3.31

Conditions of stability for immersed bodies.
(a) Stable. (b) Neutral.
(c) Unstable.
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an overturning moment, thus causing the body to rotate through 180° (see Fig. 3.31c). If the 
center of buoyancy and center of gravity are coincident, the body is neutrally stable—that is, it 
lacks a tendency for righting itself or for overturning (see Fig. 3.31b).

Floating Bodies
The question of stability is more involved for floating bodies than for immersed bodies because 
the center of buoyancy may take different positions with respect to the center of gravity, 
depending on the shape of the body and the position in which it is floating. For example, 
consider the cross section of a ship shown in Fig. 3.32a. Here, the center of gravity G is above 
the center of buoyancy C. Therefore, at first glance, it would appear that the ship is unstable 
and could flip over. However, notice the position of C and G after the ship has taken a small 
angle of heel. As shown in Fig. 3.32b, the center of gravity is in the same position, but the center 
of buoyancy has moved outward from the center of gravity, thus producing a righting moment. 
A ship having such characteristics is stable.

The reason for the change in the center of buoyancy for the ship is that part of the original 
buoyant volume, as shown by the wedge shape AOB, is transferred to a new buoyant volume 
EOD. Because the buoyant center is at the centroid of the displaced volume, it follows that 
for this case the buoyant center must move laterally to the right. The point of intersection of 
the lines of action of the buoyant force before and after heel is called the metacenter (M), and 
the distance GM is called the metacentric height. If GM is positive—that is, if M is above G—the 
ship is stable; however, if GM is negative, the ship is unstable. Quantitative relations involving 
these basic principles of stability are presented in the next paragraph.

Consider the ship shown in Fig. 3.33, which has taken a small angle of heel α. First, 
evaluate the lateral displacement of the center of buoyancy, CC′; then, it will be easy by simple 
trigonometry to solve for the metacentric height GM or to evaluate the righting moment. 
Recall that the center of buoyancy is at the centroid of the displaced volume. Therefore, resort 
to the fundamentals of centroids to evaluate the displacement CC′. From the definition of the 
centroid of a volume,

 x V = ΣxiΔVi (3.42)

where x = CC′, which is the distance from the plane about which moments are taken to 
the centroid of V; V is the total volume displaced; ∆Vi is the volume increment; and xi is  
the moment arm of the increment of volume.

Take moments about the plane of symmetry of the ship. Recall from mechanics that 
volumes to the left produce negative moments and volumes to the right produce positive 
moments. For the right side of Eq. (3.42), write terms for the moment of the submerged vol-
ume about the plane of symmetry. A convenient way to do this is to consider the moment of 
the volume before heel, subtract the moment of the volume represented by the wedge AOB, 

(a)

O

G
C
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B
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M

G

C
D

E

(b)

FIGURE 3.32

Ship stability relations.
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and add the moment represented by the wedge EOD. In a general way, this is given by the 
following equation:

 x V = moment of V before heel − moment of VAOB + moment of VEOD (3.43)

Because the original buoyant volume is symmetrical with y-y, the moment for the first term on 
the right is zero. Also, the sign of the moment of VAOB is negative; therefore, when this negative 
moment is subtracted from the right-hand side of Eq. (3.43), the result is

 x V =∑ xiΔViAOB +∑ xi ΔViEOD (3.44)

Now, express Eq. (3.44) in integral form:

 x V = ∫
AOB

x dV +∫
EOD

x dV (3.45)

However, it may be seen from Fig. 3.33b that dV can be given as the product of the length of 
the differential volume, x tan α, and the differential area, dA. Consequently, Eq. (3.45) can be 
written as

x  V = ∫
AOB

x2 tan α dA +∫
EOD

x2 tan α dA

Here, tan α is a constant with respect to the integration. Also, because the two terms on the 
right-hand side are identical except for the area over which integration is to be performed, 
combine them as follows:

 x V = tan α∫
Awaterline

x2 dA (3.46)

FIGURE 3.33

(a) A plan view of a ship. (b) Section A-A of the ship.
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The second moment, or moment of inertia of the area defined by the waterline, is given the 
symbol I00, and the following is obtained:

x V = I00 tan α

Next, replace x by CC′ and solve for CC′:

CC′ =
I00 tan α

V

From Fig. 3.33b,
CC′ = CM tan α

Thus, eliminating CC′ and tan α yields

CM =
I00

V

However,

GM = CM – CG

Therefore, the metacentric height is

 GM =
I00

V
− CG (3.47)

Equation (3.47) is used to determine the stability of floating bodies. As already noted, if 
GM is positive, the body is stable; if GM is negative, the body is unstable.

Note that for small angles of heel α, the righting moment or overturning moment is given 
as follows:
 RM = γ VGMα (3.48)

However, for large angles of heel, direct methods of calculation based on these same principles 
would have to be employed to evaluate the righting or overturning moment.

EXAMPLE 3.11

Stability of a Floating Block

Problem Statement

A block of wood 30 cm square in cross section and 60 cm 
long weighs 318 N. Will the block float with sides vertical as 
shown?

60 cm

30 cm

30 cm

Side view End view

Define the Situation

A block of wood is floating in water.

State the Goal

Determine the stable configuration of the block of wood.

Generate Ideas and Make a Plan

1.  Apply force equilibrium to find the depth of  
submergence.

2.  Determine if the block is stable about the long axis  
by applying Eq. (3.47).

3. If the block is not stable, repeat steps 1 and 2.

Take Action (Execute the Plan)

1. Equilibrium (vertical direction):

∑ Fy = 0

–weight + buoyant force = 0
−318 N + 9810 N/m3 × 0.30 m × 0.60 m × d = 0

d = 0.18 m = 18 cm
2. Stability (longitudinal axis):

 GM =
I00

V
− CG =

1
12 × 60 × 303

18 × 60 × 30
− (15 − 9)

 = 4.167 − 6 = −1.833 cm
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Because the metacentric height is negative, the block is not 
stable about the longitudinal axis. Thus, a slight disturbance 
will make it tip to the orientation shown below. Note: calcula-
tions to find the dimensions (2.26 and 5.73 cm) are not shown 
in this example.

2.26 cm

Center of gravity Center of buoyancy

Width = w

5.73 cm

3. Equilibrium (vertical direction):

−weight + buoyant force = 0

−(318 N) + (9810 N/m3)(VD) = 0

VD = 0.0324 m3

4. Find the dimension w:
     (Displaced volume) 
       = (Block volume) – (Volume above the waterline)

 VD = 0.0324 m3 = (0.32)(0.6) m3 −
w 2

4
 (0.6 m)

 w = 0.379 m

5. Moment of inertia at the waterline:

I00 =
bh3

12
=

(0.6 m)(0.379 m)3

12
= 0.00273 m4

6. Metacentric height:

GM =
I00

V
− CG =

0.00273 m4

0.0324 m3 − 0.0573 m = 0.027 m

Because the metacentric height is positive, the block will be 
stable in this position.

Pressure
• Pressure p is the ratio of (magnitude of normal force due 

to a fluid) to (area) at a point.
• Pressure always acts to compress the material that is in 

contact with the fluid exerting the pressure.
• Pressure is a scalar not a vector.

• Engineers express pressure with gage pressure, absolute 
pressure, vacuum pressure, and differential pressure.
• Absolute pressure is measured relative to absolute 

zero.
• Gage pressure gives the magnitude of pressure relative 

to atmospheric pressure.
pabs = patm + pgage

• Vacuum pressure gives the magnitude of the pressure 
below atmospheric pressure.

pvacuum = patm − pabs

• Differential pressure (∆p) gives the difference in pres-
sure between two points (e.g., A and B).

Hydrostatic Equilibrium
• A hydrostatic condition means that the weight of each 

fluid particle is balanced by the net pressure force.
• The weight of a fluid causes pressure to increase with 

increasing depth, giving the hydrostatic differential 
equation. The equations that are used in hydrostatics are 
derived from this equation. The hydrostatic differential 
equation is

dp
dz

= −γ = −ρg

• If density is constant, the hydrostatic differential equa-
tion can be integrated to give the hydrostatic equation. 
The meaning (i.e., physics) of the hydrostatic equation is 
that piezometric head (or piezometric pressure) is con-
stant everywhere in a static body of fluid.

p
γ + z = constant

3.8 Summarizing Key Knowledge
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Pressure Distributions and Forces 
Due to Pressure
• A fluid in contact with a surface produces a pressure dis-

tribution, which is a mathematical or visual description 
of how the pressure varies along the surface.

• A pressure distribution is often represented as a statically 
equivalent force Fp acting at the center of pressure (CP).

• A uniform pressure distribution means that the pressure 
is the same at every point on a surface. Pressure distribu-
tions due to gases are typically idealized as uniform pres-
sure distributions.

• A hydrostatic pressure distribution means that the pressure 
varies according to dp/dz = –γ.

Force on a Flat Surface
• For a panel subjected to a hydrostatic pressure distribu-

tion, the hydrostatic force is

Fp = pA

• This hydrostatic force
• Acts at the centroid of area for a uniform pressure  

distribution.
• Acts below the centroid of area for a hydrostatic pressure 

distribution. The slant distance between the center of 
pressure and the centroid of area is given by

ycp − y =
I

y A

Hydrostatic Forces on a Curved Surface
• When a surface is curved, one can find the pressure force 

by applying force equilibrium to a free body comprised 
of the fluid in contact with the surface.

The Buoyant Force
• The buoyant force is the pressure force on a body that is 

partially or totally submerged in a fluid.
• The magnitude of the buoyant force is given by

Buoyant force = FB = weight of the displaced fluid

• The center of buoyancy is located at the center of gravity 
of the displaced fluid. The direction of the buoyant force 
is opposite the gravity vector.

• When the buoyant force is due to a single fluid with con-
stant density, the magnitude of the buoyant force is

FB = γVD

Hydrodynamic Stability
• Hydrodynamic stability means that if an object is dis-

placed from equilibrium, then there is a moment that 
causes the object to return to equilibrium.

• The criteria for stability are as follows:
• Immersed object. The body is stable if the center of 

gravity is below the center of buoyancy.
• Floating object. The body is stable if the metacentric 

height is positive.


