Teoría de circuitos Primer Parcial

CURE

21 de Mayo de 2020

Indicaciones:

- La prueba tiene una duración total de 3 horas.
- Cada hoja entregada debe indicar nombre, número de C.I., y número de hoja. La hoja 1 debe indicar además el total de hojas entregadas.
- Se deber utilizar únicamente un lado de las hojas.
- Cada problema o pregunta se deberá comenzar en una hoja nueva. Se evaluará explícitamente la claridad, prolijidad y presentación de las soluciones, desarrollos y justificaciones.

Problema 1 [15 pts.]

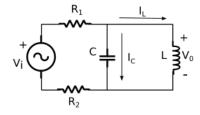


Figura 1

- (a) La entrada es $v_i(t) = V_i cos(100 \ \pi t)$, con $V_i = 220 \ v$. Los valores de los componentes son:
 - $R_1 = 10 \ \Omega$
 - $R_2 = 100 \ \Omega$
 - C = 10 uF
 - $L = 0.1 \; Hy$

Realice el diagrama fasorial del circuito de la Figura 1 para V_i , I_l , I_c , V_o , I.

- (b) Deduzca la salida en el tiempo $v_o(t)$.
- (c) Supongamos que queremos compensar el consumo de potencia reactiva del circuito (trabajando a la frecuencia de la parte anterior). Para ello, cambiaremos el valor de L. ¿Cuál debe ser el nuevo valor para que el circuito no consuma potencia reactiva?

Problema 2 [5 pts.]

- (a) Deduzca la expresión teórica del divisor de tensión en una malla con una fuente y dos resistencias.
- (b) Para el circuito de la figura 2, seleccione la opción correcta, siendo que V_i es el voltaje en R_i para las resistencias R_1, R_2, R_3, R_4 .

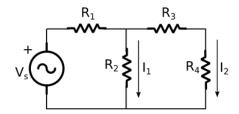


Figura 2

- a) $V_3 = \frac{R_2 V_4}{R_3 + R_4}$ b) $V_3 = \frac{R_1 V_S}{R_3 + R_4}$ c) $V_3 = \frac{V_2 R_3}{R_3 + R_4}$ d) $V_3 = \frac{R_2 V_S}{R_4 + R_2}$

Problema 3 [10 pts.]

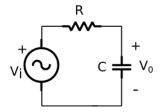


Figura 3

- (a) Dado el circuito RC de la Figura 3, hacer el diagrama de Bode para la transferencia $H(j\omega)=\frac{V_o}{V_i}.$
- (b) Si la entrada es $v_i(t) = V_i \cos(\omega t)$, trabajando a $\frac{\omega_0}{10}$ y $10\omega_0$, halle las salidas $v_o(t)$ para cada una de esas frecuencias de trabajo. Puede aproximarla si desea utilizar el Bode para hallar las salidas.