SOLUCIONES PARCIALES

MATEMÁTICA 1 2023 - CURE

Solución parcial Maldonado

1. (50 pts.) Bosquejar la gráfica de

$$f(x) = x^3 - 5x^2 + 6x$$

indicando: dominio, intersección con los ejes de coordenadas, puntos críticos, regiones de crecimiento y decrecimiento, máximos y mínimos, comportamiento de la función cuando x tiende a más infinito y a menos infinito, e intervalos de convexidad.

2. (50 pts.) Hallar primitivas de las siguientes funciones.

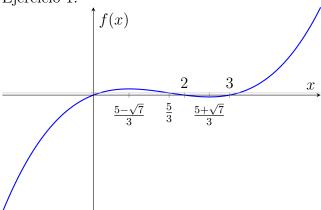
(a)
$$f(x) = x^3 + \frac{2}{x+1}$$
;

(b)
$$f(x) = (x^3 + x)(3x^2 + 1)$$
;

(c)
$$f(x) = e^x \cos(x)$$
.

Solución:

Ejercicio 1:



La función corta al eje x en 0, 2 y 3. f(x) tiende a $+\infty$ cuando x tiende a $+\infty$ y a $-\infty$ cuando x tiende a $-\infty$. $f'(x) = 3x^2 - 10x + 6$, se anula en $x = \frac{5-\sqrt{7}}{3}$ y $x = \frac{5+\sqrt{7}}{3}$. f' es positiva en los intervalos $(-\infty, \frac{5-\sqrt{7}}{3})$ y $(\frac{5+\sqrt{7}}{3}, +\infty)$, y es negativa

en el intervalo $(\frac{5-\sqrt{7}}{3}, \frac{5+\sqrt{7}}{3})$. Por lo tanto f es creciente en los intervalos $(-\infty, \frac{5-\sqrt{7}}{3})$

y $(\frac{5+\sqrt{7}}{3}, +\infty)$, y es decreciente en el intervalo $(\frac{5-\sqrt{7}}{3}, \frac{5+\sqrt{7}}{3})$. f''(x) = 6x - 10, entonces en $x = \frac{5}{3}$ hay un punto de inflexión. Por lo tanto f tiene concavidad negativa en el intervalo $(-\infty, \frac{5}{3})$ y concavidad positiva en el intervalo $(\frac{5}{3}, +\infty)$.

Ejercicio 2: a) Las primitivas de f son de la forma $\frac{x^4}{4} + 2\log(x+1) + c$.

- b) Una forma de resolver el ejercicio es hacer la sustitución $u = x^3 + x$. Las primitivas f son de la forma $\frac{(x^3+x)^2}{2}+c$.
- c) Una forma de encontrar las primitivas es hacer partes dos veces. Las primitivas de f son de la forma $\frac{e^x \cos(x) + e^x \sin(x)}{2} + c$.

Solución parcial Rocha

1. (50 pts.) Trazar la gráfica de la función

$$f(x) = \frac{x^2 - 3x}{x + 1}$$

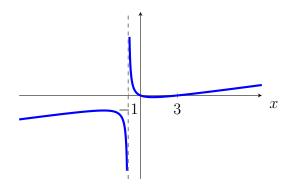
indicando: dominio, intersección con los ejes de coordenadas, puntos críticos, regiones de crecimiento y decrecimiento, máximos y mínimos, comportamiento de la función cuando x tiende a más infinito y a menos infinito, e intervalos de convexidad.

- **2.** (50 pts.)
- (a) Calcular las primitivas de $f(x) = \frac{x}{x^2+1}$
- (b) Hallar F, la primitiva de f que verifica que F(0) = 0.
- (c) Hallar una primitiva de $q(x) = (e^{2F(x)} 1)(x^3 + 2)$.

Solución.

Ejercicio 1:

3



 $f'(x) = \frac{x^2 + 2x - 3}{(x+1)^2}$, sus raíces son x = -3 y x = 1. En los intervalos $(-\infty, -3)$ y $[1,+\infty)$ la derivada es positiva, y en el intervalo (-3,-1) la derivada es negativa. Por lo tanto la función es creciente en los intervalos $(-\infty, -3)$ y $[1, +\infty)$, y es decreciente en el intervalo (-3,-1). En x=-3 la función tiene un máximo relativo, y en x=1 un mínimo relativo. En el intervalo $(-\infty,-1)$ la función tiene concavidad negativa y en el intervalo $(-1, +\infty)$ concavidad positiva.

Ejercicio 2:

a) Una forma de encontrar las primitivas es dividir y multiplicar por 2 y hacer la

sustitución $u = x^2 + 1$. Las primitivas de f son de la forma $\frac{\log(x^2 + 1)}{2} + c$. b) $\frac{\log(x^2 + 1)}{2} + c = 0$, entonces c = 0. Por lo tanto $F(x) = \frac{\log(x^2 + 1)}{2}$.

c) $g(x) \stackrel{\mathcal{L}}{=} x^2(x^3+2)$. Multiplicando y dividiendo por 3 podemos hacer la sustitución $u = x^3 + 2$. Una primitiva de f es $\frac{(x^3 + 2)^2}{6}$.