Matemática 1 Examen

CURE

6 Diciembre de 2024

Indicaciones:

- La prueba tiene una duración total de 3 horas.
- Cada hoja entregada debe indicar nombre, número de C.I., y número de hoja. La hoja 1 debe indicar además el total de hojas entregadas.
- Se deber utilizar únicamente un lado de las hojas.
- Cada problema o pregunta se deberá comenzar en una hoja nueva. Se evaluará explícitamente la claridad, prolijidad y presentación de las soluciones, desarrollos y justificaciones.

Problema 1 [35 pts.]

Sea la función $f: \mathbb{R} \longrightarrow \mathbb{R}$ y los parámetros $a, b \in \mathbb{R}$

$$f(x) = \begin{cases} \frac{1 - \cos(\pi x)}{x - 1} & \text{si } x < -1\\ (a + 1)x - b & \text{si } -1 \le x \le 1\\ sen(\frac{\pi}{2}x) + x^2 & \text{si } x > 1 \end{cases}$$

- (a) [10 pts.] Determine para que valores de $a, b \in \mathbb{R}$, f es continua. Fundamente detalladamente su resultado.
- (b) [10 pts.] ¿Es f derivable en todo \mathbb{R} ?. Fundamente su respuesta.
- (c) [15 pts.] Estudie acotación de f en \mathbb{R} . Halle máximo y mínimo de f, $\forall x \in [2,4]$. Estos máximos y mínimos, ¿son locales o globales de f?. Fundamente su respuesta.

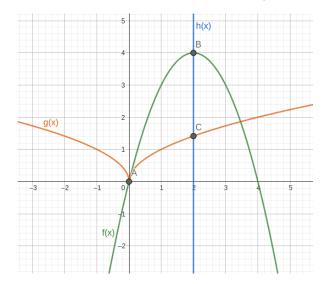
Problema 2 [30 pts.]

Considere la sucesión $(a_n)_{n\in\mathbb{N}}$ definida por la recurrencia: $a_{n+1}=\sqrt[3]{3a_n-2}$ con $a_0=-1$

- (a) [10 pts.] Pruebe que $a_n \ge -2 \quad \forall n \in \mathbb{N}$
- (b) [10 pts.] Pruebe que (a_n) es monótona decreciente.
- (c) [10 pts.] ¿Es (a_n) convergente? Justifique y en caso de convergencia calcule su límite.

Problema 3 [35 pts.]

(a) [20 pts.] Hallar el área encerrada(A,B,C) entre la recta h, el gráfico de la función f y el gráfico de lala función $g:g(x)=\sqrt{|x|}$.



(b) [15 pts.]

1. $\int_0^{\pi/4} t^2 sen(2t)dt$ 2. $\int cos(t)^2 dt$

Solución

Problema 1

(a) Para que f sea continua en todo \mathbb{R} , hay que analizar en cada intervalo si las funciones son continuas y luego en los puntos x = -1 y x = 1. Las funciones dentro de cada intervalo son continuas. Luego usando usando la definición de limite en un punto, en x = -1 se tiene que cumplir,

$$\lim_{x \to -1^{-}} \frac{1 - \cos(\pi x)}{x - 1} = \lim_{x \to -1^{+}} (a + 1)x - b = f(-1)$$
 (1)

para x=1

$$\lim_{x \to 1^{-}} (a+1)x - b = \lim_{x \to 1^{+}} sen(\frac{\pi x}{2}) + x^{2} = f(1)$$
 (2)

Para que se cumplan estan condiciones, a=1/2 y b=-1/2. Por lo tanto, $f(x)=\frac{3x}{2}+\frac{1}{2}$ si $-1\leq x\leq 1$

(b) No, basta con observar que la función no es derivable en x = -1.

$$\lim_{x \to -1^{-}} = \frac{\frac{1 - \cos(\pi x)}{x - 1} - 1}{x + 1} \neq \lim_{x \to -1^{+}} \frac{\frac{3}{2}x + \frac{3}{2}}{x + 1}$$
(3)

(c) Para estudiar la acotación, se calcular:

$$\lim_{x \to -\infty} \frac{1 - \cos(\pi x)}{x - 1} = 0 \tag{4}$$

y además sabiendo que la función es continua, f(-1) = -1. Por lo tanto el mínimo global de la f(x), es -1 y se da en x = -1. Luego en los restantes intervalos las funciones son crecientes, entonces solo resta calcular el limite:

$$\lim_{x \to +\infty} sen(\frac{\pi x}{2}) + x^2 = +\infty \tag{5}$$

por lo tanto máximo global no hay.

En el intervalo $[-1, \infty]$, f(x) es creciente, por lo tanto el máximo de $f(x) \in [2, 4]$ es f(4) y el mínimo es f(2). Ambos son máximos y mínimos locales del segmento [2, 4].

Problema 2

(a) Por inducción completa en los naturales:

- Caso base:(n=0) $a_0 \ge -2$
- Hipótesis inductiva:(n=h) $a_h \ge -2$
- Tesis inductiva:(n=h+1) $a_{h+1} \ge -2$

Tomando
$$a_{h+1} = \sqrt[3]{3a_h - 2} \ge -2 \Rightarrow 3a_h - 2 \ge -8 \Rightarrow a_h \ge -2$$

(b) Por parte anterior tenemos que la sucesión es acotada inferiormente. Estudiamos monotonía: Tenemos que $a_n - a_{n+1} = a_n - \sqrt[3]{3a_n - 2}$.

Estudiamos el signo de esa diferencia, obteniendo que $a_n - a_{n+1} = 0$ si $a_n = -2$

o
$$a_n = 1$$
, y $a_n - a_{n+1} > 0$ para todo $a_n > -2$ y $a_n \neq 1$

Si
$$a_0 = -2$$
, $a_n = -2 \ \forall \ \text{n.(converge a -2)}$

Si $a_0 = 1$, $a_n = 1 \,\forall$ n.(converge a 1)

Si $a_0 \neq -2$ y $a_0 \neq 1$ la sucesión (a_n) es estrictamente decreciente

(c) Como la sucesión es acotada inferiormente y decreciente, tiene límite: $k = \lim a_n = \lim a_{n+1}$.

lím $a_{n+1} =$ lím $\sqrt[3]{3a_n - 2} = \sqrt[3]{3k - 2}$ y lím $a_{n+1} = k$, entonces $\sqrt[3]{3k - 2} = k$. Resolviendo la ecuación obtenemos los valores de k, conjunto solución $\{-2, 1\}$ En conclusión si $-2 \le a_0 < 1$, lím $a_n = -2$. Si $a_0 \ge 1$, lím $a_n = 1$ (tener en cuenta que la sucesión es no creciente)

Problema 3

(a) La integral a resolver es: $\int_{x=0}^{x=2} -x(x-4) - \sqrt{x} dx = 3.44$

(b)

- $\int t^2 sen(2t) dt = \frac{2xsen(2x) + (1-2x^2)cos(2x)}{4} + k$ Evaluando la primitiva en el intervalor $[0, \pi/4]$, da $\frac{\pi}{8} - \frac{1}{4}$