SEGUNDO PARCIAL - ROCHA

MATEMÁTICA 1 2023 - CURE

1. (50 pts.) Trazar la gráfica de la función

$$f(x) = \frac{x^2 - 3x}{x + 1}$$

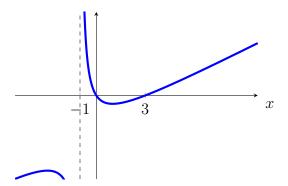
indicando: dominio, intersección con los ejes de coordenadas, puntos críticos, regiones de crecimiento y decrecimiento, máximos y mínimos, comportamiento de la función cuando x tiende a más infinito y a menos infinito, e intervalos de convexidad.

2. (50 pts.)

- a) Calcular las primitivas de $f(x) = \frac{x}{x^2+1}$
- b) Hallar F, la primitiva de f que verifica que F(0) = 0.
- c) Hallar una primitiva de $g(x) = (e^{2F(x)} 1)(x^3 + 2)$.

Solución.

Ejercicio 1:



 $f'(x)=\frac{x^2+2x-3}{(x+1)^2}$, sus raíces son x=-3 y x=1. En los intervalos $(-\infty,-3)$ y $[1,+\infty)$ la derivada es positiva, y en el intervalo (-3,-1) la derivada es negativa. Por lo tanto la función es creciente en los intervalos $(-\infty,-3)$ y $[1,+\infty)$, y es decreciente en el intervalo (-3,-1). En x=-3 la función tiene un máximo relativo, y en x=1 un mínimo

relativo. En el intervalo $(-\infty, -1)$ la función tiene concavidad negativa y en el intervalo $(-1, +\infty)$ concavidad positiva.

Ejercicio 2:

a) Una forma de encontrar las primitivas es dividir y multiplicar por 2 y hacer la sustitución $u=x^2+1$. Las primitivas de f son de la forma $\frac{\log(x^2+1)}{2}+c.$

b) $\frac{\log(x^2+1)}{2} + c = 0$, entonces c = 0. Por lo tanto $F(x) = \frac{\log(x^2+1)}{2}$. c) $g(x) = x^2(x^3+2)$. Multiplicando y dividiendo por 3 podemos hacer

c) $g(x) = x^2(x^3 + 2)$. Multiplicando y dividiendo por 3 podemos hacer la sustitución $u = x^3 + 2$. Una primitiva de f es $\frac{(x^3 + 2)^2}{6}$.