PRÁCTICO 4: SUBESPACIOS INVARIANTES. FORMA CANÓNICA DE JORDAN.

1. Subespacios invariantes

EJERCICIO 1. Si $T: V \to V$ es una transformación lineal y $S \subset V$ es un subespacio de V, decimos que S es un subespacio invariante bajo T (o T-invariante) si $T(s) \in S$ para todo vector $s \in S$. Probar que V, $\{0_V\}$, N(T) e Im(T) son subespacios invariantes bajo T.

EJERCICIO 2. Sea $T: V \to V$ una transformación lineal.

- 1. Si W_1 y W_2 son subespacios de V invariantes bajo T, probar que $W_1 \cap W_2$ y $W_1 + W_2$ son dos subespacios invariantes bajo T.
- 2. Probar que si λ es valor propio de T, entonces el subespacio propio S_{λ} es un subespacio invariante bajo T.
- 3. Probar que si λ es valor propio de T y $W = [v_1, v_2]$, con $v_1 \in S_{\lambda}$ y $T(v_2) = v_1$, entonces W es un subespacio invariante bajo T.
- 4. Si W es un subespacio de V invariante bajo T y dim(W) = 1.
 - a) Probar que los vectores no nulos de W son vectores propios de T.
 - b) \dot{b} es un subespacio propio T? Justifique la respuesta.
- 5. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ una transformación lineal tal que los subespacios $W_1 = \{(x, y, z) \in \mathbb{R}^3 : x+2y-z=0\}, W_2 = \{(x, y, z) \in \mathbb{R}^3 : x+y+z=0\}$ y $W_3 = \{(x, y, z) \in \mathbb{R}^3 : x+y-2z=0\}$ son invariantes bajo T.
 - a) Probar que T es diagonalizable.
 - b) Sabiendo que $2T T^2 = Id$ en W_1 y T = 2Id en $W_2 \cap W_3$, hallar los valores propios de T.

EJERCICIO 3. Dada la matriz asociada a T en la base canónica de \mathbb{R}^3

$$\begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Hallar los subespacios invariantes de T así como sus valores propios y discutir según θ cuando T es diagonalizable.

2. Forma canónica de Jordan

Ejercicio 4. Hallar la forma y una base de Jordan para las siguientes matrices:

$$A = \begin{pmatrix} 4 & -6 \\ 2 & -4 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 2 \\ -2 & 4 \end{pmatrix} \quad C = \begin{pmatrix} 6 & -2 & 1 \\ 6 & -1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
$$D = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix} \quad E = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 2 & -1 \\ -3 & -2 & 3 \end{pmatrix}.$$

Ejercicio 5. Hallar la forma y una base de Jordan de los siguientes operadores:

- 1. $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que: T(x, y, z) = (-y 2z, x + 3y + z, x + 3z).
- 2. $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que: T(x, y, z) = (3x + 2y 2z, 4y z, y + 2z).

EJERCICIO 6. Probar que para todo
$$n \in \mathbb{N}$$
, $\begin{pmatrix} a & 0 \\ 1 & a \end{pmatrix}^n = \begin{pmatrix} a^n & 0 \\ na^{n-1} & a^n \end{pmatrix}$ y calcular $\begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix}^{10}$.

EJERCICIO 7. Sea M una matriz con entradas reales 4×4 , cuyo polinomio característico tiene raíces 3 y 5 con ma(3) = ma(5) = 2.

¿Cuáles de las siguientes matrices pueden ser M?

$$(I) \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 1 & 5 & 0 \\ 0 & 0 & 1 & 5 \end{pmatrix}, \quad (II) \begin{pmatrix} 3 & 1 & 2 & 0 \\ 0 & 3 & 4 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad (III) \begin{pmatrix} 20 & 1 & 0 & 1 \\ 1 & 5 & 3 & 1 \\ 1 & 2 & 5 & 2 \\ -1 & 1 & 0 & 3 \end{pmatrix}.$$

EJERCICIO 8. ¿ La matriz
$$\begin{pmatrix} 1 & 1 & 3 & 1 \\ 0 & 2 & a & b \\ 0 & 0 & 2 & c \\ 0 & 0 & 0 & 2 \end{pmatrix}$$
 es diagonalizable? Discutir según $a, b \neq c$.

En caso de ser diagonalizable indicar su forma diagonal D y una matriz P para la cual $A = P^{-1}DP$. En caso de no ser diagonalizable, hallar su forma canónica de Jordan.

EJERCICIO 9. Sea
$$A = \begin{pmatrix} 2 & -2 & 0 \\ 1 & a & 1 \\ 0 & a & 2 \end{pmatrix}$$
 matriz **real** $(\mathbb{K} = \mathbb{R})$ con $a \in \mathbb{R}$.

- 1. Discutir según a si A es diagonalizable. Justificar con cuidado.
- 2. Para los casos en que A no es diagonalizable y $|a| \geq 2$ hallar su forma canónica de Jordan. Justificar.

EJERCICIO 10. Probar que dos matrices A y B en las hipótesis del Teorema de Jordan son semejantes si, y solo si, tienen la misma forma de Jordan (a menos del orden en el que se presentan los bloques de Jordan).

EJERCICIO 11. ¿Las matrices
$$A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$
 y $B = \begin{pmatrix} 0 & -1 & -1 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$ son semejantes?

EJERCICIO 12. Sea V un espacio vectorial de dimensión 6 y $T:V\to V$ una transformación lineal que cumple lo siguiente:

- El polinomio característico de T tiene todas sus raíces en el cuerpo,
- El polinomio $(t-2)^3$ divide al polinomio característico de T,
- $N(T 3Id) \neq \{o\},\$
- La multiplicidad algebraica de 4 es mayor que 1.

Calcular la traza de T.

EJERCICIO 13. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que T(1,1,0) = T(-1,0,1) = (2,-2,0) y T(0,-1,1) = (-6,2,-4).

- 1. Indicar si T es diagonalizable y hallar una posible base de Jordan.
- 2. Indicar todos los subespacios invariantes bajo T de dimensión 1.
- 3. ¿Existen subespacios invariantes bajo T de dimensión 2? En caso de existir indicar al menos uno de ellos.

EJERCICIO 14. Hallar una base de Jordan para el operador $S: \mathbb{R}^4 \to \mathbb{R}^4$ definido por:

$$S(x, y, z, t) = (2y, -2x + 4y, z + t, z + t).$$