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PARTIAL FRACTION EXPANSIONS: DISTINCT COMPLEX POLES
Distinct complex roots present challenges different from those for the repeated root case. Since the 

roots are distinct but not real, the methods of equations 12.25 and 12.29 apply. Unfortunately, the 

resulting partial fraction expansion has complex residues, and the resulting inverse transform has 

complex exponentials multiplied by complex constants. Such imaginar}̂  time functions lack mean

ing in the real world unless their imaginar}- parts cancel to yield real-time functions. When they do, 

our goal is to find a direct route for computing the associated real-time signals. To do this, consider 

a rational function having a pair of distinct complex poles as in the following equation:

F (s)  =
n{s) n{s)

|(.v + a)- +(0 -](/ (.5) (s + a + ju>)(s + a - j w ) d ( s ) (12.31)

Since the poles - a  - j co  and - a  + jco are distinct, the partial fraction expansion of equation 12.24 

is valid. Since the poles are complex conjugates of each other, the residues of each pole are com

plex conjugates. Therefore, it is possible to write the partial fraction expansion of f{s) as

r ( s ) -  I
.v + « + yto 5 + a-yco d{s) (12.32)

for appropriate polynomials and d{s). As per equation 12.25b, the first residue in equation 

12.32 is

jco (12.33)

With A  and B known, executing a little algebra on equation 12.32 to eliminate complex numbers 

results in an expression more amenable to inversion, i.e..

C\ S + C-> n îs) /?| (.v)
F {s) = ------ , ~ + ^7T  = 0̂(■'■) +\ 2 2 {s + fl) + to d(s) (I{s)

where

and

C, =2/ 1

C-, = 2aA  + 2ojB

(12.34)

(12.35a)

(12.35b)

with A  and B specified in equation 12.33. With Cj and C j given by equations 12.35, it is straight

forward to show that

F'ois) =
C \ S + C 2 

{s + a)~ +oj^
= C

( C 2- C ^a\
1 , x2 2 (.9 + a)  +0) to

to

{s + «)" + 0 3 " (12.36)

From Table 12.1, item 19, or a combination of items 10 and 11, 

M O  = e' C|  cos(tor) +
(C2-Cici)

sin (to/)
[ to )

Hit)
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E xercise. Suppose F {s) = . Compute/ (r).
a-2+4

A N SWER: C, cos(2r)/ / (f) + 0.5^ sin(2f)«(r)

The following example illustrates the algebra for computing C, and C j  without using complex 

arithmetic.

EXA M PLE 12.16. Find/ )̂ when

3.r  + 5 + 3 D  A + j B  A - j B  D  C ŝ + C  ̂ , ^
F {s)  = ------------ -̂------= -------- + ------=;- +------^  = ------ + - ^ -------- (12.37)

(5+1)(5“ +4) ^+1 s + j 2  s - j l  i  + 1 s +A

Step 1. Compute the coefficients D , C ,, and C 2  in the partial  fraction expansion o f  equation 12.37. 
First we find D  by the usual techniques:

3 . r + 5  + 3 

.v̂  + 4
= 1

s=-\

Given that D  = 1, to find C, we evaluate F{s) at j  = 0, in which case 0.75 = 1 + O.25C2, or C j = 
-1. With D  = 1 and C2 = -1, we evaluate F{s) at j  = 1 to obtain 0.7 = 0.5 + 0.2(C j -  1) or, equiv
alently, Cj = 2. Thus,

■V +1 s  ̂+ 4 + 4

Step 2. Compute j{t) . Using Table 12.1, items 8 and 9, to compute the inverse transform yields

J {t) = [e~‘ + 2 cos(2r) -  0.5 sin(2f) ]u{t)

A lternative Step 1. Compute A  and B in equation 12.37 by hand or with M A TLA B. In M A TLA B,

»num = [3,1 3];

»den = conv([l 1],[1 0 4]) 

den = [1 14 4]

»[r, p, k] = residue(num.den) 

r =

1.0000 + 0.25001 

1.0000 - 0.2500i 

1.0000 + O.OOOOi 

P =
-0.0000 + 2.0000i 

-0.0000 - 2.0000i 

- 1.0000 

k = 0



Chapter 12 • Laplacc Transform Analysis 1: Basics

This implies that

 ̂+ . A - J B  1 , l -y '0.25 , l + yO.25 

.y+1 s + j 2  s - j l  5 + 1 s + j l  s - j l  (12.39)

A lternative Step 2. One must exercise caution here and note the difference between the M A T- 

LAB output and the form of the partial fraction expansion. From equation 12.39, w = +2, A  = 1, 

and B  = -0.25. Again using M A TLA B to obtain the form needed in item 20 of Table 12.1,

»K = 2*sqrt(A 2̂ + B 2̂)

K = 2.0616

»theta = atan2(B,A )* 180/ pi 

theta = -14.0362

Thus

Example 12.16 illustrates not only the computation of an inverse transform having complex poles, 

but also the computation of Cj and C, without resorting to complex arithmetic, as was needed in 

equation 12.32. The trick again was to evaluate F{s) at two distinct -̂values different from the 

poles of F{s). This yields two equations that can be solved for the unknowns Cj and C,.

5 ^ 8  4
E xercises. 1. Find Kt) when F {s)  = -------z----------.

s ( s - +4 )

A N SWER:/ / ) = [1 + 4 cos(2r) -4 sin(2r)]/ / (/ )

, 5s"  -2^ + 5 
2. Find/ (r) when F ( s ) - —  ̂ .

.v (r+25 + 5)

A N SWER:/ / ) = u(t) + 4 r ‘ [cos(2/ l -  sin(2/ )l/ <(/ )

7. MORE TRANSFORM PROPERTIES AND EXAMPLES

Another handy propert)' of the L'lplace transform is the frequenc)' shift property, which permits 

one to readily compute the transform of functions multiplied by an exponential. With knowledge 

of the transforms of u{t) , sin(o)/ ), and other functions, computation of e~̂ ‘u{t) and f’“"̂ sin(to/ )«(̂ ) 

becomes quite easy.

Frequency shift property: Let F{s) = Then

L [ e~ '̂ p)] = F{s * a) (12.40)


