Matemática Discreta 1 - 2025

Práctico 7: Relaciones

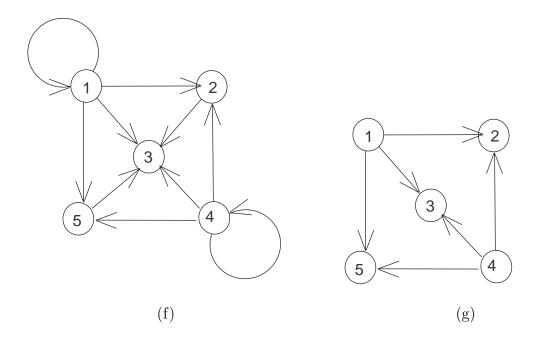
Ref. Grimaldi Secciones 5.1, 7.1, 7.2, 7.3, 7.4

RELACIONES DE EQUIVALENCIA

Aclaración: En todos los ejercicios R^{-1} denota la relación inversa, i.e. $R^{-1} = \{(x, y) : (y, x) \in R\}$, y \overline{R} la relación complementaria, i.e., $\overline{R} = \{(x, y) : (x, y) \notin R\}$.

Ejercicio 1. Determine si las siguientes relaciones son reflexivas, irreflexivas $(\forall x, (x, x) \notin R)$, simétricas, antisimétricas, asimétricas $((x, y) \in R \Rightarrow (y, x) \notin R)$ o transitivas en $A = \{1, 2, 3, 4\}$:

- (a) $\{(1,1); (1,2); (2,1); (2,2); (3,3); (3,4); (4,3); (4,4)\}.$
- (b) $\{(1,2);(1,3);(1,4);(2,3);(2,4);(3,4)\}.$
- (c) $\{(1,3);(1,1);(3,1);(1,2);(3,3);(4,4)\}.$
- (d) \emptyset .
- (e) $A \times A$.
- (f) y (g) Para estos puntos tomar $A = \{1, 2, 3, 4, 5\}$ y las relaciones cuyos grafos dirigidos son:



Ejercicio 2. (a) Halle el número de relaciones R en el conjunto $A = \{a, b, c, d\}$ que verifican simultáneamente las 3 condiciones siguientes: R es simétrica; $(a, b) \in R$; $(c, c) \in R$.

(b) Construya la matriz y el diagrama de flechas (o digrafo) de una de estas relaciones.

Ejercicio 3. En cada uno de los siguientes casos, pruebe que R es una relación de equivalencia en A y describa el conjunto cociente A/R:

- (a) $A = \mathbb{Z} \text{ y } aRb \text{ si } a^2 = b^2.$
- (b) $A = \mathbb{Z}$ y aRb si a^2 y b^2 dan el mismo resto al dividirlos por 5.
- (c) $A = \mathbb{Z}$ y aRb si a^4 y b^4 dan el mismo resto al dividirlos por 5.
- (d) $A = \mathbb{R}^2$ y vRw si existe $a \in \mathbb{R}$ no nulo tal que w = av.

Ejercicio 4. Sea $f: A \to B$ una función. Sea $R_f \subset A \times A$ tal que $xR_f y \iff f(x) = f(y)$.

(a) Demostrar que R_f es una relación de equivalencia en A.

- (b) Probar que existe una función biyectiva entre A/R_f y la imagen de f.
- (c) Demostrar que para toda equivalencia S existe una función f tal que $R_f = S$.

Ejercicio 5. Sea n un entero positivo. Definamos la relación \equiv en \mathbb{Z} , llamada congruencia módulo n, en la forma: $a \equiv b$ is a - b es divisible por n (o sea que existe $k \in \mathbb{Z}$ tal que a - b = kn).

- (a) Probar que \equiv es una relación de equivalencia.
- (b) Probar que \mathbb{Z}/\equiv tiene n elementos.

Ejercicio 6. Probar que si R es una relación en A que es simétrica y transitiva, tal que para todo $a \in A$ existe algún elemento $b \in A$ tal que aRb, entonces R es una relación de equivalencia en A.

Relaciones de Orden

Ejercicio 7. Para cada uno de los órdenes (A, \leq) siguientes, dibujar el diagrama de Hasse.

- (a) $A = \{1, 2, 3, 4, 12\}$ y \leq es el orden de divisibilidad ($x \leq y$ si y sólo si y es múltiplo de x).
- (b) A es el conjunto de todos los subconjuntos de $\{1, 2, 3\}$ y \leq es la inclusión \subseteq .

Ejercicio 8. Calcular la cantidad de relaciones de orden que hay sobre {1, 2, 3}.

Ejercicio 9. Hallar el número de relaciones de orden en $\{1, 2, 3, 4\}$ que contienen la relación $\{(1, 2), (3, 4)\}$.

Ejercicio 10. Demostrar que si (A, \leq) es un retículo y A es finito entonces A tiene mínimo y máximo.