
| Clase 17 jueves, 25 de octubre de 2018 9:06                                                                        |  |
|--------------------------------------------------------------------------------------------------------------------|--|
| Veamos ahou les préparales del estimador bosado<br>en núcleos en el coso general                                   |  |
| Terema 88: Si fo(x) = 1 \frac{5}{nh} \times \text{(x-Xi)} entropes                                                 |  |
| frais es asuntotecomente unses godo en se punto de continuado o le frais ce cumple:                                |  |
| a) \ k(t) dt = 1                                                                                                   |  |
| b) /x k(x)/→ 0 1x/→ ∞                                                                                              |  |
| c) K a cortabla y similaria                                                                                        |  |
| $d) \qquad h \rightarrow o$                                                                                        |  |
| Den: $E(f_n(x)) = \frac{1}{h} E(K(\frac{x-X_1}{h})) = \frac{1}{h} \int K(\frac{x-t}{h}) f(t) dt$                   |  |
| Duolo que 21 es un junto de continuedad de f y se<br>cumplen les conoliciones del lema de Bochner se<br>tiene que  |  |
| trene que $\int_{R} \int_{R} \left(\frac{x-t}{t}\right) \int_{R} (t) dt \longrightarrow \int_{R} (x) \sin h \to 0$ |  |
| entræs $E(f_n(x)) \rightarrow f(x)$ our el estimada es asuntíticamente insergado en $x$ de continuolad de $f$      |  |
| Tenema 89: En saleremon el estimada (n)=1 2 K(x-xi)                                                                |  |

Sujongemes que se cumplen les conoliciones del terrema 88 y además que vila > 00. Enton les for (x) es un este made consentente de gox) Dem! Calculems la vouanza de frixi  $\sqrt{\alpha_{1}}\left(\frac{1}{2}\sqrt{\alpha_{2}}\right) = \frac{1}{n^{\frac{2}{2}}}\sqrt{\alpha_{1}}\left(\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2}\right)\right) = \frac{1}{n^{\frac{2}{2}}}\left[\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2}\right)\right]$  $=\frac{1}{\sqrt{k}}\int_{\mathbb{R}} \left(\frac{x-t}{k}\right) \beta(t) dt$ Considerano la función K2(x) 6mo | x K(x) | → 0 si | x | → 00 intin ces | 22 K2(x) | → 0 Además /2 K(2) / < 22 K2(2) si 12/71 huey 1x K²(x) 1→0 si 1x1→0 Por otro lado | | k2(t) dt < 11K1100 (k(t) dt <00 pus JK(t) dt <00 g K cs acortada. Claremente K2(x) es sumétrica ya que K la es Pu la tonta jodemos aple can el lema de Bochner obteniendo que:  $\frac{1}{k} \int K^{2} \left( \frac{x-t}{k} \right) \int (t) dt \rightarrow \int (x) \int K^{2}(t) dt$ 



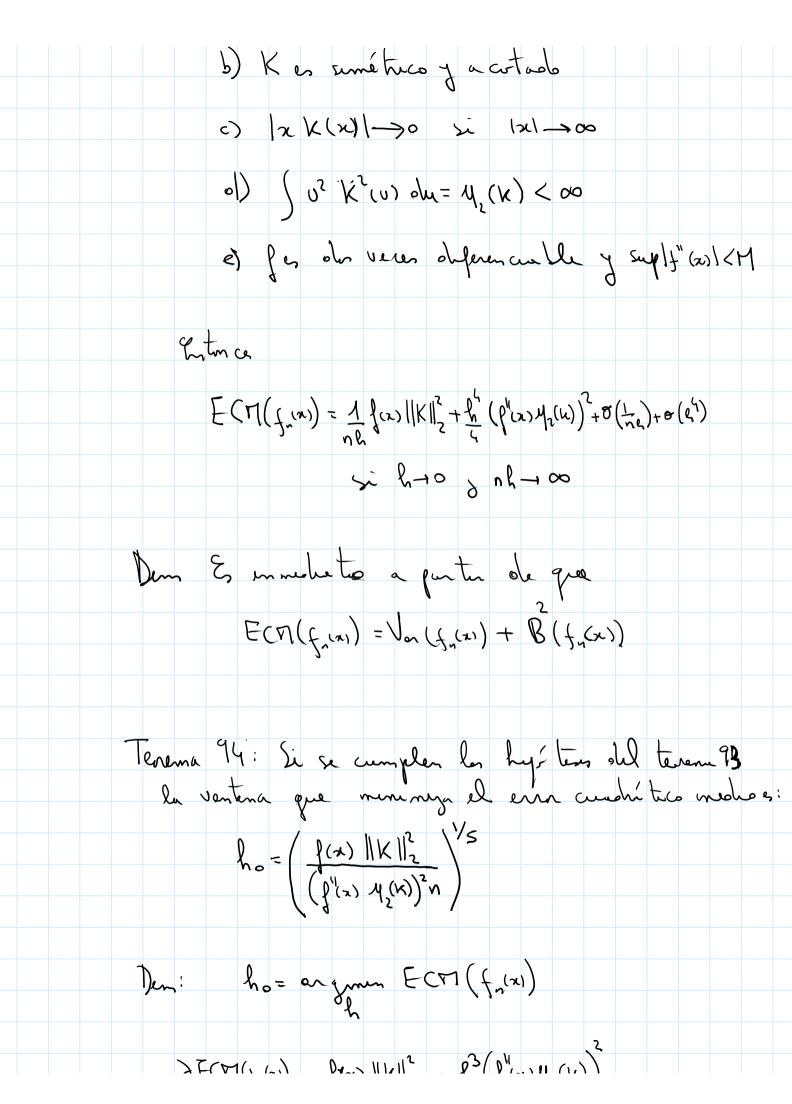
|         | 6) K es de vous cum acortada<br>c) lum K(2)=0                                     |
|---------|-----------------------------------------------------------------------------------|
|         | d) fer uneformente continua                                                       |
|         | e) $\sum_{\nu=1}^{\infty} e^{-\lambda_{\nu} l_{\nu}^{2}} < \infty$ for 12-10 12-0 |
| Dem:    | Se omite                                                                          |
| O L s : | Hay renttide par la convergence con segue que prolen                              |
|         | nh - 00 Jan la anverge au complete que prous nh - 00 log lyn                      |
|         | Kernels (K(v))                                                                    |
|         |                                                                                   |
|         | 1) Uniforme K(v)= 1 I(IVIEA)                                                      |
|         | 2) Triangular Kin = (n-1vi) I (1vi < n)                                           |
|         | 3) Epanechnikov K(s): 3 (1-02) I(101 ≤1)                                          |
|         | 4) Quartic K(u) = 13 (1-02) I (101 ≤1)                                            |
|         | 5) Triweight K(s) = 35 (1-02)3 I (101<1)                                          |
|         | 6) $(2)$ 151200 $(0) = \frac{1}{\sqrt{2}\pi} e^{-\sqrt{2}}$                       |
|         |                                                                                   |



ose 
$$\frac{1}{k} \left[ K^2 \left( \frac{x-t}{k} \right) f(t) dt \right] = \left\| K \right\|_2^2 \left( f(x) + \sigma(k) \right) \right\|$$

Entropy

Vin  $(f_n(x)) = \frac{1}{n} \left[ \frac{1}{k} \| K \|_2^2 (f(x) + \sigma(k)) - (f(x) + \sigma(k))^2 \right]$ 
 $= \frac{1}{nk} \| K \|_2^2 f(x) + \frac{1}{nk} \| K \|_2^2 o(x_1) - (f(x) + \sigma(k))^2$ 


Pero  $\frac{1}{nk} \| K \|_2^2 \sigma(k_1) = \sigma(\frac{1}{nk}) \text{ para } \left( \frac{f(x) + \sigma(k_1)}{k} \frac{1}{nk} \right) o$ 
 $\frac{1}{nk} \left( f(x_1) + \sigma(k_1) \right)^2 = g(K_k) \text{ para } \left( \frac{f(x) + \sigma(k_1)}{k} \frac{1}{nk} \right) o$ 

Note the sum of the following of the sum of th

$$= \int K(u) \left[ \int (x-uk) - \int (x) \right] du =$$
Si suprem and comalmente que
$$\frac{1}{2} \int_{0}^{u} \int \sup_{x} |\int_{0}^{u}| < H$$

$$\frac{1}{2} \int_{0}^{u} \int \sup_{x} |\int_{0}^{u}| < H$$

$$\frac{1}{2} \int_{0}^{u} |\int_{0}^{u} |\int_{0}^{u}$$



| $\frac{\partial ECM(f_{2}(\alpha))}{\partial k} = -\frac{f(\alpha)}{n} \frac{\ k\ ^{2}}{k} + \frac{f^{3}(f'(\alpha) + \chi(k))}{n} = 0$                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \frac{1}{5} = \frac{\int (x)   x  ^{2}}{\int (x)   x  ^{2}} = \frac{1}{5} $                                                                                              |
| Con este ho el enn cuadratico medio es  Ecos (f(x)) = f(x)   k   <sup>2</sup> n ho (f'(x) 4 <sub>2</sub> (u)) =                                                            |
| $= \left  \left$                                                                       |
| $= \frac{5}{4} \left( \left\{ (x) \  \  \  \ _{2} \right)^{\frac{1}{2}} \left( \left\{ \left\{ (x) \  \  \ _{2} (u) \right\}^{\frac{1}{2}} \right\} - \frac{4}{5} \right)$ |
| o sen el noten del ECM es nº 1/s                                                                                                                                           |
|                                                                                                                                                                            |
|                                                                                                                                                                            |