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Genomic imprinting refers to an epigenetic marking
of genes that results in monoallelic expression. This
parent-of-origin dependent phenomenon is a notable
exception to the laws of Mendelian genetics. Im-
printed genes are intricately involved in fetal and
behavioral development. Consequently, abnormal
expression of these genes results in numerous human
genetic disorders including carcinogenesis. This
paper reviews genomic imprinting and its role in
human disease. Additional information about im-
printed genes can be found on the Genomic Imprint-
ing Website at http://www.geneimprint.com. (Am J
Pathol 1999, 154:635–647)

Genomic imprinting (also referred to as gametic or pa-
rental imprinting) is the epigenetic marking of a gene
based on its parental origin that results in monoallelic
expression. Genomic imprinting differs from classical ge-
netics in the sense that the parental complement of im-
printed genes are not equivalent with respect to their
expression, despite both parents contributing equally to
the genetic content of their progeny. The mechanism of
imprinting is complex and not completely understood;
however, evidence suggests that the “imprint mark” is a
parental-specific methylation of CpG-rich domains that is
established during gametogenesis. The imprint marks on
a gene must be erasable in the germline when transmit-
ted through individuals of the opposite sex, but main-
tained during somatic cell division (Figure 1).

The total number of publications on genomic imprint-
ing has increased markedly over the past 10 years and
has now reached almost 1500 (Figure 2). There are now
more than 25 identified imprinted genes (Table 1), and
estimates based on mouse models indicate that as many
as 100 to 200 may exist.1 Imprinted genes are involved in
many aspects of development including fetal and placen-
tal growth, cell proliferation, and adult behavior. Conse-

quently, alteration of normal imprinting patterns gives rise
to numerous human genetic diseases including cancer.
This review examines the role of genomic imprinting in
several human genetic diseases such as the Beckwith-
Wiedemann, Prader-Willi, and Angelman syndromes, as
well as the evidence implicating genomic imprinting in
behavioral disorders and carcinogenesis. For excellent
reviews on the mechanistic models of genomic imprint-
ing, consult Reik and Walter,2 Constancia et al3, and
Barlow.4

Background
Genomic imprinting plays a critical role in embryogenesis
as evidenced by certain aberrations of human preg-
nancy. The complete hydatidiform mole arises from the
fertilization of an anuclear egg either by a haploid sperm
(followed by duplication of the paternal genome) or two
haploid sperm (diandric diploidy).5 This trophoblastic
disease is characterized by a completely androgenetic
(Ag) genome and results in reduced or absent fetal
growth coupled with hyperplastic extraembryonic
growth.6,7 In contrast, ovarian dermoid cysts arise from
the spontaneous activation of an ovarian oocyte resulting
in the duplication of the maternal genome.8 These abnor-
malities indicate that normal human development pro-
ceeds only when a complete complement of the paternal
and maternal genomes is present.

Experimental evidence for the requirement of both the
maternal and paternal chromosomal complements was
demonstrated through the manipulation of mouse embry-
os.9,10 Mouse embryos were altered in vitro to produce
diploid Ag or diploid parthenogenetic (Pg) embryos, pos-
sessing only paternal or maternal chromosomes, respec-
tively. Similarities to the human pregnancy aberrations
were apparent since Ag mouse embryos had reduced
fetal growth and proliferative extraembryonic growth
while Pg embryos maintained relatively normal fetal
growth but exhibited poor extraembryonic growth. Nei-
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ther Ag nor Pg embryos were viable to term.9,10 This
demonstrates that genes expressed exclusively from one
parental genome exist, and abnormal embryonic devel-
opment results from the loss of function of these mono-
allelically expressed genes. A mark or imprint conferring
parental memory must therefore differentiate between the
parental genomes, be present on the parental chromo-
somes through cell division, and be inheritable. This was
confirmed when nuclei from early haploid preimplantation
embryos were transplanted into fertilized eggs following
the removal of one pronucleus. The embryo was viable
only if the sex of the donor nucleus was opposite that of
the remaining pronucleus.11

The chromosomal regions responsible for the genomic
imprinting effects observed in mouse embryos were
mapped to specific mouse chromosomes by artificially
generating uniparental disomies (UPD) in mice. Certain
regions of distinct chromosomes were responsible for
markedly different phenotypes ranging from embryonic
lethality to various growth and developmental defects
apparent only after birth. These effects were dependent
on whether the two copies were inherited entirely from
one parent, resulting in either duplication or deficiency of
genes in these chromosomal regions.12–14 It was initially
postulated that only mouse chromosomes 2, 6, 7, 11, 12,
and 17 harbored imprinted chromosomal regions.15

However, there are now reports of other chromosomes
either containing more localized areas of genomic im-
printing or harboring genes that show more subtle im-
printed effects.

UPD also results in phenotypic abnormalities in hu-
mans. These include maternal UPD for chromosomes 2,
7, 14, 15, and 16, and paternal UPD for chromosomes 6,
11, 14, 15, and 20.16 Classic examples of diseases as-
sociated with regional maternal and paternal UPD on
chromosome 15 include the Prader-Willi syndrome and
Angelman syndrome, respectively. Investigations of
these genetic diseases are now helping to elucidate the
mechanisms of genomic imprinting in humans.

Imprinting of Specific Genes
The first endogenous imprinted gene identified was
mouse insulin-like growth factor 2 (Igf2), which encodes
for a critical fetal-specific growth factor. A targeted mu-
tation in Igf2 gave rise to a heterozygous dwarfing phe-
notype when the mutation was passed from the father
while the offspring were normal when the mutation was
inherited from the mother.17 Furthermore, the dwarfing
phenotype was observed in paternal heterozygotes and
homozygotes suggesting that Igf2 gene expression is
exclusively from the paternal allele. At about the same
time, the mannose 6-phosphate/insulin-like growth factor
type 2 receptor (M6p/Igf2r) gene was shown to be im-
printed and maternally expressed in mice.18 Interest-
ingly, the products of these oppositely imprinted genes
interact at the biochemical level since the degradation of
Igf2 occurs via the M6p/Igf2r.19 When a mutation was
targeted to the M6p/Igf2r in mice, maternal heterozygotes
or homozygotes showed a 30% increase in fetal growth,
but they were not viable at birth.20 Thus, the reciprocally
imprinted Igf2 and M6p/Igf2r genes both play an impor-
tant role in regulating embryonic development and fetal
growth.17,20

Numerous techniques have now been used to identify
additional imprinted genes. Positional cloning coupled
with candidate gene testing has identified novel human
imprinted genes located in imprinted clusters at chromo-
some positions 11p15.5 and 15q11-q13. Techniques
have also used parental differences in DNA methylation
and expression to identify imprinted genes. Subtractive
hybridization or differential display using cDNA from Pg,
Ag, and fertilized embryos have yielded novel imprinted

Figure 1. Imprint establishment and propagation during gametogenesis and
development. The paternal allele (dashed line) is imprinted and the maternal
allele is expressed (solid line). The “imprint mark” (black box) represents a
parental-specific methylation established during gametogenesis. A: The ma-
ternal and paternal genomes have different imprint patterns following fertil-
ization. B: Both “imprint marks” and imprint reading are maintained during
somatic cell division. C: The parental specific imprints are erased in the
primordial germ cells. D: The appropriate “imprint marks” are reestablished
for the next generation.

Figure 2. Total number of papers published on genomic imprinting versus
time.
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genes such as Peg1/Mest, a mesoderm restricted hydro-
lase at mouse chromosome 6; Peg3, a novel zinc-finger
protein on proximal mouse chromosome 7; and Peg5/
Nnat located on mouse chromosome 2.21–23 The Grf1 and
U2afl-rs1 imprinted genes were identified by a genome-
wide screen termed restriction landmark genome screen-
ing (RLGS).24,25 Finally, three GABAA receptor subunit
genes (GABRB3, GABRA5, and GABRG3) were shown to
be exclusively expressed from the paternal allele by mi-
crocell-mediated chromosome transfer.26 More recently,

results from a somatic-cell hybrid system indicated that
these receptor subunit genes were not imprinted.27

Characteristics of Imprinted Genes
Several theories have been proposed for the endoge-
nous function of genomic imprinting. Moore and Haig28

have suggested that genomic imprinting in mammals has
evolved from a conflict of interest between the paternal
and maternal genome in regulating fetal growth. Whereas

Table 1. Identified Imprinted Genes and Transcripts

Human Mouse

ReferencesGene Location
Expressed

allele Gene Location
Expressed

allele

NOEY2 (ARHI) 1p31 Paternal 129
p73 1p36 Maternal 147, 148
U2AFBPL 5q22-q31 Biallelic U2afbp-rs Proximal 11 Paternal 25, 149, 150
MAS1 6q25.3-q26 Biallelic/

Monoallelic
in breast

Mas Proximal 17 Paternal 151–153

M6P/IGF2R 6q26-q27 Biallelic/
Maternal*

M6p/Igf2r Proximal 17 Maternal 18, 136–139

Igf2r-AS Proximal 17 Paternal 4, 140
GRB10 7p11.2-12 NR Meg1/Grb10 Proximal 11 Maternal 31
PEG1/MEST 7q32 Paternal Peg1/Mest Proximal 6 Paternal 21, 154, 155
WT1 11p13 Biallelic/

Maternal*
Wt1 2 NR 120, 156

ASCL2/HASH2 11p15.5 Maternal Mash2 Distal 7 Maternal 157, 158
H19 11p15.5 Maternal H19 Distal 7 Maternal 30, 159
IGF2 11p15.5 Paternal Igf2 Distal 7 Paternal 17, 36, 160–162

Igf2-AS Distal 7 Paternal 36
IMPT1/BWR1A/

ORCTL2/TSSC5
11p15.5 Maternal Impt1 Distal 7 Maternal 163–166

INS 11p15.5 Biallelic Ins2 Distal 7 Paternal 167–169
IPL/TSSC3/BWR1C 11p15.5 Maternal Ipl Distal 7 Maternal 164, 170, 171
ITM 11p15.5 NR Itm Distal 7 Maternal 172
KvLQT1 11p15.5 Maternal Kvlqt1 Distal 7 Maternal 62, 173
p57KIP2/CDKN1C 11p15.5 Maternal p57KIP2 Distal 7 Maternal 48, 122, 174
TAPA1 11p15.5 Biallelic† Tapa1 Distal 7 Maternal? 27, 67, 104
HTR2A 13q14 Biallelic/

Maternal*
Htr2 14,Band D3 Maternal 145, 175, 176

FNZ127 15q11-q13 Paternal 177
GABRA5 15q11-q13 Paternal?† Gabra5 Central 7 Biallelic 26, 27, 178
GABRB3 15q11-q13 Paternal?† Gabrb3 Central 7 Biallelic 26, 27, 179
GABRG3 15q11-q13 Paternal?† Gabrg3 Central 7 Biallelic 26, 27, 178
IPW 15q11-q13 Paternal Ipw Central 7 Paternal 35, 177, 180, 181
NDN (necdin) 15q11-q13 Paternal Ndn Central 7 Paternal 82, 181, 182
PAR1 15q11-q13 Paternal 177, 180
PAR5 15q11-q13 Paternal 177, 180
PAR-SN 15q11-q13 Paternal 183
SNRPN 15q11-q13 Paternal Snrpn Central 7 Paternal 84, 184–186
UBE3A 15q11-q13 Maternal Ube3a Central 7 Maternal 77–79
ZNF127 15q11-q13 Paternal Zfp127 Central 7 Paternal 80, 181, 187
PEG3 19q13.4 Paternal Peg3/Apoc2 Proximal 7 Paternal 22, 188
Neuronatin 20q11.2-q12 NR Peg5/Nnat Distal 2 Paternal 23, 189, 190
GNAS1 20q13 Paternal Gnas1 Distal 2 Maternal/

Paternal
191–194

XIST Xq13.2
(XIC)‡

Paternal? Xist Xic Paternal 195–200

Grf1/Cdc25Mm Distal 9 Paternal 24
Impact Proximal 18 Paternal 201
Ins1 Distal 19 Paternal 167, 202

NR, not reported.
* Polymorphic imprinting.
† Determined in vitro.
‡ X-inactivation center.
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benefits of a large placenta and fetus might ensure future
propagation of a paternal line, the result may tax the
resources of the mother, thereby compromising future
pregnancies. Conversely, if fetal and placental growth is
held in check, more offspring from the mother’s (and
possibly different father’s) lineage may be produced. Ac-
cordingly, the mother would be predicted to imprint or si-
lence genes that promote placental and fetal growth,
whereas the father would imprint genes that inhibit growth.

In support of this theory, the gene encoding the fetal
growth factor, Igf2, is maternally imprinted, whereas H19,
which encodes for an untranslated RNA involved in si-
lencing Igf2 expression, is paternally imprinted.17,29,30

The result of this reciprocal imprinting is parent-of-origin,
monoallelic paternal expression of the gene encoding for
Igf2. Interestingly, the genes that encode for the M6p/
Igf2r which degrades Igf2, and Meg1/Grb10 which inhib-
its Igf2 signaling are both paternally imprinted, adding
further support for this theory.18,19,31

An alternative proposal for imprinting suggests that the
cytosine methylation involved in imprint regulation
evolved as a defense mechanism for the inactivation of
parasitic sequences such as transposable elements and
proviral DNA.32 This is supported by the finding that
5-aza-deoxycytidine, an inhibitor of cytosine DNA meth-
yltransferase, activates silent retroviruses.33 Irrespective
of the reason for the evolution of genomic imprinting in
mammals, the functional consequences of genomic im-
printing include the inhibition of parthenogenesis and the
loss of protection from deleterious recessive mutations.

As more imprinted genes are identified, the character-
istics of imprinting are becoming apparent. For example,
two chromosomal regions harbor more than one im-
printed gene. These imprinting clusters reside at human
chromosome 11p15.5 (syntenic to the distal region of
mouse chromosome 7) and human chromosome 15q11-
q13 (syntenic to the central region of mouse chromosome
7). Within these imprinted gene clusters, genes have
been identified that encode for untranslated RNA34,35

and antisense RNA36,37 that may be involved in imprint
control. Some imprinted genes, such as H19 and IGF2,
that are located in imprinted clusters show coordinate
regulation. Imprinted genes also often reside in chromo-
somal regions that undergo asynchronous replica-
tion,38,39 and the meiotic recombination frequencies in
these regions may differ between the male and female
germ cells.40 Another characteristic of imprinted genes is
an associated allele-specific DNA methylation of cytosine
residues in CpG dinucleotides that appears to distinguish
the parental alleles.41–43 Repetitive elements associated
with the areas of differential methylation have also been
identified in several imprinted genes (ie, H19, M6p/Igf2r,
U2afbp-rs, and p57KIP2).44–48

Imprinting in Genetic Diseases

Beckwith-Wiedemann Syndrome

There are a number of human genetic diseases associ-
ated with imprinting defects (reviewed in Refs. 49 and

50). Beckwith-Wiedemann syndrome (BWS) maps to
11p15 and is characterized by general overgrowth with
symptoms including hemihypertrophy, macroglossia,
and visceromegaly. Genomic imprinting in BWS was first
suspected when preferential maternal transmission of
mutations was observed in some BWS families.51 Addi-
tionally, approximately 10–20% of BWS individuals are
predisposed to embryonal tumors, the most frequent of
which are Wilms’ tumors and adenocortical carcinoma.52

The rate of Wilms’ tumor formation in the BWS population
is 1000-fold higher than in the normal population, and
these tumors often show preferential loss of maternal
11p15.53 The majority of BWS cases arise sporadically;
however, in both sporadic and familial forms, a small
percentage exhibits UPD at chromosome 11p15. In these
cases, the remainder of the chromosome is biparental in
inheritance, indicative of somatic mosaicism through a
postfertilization mitotic recombination event.54,55

The most common molecular event occurring in BWS
patients that do not have cytogenetic abnormalities is the
biallelic expression of IGF2 due to loss of imprinting
(LOI).56,57 LOI at the IGF2 locus may be accompanied by
the methylation and/or silencing of the active maternal
allele of H19.58,59 This H19-dependent event is consis-
tent with an enhancer-competition model for the co-reg-
ulation of these genes.60

Translocations in BWS patients may also lead to LOI at
the IGF2 locus, but without loss of H19 imprinting.61

These translocations affect imprinting by disrupting a
gene involved in imprint control, or by altering the func-
tion of an imprinting center (IC). Therefore, disruption of
IGF2 imprinting in BWS may also occur via an H19-
independent event.56,57 The imprinted KvLQT1 gene lo-
cated centromeric to IGF2 spans a common breakpoint
region in BWS, and has been proposed to maintain re-
gional imprint control at 11p15.5.60 KvLQT1 shows pref-
erential expression from the maternal allele in most tis-
sues examined except the heart where it is biallelically
expressed.62 This explains why KvLQT1, responsible for
the autosomal dominant cardiac arrhythmia long QT syn-
drome, shows no parent-of-origin effect in this disorder.
The maternally expressed p57KIP2, which encodes for a
cyclin-dependent kinase inhibitor, also maps to 11p15.5.
Abnormal imprinting and epigenetic silencing of p57KIP2

is found in some individuals with BWS,63 and mutations
are present in about 5% of BWS patients.64–66

To date, ten imprinted genes have been mapped to
11p15.5 (Table 1). Flanking these imprinted genes are
the non-imprinted NAP2 (centromeric border) and
L23MRP (telomeric border) genes.67 The syntenic region
in the mouse, distal chromosome 7, confirms the exis-
tence of an imprinting cluster at this chromosomal loca-
tion.68 A possible explanation for the involvement of mul-
tiple genes in BWS (even if IGF2 overexpression is
directly responsible for BWS) is that one or more of the
adjacent genes (eg, H19, p57KIP2, KvLQT1) are involved
in the regulation of IGF2 expression. Experimental evi-
dence supports this postulate since transgenic mice that
overexpress Igf2 develop symptoms similar to BWS.69
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Prader-Willi and Angelman Syndromes

Two clinically distinct genetic diseases associated with
genomic imprinting on chromosome 15q11-q13 are the
Prader-Willi syndrome (PWS) and the Angelman syn-
drome (AS). Each syndrome is associated with deficien-
cies in sexual development and growth, and behavioral
and mental problems including retardation.70,71 Major
diagnostic criteria for PWS patients include hypotonia,
hyperphagia and obesity, hypogonadism and develop-
mental delay.72 AS patients often display ataxia, tremu-
lousness, sleep disorders, seizures, and hyperactivity.
Severe mental retardation accompanied with a lack of
speech may also be present, but AS individuals often
display a happy disposition with outbreaks of laughter.73

PWS and AS are autosomal dominant disorders show-
ing parent-of-origin effects since the inherited diseases
are transmitted from only one of the parents. Approxi-
mately 70% of PWS and AS individuals have a de novo 3-
to 4-megabase deletion in their paternal or maternal chro-
mosome 15q11-q13, respectively. Maternal UPD occurs
in most of the remaining PWS patients (25%); however,
paternal UPD only occurs in about 4% of AS patients.16,74

The preferential loss of parental alleles associated with
different phenotypes, coupled with the instances of UPD
indicate the involvement of imprinted genes (ie, pater-
nally expressed gene(s) for PWS and maternally ex-
pressed gene(s) for AS).70 Recently, approximately 20%
of the AS patients without a chromosomal deletion were
found to have truncating mutations in UBE3A, a gene
encoding a ubiquitin protein ligase involved in protein
turnover.75,76 UBE3A, mapped to 15q11-q13, has now
been reported to be maternally expressed in the human
brain.77,78 Thus, abnormalities in the maternal-specific
expression of UBE3A during brain development has been
proposed for AS.79 This region also harbors four im-
printed, paternally expressed candidate PWS genes:
small nuclear riboprotein-associated polypeptide N
(SNRPN), Imprinted in Prader-Willi (IPW), zinc finger 127
(ZNF127), and necdin (NDN).35,80–82 The imprinted,
paternally expressed transcripts of PAR1, PAR5, and
PAR-SN may also be involved in PWS.

Imprinting defects resulting from microdeletions tar-
geted to the SNRPN gene have been identified in a small
percentage of PWS patients that maintain both parental
complements of 15q11-q13.80,83,84 These deletions alter
SNRPN promoter methylation and prevent expression of
its paternal allele. This results in the silencing of other
paternally expressed genes in the cluster.83,85 These
microdeletions apparently disrupt an imprinting center85

involved in resetting the correct imprinting pattern during
gametogenesis.84,85 The alternate use of SNRPN tran-
scripts (BD exons) may be involved in the normal imprint-
ing process.86 Offspring inheriting microdeletions from
their mother exhibit no apparent phenotype; however, a
subsequent paternal transmission results in PWS. In com-
parison, a small percentage of AS patients have similar
microdeletions in the SNRPN gene (albeit in a region
farther upstream) that disrupt the resetting of the imprint-
ing pattern. In this case, progeny inheriting paternal mi-
crodeletions do not develop AS, but maternal transmis-

sion to offspring results in AS. These PWS and AS
microdeletion results support the IC hypothesis, but a
bipartite structure must be present since the minimally
deleted regions responsible for PWS and AS are dis-
tinct.87 An alternate mechanism for imprinting mainte-
nance in this region relies on an enhancer-competition
model between cis-linked genes;4,88 however, methyl-
ation analysis of the PWS/AS region reported by Schu-
macher et al89 does not support this.

Imprinting in Brain and Behavior Development
The paternally expressed human MEST gene maps to
7q32, a region where maternal UPD is associated with
intrauterine and postnatal growth retardation.21,90 Re-
cently, a targeted deletion was introduced into the coding
sequence of the mouse Mest gene to determine its func-
tion.91 When the deletion was paternally derived, Mest
�/� mice were viable and fertile; however, they exhibited
growth retardation and increased lethality. Mest�/� an-
imals (deletion maternally derived) showed none of these
effects indicating that the phenotypic consequences of
this mutation are detected only through paternal inheri-
tance. Interestingly, Lefebvre et al91 found decreased
reproductive fitness in the females that inherited the tar-
geted disruption from their father. This effect was not
based on the genotype of the progeny, but rather was
due to an abnormal nurturing behavior of the mutant
parturient females. Aberrant behavior of the mothers in-
cluded failure to ingest the extraembryonic tissues (a
normal behavior in most mammals), reduced rate of nest
building, and pup neglecting. When the pups were fos-
tered to wild-type females, no phenotypic differences
between wild-type pups and Mest�/� pups were appar-
ent.

The results of this study demonstrate that the pater-
nally expressed Mest is a positive regulator of embryonic
growth, and is involved in the regulation of mammalian
behavior associated with the rearing of offspring. These
findings are consistent with the hypothesis that the im-
printing of genes arises from the conflict of interest of the
parental genomes in mammals,28 and supports the im-
portance of imprinted genes in brain development. Pre-
vious results using Pg and Ag mouse embryos sug-
gested that both maternally and paternally derived genes
contribute to the growth and function of specific brain
regions in a complementary fashion.92 Keverne et al93

found that Ag cells primarily contributed to hypothalamic
composition, whereas Pg cells localized to the cortex,
striatum, and hippocampus, but not to the hypothalamus.
Brain growth was enhanced by Pg cells and retarded by
Ag cells, further supporting the postulate that genomic
imprinting is critically involved in mammalian brain devel-
opment.

Evidence for imprinting effects in human diseases as-
sociated with mental abnormalities includes the afore-
mentioned Prader-Willi and Angelman syndromes. There
is now also evidence of cognitive imprinting effects in
humans displaying normal intelligence. Skuse et al94 re-
cently reported that an imprinted X-linked locus is poten-
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tially responsible for differences in cognitive function of
females with Turner’s syndrome. Although normal fe-
males (46,XX) inherit an X chromosome from both their
mother and father, only one X chromosome is inactivated.
Turner’s syndrome is a sporadic disorder resulting when
all or part of one X chromosome is deleted in females.
These females display normal intelligence, but overall
have a higher incidence of social difficulties.95,96 Turner
syndrome women who inherit the X chromosome from
their mother (45,Xm) generally exhibit more behavioral
difficulties than those inheriting the X chromosome from
their father (45,Xp). This finding provides the first evi-
dence of genomic imprinting on the human X chromo-
some.94 Based on cytogenetic analysis of these patients,
partial deletions of the short arm of the paternally derived
X chromosome were found. This suggests that the puta-
tive imprinted locus escapes X-inactivation and poten-
tially lies in Xp11.23-Xqter. Interestingly, Miller and Wil-
lard97 have recently identified a 5.5 megabase region on
the human Xp11.21-p11.22 that contains eight expressed
sequences which escape X inactivation. However, an
imprinted gene(s) in this region is yet to be identified.

Parent-of-origin effects involved in other behavioral
and brain disorders have also been reported. Included
among these are bipolar affective disorder,98–100 schizo-
phrenia,101,102 and autism.103 However, the involvement
of genomic imprinting in these examples remains to be
elucidated. For an extensive summary of parent-of-origin
effects in human disease, consult Morison and Reeve.104

Imprinting in Human Cancer
There are numerous reports of tumors showing a bias in
allelic loss. On a genome-wide scale, the complete hy-
datidiform mole and benign ovarian dermoid cyst arise
from cells that are completely Ag or Pg in origin, respec-
tively.105,106 In addition, numerous tumors are associated
with the preferential loss of a particular parental chromo-
some, indicating the involvement of imprinted genes.
Examples include neuroblastoma (maternal chromosome
1p36 and paternal chromosome 2),107 acute myeloblas-
tic leukemia (paternal chromosome 7),108 Wilms’ tumor
(maternal chromosome 11p15.5),109 rhabdomyosarcoma
(maternal chromosome 11p15.5),110 and sporadic osteo-
sarcoma (maternal chromosome 13).111 A role for
genomic imprinting has also been implicated in the de-
velopment of familial glomus tumors based on inheri-
tance patterns since tumor susceptibility is inherited pa-
ternally.112

Imprinted genes can be involved in carcinogenesis in
several ways (Figure 3). Loss of heterozygosity or UPD at
an imprinted region may result in the deletion of the only
functional copy of a tumor suppressor gene. Alterna-
tively, LOI or UPD of an imprinted gene that promoted cell
growth may allow gene expression to be inappropriately
increased. Finally, mutational inactivation of an IC might
result in the aberrant expression of multiple imprinted
oncogenes and/or tumor suppressor genes present in an
imprinted chromosomal region.

Aberrant genomic imprinting and its role in cancer are
best exemplified by studies on Wilms’ tumor, a childhood
tumor that arises from metanephric blastemal cells. Di-
rect genetic evidence linking tumorigenesis and aberrant
imprinting was identified when 70% of Wilms’ tumors
were found to have biallelic IGF2 expression.113–115 In-
activation of H19 was also present in a number of these
cases.115 The H19 gene possesses a CpG island in its
promoter that is normally methylated on the paternal al-
lele and unmethylated on the maternal allele.44,45,115 An
enhancer competition model for the reciprocal control of
expression of the imprinted IGF2 and H19 genes has
recently been proposed.116,117 Thus, LOI of the IGF2
gene in Wilms’ tumor could result from loss of H19 ex-
pression.116,117 This scenario is supported by the finding
that H19 null transgenic mice show biallelic expression of
IGF2.118 The coupling of biallelic IGF2 gene expression
with H19 inactivation is even observed in phenotypically
normal kidney tissue surrounding the Wilms’ tumor. This
suggests that the inactivation of H19 and the biallelic
expression of IGF2 are linked, and occur early in devel-
opment.119 Other human malignancies showing LOI at
the IGF2 locus are presented in Table 2. These results
indicate deregulation of IGF2 imprinting is mechanisti-
cally involved in the development of a variety of tumors.

Because imprinted genes are functionally haploid, an
imprinted tumor suppressor gene would be predicted to
increase cancer susceptibility since the inactivation of
only one allele would eliminate tumor suppressor func-
tion. WT1,120,121 p57KIP2 122-124 and M6P/IGF2R125–128

represent imprinted genes implicated in tumor suppres-
sion. p57KIP2, mapped to 11p15.5, encodes for a cyclin-
dependent kinase inhibitor that is maternally expressed.
Epigenetic silencing of the expressed allele has been
reported in some tumors and BWS patients.63 Addition-
ally, approximately 5% of BWS patients have p57KIP2

Figure 3. A: Only one allele of a tumor suppressor gene (T) is expressed
because of genomic imprinting (TX). Loss of heterozygosity (LOH) of the
expressed allele or an inactivating mutation in the expressed allele (TM)
results in loss of tumor suppressor function. B: Only one allele of the
proto-oncogene (P) is expressed because of genomic imprinting (PX). Loss
of imprinting (LOI) or uniparental disomy (UPD) results in biallelic expres-
sion of the proto-oncogene.
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mutations;64 however, p57KIP2 mutations have not been
identified in tumors. Thus, the putative tumor suppressor
function of p57KIP2 remains to be clarified. Recently,
NOEY2 (ARHI), a novel ras-related, maternally imprinted
gene at 1p31, was identified as a putative tumor suppres-
sor gene in breast and ovarian carcinomas. In the major-
ity of cases, the functional allele was lost.129

Recent reports demonstrate that the M6P/IGF2R at
6q26 is inactivated in a variety of tumors at the earliest
stage of transformation.126–128 The M6P/IGF2R plays an
integral part in the intracellular sorting of lysosomal en-
zymes, the activation of the growth inhibitor transforming
growth factor-�1 (TGF-�1), and the degradation of IGF2,
but it is not directly involved in cell signaling.19,130 The
M6P/IGF2R is mutated in 60% of dysplastic liver lesions
and hepatocellular carcinomas of patients with or without
hepatitis virus infection.125,126,128 The M6P/IGF2R is also
mutated in 30% of breast tumors,127 and the gene con-
tains a polyG region that is a common mutational target in
colon, gastric and endometrial tumors with mismatch
repair deficiencies and microsatellite instability.128,131,132

Moreover, it has recently been reported that the M6P/
IGF2R is mutated in human glioma samples that do not
contain mutations in the transforming growth factor-�
type II receptor (TGFBRII) or Bax genes.133 In both
breast127,134 and liver carcinogenesis,128 the allelic inac-
tivation of M6P/IGF2R occurs as an early event, during
the initiation rather than the progression stage of trans-
formation.

Although imprinting among individuals and mamma-
lian species is generally conserved, the imprint status of
M6P/IGF2R in humans and rodents is strikingly different.
The M6p/Igf2r is imprinted in mice18 and rats,135 but
imprinting at this locus appears to be a polymorphic trait

in humans, with most individuals having biallelic expres-
sion.136–138 The existence of individuals with an im-
printed M6P/IGF2R tumor suppressor suggests that they
may have increased susceptibility to tumor development
because of aberrant imprint control. This postulate is
supported by Xu et al139 who recently reported partial
imprinting of M6P/IGF2R in 50% of Wilms’ tumor patients.

The precise molecular mechanism for genomic im-
printing of M6P/IGF2R is not completely defined. Methyl-
ation of a CpG rich region in intron 2 (Region 2) of the
expressed maternal allele has been shown to carry the
imprint signal for this gene in mice.46,140 Birger et al141

have identified a 113-bp sequence, in region 2 of the
mouse M6p/Igf2r gene, that serves as a methylation im-
printing box responsible for the establishment of differ-
ential methylation. Furthermore, this region appears to
function as the promoter of an antisense transcript that
originates only from the repressed paternal allele. This
indicates that a form of expression competition regulates
imprinting of the M6p/Igf2r gene in mice.140 Region 2 of
the human M6P/IGF2R also contains parent-of-origin
methylation, but gene expression is biallelic.142,143 Con-
sequently, humans and mice appear to possess an al-
tered ability to read the M6P/IGF2R imprint marks.

Functional polymorphic imprinting has also been ob-
served for human genes encoding IGF2,144 WT1,120 and
the human 5-HT2A receptor gene HTR2A.145 Recently,
the mouse Kvlqt1 gene has been shown to undergo de-
velopmental relaxation of imprinting in a strain-depen-
dent fashion.146 Whether polymorphic genomic imprint-
ing occurs in other genes, and functions in determining
individual and/or species differences in susceptibility to
diseases remains to be determined.

Table 2. Aberrant Imprinting in Human Cancer

Tumor type Gene Reference

Childhood Tumors
Wilms’ tumor IGF2,H19,p57KIP2,M6P/IGF2R 63, 113, 139, 162
Rhabdomyosarcoma IGF2 203
Ewing’s sarcoma IGF2 204
Hepatoblastoma IGF2 205, 206

Adult Tumors
Bladder IGF2,H19,IPW 207, 208
Breast IGF2 209, 210
Cervical IGF2,H19 211
Choriocarcinoma IGF2,H19 212
Colorectal IGF2 213
Esophageal H19 214
Gastric adenocarcinoma IGF2 215
Glioma IGF2 216
Hepatocellular IGF2,H19 217, 218
Leukemia-acute myeloid IGF2 219
Leukemia-chronic myelogenous IGF2 220
Lung IGF2,H19,p73 221–223
Medulloblastoma IGF2,H19 224
Mesothelioma IGF2 225
Ovarian IGF2 226
Prostate IGF2 227
Renal cell carcinoma IGF2,p73 148, 228
Testicular germ cell IGF2,H19 229
Uterine IGF2 230
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J, Riou G: High incidence of loss of heterozygosity and abnormal
imprinting of H19 and IGF2 genes in invasive cervical carcinomas.
Uncoupling of H19 and IGF2 expression and biallelic hypomethyla-
tion of H19. Oncogene 1996, 12:423–430

212. Arima T, Matsuda T, Takagi N, Wake N: Association of IGF2 and H19
imprinting with choriocarcinoma development. Cancer Genet Cyto-
genet 1997, 93:39–47

213. Kinouchi Y, Hiwatashi N, Higashioka S, Nagashima F, Chida M,
Toyota T: Relaxation of imprinting of the insulin-like growth factor II
gene in colorectal cancer. Cancer Lett 1996, 107:105–108

214. Hibi K, Nakamura H, Hirai A, Fujikake Y, Kasai Y, Akiyama S, Ito K,
Takagi H: Loss of H19 imprinting in esophageal cancer. Cancer Res
1996, 56:480–482

215. Wu MS, Wang HP, Lin CC, Sheu JC, Shun CT, Lee WJ, Lin JT: Loss
of imprinting and overexpression of IGF2 gene in gastric adenocar-
cinoma. Cancer Lett 1997, 120:9–14

216. Uyeno S, Aoki Y, Nata M, Sagisaka K, Kayama T, Yoshimoto T, Ono
T: IGF2 but not H19 shows loss of imprinting in human glioma.
Cancer Res 1996, 56:5356–5359

217. Takeda S, Kondo M, Kumada T, Koshikawa T, Ueda R, Nishio M,
Osada H, Suzuki H, Nagatake M, Washimi O, Takagi K, Takahashi T,
Nakao A: Allelic-expression imbalance of the insulin-like growth
factor 2 gene in hepatocellular carcinoma and underlying disease.
Oncogene 1996, 12:1589–1592

218. Kim KS, Lee YI: Biallelic expression of the H19 and IGF2 genes in
hepatocellular carcinoma. Cancer Lett 1997, 119:143–148

219. Wu HK, Weksberg R, Minden MD, Squire JA: Loss of imprinting of
human insulin-like growth factor II gene, IGF2, in acute myeloid
leukemia. Biochem Biophys Res Commun 1997, 231:466–472

220. Randhawa GS, Cui H, Barletta JA, Strichman-Almashanu LZ, Talpaz
M, Kantarjian H, Deisseroth AB, Champlin RC, Feinberg AP: Loss of
imprinting in disease progression in chronic myelogenous leukemia.
Blood 1998, 91:3144–3147

221. Suzuki H, Veda R, Takahashi T: Altered imprinting in lung cancer.
Nat Genet 1994, 6:332–333

222. Kondo M, Suzuki H, Ueda R, Osada H, Takagi K, Takahashi T:

646 Falls et al
AJP March 1999, Vol. 154, No. 3



Frequent loss of imprinting of the H19 gene is often associated with
its overexpression in human lung cancers. Oncogene 1995, 10:
1193–1198

223. Mai M, Yokomizo A, Qian C, Yang P, Tindall DJ, Smith DI, Liu W:
Activation of p73 silent allele in lung cancer. Cancer Res 1998,
58:2347–2349

224. Albrecht S, Waha A, Koch A, Kraus JA, Goodyer CG, Pietsch T:
Variable imprinting of H19 and IGF2 in fetal cerebellum and medul-
loblastoma. J Neuropathol Exp Neurol 1996, 55:1270–1276

225. Hodzic D, Delacroix L, Willemsen P, Bensbaho K, Collette J, Broux
R, Lefebvre P, Legros JJ, Grooteclaes M, Winkler R: Characteriza-
tion of the IGF system and analysis of the possible molecular mech-
anisms leading to IGF-II overexpression in a mesothelioma. Horm
Metab Res 1997, 29:549–555

226. Yaginuma Y, Nishiwaki K, Kitamura S, Hayashi H, Sengoku K, Ish-

ikawa M: Relaxation of insulin-like growth factor-II gene imprinting in
human gynecologic tumors. Oncology 1997, 54:502–507

227. Jarrard DF, Bussemakers MJG, Bova GS, Isaacs WB: Regional loss
of imprinting of the insulin-like growth factor II gene occurs in human
prostate tissues. Clin Cancer Res 1995, 1:1471–1478

228. Nonomura N, Nishimura K, Miki T, Kanno N, Kojima Y, Yokoyama M,
Okuyama A: Loss of imprinting of the insulin-like growth factor II
gene in renal cell carcinoma. Cancer Res 1997, 57:2575–2577

229. van Gurp RJ, Oosterhuis JW, Kalscheuer V, Mariman EC, Looijenga
LH: Biallelic expression of the H19 and IGF2 genes in human tes-
ticular germ cell tumors. J Natl Cancer Inst 1994, 86:1070–1075

230. Vu TH, Yballe C, Boonyanit S, Hoffman AR: Insulin-like growth factor
II in uterine smooth-muscle tumors: maintenance of genomic im-
printing in leiomyomata and loss of imprinting in leiomyosarcomata.
J Clin Endocrinol Metab 1995, 80:1670–1676

Genomic Imprinting 647
AJP March 1999, Vol. 154, No. 3


	Genomic Imprinting: Implications for Human Disease
	Background
	Imprinting of Specific Genes
	Characteristics of Imprinted Genes
	Imprinting in Genetic Diseases
	Beckwith-Wiedemann Syndrome
	Prader-Willi and Angelman Syndromes

	Imprinting in Brain and Behavior Development
	Imprinting in Human Cancer
	References


