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ABSTRACT
Analysis of time and motion study data is central to forest operations, but current methods used to
study work cycles are limited in the breadth and depth of available predictor variables. The objective of
this research was to evaluate whether activity recognition modeling based on smartphone sensor data
could be used to quantify work tasks during motor-manual logging activities. Three productive cycle
elements (travel, acquire, fell) and delays were manually timed while three hand fallers worked on
industrial cable logging operations in North Idaho. Each faller carried a smartphone that recorded
sensor data at 10 Hz using the AndroSensor mobile app. The random forests machine learning
algorithm was used to classify cycle elements and delay from the device sensor measurements. Four
time domain features (mean, standard deviation, interquartile range, and skewness) were extracted for
each of four sensor values (acceleration, linear acceleration, gyroscope, and sound) using 10 sliding
window sizes ranging from 1 to 10 seconds. For each window size, calculations were performed with
and without gaps between subsequent cycle elements. Models with and without sound were com-
pared. Overall model prediction accuracy ranged from 65.9% to 99.6% and accuracy increased as
window size increased. The two calculation methods did not result in noticeable differences in predic-
tion error, but the inclusion of sound decreased error in nearly all models. These results have demon-
strated the feasibility of developing activity recognition models to quantify work based on mobile
device sensors, which is an important step for advancing real-time analysis of productive cycle times.
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Introduction

In both forest operations research and management applica-
tions, time and motion studies (Barnes 1958) are used fre-
quently to quantify work activities (e.g. Olsen and Kellogg
1983; Huyler and LeDoux 1997; Lortz et al. 1997; Bjorheden
and Thompson 2000; Wang et al. 2003; Tiernan et al. 2004;
Bolding and Lanford 2005; Adebayo et al. 2007; Spinelli and
Visser 2008; Magagnotti et al. 2013). Time and motion ana-
lysis entails defining, measuring, and analyzing component
elements of the productive work cycle for individual pieces of
equipment or manual tasks statistically, often in order to help
characterize potential opportunities for reducing delay and
improving efficiency on logging operations (e.g. Huyler and
LeDoux 1997; Spinelli and Hartsough 2001; Adebayo et al.
2007; Spinelli and Visser 2008). Relationships between pro-
ductive cycle times and stand or site characteristics are devel-
oped using regression (e.g. Huyler and LeDoux 1997; Lortz
et al. 1997; Wang and Haarlaa 2002; Wang et al. 2004;
Adebayo et al. 2007; Spinelli et al. 2009). Predictive regression
functions developed from time study data are also pooled
with machine rate estimates calculated using methods
described in Miyata (1980) and Brinker et al. (2002) to deter-
mine system costs per unit wood volume (Matthews 1942)
and for broader scale meta-analyses (e.g. Spinelli and Visser
2008; Spinelli et al. 2009; Hiesl and Benjamin 2013; Bell et al.

2017). Production functions developed using this method are
also often integrated into simulation models to characterize
treatment costs across a range of conditions (e.g. Hartsough
et al. 2001; Wang et al. 2003; Bell et al. 2017).

Analysis of cycle times using Global Navigation Satellite
System (GNSS) data has been employed to automate sampling
of mechanized equipment with reduced need for visual observa-
tion (Veal et al. 2001; McDonald and Fulton 2005; Keefe et al.
2014; Strandgard and Mitchell 2015; Olivera et al. 2016; Becker
et al. 2017). GNSS-based methods have also been used with
ground workers (Zimbelman et al. 2017), ground workers and
equipment working together (Wempe and Keefe 2017), and to
identify when ground workers or equipment cross virtual
boundaries (Grayson et al. 2016; Wempe and Keefe 2017;
Zimbelman et al. 2017). However, our ability to infer cycle
elements solely from GNSS coordinates is limited, as forest
canopy reduces GNSS accuracy (Wempe and Keefe 2017;
Zimbelman and Keefe 2018). Multiple GNSS-enabled devices
can provide more than one point of reference to characterize
movements of individual machines (Becker et al. 2017).
However, using additional sensors to quantify manual and
motor-manual logging work functions at higher resolution
could advance precision forestry.

Sensor-based activity recognition uses data collected about
individuals and their environment to characterize physical
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activities. Activity recognition is a central technique in big
data science and underlies the concept of the quantified self
(Swan 2013). Activity recognition using sensors based on the
body or on objects is used in personal fitness applications
(Ermes et al. 2008), health care (Anjum and Ilyas 2013; Lau
et al. 2010), and the development of smart homes (Gu et al.
2009; Chen et al. 2012). Both smartphones and smartwatches
are used widely in activity recognition, as many of these
devices are now equipped with a variety of sensors, including
accelerometers, gyroscopes, barometers, thermometers, deci-
bel meters (microphones), magnetometers, lux meters, optical
heart rate sensors, and GNSS chips (Anjum and Ilyas 2013;
Trost et al. 2014; del Rosario et al. 2015; Shoaib et al. 2015,
2016; Weiss et al. 2016). These sensors can identify position,
movement (Anjum and Ilyas 2013; Bayat et al. 2014), physio-
logical indicators (Chen et al. 2012), and environmental char-
acteristics (Gu et al. 2009), which in turn can be used as the
basis for predictive models.

Activity recognition studies based on smartphone or
smartwatch inertial sensors have not previously been con-
ducted in forest operations. The primary difference between
conventional time studies and automated activity recogni-
tion is in (1) the richness of data available for analysis, and
(2) the potential for activity recognition-based models to

subsequently be integrated into phone apps for continuous,
long-term monitoring and analytics. Data can be collected
simply by wearing a phone and enabling software apps to
record sensor values. This reduces the need for integration
of independent sensors when distinct GNSS devices and
accelerometers are used for time study analyses (e.g.
McDonald et al. 2008; Gallo et al. 2013; Borz et al. 2018).
Thus, this new method for quantifying work could make it
possible to conduct real-time analysis and reporting at mul-
tiple time scales in ways that could be deployed inexpen-
sively using devices that are already ubiquitous in forestry.

A recent study in Idaho showed that 72.4% of loggers in
the inland northwest United States (US) own smartphones
and carry them at work (Wempe et al. 2019). Activity recog-
nition using these devices could serve to enhance and supple-
ment traditional time study analyses and those conducted
using video surveillance (Mitchell and Gallagher 2007;
Contreras et al. 2017). When fitted models are programmed
into smartphone apps, predictive models can then provide
a continuous record of work cycles over time, much as
onboard computers now provide for mechanized logging
equipment (Figure 1). Analysis of inertial sensor data can
also help improve positional movement accuracy under the
canopy where GNSS error is high (Qian et al. 2017).

Figure 1. Steps involved in developing and using activity recognition models include (1) collecting time study data to pair with phone-based sensor measurements,
(2) extracting time domain features, (3) developing a general activity recognition model using machine learning, (4) encoding the model into a phone app, and (5)
using the app to summarize work activities. Analysis described in this paper involves steps 1– 3.
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Several machine learning methods that are used in spatial
analysis of lidar and other remote sensing data (Lawrence
et al. 2006; Zhong et al. 2014; Belgiu and Drăguţ 2016;
Becker et al. 2018) are also used to develop activity recogni-
tion models (Khan et al. 2013; Attal et al. 2015; Shoaib et al.
2015; Mehrang et al. 2018). The prediction accuracy of activ-
ity recognition models depends on a variety of factors, such as
the type and quality of sensors in the devices and the machine
learning algorithms (such as Decision Trees, Support Vector
Machines, K Nearest Neighbor analysis, and Naïve Bayes)
used for classification (Khan et al. 2013; Shoaib et al. 2015).
Time or frequency domain features extracted for activity
classification also affect model quality. Common time domain
features used in human activity recognition include mean,
median, standard deviation, variance, skewness, kurtosis,
and range; frequency domain features include Fast Fourier
Transform and Discrete Cosine Transform coefficients (Khan
et al. 2013; Attal et al. 2015; Shoaib et al. 2015). Similarly, the
size of the sliding or moving window used to extract these
features, sensor sampling rate, and device location on the
body may also affect model quality (Khan et al. 2013;
Shoaib et al. 2015). Because these analytical methods have
not been used previously to study the movements of logging
workers, little is known about how these factors influence
activity recognition in this field.

Our specific research objectives in this study were to (1)
evaluate the use of activity recognition modeling as a new
method to characterize three productive work cycle elements
(travel, acquire, fell) and delay time for hand fallers on
industrial logging operations in North Idaho using only the
sensors in a Google Pixel smartphone, (2) evaluate the accu-
racy of predictive activity recognition models developed using
four time domain features extracted with 10 sliding window
sizes ranging from 1 to 10 seconds, (3) evaluate the relative
importance of different sensor variables with and without
microphone sound (decibel) level included, and (4) evaluate
the effect of gaps between cycle elements when extracting
time domain features to develop models. Our emphasis was
on evaluation of a new methodological approach for quanti-
fying operational forestry tasks rather than presentation of
a final predictive model intended for widespread use.

Materials and methods

Data collection and processing

Phone sensor data was collected in a time and motion study of
three hand fallers working in North Idaho during the summer
of 2017. The first faller was observed on 27 July 2017 near
46.74291° N, 115.83660° W for approximately 4 hours.
The second faller was observed on 28 July 2017 near
46.74343° N, 115.83366° W for approximately 2.5 hours. The
third faller was observed on 8 August 2017 near 46.16627° N,
115.73837° W for approximately 3.3 hours. Three cycle ele-
ments (travel, acquire, and fell) plus delay were observed
visually and timed using the clock on a Google Pixel smart-
phone (Google, Mountain View, CA) to record the true start
and stop times for each activity cycle. Travel began when
a faller left one tree to walk to the next. Acquire began when

the faller arrived at a tree and began to clear brush and lower
branches in preparation for felling. Felling began when the
faller first started making felling cuts. Delay was defined as
any time the faller was not performing any of these three
productive cycle elements and included operational, mechan-
ical and personal delays. Each faller wore a Google Pixel
smartphone in a radio pouch attached to a belt and their
movements were recorded using the AndroSensor application.
AndroSensor records smartphone sensor data at a user-defined
sampling frequency. Data was collected at a 10-Hz frequency
and exported as a *.csv file.

The Google Pixel is equipped with a combined acceler-
ometer and gyroscope called the inertial measurement unit.
The triaxial accelerometer measures directional movement in
meters per second squared (m/s2) in the x-, y-, and z-direc-
tions while the gyroscope detects orientation or tilt in radians
per second (rad/s) in three directions during movement. The
Pixel also has a triaxial electronic compass to detect magnet-
ism in the x-, y-, and z-axes in microteslas (μT). A software
sensor on the phone combines the accelerometer, gyroscope,
and magnetic field values to calculate orientation (in degrees)
in the x-, y-, and z-directions, where z is relative to magnetic
North, x is relative to the ground, and y is roll or rotation.
Other sensors include a barometer that records data in hec-
topascals (hPa), proximity sensor that records in inches (in)
from the device, and sound sensor that records in deci-
bels (dB).

After data collection, cycle elements were added to the
dataset as a new column of corresponding, manually-
recorded start and stop times. Thus, each observation whose
timestamp fell within the start and stop time for a particular
activity cycle was assigned a label for that activity (i.e. travel,
acquire, fell, or delay). Data were then imported into the
R open source statistical programming environment (R Core
Team 2018) for analysis. The entire raw dataset, representing
all three fallers, consisted of 354,430 observations. Of these,
19.0% were acquire, 49.0% were fell, 14.7% were travel, and
17.3% were delay.

Most sensors in the Pixel record measurements in three
dimensions, making the data sensitive to phone orientation
on the body. One way to develop models that are orientation-
independent is to calculate the magnitude of each sensor
(Siirtola and Rӧning 2013). Thus, rather than using the x, y,
and z values from the acceleration, linear acceleration, and
gyroscope sensors, the magnitude for each sensor measure-
ment was calculated using Equation 1:

Sensormag ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sensor2x þ Sensor2y þ Sensor2z

q
(1)

where Sensormag is the overall sensor magnitude, and Sensorx,
Sensory, and Sensorz are the values from the sensor in the x, y,
and z directions, respectively. Thus, the variables selected
from the raw data included acceleration magnitude (m/s2),
linear acceleration magnitude (m/s2), gyroscope magnitude
(rad/s), and sound level (dB).

To build activity recognition models, the raw data are
usually segmented using a sliding window of a defined length
of time and features are calculated from this segmented data
(Khan et al. 2013; Attal et al. 2015; Shoaib et al. 2015;
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Mehrang et al. 2018). This window is advanced in predeter-
mined increments, defining a new subset of data from which
features are extracted. In this study, four time domain fea-
tures (mean, standard deviation, interquartile range, and
skewness) for each of the four sensor values were extracted
from the raw data using 10 different sliding window sizes
(ranging from 1 to 10 s), for a total of 16 variables (Table 1).
The window was advanced one row at a time through the raw
dataset, calculating these four time domain features for all
four sensor values at each subsequent position. This approach
created a new dataset for each window size. These datasets
were used to build the activity recognition models. For exam-
ple, using a 3-s window, features were calculated for each row
in the dataset using the previous 30 observations (represent-
ing 3 s of data). Calculations were performed two ways for
each window size. In the first approach, calculations were
restarted each time a faller switched activity (i.e. with gaps
between cycles). In the second approach, calculations were
performed continuously for each faller (i.e. without gaps
between cycles).

Random forests

The random forest algorithm is an ensemble learning method
that creates multiple classification and regression trees
(CART) (Breiman 2001; Khalilia et al. 2011). A bootstrap
sample of the original dataset (about two thirds of the data)
is used to build the current tree and about one third of the
observations (called out-of-bag (OOB) samples) are left out
and used to estimate model prediction error as well as assess
variable importance (Liaw and Wiener 2002; Genuer et al.
2010; Zhong et al. 2014). Specifically, these OOB observations
are classified by the tree in order to provide an unbiased
estimate of overall classification accuracy (OOB accuracy),
meaning there is generally no need for cross-validation
(Breiman 2001; Svetnik et al. 2003; Lawrence et al. 2006;
Zhong et al. 2014). At each node in the tree, a random sample
of the predictor variables is selected and used to find the best
split (Breiman 2002; Liaw and Wiener 2002). Specifically, the
Gini measure of impurity is used to select the split that has
the lowest impurity (Breiman 2002; Khalilia et al. 2011). The

Gini impurity metric ranges from 0 to 1 and measures the
distribution of class labels in a given node, with 0 represent-
ing a node that contains only elements of the same class
(Khalilia et al. 2011). Random forests have been used to
develop highly accurate activity recognition models using
wearable sensors (Bayat et al. 2014; Gjoreski et al. 2016;
Weiss et al. 2016; Mehrang et al. 2018).

Two main parameters to consider when building random
forest models are the number of trees to grow (ntree) and the
number of predictor variables randomly selected at each node
(mtry) (Liaw and Wiener 2002; Genuer et al. 2010). Random
forest models do not overfit as trees are added and estimates
from OOB predictions tend to be more reliable as forests
grow (Breiman 2001; Lawrence et al. 2006). However, predic-
tion accuracy increases at a decreasing rate as trees are added
(Breiman 2001; Lawrence et al. 2006) and Svetnik et al. (2003)
suggest choosing a value of ntree that achieves stabilization of
the OOB error. Khalilia et al. (2011) found that ntree did not
influence classification results after > 20 trees were used and
Oshiro et al. (2012) suggested that 64–128 trees are adequate
for achieving a balance between performance and processing
time. It has also been shown that changing mtry does not
usually have a significant effect on results, with the default
value (the square root of the total number of variables) often
performing best (Liaw and Wiener 2002; Svetnik et al. 2003).
However, Strobl et al. (2008) suggest varying mtry when pre-
dictor variables are correlated.

The importance of variables used in random forest models
can be assessed using various criteria. A simple method is to
count the number of times each variable is selected by all trees
in the forest, while more advanced measures include Gini
importance and permutation importance (Strobl et al. 2007).
In terms of Gini importance, the mean decrease Gini (MDG)
for each variable is derived by adding up all the decreases in
the Gini impurity criterion over all trees in the forest and is
normalized by the number of trees (Breiman 2002). For per-
mutation importance, mean decrease accuracy (MDA) for each
variable is derived by randomly permuting the variable of
interest and then predicting the response for the OOB obser-
vations using this permuted variable along with the non-
permuted variables (Liaw and Wiener 2002; Strobl et al.
2008). The prediction accuracy will be lower if the original
variable was associated with the response (Strobl et al. 2008).
Both MDA and MDG can be used to rank variables in terms of
their importance (Liaw and Wiener 2002).

Development of random forest models

The randomForest function in the R randomForest package
(Liaw and Wiener 2002) was used to fit random forest
machine learning models to the filtered sensor data to predict
the four work cycle elements. Random forests were chosen
because they have previously been used successfully in activity
recognition (Bayat et al. 2014; Gjoreski et al. 2016; Weiss et al.
2016; Mehrang et al. 2018), they tend to be less sensitive to
training data quality and overfitting (Breiman 2001; Belgiu
and Drăguţ 2016), and they have efficient computational
times (Svetnik et al. 2003). Rather than split the data into
training and testing datasets, models were created using the

Table 1. Time domain features extracted from each raw variable, with acronyms
used throughout the paper.

Raw variable Feature extracted Variable acronym

Acceleration magnitude Mean A_Mean
Acceleration magnitude Standard deviation A_SD
Acceleration magnitude Interquartile range A_IQR
Acceleration magnitude Skewness A_Sk
Linear acceleration magnitude Mean LA_Mean
Linear acceleration magnitude Standard deviation LA_SD
Linear acceleration magnitude Interquartile range LA_IQR
Linear acceleration magnitude Skewness LA_Sk
Gyroscope magnitude Mean G_Mean
Gyroscope magnitude Standard deviation G_SD
Gyroscope magnitude Interquartile range G_IQR
Gyroscope magnitude Skewness G_Sk
Sound level Mean S_Mean*
Sound level Standard deviation S_SD*
Sound level Interquartile range S_IQR*
Sound level Skewness S_Sk*

*These four variables were only included in models with sound.
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full datasets and the OOB error rate calculated internally by
the algorithm (based on the one-third portion of data (OOB
samples) left out when constructing each tree) was used to
evaluate overall model prediction accuracy. Furthermore, pre-
diction accuracy for individual cycle elements in all models
was derived from the error rates for each element calculated
by the algorithm. In all cases, accuracy is reported as
a percent and was calculated as 100*(1 – error rate). In
order to balance accuracy and computational time, all models
in our study were created using 100 trees. Models were
created using the default value of mtry (the square root of
the total number of variables), as this has been shown to
perform well in terms of prediction accuracy (Liaw and
Wiener 2002; Svetnik et al. 2003). Models with and without
sound were also compared (i.e. models with sound contained
all 16 variables defined in Table 1, while models without
sound contained only 12 variables). A total of 40 models
were created using the 10 window sizes (1 to 10 s) and two
variable sets (with and without sound) for the two sliding
window calculation approaches (with and without gaps
between cycles).

The relative importance of variables used in the models
was assessed using two of the more common importance
measures described above: MDA and MDG. The top three
variables in terms of MDA and MDG were tallied for all 10
window sizes for each of the four combinations of variable
sets and sliding window calculation methods: without gaps
and without sound (NGNS), without gaps and with sound

(NGS), with gaps and without sound (GNS), and with gaps
and with sound (GS). Bar charts were used to illustrate the
number of times each variable occurred in the top three.

Results

Figure 2 is provided to show an example of the raw sensor
data. In this randomly-selected 1-minute sample, different
patterns in the variables were visible when comparing cycle
elements, most notably with the sound variable, which was
fairly consistent for the acquire element but more variable for
delay (Figure 2). Each faller also exhibited slightly different
patterns. For example, the data for Faller 2 was more variable
for the selected felling element while the raw sound data for
Faller 3 was more variable for the selected travel element
(Figure 2).

For most window sizes, the classification error rate leveled
off after approximately 25 trees, suggesting that building our
models with 100 trees was sufficient (Figure 3). The error rate
also decreased as window size increased, with the 1-s window
having much higher error rates (Figure 3).

Prediction accuracy for all models (created with 100 trees)
increased as window size increased (Table 2, Figure 4). For
both calculation approaches (with and without gaps between
cycles), the OOB overall prediction accuracy was similar for
models without sound, with the lowest accuracies (65.9%
(NGNS) and 66.1% (GNS)) obtained using 1-s windows and
the highest accuracies (98.1% (NGNS) and 98.6% (GNS))

Figure 2. Example raw sensor data plotted for one minute of each cycle element (acquire, fell, travel, delay) chosen from a random cycle for each faller. Line color
indicates the sensor variable (acceleration magnitude (A_Mag), linear acceleration magnitude (LA_Mag), gyroscope magnitude (G_Mag), and sound level (Sound))
and line type indicates the faller.
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obtained using 10-s windows (Table 2, Figure 4). Including
sound increased OOB prediction accuracy, with accuracies of
76.3% (NGS) and 76.5% (GS) for 1-s windows and accuracies
of 99.3% (NGS) and 99.6% (GS) for 10-s windows (Table 2,
Figure 4). Thus, the two calculation methods did not result in
a noticeable difference in OOB prediction error, but the
inclusion of sound decreased OOB error in all models.

In terms of individual cycle element prediction accuracy,
felling had the highest classification accuracy for all models
and window sizes. Neither the calculation method (with and
without gaps) nor the inclusion of sound had a noticeable effect
on felling prediction, with accuracies ranging from 92.7% –
93.4% (1-s windows) up to 99.6%–99.9% (10-s windows)
(Table 2, Figure 4). Acquire had some of the lowest prediction
accuracies, ranging from 30.7% – 49.9% (1-s windows) up to
96.1%–99.0% (10-s windows), with the inclusion of sound
increasing acquire prediction accuracy for both calculation
methods (Table 2, Figure 4). Prediction accuracy for travel
ranged from 38.6% – 47.9% (1-s windows) up to 96.2%–99.1%
(10-s windows), with sound increasing travel prediction accu-
racy for both calculationmethods (Table 2, Figure 4). Prediction
accuracy for delay ranged from 49.4% – 83.1% (1-s windows) up
to 97.9%–99.6% (10-s windows) and including sound increased
delay prediction accuracy for both calculationmethods (Table 2,
Figure 4).

Figure 5 shows the variables ranked in order of importance
based on the MDA and MDG indices for all models for the 1-,
5-, and 10-s windows. In order to determine which variables
were most important across all combinations of models and

window sizes, the top three variables (for MDA and MDG)
from each model were recorded and tallied (Figures 6 and 7).

Only four of the 12 variables used in models developed
without sound (NGNS and GNS) occurred in the top three in
terms of MDA for all models: LA_Sk, G_Sk, A_Sk, and
A_Mean (first and second panel, Figure 6). Of these, LA_Sk,
G_Sk, and A_Sk seemed to have the greatest importance (i.e.
the greatest number of occurrences in the top three most
important variables) for datasets calculated with and without
gaps (first and second panel, Figure 6). Of the 16 variables
used in models developed with sound (NGS and GS), only
five occurred in the top three in terms of MDA for all models:
S_Mean, LA_Sk, G_Sk, A_Sk, and A_Mean (third and fourth
panel, Figure 6). Of these, LA_Sk and S_Mean occurred most
frequently in the top three for datasets calculated with and
without gaps (third and fourth panel, Figure 6). For the NGS
models, A_Sk also occurred frequently in the top three (third
panel, Figure 6), while for the GS models, both A_Sk and
G_Sk occurred frequently in the top three (fourth panel,
Figure 6).

Only six of the 12 variables used in the models developed
without sound (NGNS and GNS) occurred in the top three in
terms of MDG for all models: A_SD, A_IQR, LA_SD, G_SD,
G_Mean, and LA_Mean (first and second panel, Figure 7). Of
these, A_SD, A_IQR, and LA_SD seemed to have the greatest
importance (i.e. the greatest number of occurrences in the top
three most important variables) for datasets calculated with and
without gaps (first and second panel, Figure 7). Of the 16 variables
used in models developed with sound (NGS and GS), the same

Figure 3. Random forest error plotted as a function of the number of trees in the model. The plots are grouped by the 10 window sizes. Line color indicates overall
model (OOB) error as well as error for the four elements (acquire, fell, travel, delay). Line type indicates the four combinations of variable sets and sliding window
calculation methods (GNS, GS, NGNS, NGS).
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three variables always occurred in the top three in terms of MDG
for allmodels: S_Mean, S_SD, and S_IQR (third and fourth panel,
Figure 7). In all cases, S_Mean, S_SD, and S_IQR were ranked
first, second, and third, respectively, for datasets calculated with
and without gaps (third and fourth panel, Figure 7).

Discussion

Our results show that activity recognition models based on
smartphone sensor data can characterize cycle elements and
delay time for hand fallers with random forest model OOB
accuracies ranging from 65.9% to 99.6%. These numbers are
consistent with previous smartphone-based activity recogni-
tion models developed in other fields (Anjum and Ilyas 2013;
Reddy et al. 2010; Siirtola and Rӧning 2013; Bayat et al. 2014;
Shoaib et al. 2014).

Prediction accuracy increased with increasing window size,
which is also consistent with previous work (Mehrang et al.
2018). Prior studies have achieved high accuracies with window
sizes of 1–13 s (Anjum and Ilyas 2013; Lau et al. 2010; Reddy
et al. 2010; Wu et al. 2012; Siirtola and Rӧning 2013; Bayat et al.

2014; Shoaib et al. 2014; Mehrang et al. 2018), and our results
suggest that windows of 4–10 s result in acceptable accuracies of
at least 80%. Datasets calculated with gaps between cycle ele-
ments had slightly higher model prediction accuracies for most
elements, although these differences were small. This makes
sense, as datasets calculated without gaps between cycles con-
tained some values that were derived from two activities.

Including sound increased accuracy in nearly all models,
particularly for shorter window sizes, and most notably for
the acquire, travel, delay and overall model OOB error rates.
Interestingly, sound had a less noticeable effect on the felling
element error rate, possibly because the accuracy of predict-
ing felling was high (≥ 92.7%) for all models. While we
expected that chainsaw sound would be important for pre-
dicting felling, there appear to be sufficient movements
detected by the phone’s inertial sensors to accurately distin-
guish this element from others. These may be associated with
a more consistent and stable physical posture as the faller is
hunched over to make felling cuts, or possibly vibrations from
the saw as it cuts solid wood.

Practical applications of activity recognition-based ana-
lytics include reporting production and delay time (utiliza-
tion rate) for current conditions, mean time per tree felled,
and mean distance traveled between trees for self-
evaluation and improvement, with comparative analyses
displayed at hourly to annual time scales. When coupled
with emerging data-sharing technologies that function in
remote areas (Becker et al. 2017; Wempe and Keefe 2017;
Zimbelman et al. 2017; Zimbelman and Keefe 2018), sud-
den inertial shock or lack of movement could also trigger
smart safety alert notifications to co-workers that an acci-
dent may have occurred.

There are several limitations of our study that are impor-
tant to note. First, the sample size of only three chainsaw
operators is small. To develop activity recognition models

Table 2. Prediction accuracy (percentage) for each cycle element (A = acquire,
D = delay, F = fell, T = travel) as well as overall model (OOB) accuracy. Models
were created for window sizes ranging from 1 to 10 s using 100 trees. Data is
grouped according to model type (NGNS, GNS, NGS, and GS).

Model Window (s) OOB A D F T

NGNS 1 65.87 30.73 49.36 93.21 39.41
NGNS 2 81.76 61.30 73.62 96.61 68.16
NGNS 3 88.79 76.03 83.88 97.99 80.34
NGNS 4 92.45 83.50 89.41 98.67 86.78
NGNS 5 94.46 87.80 92.46 99.03 90.18
NGNS 6 95.79 90.71 94.51 99.24 92.32
NGNS 7 96.64 92.73 95.66 99.34 93.80
NGNS 8 97.30 94.12 96.70 99.45 94.89
NGNS 9 97.77 95.30 97.29 99.53 95.66
NGNS 10 98.13 96.10 97.86 99.58 96.20
GNS 1 66.08 30.69 49.82 93.41 38.58
GNS 2 82.17 61.46 74.30 96.98 67.42
GNS 3 89.28 76.36 84.70 98.31 79.92
GNS 4 92.96 84.08 90.16 98.96 86.49
GNS 5 94.94 88.35 92.88 99.30 90.17
GNS 6 96.26 91.09 94.98 99.49 92.62
GNS 7 97.16 93.06 96.20 99.63 94.35
GNS 8 97.77 94.36 97.22 99.68 95.53
GNS 9 98.23 95.55 97.76 99.77 96.25
GNS 10 98.57 96.48 98.22 99.79 96.83
NGS 1 76.28 49.90 82.89 92.65 47.87
NGS 2 89.51 77.37 91.17 97.26 77.33
NGS 3 94.42 88.10 94.97 98.49 88.30
NGS 4 96.67 92.65 96.95 99.10 93.42
NGS 5 97.77 95.09 97.95 99.39 95.55
NGS 6 98.38 96.26 98.60 99.55 96.99
NGS 7 98.78 97.21 98.95 99.65 97.71
NGS 8 99.04 97.82 99.23 99.70 98.15
NGS 9 99.23 98.39 99.36 99.76 98.41
NGS 10 99.33 98.65 99.50 99.76 98.56
GS 1 76.54 49.93 83.09 92.93 47.13
GS 2 89.74 77.38 91.32 97.47 76.77
GS 3 94.75 88.42 95.11 98.80 88.03
GS 4 96.88 92.76 97.03 99.30 93.17
GS 5 97.98 95.14 98.04 99.59 95.57
GS 6 98.64 96.48 98.75 99.74 97.13
GS 7 99.01 97.36 99.07 99.82 97.94
GS 8 99.28 98.01 99.31 99.87 98.52
GS 9 99.49 98.61 99.52 99.92 98.84
GS 10 99.60 98.95 99.59 99.93 99.06

Figure 4. Random forest prediction accuracy for each of the 10 sliding window
sizes. Models were created using 100 trees. Line type indicates the four combi-
nations of variable sets and sliding window calculation methods. Line color
indicates the accuracy of the four cycle elements as well as the overall model
(OOB) accuracy.
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that provide robust predictions in a range of stand and site
conditions and with a variety of chainsaw makes and models,
a larger sampling effort and modeling analysis should be
conducted internationally across a range of stand conditions,
topography, weather, operators, and saw types to account for
these sources of variability (e.g. Keefe et al. 2014; Bell et al.
2017; Di Fulvio et al. 2017).

Use of uncalibrated smartphone microphone decibel levels is
a second limitation of our study. Decibel levels range widely from
the sound of a chainsaw at idle to a fully unthrottled saw.
Microphone calibration scales decibel levels more appropriately
(Swanepoel et al. 2014). Subsequent studies should evaluate the
impact of calibration on activity recognition model accuracy and

Figure 5. Plots of random forest variable importance for mean decrease accuracy (MDA) and mean decrease Gini (MDG). Only plots for the 1-, 5-, and 10-s windows
are shown. The first row shows models created using data calculated without gaps and without sound (NGNS), the second row shows models created using data
calculated with gaps and without sound (GNS), the third row shows models created using data calculated without gaps and with sound (NGS), and the fourth row
shows models created using data calculated with gaps and with sound (GS).

8 R. F. KEEFE ET AL.



Figure 6. Bar charts of variable importance in terms of mean decrease accuracy (MDA). The height of each bar indicates the number of times each variable occurred
as either the first, second, or third most important variable for the model type (NGNS, GNS, NGS, and GS) across all 10 window sizes. The color indicates how often
the given variable was in either the first, second, or third most important spot.

Figure 7. Bar charts of variable importance in terms of mean decrease Gini (MDG). The height of each bar indicates the number of times each variable occurred as
either the first, second, or third most important variable for the model type (NGNS, GNS, NGS, and GS) across all 10 window sizes. The color indicates how often the
given variable was in either the first, second, or third most important spot.
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potentially use calibrated sound measurements. This is in part
why we evaluated models with and without sound.

A third limitation of our approach is the development of
random forest models with a categorical response that was
not uniformly balanced among work cycle elements. Machine
learning methods are subject to bias when the predicted
classes are not distributed uniformly (Japkowicz and
Stephen 2002). The proportions of elements in our study
were 49.0% felling, 19.0% acquire, 14.7% travel and 17.3%
delay. Higher OOB accuracy of the felling element may be
related to the greater frequency with which felling occurred.
However, it should be noted that all four elements were
predicted with high accuracy when using longer (10-s) sliding
window sizes to extract features (Table 2, Figure 4).

Use of smartphones to quantify work activities may raise
privacy concerns for contractors. However, many are accus-
tomed to equipment onboard computers recording productivity
data (Strandgard et al. 2013). Recent logger surveys conducted
in the western US (Newman et al. 2018;Wempe et al. 2019) have
indicated low concern about privacy and general support for
real-time mobile data-sharing, particularly when there are safety
benefits (Newman et al. 2018; Wempe et al. 2019).

Future work should include coding the model developed
in this paper, or a new model fitted to a larger dataset, into
a phone app to validate predictions with independent data
from different harvest blocks and operators. Development of
activity recognition models based on smartwatches may be
less obtrusive or burdensome for fallers. Conducting similar
studies to develop activity recognition for other manual and
motor-manual forestry positions may foster advanced analy-
tics for forest operations. For example, a library of phone-
based activity recognition models for tree planting, pre-
commercial thinning, cable rigging crew functions, forest
inventory, and timber sale layout would allow activity recog-
nition-derived metrics to be correlated with inventory, GIS,
and other data to model productivity, treatment and planning
costs in ways not previously considered.

In conclusion, activity recognition models developed from
common smartphone sensors using random forests predicted
productive work cycle elements and delay for hand fallers with
accuracies between 65.9% and 99.6%. Using longer sliding win-
dows (10-s) to calculate time domain features consistently
improved accuracy. When features derived from sound were
included, they were often the most important predictors.
However, models without sound also predicted cycle elements
well. Models developed with time domain features calculated
with gaps between elements performed slightly better than those
without gaps. Development of sensor-based activity recognition
models for motor-manual and manual work activities can pro-
vide advanced analytics for operational forestry through high-
resolution, real-time summaries of work functions.
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