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Classic Forest Problems

e Linear Programming
e MIP’s

 Harvesting + Road Construction

e Adjacency

e Machine Location

e Uncertainty problems



Linear Programming

e Traditional models appeared during
/0’s (US Forest Service)

« Forest represented by basic units
(stands), sharing homogeneous forest
areas.

e Maximize Net return

e Main Decisions/Constraints:

# of Ha of stands to Harvest each period



Linear Programming

Maximize ZZcfzﬂf
t t

Subject to va:czt — Ht
t
>_xp < a
t

BEHTT < HE < pHHYT Flow control

zi >0

where: H >0
® x! N°of Has. Stand i, harvested period t
c,f is Net return of harvesting 1 ha. of stand i, period t

m
m pytis total volume harvested in period t
m ! is the volume per ha. Obtained in stand i, period t 4




Linear Programming

e All variables are continuos.

« Easy to solve In reasonable time by
any LP commercial solver.

 Does not consider spatial
relationships.

 Widely used .



MIP: Road Construction

o Spatial relationships introduced  during
/0’s and 80’s.

 Road Building 0-1 decisions, to access
areas to be harvested, with an
assoclated cost.




I\/IIP Road Construction

Main Decisions
e Road Building
e Amount of Timber Flow per road

e Harvest

e Main Constraints
* Flow Capacity
e Relation flows roads

 Flow Conservation at different nodes (production,
intersection and demand)

e Demand bounds 7



MIP: Road Construction

« Applied In
US Forest Service 1980’s

Weintraub, Kirby et al Operation Research
(1994)

Solution algorithm : LP and Heuristics



MIP: Road Construction
e Chile
 Forestal Millalemu 1990’s

 Andalaft et al, Operation Research (1999)



Model

e Main Decisions

Harvest stands per period (Three products, 17
Independent forests), potential roads (two types),
road upgrade posibility.

Stocking yards.

e Main Constraints

Flow conservation within different nodes (Origin, Interse ction,
stocking and exit).

Flow needs road building.

Road and stocking capacities.

Global Demand constraints . 10
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Model

e Variables:
Xs¢+ = Has.of stand s harvested in period t

y{ft = Timber volume of type in period t,origini

kt _ ’ . ¢ .
F;; = Flow of timber on arc (i,j) typer,period t

Z ,tc,m = Amount of timber delivered in market m,period t

15”‘ = Inventory of timber; periodt, stocking yard c

_ {1 if road (ij) is built at standard r in period t
0 A

vt = :1 if road (ij) is upgraded in period t
l] 0 "

\

E . = :1 if stand s is harvested in period t
st

10 ~ 11




Model
* Objective Function: Max net present profit
e Sales income
 Harvesting Cost
e Production Cost
* Transportation costs

 Road building and upgrading costs

e Stocking cost

12
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Model

e Main Constraints

 Flow Conservation
* Flow and road construction/upgrading relation

e Demands

13
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Solution Approaches

e Strengthenings:

 Adjustment of Capacities: flow capacities,
tight bound using max production per arcs.

* |nequalities

« Road-to-Road triggers: This constraint
states that no Isolated road should be
built.

¢ q Vr,t, ij a potential road
WS, D, W o
q<t IEN(ij) T N(ij) := set of potential roads connecting to (ij)

14



Solution Approaches

* |Inequalities

* Project-to-Road triggers: This constraint states
that no isolated stand can be entered.

7 5‘ 5‘ Vt, Vs not connected to an existing re
5 S l re
q=t ijeN(s) T . N(s) := set of potential roads accessing stand s

e Liftings

e Road building and upgrading constraints can
be lifted with respect to time.

15



Solution Approaches
e Liftings

e Road building:

k,d
Zk ZEE‘I’{!} ‘F}j,rl ﬂ u rl ZEE"I’{I} r_; rl®
vij potential road, V¢ = summer (r1 = dirt).

e Road upgrading:
S EA U X Wha+ T )
k g<t feW(r) BeW(r)

Vij potential road, Vit (r2 = gravel),

ZZFS f?. {; r2’ Z

k g<t Bev(r)
Vij existing dirt road, V1t (r2 = gravel). 16




Lagrangean Relaxation

e Areas are linked through the demand constraints, each period.

« Forest company are geographically independent,
possible decomposition of the problem once demand
constraints are dualized.

 The problem splits into separate sub-problems, one per
area, plus one problem for the timber sales.

e These problems have a much simpler structure and
thus are easier to solve.

17



Lagrangean Heuristic

e The solutions obtained through the Lagrangean
relaxation may not satisfy the demand constraints.

 Two ways:

« Not enough roads built to carry timber to cover
demand

 Harvest excessive timber in some periods and not
enough in others

 The heuristic procedure builds a minimum number of
additional roads to carry enough timber to satisfy
demand, and readjusts production among periods

18
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Test Data

Instances
No. of No. of No. of Density of
Potential  Pre-existing Pre-existing Potential
Roads Dirt Roads Gravel Roads Arcs
MO 39 106 60 low
MR 145 L) 60 low
MC 193 0 60 high

19



Computational Results

Comparison between solution approaches.

Using B&B Adjusting Adding Lifting Lagrangean

Original Formulation Capacities Triggers Constraints Relaxation

Instance Cap Time Gap Time Gap Time Gap Time Gap Time
MO 17.1 3,605 29 3,604 0.9 188 0.4 151 0.3 160
MR 31.5 3,606 5.0 3,605 3.5 3,605 1.8 249 1.1 244
MRE_LP 161.8 3,605 71.5 3,606 162 3,607 1.9 1,530 1.6 2.416
MC 333 3,609 13.1 3,607 93 3,609 1.4 1,288 1.9 1,237
MC_LP 123.1 3,606 248 3606 203 3612 168 3608 2.6 4,080
MC LD 42.5 3,608 11.2 3,610 157 3,609 128 3,608 1.7 2,107
MCILPID 423 3,605 6.0 3,605 2.0 3,606 6.0 3,607 1.3 829

Results on real planning problems show that even as these
problems become more complex, the proposed solution strate gies
lead to very good solutions, reducing the residual gap for th e most
difficult data set from 162% to 1.6%, and for all data sets to 2.6% or

less.
20



Adjacency Constraints

Harvesting with environmental constraints.
Main form of constraints

Harvest with maximum opening size
(adjacency)

Blocks no larger than 40 Has.

Harvested Stands

L

21
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First Approach: URM

o Forest planner forms cutting units by blocking
basic cells together a priori using GIS (Barrett
1997).

* Max Area of 40 ha // /
Implies no @

adjacent blocks
can be harvested
at the same time ~—

IS harvested B,C @ C

 For example if A

©
cannot //




URM Formulation

X! =1 ifblock i harvested in period t.
H'=  Volume harvested in period t.

URM model

Lyl
Max 2 2 CitX
|t

S.1. :|.)Ht :Z aitxit

»0.85 H'' < Hl<115n 71
g) X+ X <1

If 1, ] adjacent
) Xi =01 H'20

This Is a weak formulatic ’s



Solving URM like Problems

& Heuristics:
Tabu search (Murray and Church 1995)
Simulated annealing (Murray and Church 1995)

Monte Carlo simulations (O’'Hare et al. 1989, Nelson  and
Brodie 1990)

& Exact techniques:
Dynamic programming (Hoganson and Borges 1998)

Column generation (Barahona et al. 1992). Sub probl ems
set packing.

Formulation strengthening (Murray and Church 1996)
Use cliques instead of pair wise relations

24



URM: Column Generation

Column generation (Barahona et al. 1992).
3 Periods problem .
Sub-problem Is set packing.

The generation of columns is done by solving a
stable set problem .

To preserve the adjacency properties, fractional
solutions in the master problem  are rounded off to
Integrality through a heuristic procedure.

25



URM: Column Generation - MP
Max Z = ZZCUXU

injzl Vi

Minimum required
Z Z Agje Xij 2 Fe Vt Timber production
Vt,r Hr set re
D, D bueKy = Dy Yot i setof areas
in the zoner
IEHT |
where: 0<X;<1 Vi, j

¢ 4ij is 1if areaiis managed with alternative j
o Aijt is total timber production of area |, period t ,und er choice |
¢  DreMinimum number of acres of mature standing timber r equired

for zone rin Eeriod t




URM: Column Generation - SP

e Sub-problem consist in a stable set problem (NP-
HARD)
 Three stages to solve it:
1. Greedy Heuristic
2. If it does not produce a candidate to  enter the
basis of MP, we solve a LP that represents
the stable set problem
3. If these 2 phases are still not successful In
finding new candidates, use B&B or B&C
algorithm to make sure we do not miss any
candidate.

27
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URM: Column Generation

e —— | —
O I W
UNIT 3 UNIT L

Ficure 3. The graph refectng neighbonng nodes. The sobd hnes correspond to adjacency restnc-
wons. The dashed Imes correspond to constrairung one harvest tmung opton for each wnut.

28
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URM: Column Generation

* Flowchart of procedure

Solve Master

Problem

!

Use ""gresdy’” héunsuc o

2enerate 1 “candidate”

Altemanve
- "= 4id
nclude "Tandid e yes
vanable 1 the
master problem
(i8]
Use stable set LP problem to
generate 1 “candidate”
altemative
ves [s there 2 Use appendix | procedure o
new ~candidate” generate an integer soluton o
(M7
no
Lzt X the opumal solunon for
(M. Areall Xij X integer SEUP
1 yes

29
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Computational Results

Configuration of the three problems.

Problem Lone Area Problem Zone Areas
Type 1 1 L1, V, VII Type 3 1 I, X, XI, XI

2 I, v, vi, vll 2 U, i, Iv, X
Type 2 1 il, YU, VIl, IX 3 Vv, VI, VI, IX

2 HLIV.V. X 4 VI, Vi, Vil, Vil

o ¥, V1, VI, X1 5 v, Iv, viI, vill

Computational results obtained for three types of forest configurations.

Problem P1A P1B P2A P28 P3A P3B

Average infeasib (%) 1.1 1.1 0.4 1 0.0 2

Max nfeasib (%) 3.8 5.8 3.8 1.2 0.0 1.1

Reduction in objecuve value (%) 1.0 -0.2 0.6 0.1 -0.2 0.5
30



Second Approach: ARM
(Murray 1999)

Incorporate block construction to model
Basic cells as small as one Ha.

Considerable profit gains compared to URM (Murraya  nd
Weintraub (2002)).

Far more complex combinatorially
Solving the ARM

Mostly Heuristics: (Hokans 1983, Lockwood and Moore 1993,
Barrett et al. 1998, Clark et al. 1999, Richards an d Gunn 2000,
Boston and Bettinger 2001).

Few exact approaches (McDill and Braze (2000) and Ma  rtins
et al. (2001), Goycoolea et. al. (2003))

31
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Modeling ARM: Forest Map

o Forest partitioned into basic cells
o Basic Cells:

e Known: Area, Volume per Period, Net Profit per
Period

= Graph G(V,E): 4‘ \ ﬁ]
— V ={Basic Cells} 3 \ L0
~ (uv) OE ifcells u ﬁ\\ D

_ N ‘A‘@
and v are adjacent - \V
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Feasible Clusters

&% Feasible Cluster:

o Any set of
contiguous @
collection of cells

e Area does not
exceed the given
maximum area @)
restriction

® /
= Compatible Clusters
— Are not adjacent
— Do not share a common cell

33



Cluster Packing Problem

Maximize Z CS XS
S

subiect to for each pair S, S’ of
: XS + XS' <1 iIncompatible clusters

Xq [ ] {O,l} for each cluster S OA.
where:

¢ Csis Net Profit of cluster S

¢ Xx;=1 ifclustersis harvested

This is a weak formulation:
- Many constraints

- LP many fractions
34



First Strengthened Formulation

& (Martins et al. 2001) more compact formulation

For each pair of incompatible cluster S,S’there mu st exist an
arc (u,v)inGsuchthatu €Sand v €S

Maximize Z CSXS
S

subject to z X <1 foreach arc (u,v) in G(V,E)
SOA(u,V)

Xg [] {O,l} for each cluster S O A.
where:

¢ Cg is Net Profit of cluster S

& A (U, V) IS the set of all clusters S such that u €ESorveES
35



Second Strengthened
Formulation : Cluster Graph

Define a graph of clusters
G (A, M) eachnodein A is a feasible cluster, I': arcs joining incompatible clusters.

Cluster (1,2,3) isnode1 € A
Cluster (9, 10, 11) isnode j € A

Arc(1,j) €T.

Leads to model node packing in graph G (A, ")
One approach: define maximal cliques in graph G (A, ") .

36



Cligues Cluster Packing
Formulation

Maximize Z CSXS
S

. X. <1 for each maximal clique
subject to SZDK S K in G(*, I

Xg D{O,l} for each cluster S 0O A.

where:
L 4 CS Is Net Profit of cluster S

*These are stronger constraints.
*Note that each pair of incompatible Clusters (S, S’ ) defines an arc in
G (®, ) and is contained in some maximal clique.

*Problem : Number of max cliques Kin G (», T)istoo large
37



Third Strengthened Formulation

¢ Use constraint projection to generate strong
iInequalities valid for the cluster packing problem




Projected Cligue’s in G(V,E)

& For each clique in G(V,E) generate a
large set of incompatible clusters in
G(*,T)

Thus form a clique in G(®, TIN)

Even if clique (1,2,3,4) in G(V,E). may
be maximal not necessarily the case
for projected clique.

& Example cluster R defined by nodes
(5,6,7,8,9,10) does not intersect clique
{1,2,3,4} but is incompatible with
S,T,U,V, W.

Thus (XR)+Xs+XT+Xu+Xw+Xw <1

In this form we can obtain facets of
projected clique constraints
associated with clique k.

&

&

&

&
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Projected Cliques Cluster Packing
Formulation (Goycoolea et. al. (2003))

Maximize Z CSXS
S

: for each maximal clique
<
subject to SDE/\(KX)S <1 K in G(V, E)

Xg D{O,]} for each cluster S OA.

where:

O CS IS Net Profit of cluster S

= A(K) is the set of all clusters that intersect maximal ¢ lique
m  This set packing formulation is solved to integrali ty at the root
node by CPLEX 8.1

40
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Fractional Properties of the LP

Formulation

Not harvested

Fully harvested

Harvested by more
that one cluster [

Partially harvested | |

& LP Relaxation fractional solution (Eldorado)
& Generally few and local fractional cells
& Generally solved in Node O 41




Computational Results

& Butter Creek 351 units

¢ El Dorado 1363 units

¢ Random sqguare problems
& Formulations

ARM-ARC: Martins et al.’s arc based
formulation

ARM-PC: Goycoolea et. al.’s projected
clique formulation

Another approach

e ARM-MB: add explicitly all constraints of

minimal infeasible clusters. "



Computational Results

Instance ARM-MB | ARM- ARM- ARM- ARM-PC | ARM-PC
Obj. Value MB ARC ARC Obj. Value | Sol. Time
Sol. | Obj. Value| Sol. Time
_Time
8x8 1,335,635.36 14,400.0(1- 1,352,200.99 14,400.00] 1,426,754.85 5.79
(26.58% gap) (16.27% gap
12x12 2,392,595.6514,400.0| 2,671,223 14,400.00 2,883,744.| 134.58
(45.02% 0 69 66
gap) (22.41%
gap)
16x16 * * 3,305,557] 14,400.00| 4,887,754.|2,557.07
42 03
(44.58%
gap)
Butter 9,419.27 | 14,400.00] 9,928.73 | 14,400.00| 10,110.8 2.88
Creek (14.65% gap) (3.48% gap)
El Dorado 1,672,065 | 14,400.00f 1,696,935 | 14,400.00( 1,697,69 6.12
(3.39% gap) ;T (0.08% gap) T
[ I I I

43



Multi-period Formulation with Volume
Restrictions

Maximize Z Cs i Xst
St

subject to Z Xg, < 1 for each maximal clique K in

G(V, E) and for each period t
SOA(K)

Z:XSt <1 forunituinV

_ _ for each period
(1=B8) 2 VsiaXsis = LVsXse < 0 2 %°

Z Vg Xg; - (14 A)Z Vg1 Xsi S0 for each period
S S t>1

Xs D{()’j_} for each clus_ter S OAand
’ for each period t



Numerical Results for Multi-period
Model
= |nstances:

— Using A=0.1, 0.15 (x10%, £15%)
= Difficult to solve with Volume Constraints

. Best 1stsol 1st 1st
Time : B&B . GAP . )

Map Periods A | IP Time Nodes Solution %] under 1% | Feasible | Feasible
Time [s] GAP [s] | Time [s] GAP

eldoradol5 12 = 0.0 28800 2133| 18606 @ 147 - 18606 1.47
eldoradol5 15 = 0.10 28800 1575/ 18315 0.83 10839 | 10839 1.00
ranl2byl2 12 = 0.10 28800 388 - : . i i
ran12by12 15 | 0.10 28800 394 . - i i "
eldoradol5 12 = 0.5 28800 2087| 11211 & 050 10719 | 2323 1.51
eldoradol5 15 = 0.5 28800  2067| 20733 | 059 20274 | 20274  0.77
ran12by12 12 | 0.1% 28800 634 : i i ) i
ran12by12 15 | 015 28800 342 . i . i i

45
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Elastic Constraints

e What if we consider the volume requirements as more of a
guide rather than hard constraints
If they are violated by a small amount, the solutions would
likely be acceptable to forest managers

e Elastic Constraints

Permit small violations, but penalize violations in the
objective

e Effects
The volume constraints are “inactive” and do not generate
new extreme points (good integrality properties)

46



Multi-period Model with Elastic Volume
Restrictions

Maximize ZCStXSt _Z SAT | _Z Py,

t>1 t>1
Subject to Z Xs, <1 for each maximal clique K in
SCA(K) | G(V, E) and for each period t
Z Xst <1 forunituinV

St uds
(1-Ag )Z Vst-1Xst-1 ~ Z VsiXsy S |y foreach period t>1
S S

Z VS,t XS,t - (1 + A E)Z VS,t—1XS,t—1 < ut for each period t>1
S S

for each cluster S 0O A and
XS,t D{Ql} It , ut =30 for each period t "



Multi-period Formulation with Volume
Restrictions

& Use of:

e Elastic constraints
e Constraint Branching

e Integer Allocation
Heuristic

48



Solving the Elastic Constraint Model

e Choosing independent elastic penalties still
difficult.

e Branch & bound method
e Elastic Constraints help Integer allocation
e Constraint branching to resolve fractions
e Diversifies greedy nature of heuristic
e Integer allocation heuristic at each B&B node

e Volume violation corrections carried out in integer
allocation

49
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Numerical Results for Elastic Model B&B Method

% Instances:

o Using A= 0.1, 0.15 (£10%, £15%), AE=0.09, 0.14 (£9%, +14%)

& GAP’s comparable to strict volume constraint table:
e GAP’s calculated with respect to strict volume constraint L
e Solutions are feasible for strict volume constraint

P

model with the respective

A
Best 1stsol 1st 1st
B&B | Solution | GAP junder 1% | Feasible  Feasible

Map Periods A |IP Time Nodes| Time[s] [%] | GAP [s] | Time [s] GAP
eldorado15 12 0.10 14400 23 5555 041 1706 1706 0.43
eldorado15 15 0.10 14400 13 12541 | 0.44 4307 4307 0.45
ranl12by12 12 0.10 14400 75 5059 3.43 - 663 8.70
ranl2by12 15 0.10 14400 25 13856 = 4.52 - 614 14.42
eldorado15 12 0.15 14400 18 12216 | 0.30 1160 1160 0.33
eldorado15 15 0.15 14400 13 9916 0.29 2387 2387 0.34
ranl12by12 12 0.15 14400 199 9684 2.29| : 312 5.07
ranl12by12 15 0.15 14400 20 9124 4.97| - 504 7.99

50
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Conclusions for Elastic Model B&B
Method

Initial tests show  elastic constraint method
generates good integer feasible solutions quickly.

First integer feasible solutions are obtained
between 10 to 150 times faster than CPLEX and are
of higher quality.

Other improvements in computacional capabilities
appear possible.

51



Old growth: Tabu Search

e Caro et al 2003

 Multiperiod harvest-scheduling ARM model
with adjacency constraints + old growth
patch size and total old growth area
restrictions.

e Tabu search procedure with 2-Opt moves
(exchanging at most 2 units) was
developed.

52



Algorithm
 Neighbors:

e OPT-1: change the harvesting period of
one node (or cutting unit) from period t1
to t2, or no harvest to harvest in period
t3, or from harvesting in period t4 to no
harvest.

e OPT-2: involves simultaneously changing
the harvesting period of two nodes
(including not harvesting)

53
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Algorithm Flowchart

o e Generate o OPT = fix)
< BTART_ " initial sdl. x. OPT_X = x

Reszet tabu lists

Evaluate
obj. fun.

éls the mave MO
tabu?

TER=ITER +

RS

Reset
F LIST

[

Updat;f.
tabu lists

£Can it be
fixed with a
2-Opt move?

cImproves obj, fu
(aspiration)?

1-Opt moves been
congidered?

Empty tabu lists

. - : * = best move (or NG
g’;_—;iz;}l ef(z*)> OPT? solution) inF_LIST
MO YES
CZEnD
I I N —— I N —— I N — I
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Computational Results

Table 1. Eases"ﬂ.r_lth exact solution.

CPLEXP 6.6 Basic Tabu procedure
Case Min. Vol. (m”) _ Obj. Func. CPU (sec) Initial Best Ave.  C Var (%) CPU (sec
4x5x2_al 15 57.8 69584 43.3 57.8 56.8 9 0.6t
dx5x2_al 20 57.8 6,436.2 46.6 57.8 54.3 9 %
4x5x2_al 25 57.3 B,675.3 56.5 572 522 5 55
4x5x2_bl 30 92.6 30,809.3 82.3 92.5 85.5 7 0.08
4x5x2_b2 35 02.5 23,766.0 §2.3 92.5 84.8 i 0.07
4x5x2_b3 40 RO 8= 15A6654] 827 91,0 83.5 4 0.31

* Best integer solution (GAP 3% after 44 excoution hr,

95



Computational Results

Table 2. Comparison for the Iberian instance tested under different implementations

of the Tabu procedure.

- _BestQF. Average O.F
| -Opt heuristic 791.560.10 756,101.59
Basic 2-Opt procedure 080.271.45 955.911.10
Efficient implementation 078,447 86 959.116.79
Neighborhood reduction 979,739.72 951,088.15
Intensification Q80,639 30 040 216,28
Diversification 991,174.04 074,071.43
Random Tabu tenure 084 804,84 052 684.45
Alternative Tabu criteria O83,107.28 051,182.94
Probabilistic move selection 981,055.27 953, 878.23
Best combimation 1,004.853.01 973.437.78

Table 3. Computer results for large-scale instances.

_ CPU(sec)

B3
156,318
T84

39

70

193

71

b2

el

200

Trivial gap (%0)

Instance ~ Obj. Fun, (§) CPU (sec) Trivial bound

6dx 100x7 2,996,839.3 7,396 3,099,654 4 Tl

144x100x7 |, 288,845.9 31,012 1.340,063.0 3.82

180x150x10 2,191,304.7 §9,292.1 2,511,582.2 274
I S I



Old growth exact formulation

e (Carvajal et al 2011

e Harvest scheduling problem with both
maximum clear-cut constraint and old
growth conservation requirements.

 Objective: Maximize profit while preventing
large clear-cut areas, maintaining a
minimum average ending age of the forest
and a connected (contiguous) region of old
growth forest.

57



Old growth exact formulation

Extension of ARM model that considers old growth patches,
with enough area to be a wildlife habitat.

z, Old-growth variable. Takes the value 1 if stand v belongs to the old-
growth forest and 0 otherwise.

Main Constraints:
e Stand selected at old growth can not be harvested

 Old growth forest has minimum area.

58



Old growth exact formulation

 Problem is connectivity

e Two non-adjacent nodes, u and v belong to a
connected set if there is a path of nodes
connecting them.

e |In any cut set separating u and v, there must be at
least one node connected to u and to v: “there
exists a path U between u and v, such that for
every node cut set S separating u and v, the
intersection of S and U is not empty.

59
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Old growth exact formulation

e This is represented by cut inequalities.

e Too many cut inequalities: Constraint
generation.

60
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Instances and Results

(ld-growth area for FLGOA in time period three when not imposing connectivity.

Characteristics of the FMOS instances used in onr eomputational study and parameters used in the

optimization maodel.

Name Stands Area (ha) Ae. (ha)
Rebain-MeDill a0 1000 40
Gavin 352 G310 40
Hardwicke 423 [ ER 40
FLGOA 850 9999 48.6
Shulkell 1039 44987 16
El Dorado 1363 21147 48.5

Parameters used in our computational study for soleing the different forest planning problems.

Name Value

L 0.15
015
H 40 Years

(Jage 60 Years
Ain  20% of total area

Number of connected patehes obtained in FLG9A when not imposing connectivity.

Patches Largest (%)

El Dorado T0 17.6
FLGO9A 57 5.8
Shulkell 10 25

61
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Instances and Results

Table T NPV and gaps for best solutions obtained.

1 period 3 periods § periods
Instance  Model NPV (%) Gap (%) NPV (%) Gap (%) NPV (%) Gap (%)
ElDorado ARM 100 0.01 100 0.31 100 0.03
OGARM 100 0.01 09.581 0.19 00.46 0.02
OGPARM* 99.9 0.57 07.1 2.5 06.84 o
FLGOA  ARM 100 0.01 100 0.01 100 0.01
OGARM 100 0.1 08.92 0. 07.38 0.01
OGPARM-= 100 0.09 95.99 1.87 05.41 0.9
NBCL5A ARM 100 0 100 0.01 100 0.01
OGARM 100 0 100 0.01 100 0.01

OGPARM®  99.74 0.03 06.78 0.08 06.67 (.01

Shulkell ARM 100 0.01 100 0.01 100 .01
OGARM 100 0.01 100 0.01 100 0.01
OGPARM" 100 0.01 08.57 0.06 08.42 0.07

MPV is expressed as a porcentage of the ARM NPV wvalue, for example the OGPARM NPV entry is
NPVoaparsm /N PVaga -100%. The "Gap” column contains the gap between the best upper bound and

the best feasible solution found, for the referred instance 62
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Instances and Results

Figure 5  Two solutions for FLGOA. Stands in black are the ones selected for the old-growth forest. For simplicity

stands that are harvestod in some period are showed in white and nonharvested stands in gray.
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Machine Location Problem

Main Decisions:

 Where to locate the machinery, Skidders and
Towers to harvest the Forest.

e Road building




PLANEX: Harvesting Machinery
Allocation

% Need to harvest 300 to 1,000 ha in next 4
months

% Process:
Fell trees
Bring trees to roadside:
e Skidders for flat area
e Cable logging (towers) In steeper slopes

Load on trucks -
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PLANEX- Main Decisions

% Where to allocate tractors and towers
& Which areas to assign to each machine

& The road network

64



PLANEX

Harvesting Machinery Allocation

Steep area

Flat area
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Manual Approach:

Engineer w/topographic maps

& Long, tedious work
& Can only analyze one scenario
& GIS for information on:

e Topography, standing timber, existing
roads

& Raster form 10x10m2 cells

& Friendly graphic interface

& Heuristic algorithm

& Runs take about 15 minutes for large areas
& Abillity to test several scenarios "
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PLANEX - Information

10 x 10 meter cells
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PLANEX - Reach of Harvesting

Equipment
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PLANEX - Feasible Turns for

Harvesting Equipment
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A Mathematical Model

Installation decision variables

-

k _]1 If machineryof typekislocatedn ceIIiDTk

qu — 3

0, otherwise

Road construction decision variables

1, if roadsection(g,r)0 A isbuilt (i.e.,(g, r) hasto beconstructe if it doesnotalreadyexist)

\0’ otherwise

72
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Model

= Variables associated with timber volume

harvested.
WK -
] * timber volume harvested in cell using machinery type k in cell i
0 T
Y;:  timber volume harvested through cell
f

o . timber volume flowing through road section (q,r)

Js :  timber volume flowing through exit
75
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Savings with PLANEX

¢ Roads: 10% - 60% of the original network.

& Almost US$ 500,000 per year of operational NPV,
Integrated with the Tactic System (1997)

& Up to 40% of the planification time in “hard”
problems.

& 15% of the cost |
s nUS$/m3




——— | ——— [ —— | ——— | ———
Lagrangian Relaxation Approach

(Vera et al, 2002)

& Separates the problem into a Machine
location + Road Construction

& Two classes of machines: towers and
skidders .

& Roads Construction

& Flow Conservation between different
nodes (origins , intersection and exits )

7
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Model

Location Subproblem:

MZIETZjE.lJ-ﬁf(ﬁE+H§k)W _24 TZk I*I
5.d.
Z Zfer*wkﬁf_ j 2 vjeM

W *‘:xkﬂ ‘#L,j,kﬂf =]

wf =fﬂ-, vj EME; =1

> . xi <1, VieTl
xeil0,1}, w=0,

8



Network Design Subproblem:

3 4
X ZIET (ﬁ T }yf = Z{:‘,_ﬂexi &2y _Z{i,j}e,-i af.fﬁj

&,

Jrgt f $2,K,. ., Y(gr)ed

-y, rel
Z{q,rle;{f;}r _Zgrrﬂg,j j;'f = 0 r EN-{TUS}
g, reS

Z:‘eryi = Zses Es

Zqr < Z{q,r e Zgr T Z{r,q}EAF Zg+ Z{r..‘ jed? Zn F Zl_!‘,r jed? Zr > V(g,r)e4

Ji .
Z B Q > Z{fi‘!éfi“ Zni +Z{f,r}sAPzrr’ VieT
_,|'-: J'El

i
Zfe?‘y!' < ZjEM ﬂf
W< Sy, Viel

E{D,l},fzﬂ,yzﬂ,gkﬂ
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Solving Strategy

1. Defining additional constraints, in order to make
the original formulation stronger.

2. Partition of the problem using LR approach.

3. Strengthen the partitioned subproblems, if
possible.

4. Solve the LR using a pure subgradient algorithm,
or a combined hybrid approach, using
subgradient iterations followed by a Dantzig-
Wolfe method or by bundle method.

5. Obtain primal feasible solutions using
Lagrangian heuristic.

80



Strengthenings

& Location to road trigger

K
k . .
$re 3 e Y

k=1 (i,q)EAP (r,i)EAP

¢ Road to road triggers

Zagr = Z Zpe T+ z Zer T z Zqt T z Ztq
(r,t)eAP (t,r)EAP (gq,t)eApP (t,q)eAP

Where:
Zi jis 1 if we build the road (i,j).
xf‘ is 1 if we locate machine of type k in cell i.
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Obtaining feasible solutions

1. If the solution is feasible, keep it.

2. If not, road network is not compatible with the
locations defined by the subproblem, so
machine locations are not connected to the exit.

3. Auxiliary problem consisting of all machine
locations and an auxiliary road network
consisting of minimum  spanning tree connecting
all possible machine locations to the exit.

4. Then solve the auxiliary linear problema to take
out all timber to the exits.

5. Delete all roads which are not taking any flow of

timber.
80



Computational Results

Test Instances

DIMENSIONS SET 1 | SET 2 (simple) | SET 3 (complex)
Area (hs.) 10 40 40
Number of cells 1.000 | 4.071 4.071
Tower loc. points 4 17 17
Skidders loc. points | 6 41 41
Constraints 1.620 | 16.046 16.046
Continuous variables | 955 12.688 12.688
Potential roads 16 65 109
Binary variables 26 123 167
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Computational Results

INSTANCE| Linear Relaxation Branch & Bound Lagrangian relaxation
normal |strengthened | normal | strengthened | Subgradient | Hybrid | Bundle
SET 1
Feas. sol 84,629 |85,452 85,992 |85,992 85,992 85,992 (85,992
Bound 89,588 |87,056 85,992 |85,992 86,874 86,486 |86,486
Gap (%) 5.5 1.8 0.0 0.0 1.0 0.6 0.6
Time (min) |0.05 0.03 0.42 0.15 4.70 5.43 4.02
SET 2
Feas. sol 410,300 421,992 410,258 | 415,248 414,259 415,248 415,248
Bound 433,885 421,670 431,581 | 415,248 421,345 418,123 417,253
Gap (%) 5.4 2.5 4.9 0.0 1.7 0.7 0.5
Time (min) |5.60 7.49 425.21 |17.45 82.41 87.45 |78.49
SET 3
Feas. sol 400,063 | 407,038 381,427 415,248 415,547 b i’
Bound 434,177 | 428,382 420,156 | 426,174 425,782
Gap (%) 1.9 5.0 9.2 2.6 24
Time (min) |5.70 8.78 453.57 |342.47 165.58
I I I
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Conclusions

1. Hard Problem: B&B algorithm was not
able to solve the basic formulation IN
reasonable time.

2. B&B leads to significantly lower gaps, but
at the cost of higher CPU times compared
to LR approach .

3. Significant improvemen IS obtained by
strengthening the formulation of the
model.

4. The LR approach appears worse for
easier problems. "
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Tabu Search (Andrées Diaz et al,

2004)

- Objective: Selecting the locations for the
machines and design the access road
network connecting the existing network
with the points where machinery s
Installed .

- Formulated as 2 problems: Plant location
and fixed charge network flow problems.

- Two types of machines (towers and
skidders)

86
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Algorithm

& x=|[x1, Xx2,..,xy7|] feasible selection of
locations, with T potential location set.

2. Neighbor solution x:

o 1-OPT: set of modifications where some
locationi € T is opened or closed.

o 2-OPT: set of modifications involving a pair of
locations, in which one is opened and the
other is closed.

3. Run the Tabu Search

87



Algorithm

At the end of Tabu Search, set of solutions is
available for the machine location sub problem

During the resolution of this sub-problem, we
use the road sections of the minimum  spanning
tree covering the potential locations and the
exits of the forest to estimate the road network
construction cost and the transportation cost.

To evaluate more exactly the cost of each
solution in the set of solutions, obtain the best
Steiner tree covering the opened locations.
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Numerical Results

e |nstances

Problem data

Problem 1 2 3 4
Area (ha) 10 40 210 500
Number of cells 1000 4071 21,000 S0,000
Number of potential tower locations 4 17 90 216
Number of potential skidder locations f 41 150 398
Number of exit cells 1 1 5 11
Number ol potential road sections 16 109 330 978
Number of existing road sections 0 45 36 102
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Numerical Results

CPLEX 5.1 Tabu

& = 50 USSinr’
Problem | Objective function (USS) 85.992.56 B5.992 .56

Upper bound {USS) 83,992.56

Gap 0%

Time (minutes) 0.020 0.001
Problem 2 Objective function (LUISS) 414.502.59 416.858.19

Upper bound (USS) 427.966.33

Crap 3.25%

Time (minutes) G000 0.12
Problem 3 Objective function (LUS3) 2.040.319.79 2.041.777.38

Upper bound (USS) 2 10281193

Gap 3.06%

Time (minutes) 600,00 1.04
Problem 4 Objective function (LUISS) 6,222.050.04 6.259.090.23

Upper bound (USS) 6,420,475.28

Gap 3.19%%

Time (minutes) 520.07 31.81

90
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Conclusions

e Numerical results indicate that the heuristic
approach is very attractive and leads to better
solutions than those provided by “state-of-the-
art” integer programming codes In limited
computation times

e Solution times significantly smaller.

e The numerical results do not vary too much
when typical parameters such as the tabu tenure
are modified, except for the dimension of
neighborhood
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Stochastic Problems

e Scenario trees representing different
uncertainty sources.
e Future Prices and Timber Volumes.

* Non-Anticipativity Constraints.

e Starting point: Andalaft (2003) problem
from Millalemu Instance, considering only
one forest (instead of the original 17,
linked by demand .

92



Scenario Trees

@

91
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Non-Anticipativity
“If two scenarios are indistinguishable up to some

stage, then the decisions in those scenarios, until that
stage, must be identical”

t=0 =1 t=2 =0 =1

S ovoroR
- [OHOFO




Scenario Trees

e Scenario w consists in a realization of a
random parameter during an horizon
planning .

 Represent reality
e Black swans

e Scenario tree generation : very hard to
develop a general way to create them

e Expert judgement

« Random Walks converging long range average

93



Uncertainty In Forest production
planning

Escudero et al 2010

Planning forest harvest and access to road
construction under uncertainty problem

Uncertainty Is represented by scenario trees,
containing prices of timber and demand bounds.

18 Scenarios from los Copihues (Chile) real forest.
MIP: Flow , Harvest, Road Build, 4 periods.

Difficult to solve: Too many constraints, Non-
Anticipativity constraints do not allow to Split the

problem .
96



Uncertainty In Forest production
planning : solving approach

Branching: BFC approach due to the large scale of
the problem .

Average Scenario Solution (AVSC) is solved by
simulating what happens in a given scenario (w)
when applying the average scenario solution.

BFC approach led to better solutions than the
deterministic approach under most scenarios.

Deterministic couldn’t find feasible solutions In
multiple scenarios, for all cases.

97



Uncertainty In Forest production
planning : Results

Table 1. Comparison of the Results

sC1 7860376.2 81416845 3.6
SC2 749867064 78322919 45
SC3 7272765.9 7681257.3 5.6
SC4 6876035.1 7248863.7 5.4
SC5 6751277.3 7288986.5 8.0
SC6 64206683  6913420.5 7.7
sC7 6440966.1  6739744.0 46
SC8 6077296.2  6359584.0 46
SC9 6003190.1  6111671.1 1.8
SC10  Infeasible 5604078.0 —
SC11  Infeasible 4945591.0 —
SC12  Infeasible 4541990.9 —
SC13  Infeasible 4324647.4 —
SC14  Infeasible 4149814.2 —
SC15  Infeasible 3335188.5 —
SC16  Infeasible 3067968.2 —
SC17  Infeasible 2866035.9 —
SC18  Infeasible 2593300.9 —
tt - 11942 —
Zip — 5541451.0 — 98
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Stochastic Forest Planning: A
Progressive Hedging Approach

Badilla et al 2010

Medium term (4 stages) forest planning with an
Integrated approach considering both harvesting
and road construction decisions Iin the presence of
uncertainty.

Price and growth uncertainties.
Use of Strengthenings (Andalaft et al 1999)

Many more scenarios than previously reported in
the literature.

Scenario-based decomposition method- Progressive
Hedging 0



Stochastic Forest Planning: A
Progressive Hedging Approach

Progressive Hedging Algorithm

Solve each scenario under min,,_c o fs(xs)

Compute the solution in each node, X = )., s c y, Ps Xs;

If solutions are similar ||x — x|| < £ then stop

Update penalty factor w; = p(x — x) + w;_4

Solve each penalized scenario: min, cq fs(x) +wexg +
2|y — |2

o & O b =

6. Return to 2

100



Stochastic Forest Planning: A
Progressive Hedging Approach

Progressive Hedging:

e Separates problem per scenario

e Implicit non-anticipativity constraints.
e Natural parallel implementation
®

Different Techniques to improve its performance
(hot starts, fixing variables, computing penalty
term, etc.)

101
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Instance

e Los Copihues Forest:
e 25 Stands
* 9 Origin nodes, 3 Intersection nodes and 1 Exit node

e 15 Existing and 11 Potencial Roads
102



Computacional Results

Instances
SCenarios 1 | 18 64 144 162 216 324
Implicit EF
binary cols 156 1,209 3,315 7410 0,867 10,920 16,185
linear cols B4 651 1,785 3,990 5,313 5,880 8,715
all columns 240 1,860 5,100 11,400 15,180 16,800 24,900
Rows 179 2,812 9,746 21,916 25,048 32824 49,186
NON-ZEros 1860 | 10,844 | 38,052 | 85,592 97,076 | 128,288 | 192,332
Explicit EF
binary cols 156 2,808 5,984 22,464 25,272 33,656 50,544
linear cols 84 1512 5,376 12,086 13,608 18,144 27,216
all columns 240 4,320 | 15,360 | 34,560 38,880 51,840 77 7e0
Rows 179 5682 | 21,716 | 48,936 52,698 73,704 | 110,856
NOMR-ZEros 1,860 | 16,584 | 61,992 | 139,632 | 152,376 | 210,048 | 315,72
Results
Scemarios Cplex EF Cplex EF FH+ FH+ PH+ PH# ws. Cplex Total Fixed
value [1hr) gap {1hr) walue Gap Run time % value Variables
18 54,928 180 0.31% 54,920,078 0475 dm22s -0.16% 2
B4 55,357,780 1.29% $5,386,371 0.74% 13m1ls 0.54% 1719
144 55,266,830 2.12% 55,287 935 1.68% 21md2s 0.40% L0051
162 5,187,040 3.10% £5,242,032 1.98% 22m54s 1.05% 823
26 55,332,550 392% 55,437,714 187% 37mlis 1.93% 1828
324 55,545,260 291% $5,536,196 2.99% T1m39s -0.16% 740
103
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Future Improvements

e Large number of scenarios lead to decomposition

e Need to parallelize

\ Scenarios

& Solutions
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Conclusion

e Spatial characteristics in forest planning lead to MIP
problems

e Most are difficult to solve
e Actual use mostly heuristics

e Algorithmic challenges
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