PRÁCTICO 6: COMPLEMENTO ORTOGONAL Y PROYECCIÓN ORTOGONAL.

1. Complemento ortogonal

EJERCICIO 1. Sea V un espacio vectorial de dimensión finita con producto interno.

- 1. Sean A y B subconjuntos de V. Probar que:
 - a) Si $A \subset B \Rightarrow B^{\perp} \subset A^{\perp}$,
 - $b) A^{\perp} = [A]^{\perp},$
 - c) $A \subset (A^{\perp})^{\perp}$.
- 2. Sean S y W subespacios de V. Probar que:
 - $a) S = (S^{\perp})^{\perp},$
 - b) $(S+W)^{\perp} = S^{\perp} \cap W^{\perp}$,
 - c) $(S \cap W)^{\perp} = S^{\perp} + W^{\perp}$.
- 3. Interprete geométricamente los resultados anteriores.

EJERCICIO 2. 1. Se considera en \mathbb{C}^3 con el producto interno habitual el subespacio S = [(i, 0, 1)]. Hallar una base del subespacio S^{\perp} .

- 2. En \mathbb{R}^3 , se considera el subespacio S = [(1,2,1)]. Calcular S^{\perp} con:
 - a) el producto interno usual de \mathbb{R}^3 ;
 - b) el producto interno $\langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle = x_1 y_1 + 2x_2 y_2 + x_3 y_3 x_1 y_2 x_2 y_1$.

EJERCICIO 3. En \mathbb{R}^3 con el producto interno habitual, se considera el subconjunto $S = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1\}$. Calcular $\dim(S^{\perp})$.

EJERCICIO 4. Sea $S = [(3,5,1)] \cup \{(0,1,1)\}$ un subconjunto de \mathbb{R}^3 . Se considera $\langle (x,y,z), (x',y',z') \rangle = xx' + 2yy' + 3zz'$ producto interno en \mathbb{R}^3 . Calcular S^{\perp} .

EJERCICIO 5. En \mathbb{R}^3 con el producto interno $\langle (x,y,z), (x',y',z') \rangle = xx' + 2yy' + 3zz'$, consideramos el conjunto $A = \{(n,2n,4n) : n \in \mathbb{N}\} \cup \{(1,1,1)\}$. Calcular A^{\perp} .

EJERCICIO 6. Se consideran el espacio \mathbb{R}^3 con el producto interno definido por

$$\langle x, y \rangle = 2x_1y_1 + x_2y_2 + x_3y_3$$

donde $x = (x_1, x_2, x_3)$ e $y = (y_1, y_2, y_3)$, y el subespacio S generado por el vector (1, 1, 1). Hallar una base ortogonal de S^{\perp} .

- $(1) \quad \{(3,-4,1), \ (1,1,-2)\}.$
- $(2) \quad \{(1,0,1), \ (-1,0,1)\}.$
- $(3) \{(0,1,-1), (-1,1,1)\}.$
- $(4) \quad \{(2,-1,-1), \ (0,1,-1)\}.$
- (5) $\{(-1,0,2), (2,-5,1)\}.$

EJERCICIO 7. Sea $\mathcal{M}_2(\mathbb{R})$ con el producto interno : $\langle A, B \rangle = tr(AB^t)$.

- 1. Hallar una base ortonormal de $\mathcal{M}_2(\mathbb{R})$.
 - 2. Sea $\mathcal D$ el subespacio de las matrices diagonales, hallar $\mathcal D^\perp.$
 - 3. Sea \mathcal{S} el subespacio de las matrices simétricas, hallar \mathcal{S}^{\perp} .

EJERCICIO 8. Sea V un espacio vectorial y \langle , \rangle_1 y \langle , \rangle_2 dos productos internos definidos en él que verifican:

$$\langle v, w \rangle_1 = 0 \iff \langle v, w \rangle_2 = 0 \ \forall v, w \in V.$$

Dado S un subespacio vectorial de V llamamos W_1 al complemento ortogonal de S con el producto interno \langle , \rangle_1 y W_2 al complemento ortogonal de S con el producto interno \langle , \rangle_2 .

- 1. Probar que $W_1 = W_2$.
- 2. Probar que si existe $k \in \mathbb{R}$ tal que $\langle v_i, v_i \rangle_2 = k \langle v_i, v_i \rangle_1 \ \forall i = 1, \ldots, n$, donde $\{v_1, \ldots, v_r\}$ es una base ortogonal de S y $\{v_{r+1}, \ldots, v_n\}$ es una base ortogonal de W_1 , entonces

$$\langle v, w \rangle_2 = k \langle v, w \rangle_1 \ \forall v, w \in V.$$

3. Observar que para que la primer parte se cumpla alcanzaría con que

$$\langle v, w \rangle_1 = 0 \iff \langle v, w \rangle_2 = 0 \ \forall w \in S \ \forall v \in V.$$

- 4. Ejemplificar las condiciones anteriores y verificar los resultados.
- EJERCICIO 9. 1. Sean V es un espacio vectorial con producto interno y S un subespacio vectorial de V. Si tomamos $\{s_1, s_2, \ldots, s_r\}$ una base ortonormal de S y $\{s_1, s_2, \ldots, s_r, v_{r+1}, \ldots, v_n\}$ una base ortonormal de V, probar que $\{v_{r+1}, \ldots, v_n\}$ es una base ortonormal de S^{\perp} .
 - 2. Se considera \mathbb{R}^3 con el producto interno $\langle \vec{X}, \vec{Y} \rangle = 2x_1y_1 + 2x_2y_2 + \alpha x_3y_3 + x_1y_3 + x_3y_1$ si $\vec{X} = (x_1, x_2, x_3)$ y $\vec{Y} = (y_1, y_2, y_3)$.

Sean los vectores $v_1 = (1, 1, 1), v_2 = (1, 0, -1)$ y $v_3 = (0, 0, 1)$.

- a) Hallar α para que v_1 y v_2 sean ortogonales. En las partes siguientes se trabajará con el producto interno dado por el α hallado.
- b) Utilizar el método de Gram-Schmidt para hallar una base ortonormal de \mathbb{R}^3 a partir de $\{v_1, v_2, v_3\}$.
- c) Hallar una base de S^{\perp} , si S = [(1, 1, 1)].

EJERCICIO 10. Considerando el producto interno usual en \mathbb{R}^4 , sea $T: \mathbb{R}^4 \to \mathbb{R}^4$ un operador lineal, U y V dos subespacios vectoriales no triviales de \mathbb{R}^4 tales que

$$T_{|_U}=Id, \quad T_{|_V}=-Id, \quad N(T-2Id)=(U+V)^\perp, \quad rg(T-2Id)=2.$$

- 1. Hallar una base \mathcal{B} de \mathbb{R}^4 formada por vectores propios de T.
- 2. Probar que T es invertible.
- 3. Sea $S: \mathbb{R}^4 \to \mathbb{R}^4$ tal que $S=T^3+4T^{-1}+2Id$. Probar que S es diagonalizable y calcular sus valores propios.
- 4. Si $\langle u, v \rangle = 0, \forall u \in U$ y $\forall v \in V$, ¿es posible hallar una base ortonormal de \mathbb{R}^4 formada por vectores propios de T? Justificar.

2. Proyección ortogonal

EJERCICIO 11. Sea V un espacio vectorial de dimensión finita con producto interno, $S \subset V$ un subespacio vectorial y $P_S(v)$ la proyección ortogonal de v sobre S; es decir $P_S(v)$ es el único vector que verifica que $P_S(v) \in S$ y $v - P_S(v) \in S^{\perp}$.

Probar que:

- 1. $P_S(s) = s \ \forall s \in S$.
- 2. $P_S(v) = \vec{0} \ \forall v \in S^{\perp}$.
- 3. La función $P_S: V \to V$ dada por $v \stackrel{P_S}{\mapsto} P_S(v)$ es una transformación lineal.

- 4. Hallar la matriz asociada de P_S en una base construída uniendo una base de S con una de S^{\perp} .
- 5. Hallar el núcleo y la imagen de P_S .
- 6. Hallar valores propios y subespacios propios de P_S , ¿Es P_S diagonalizable?
- 7. $||v||^2 = ||P_S(v)||^2 + ||P_{S^{\perp}}(v)||^2 \quad \forall v \in V.$
- 8. $||P_S(v)|| \le ||v||$.
- 9. $\langle v, P_S(v) \rangle = ||P_S(v)||^2 \quad \forall v \in V.$

EJERCICIO 12. En cada caso, dado el producto interno, el subespacio S y el vector v, hallar $P_S(v)$.

- 1. En \mathbb{R}^4 con el producto interno habitual; S = [(1, -1, 1, 1), (2, 1, 0, 3)] y v = (1, 2, 3, 4).
- 2. En \mathbb{R}^4 con el producto interno habitual; $S = \left[(1, -1, 1, 1), (2, 1, 0, 3) \right]$ y v = (x, y, z, t) cualquiera.
- 3. En \mathbb{R}^3 con el producto interno dado por

$$\langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle = 2x_1y_1 + x_1y_2 + x_2y_1 + 4x_2y_2 + x_3y_3,$$

$$S = \{(x, y, z) \in \mathbb{R}^3 : y - z = 0\} \text{ y } v = (1, -1, 0).$$

4. En \mathbb{C}^3 con el producto interno usual; $S = \{(x, y, z) \in \mathbb{C}^3 : x + (1+i)y - z = 0\}$ y v = (0, 1, i).

Ejercicio 13. En los siguientes casos consideramos los productos internos usuales.

- 1. Sea $P_S : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ la proyección ortogonal sobre el plano $S = \{(x, y, z) \in \mathbb{R}^3 : x-2y+z=0\}$. Hallar la matriz asociada a P_S en las bases canónicas de \mathbb{R}^3 .
- 2. Hallar la matriz asociada en la base canónica de la proyección (en \mathbb{R}^2), sobre la recta y = 3x.

EJERCICIO 14. Consideramos en $\mathbb{R}_3[t]$ el producto interno dado por $\langle p,q\rangle=\int_{-1}^1 p(t)q(t)\ dt$.

- 1. Hallar una base ortonormal del subespacio $\mathbb{R}_2[t] \subset \mathbb{R}_3[t]$.
- 2. Hallar la proyección ortogonal del polinomio $p:p(t)=t^3$ sobre el subespacio $\mathbb{R}_2[t]$.
- 3. Sea $F: \mathbb{R}^3 \to \mathbb{R}$ tal que

$$F(a,b,c) = \int_{-1}^{1} (at^{2} + bt + c - t^{3})^{2} dt$$

Hallar el mínimo de F en \mathbb{R}^3 .

Nota: Resolverlo como un problema de proyección.

EJERCICIO 15. En el espacio $C[-\pi,\pi]$ con el producto interno $\int_{-\pi}^{\pi} f(t)g(t)dt$:

- 1. Aplicar el proceso de Gram-Schmidt al conjunto $\{1, \cos t, \sin t\}$.
- 2. Sea S el subespacio de $C[-\pi,\pi]$ generado por B. Hallar el elemento de S más próximo a la función f(t)=t.