Cálculo diferencial e intelgral en una variable, segundo semestre 2024

Departamento de Matemática y Aplicaciones;

Cure-Universidad de la República

TEMA: DERIVADA

§1. Pendiente en una curva.

Hallar las pendientes de las siguientes curvas en los puntos indicados:

(a) $y = 2x^2$ en el punto (1, 2).

(b) $y = x^2 + 1$ en el punto (-1, 2).

(c) y = -2x - 7 en el punto (2, -3).

(d) $y = x^3$ en el punto $(\frac{1}{2}, \frac{1}{8})$.

(e) $y = \frac{1}{x}$ en el punto $(2, -\frac{1}{2})$. (f) $y = x^2 + 2x$ en el punto (-1, -1).

(g) $y = -x^2$ en el punto (2,4).

(h) $y = x^2$ en el punto (3,9).

(i) y = 2x en el punto (1, 1).

(j) $y = x^3$ en el punto (2,8).

(k) y = 2x + 3 en el punto cuya abscisa es x = 2.

(1) y = 3x - 5 en el punto cuya abscisa es x = 1.

(m) y = ax + b en un punto cualquiera.

§2. Cálculo de derivadas.

Hallar las derivadas de las siguientes funciones:

(a) $y = x^2 + 1$

(b) $y = x^3$

(c) $y = x^2 - 5$

(d) $y = 2x^2 - x$

(e) $y = x^3$

(f) $y = 3x^2$

(g) $y = 2x^2 + x$

(h) $y = x^3 + 2x$

(i) $y = \frac{2x+1}{x+1}$ (j) $y = \frac{2x}{x+1}$

§3. Derivabilidad.

(a) Sea f(x) definida como sigue:

$$f(x) = \begin{cases} -x & \text{si } x \le 0\\ 2 & \text{si } x > 0 \end{cases}$$

(b) Hallar f'(x) cuando x = -1. Hallar las derivadas derecha e izquierda de f en x = 0, si existen.

(c) Sea f(x) = |x| + x. ¿Existe f'(0)? ¿Existe f'(x) para valores de x distintos de 0?

(d) Sea $f(x) = \begin{cases} 0 & \text{si } x \le 1 \\ x & \text{si } x > 1 \end{cases}$

(e) Trazar la gráfica y hallar las derivadas derecha e izquierda de f cuando x=1. Hallar f'(x) para todos los otros valores de x.

(f) Determinar si las siguientes funciones tienen una derivada en x=0; si es así, hallar la derivada.

1

(i) f(x) = x|x|

(ii) $f(x) = x^2|x|$

(iii) $f(x) = x^3 |x|$