
Optimization using GNU Octave

M. P. Gururajan

January-May, 2015

Copyright c© 2015, M P Gururajan. Permission is granted to
copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no In-
variant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled “GNU Free
Documentation License”.

1

GNU Octave for optimization

GNU Octave is a high-level interactive language; it is a free software and is
used primarily for numerical computations and plotting.

In this tutorial, we show examples of optimization problems solved using GNU

Octave. The problems solved here are taken from the optimization textbook
of S S Rao [1] (unless stated otherwise).

1 Linear programming

The function glpk is used to solve Linear Programming (LP) problems of
the type

min cTx

subject to the linear constraints

Ax = b where x ≥ 0 and its variations, namely, maximize instead of min-
imize, and inequality constraints or mixed constraints instead of equality
constraints.

We now show the octave scripts that use the function glpk to solve some LP
problems.

1.1 Problem 1

This is the solved problem 3.4 in [1].

Maximize F = x1 + 2x2 + x3

subject to

2x1 + x2 − x3 ≤ 2

−2x1 + x2 − 5x3 ≥ −6

4x1 + x2 + x3 ≤ 6

xi ≥ 0, i = 1, 2, 3

The following script solves the problem.

This is the octave script to solve the (solved) problem 3.4 of S S Rao.

2

Preamble

clear all

clf

The first part: definition of the problem

Cost coefficients

c = [1,2,1]’;

Matrix of constraint coefficients

A = [2,1,-1; -2,1,-5;4,1,1];

The right hand side of constraints

b = [2,-6,6]’;

Lower bound for the design variables

lb = [0,0,0]’;

Upper bound for the design variables

ub = [];

Constraint type: U and L indicate inequalities with upper and lower bound

respectively

ctype = "ULU"

Variable type: C is for continuous

vartype = "CCC";

Sense: if 1, it is minimization; if -1, it is maximization

s = -1;

The second part: parameters for computation

Level of messages ourput by solver. 3 is full output. Default is 1.

param.msglev = 3;

The limit on number of simplex iterations

param.itlim = 10;

The third part: Optimization

glpk function is the one that solves the Linear Programming (LP) problem.

[xmin, fmin, status, extra] = glpk(c,A,b,lb,ub,ctype,vartype,s,param);

The fourth part: Output the solution

3

xmin

fmin

status

extra

This problem has an optimal solution and the solution returned by GNU

Octave is the same as that obtained using calculation by hand.

...

OPTIMAL LP SOLUTION FOUND

...

xmin =

0

4

2

fmin = 10

1.2 Problem 2

This is the solved problem 3.5 in [1].

Minimize f = −3x1 − 2x2

subject to

2x1 − x2 ≤ 1

3x1 − 2x2 ≤ 6

4

xi ≥ 0, i = 1, 2

The following script solves the problem.

This is the octave script to solve the (solved) problem 3.5 of S S Rao.

Preamble

clear all

clf

The first part: definition of the problem

Cost coefficients

c = [-3,-2]’;

Matrix of constraint coefficients

A = [1,-1; 3,-2];

The right hand side of constraints

b = [1,6]’;

Lower bound for the design variables

lb = [0,0]’;

Upper bound for the design variables

ub = [];

Constraint type: U indicates that these are inequalities with upper bound

ctype = "UU"

Variable type: C is for continuous

vartype = "CC";

Sense: if 1, it is minimization; if -1, it is maximization

s = 1;

The second part: parameters for computation

Level of messages ourput by solver. 3 is full output. Default is 1.

param.msglev = 3;

The limit on number of simplex iterations

param.itlim = 10;

The third part: Optimization

5

glpk function is the one that solves the Linear Programming (LP) problem.

[xmin, fmin, status, extra] = glpk(c,A,b,lb,ub,ctype,vartype,s,param);

The fourth part: Output the solution

xmin

fmin

status

extra

This problem has an unbounded solution and GNU Octave returns the same
information.

...

LP HAS UNBOUNDED PRIMAL SOLUTION

...

1.3 Problem 3

This is the solved problem 3.6 in [1].

Minimize f = −40x1 − 100x2

subject to

10x1 + 5x2 ≤ 2500

4x1 + 10x2 ≤ 2000

2x1 + 3x2 ≤ 900

xi ≥ 0, i = 1, 2

The following script solves the problem.

This is the octave script to solve the (solved) problem 3.6 of S S Rao.

Preamble

6

clear all

clf

The first part: definition of the problem

Cost coefficients

c = [-40,-100]’;

Matrix of constraint coefficients

A = [10,5; 4,10; 2,3];

The right hand side of constraints

b = [2500,2000,900]’;

Lower bound for the design variables

lb = [0,0]’;

Upper bound for the design variables

ub = [];

Constraint type: U indicates that these are inequalities with upper bound

ctype = "UUU"

Variable type: C is for continuous

vartype = "CC";

Sense: if 1, it is minimization; if -1, it is maximization

s = 1;

The second part: parameters for computation

Level of messages ourput by solver. 3 is full output. Default is 1.

param.msglev = 3;

The limit on number of simplex iterations

param.itlim = 10;

The third part: Optimization

glpk function is the one that solves the Linear Programming (LP) problem.

[xmin, fmin, status, extra] = glpk(c,A,b,lb,ub,ctype,vartype,s,param);

The fourth part: Output the solution

xmin

7

fmin

status

extra

As shown in [1], this problem has infinite number of solutions. However, GNU
Octave only gives one of the solutions and does not indicate that there are
infinite number of solutions.

OPTIMAL LP SOLUTION FOUND

ctype = UUU

xmin =

0

200

fmin = -20000

status = 0

1.4 Two-phase primal simplex method

Even though it had not been mentioned explicitly, gplk, when invoked, car-
ries out two-phase primal simplex method. As an example, consider the
solved example 3.7 in [1].

Minimize f = 2x1 + 3x2 + 2x3 − x4 + x5

subject to the constraints

3x1 − 3x2 + 4x3 + 2x4 − x5 = 0

x1 + x2 + x3 + 3x4 + x5 = 2

xi ≥ 0, i = 1, 2, 3, 4, 5

The following script utilises two phase primal simplex method to solve the
same.

8

This is the octave script to solve the (solved) problem 3.7 of S S Rao.

Preamble

clear all

clf

The first part: definition of the problem

Cost coefficients

c = [2,3,2,-1,1]’;

Matrix of constraint coefficients

A = [3,-3,4,2,-1; 1,1,1,3,1];

The right hand side of constraints

b = [0,2]’;

Lower bound for the design variables

lb = [0,0,0,0,0]’;

Upper bound for the design variables

ub = [];

Constraint type: S indicates equality constraint

ctype = "SS"

Variable type: C is for continuous

vartype = "CCCCC";

Sense: if 1, it is minimization; if -1, it is maximization

s = 1;

The second part: parameters for computation

Level of messages ourput by solver. 3 is full output. Default is 1.

param.msglev = 3;

The limit on number of simplex iterations

param.itlim = 10;

The method to be used; 1 stands for two phase primal simplex (and

is the default)

param.dual = 1;

The third part: Optimization

glpk function is the one that solves the Linear Programming (LP) problem.

9

[xmin, fmin, status, extra] = glpk(c,A,b,lb,ub,ctype,vartype,s,param);

The fourth part: Output the solution

xmin

fmin

status

extra

The solution returned by GNU Octave is the same as that obtained using
calculation by hand.

...

OPTIMAL LP SOLUTION FOUND

ctype = SS

xmin =

0.00000

0.00000

0.00000

0.40000

0.80000

fmin = 0.40000

status = 0

...

1.5 Dual simplex method

Consider the following solved problem (4.1) in [1].

Minimize f = 20x1 + 16x2

subject to

10

x1 ≥ 2.5

x2 ≥ 6

2x1 + x2 ≥ 17

x1 + x2 ≥ 12

xi ≥ 0, i = 1, 2

This problem can be solved using the dual simplex method as follows.

This is the octave script to solve the (solved) problem 4.3 of S S Rao.

Preamble

clear all

clf

The first part: definition of the problem

Cost coefficients

c = [20,16]’;

Matrix of constraint coefficients

A = [1,0; 0,1; 2,1; 1,1];

The right hand side of constraints

b = [2.5,6,17,12]’;

Lower bound for the design variables

lb = [0,0]’;

Upper bound for the design variables

ub = [];

Constraint type: S indicates equality constraint

ctype = "LLLL"

Variable type: C is for continuous

vartype = "CC";

Sense: if 1, it is minimization; if -1, it is maximization

s = 1;

The second part: parameters for computation

Level of messages ourput by solver. 3 is full output. Default is 1.

param.msglev = 3;

11

The limit on number of simplex iterations

param.itlim = 10;

The simplex method to be used; 3 stands for two phase dual

simplex. It is also possible to use 2; then

two phase dual simplex is used; if it fails,

the program goes back to dual phase

primal simplex

param.dual = 3;

The third part: Optimization

glpk function is the one that solves the Linear Programming (LP) problem.

[xmin, fmin, status, extra] = glpk(c,A,b,lb,ub,ctype,vartype,s,param);

The fourth part: Output the solution

xmin

fmin

status

extra

The script returns the correct answer:

...

OPTIMAL LP SOLUTION FOUND

ctype = LLLL

xmin =

5

7

fmin = 212

status = 0

...

12

2 Integer programming

Consider the following problem:

Maximize f(X) = 5x1 + 6x2 + 3x3 + 2x4 + 8x5

subject to the following constraints:

4x1 + 8x2 + 2x3 + 5x4 + 3x5 ≤ 2000

9x1 + 7x2 + 4x3 + 3x4 + 8x5 ≤ 2500

xi ≥ 0, i = 1, 2, 3, 4, 5

Here, it is known that the variables xi represent an article of type i; the cost
function is the cargo load consisting of the 5 different types of articles which
needs to be maximized – see the solved problem 1.7 from [1]. Hence, in this
optimization problem, the variables are to be constrained to be integers. The
following script does that:

This is the octave script to solve the (solved) problem 1.7 of S S Rao.

Preamble

clear all

clf

The first part: definition of the problem

Cost coefficients

c = [5,6,3,2,8]’;

Matrix of constraint coefficients

A = [4,8,2,5,3; 9,7,4,3,8];

The right hand side of constraints

b = [2000,2500]’;

Lower bound for the design variables

lb = [0,0,0,0,0]’;

Upper bound for the design variables

ub = [];

Constraint type: U indicates inequality constraint with upper bound

ctype = "UU"

Variable type: I is for integer type

vartype = "IIIII";

13

Sense: if 1, it is minimization; if -1, it is maximization

s = -1;

The second part: parameters for computation

Level of messages ourput by solver. 3 is full output. Default is 1.

param.msglev = 3;

The limit on number of simplex iterations

param.itlim = 10;

The simplex method to be used; 3 stands for two phase dual

simplex. It is also possible to use 2; then

two phase dual simplex is used; if it fails,

the program goes back to dual phase

primal simplex

param.dual = 1;

The third part: Optimization

glpk function is the one that solves the Linear Programming (LP) problem.

[xmin, fmin, status, extra] = glpk(c,A,b,lb,ub,ctype,vartype,s,param);

The fourth part: Output the solution

xmin

fmin

status

extra

There is a optimum solution for this LP problem and GNU Octave returns
the solution:

...

INTEGER OPTIMAL SOLUTION FOUND

ctype = UU

14

xmin =

0

0

1

0

312

fmin = 2499

...

3 Interior point method

Consider the following optimization problem:

Minimize f = 2x1 + x2 − x3

subject to

x2 − x3 = 0

x1 + x2 + x3 = 1

xi ≥ 0, i = 1, 2, 3

This problem can be solved using Karmakar’s interior point method – see
the solved problem 4.13 of [1]. Here is the GNU Octave script to solve this
porblem:

This is the octave script to solve the (solved) problem 4.13 of S S Rao.

Preamble

clear all

clf

The first part: definition of the problem

Cost coefficients

c = [2,1,-1]’;

Matrix of constraint coefficients

15

A = [0,1,-1; 1,1,1];

The right hand side of constraints

b = [0,1]’;

Lower bound for the design variables

lb = [0,0,0]’;

Upper bound for the design variables

ub = [];

Constraint type: S indicates equality constraint

ctype = "SS"

Variable type: C is for continuous type

vartype = "CCC";

Sense: if 1, it is minimization; if -1, it is maximization

s = 1;

The second part: parameters for computation

Level of messages ourput by solver. 3 is full output. Default is 1.

param.msglev = 3;

The limit on number of simplex iterations

param.itlim = 100;

The default lpsolver is the revised simplex method (=1); however,

for the interior point method, this variable takes a value of 2.

param.lpsolver = 2;

The third part: Optimization

glpk function is the one that solves the Linear Programming (LP) problem.

[xmin, fmin, status, extra] = glpk(c,A,b,lb,ub,ctype,vartype,s,param);

The fourth part: Output the solution

xmin

fmin

status

extra

16

The solution obtained using the given script is as follows:

...

Guessing initial point...

Optimization begins...

0: obj = 5.500000000e+00; rpi = 3.6e+00; rdi = 7.5e-01; gap = 7.4e-01

1: obj = 7.582591964e-01; rpi = 3.6e-01; rdi = 7.5e-02; gap = 6.9e-01

2: obj = 1.324533094e-01; rpi = 3.6e-02; rdi = 7.5e-03; gap = 2.0e-01

3: obj = 1.360289259e-02; rpi = 3.6e-03; rdi = 7.7e-04; gap = 2.2e-02

4: obj = 1.360646460e-03; rpi = 3.6e-04; rdi = 7.7e-05; gap = 2.2e-03

5: obj = 1.360650025e-04; rpi = 3.6e-05; rdi = 7.7e-06; gap = 2.2e-04

6: obj = 1.360650061e-05; rpi = 3.6e-06; rdi = 7.7e-07; gap = 2.2e-05

7: obj = 1.360650061e-06; rpi = 3.6e-07; rdi = 7.7e-08; gap = 2.2e-06

8: obj = 1.360650061e-07; rpi = 3.6e-08; rdi = 7.7e-09; gap = 2.2e-07

9: obj = 1.360650061e-08; rpi = 3.6e-09; rdi = 7.7e-10; gap = 2.2e-08

10: obj = 1.360650061e-09; rpi = 3.6e-10; rdi = 7.7e-11; gap = 2.2e-09

OPTIMAL SOLUTION FOUND

ctype = SS

xmin =

6.8033e-10

5.0000e-01

5.0000e-01

fmin = 1.3607e-09

...

4 Quadratic programming

Consider the following optimization problem: Minimize f = −4x1 + x21 −
2x1x2 + 2x22

subject to

2x1 + x2 ≤ 6

x1 − 4x2 ≤ 0

x1, x2 ≥ 0

17

This is a Quadratic Programming (QP) problem – see the solved problem
4.14 of [1].

This problem can be stated in the following fashion:

Minimize f = 0.5x′ ? H ? x+ x′ ? q

subject to A ? x ≥ b and x ≥ 0.

In this problem, this gives, H = (2,−2;−2, 4); q = (−4, 0); A = (2, 1; 1,−4);
and b = (6, 0).

In GNU Octave, the command for solving the quadratic programming prob-
lem is qp and it solves the following problem:

Minimize 0.5xTHx+ xT q

subject to

Ax = b

lb ≤ x ≤ ub

Alb ≤ Ainx ≤ Aub

Thus the given QP can be solved using the following GNU Octave script.

This is the octave script to solve the (solved) problem 4.14 of S S Rao.

Preamble

clear all

clf

The first part: definition of the problem

Cost coefficients

H = [2,-2; -2, 4];

q = [-4,0]’;

Constraints

A = [];

b = [];

Matrix of constraint coefficients

A_in = [2,1; 1,-4];

The right hand side of constraints

A_ub = [6,0]’;

18

A_lb = [];

Lower bound for the design variables

lb = [0,0]’;

Upper bound for the design variables

ub = [];

Initial point

x0 =[];

The second part: Optimization

qp function is the one that solves the Quadratic Programming (QP) problem.

[xmin, fmin, info, lambda] = qp(x0,H,q,A,b,lb,ub,A_lb,A_in,A_ub)

The solution returned by the script is as follows:

xmin =

2.4615

1.0769

fmin = -6.7692

info =

scalar structure containing the fields:

solveiter = 6

info = 0

lambda =

0.00000

0.00000

0.61538

0.00000

19

5 Nonlinear programming: one-dimensional

minimization methods

There are many numerical methods of finding the zeros of a given non-linear
polynomial. In this section, we give some GNU Octave scripts that implement
elimination, interpolation and direct root methods.

5.1 Elimination methods

Consider the function f(λ) = λ(λ − 1.5). We want to find the λ? which
minimizes the function f(λ). Here are the scripts that will solve the problem
using unrestricted search, unrestricted search with accelerated step size, ex-
haustive search, dichotomous search, and interval halving method. All these
are elimination methods.

5.1.1 Unrestricted search

function y = f(x)

y = x*(x-1.5);

endfunction

x = input ("Give the starting point: ");

ss = input ("Give the initial step-size: ");

if(f(x+ss) > f(x))

ss = -ss;

endif

while (f(x)-f(x+ss) > 1e-8)

x = x+ss;

endwhile

disp("The minimum is bracketed between: "), disp(x-ss)

disp("and: "), disp(x+ss)

disp("The f(x) values at these two points are: "),disp(f(x-ss))

disp("and: "),disp(f(x+ss))

20

disp("The final step-size is: "),disp(ss)

5.1.2 Unrestricted search with accelerated step size

function y = f(x)

y = x*(x-1.5);

endfunction

x = input ("Give the starting point: ");

ss = input ("Give the initial step-size: ");

if(f(x+ss) > f(x))

ss = -ss;

endif

while (f(x)-f(x+ss) > 1e-8)

x = x+ss;

ss = 2*ss;

endwhile

disp("The minimum is bracketed between: "), disp(x-0.5*ss)

disp("and: "), disp(x+ss)

disp("The f(x) values at these two points are: "),disp(f(x-0.5*ss))

disp("and: "),disp(f(x+ss))

disp("The final step-size is: "),disp(ss)

5.1.3 Exhaustive search

function y = f(x)

y = x*(x-1.5);

endfunction

x0 = input ("Give the starting point: ");

x1 = input ("Give the final point: ");

L = x1-x0;

epsilon = input ("Give the required accuracy: ");

n = (2*L/epsilon) -1.;

ss = L/n;

21

x(1) = x0;

F(1) = f(x0);

for i=1:n

x(i+1) = x0+i*ss;

endfor

for i=1:n

F(i+1) = f(x(i+1));

endfor

for i=1:n

if ((F(i+1) - F(i)) > 0)

disp("The interval lies between "),disp(x(i))

disp("and "),disp(x(i+1))

disp("The function values are "),disp(f(x(i)))

disp("and "),disp(f(x(i+1)))

break

endif

endfor

plot(x,F,"s")

5.1.4 Dichotomous search

function y = f(x)

y = x*(x-1.5);

endfunction

x0 = input ("Give the starting point: ");

x1 = input ("Give the final point: ");

L = x1-x0;

epsilon = input ("Give the required accuracy: ");

delta = 0.01*epsilon;

a = delta/L;

n = int8(2*log2((1-a)/(2.*epsilon-a)));

if(mod(n,2)==1) n = n+1;

22

else n;

endif

disp("The number of iterations: "),disp(n)

for i=1:n

L = x1 - x0;

a = x0+0.5*L - 0.5*delta;

b = x0+0.5*L + 0.5*delta;

if (f(a) < f(b))

x1 = a;

else

x0 = a;

endif

endfor

disp("The optimum point: "),disp(0.5*(x0+x1))

disp("The function value at optimum point: ")

disp(0.5*(f(x0)+f(x1)))

5.1.5 Interval halving method

function y = f(x)

y = x*(x-1.5);

endfunction

x0 = input ("Give the starting point: ");

x1 = input ("Give the final point: ");

epsilon = input ("Give the required accuracy: ");

a = 2*epsilon;

L = x1-x0;

n = int8(2*(1.0+log2((L/a))));

if(mod(n,2)==0) n = n+1;

else n;

endif

23

disp("The number of iterations: "),disp(n)

for i=1:n

L = x1-x0;

a = x0+0.25*L;

b = x0+0.5*L;

c = x0+0.75*L;

if ((f(c)>f(b)) && (f(b)>f(a)))

x1 = b;

elseif((f(c)<f(b)) && (f(b)<f(a)))

x0 = b;

else

x0 = a;

x1 = c;

endif

endfor

disp("The optimum point: "),disp(0.5*(x0+x1))

disp("The function value at optimum point: ")

disp(0.5*(f(x0)+f(x1)))

5.1.6 fminbnd and golden section method

To find a minimum point of a univariate function.

The GNU Octave function fminbnd internally uses a Golden Section search
strategy and is used to find the minimum point of a univariate function by
restricting the search to an interval bound by, say a and b. The syntax for
calling this function is as follows: fminbnd (fun, a, b, options). Here is
an example.

f = inline("x*(x-1.5)")

fminbnd(f,0,1,optimset("TolX",0.1))

24

5.2 Interpolation methods

In interpolation methods, the function for which minima is to be found is
approximated by quadratic or cubic polynomials near the minima in such a
way that the minima of the approximating polynomial coincide with those
of the function.

5.2.1 Quadratic interpolation method

Here is the script that identifies the zeros of the function f(λ) = λ5 − 5λ3 −
20λ+ 5 using the quadratic interpolation method. Note that the script also
plots the approximating function as the iterations proceed (for the sake of
understanding the method better).

function y = f(x)

y = x^5 - 5* x^3 - 20*x + 5;

endfunction

clf

t = input ("Initial step size: ");

eps0 = input ("Accuracy: ");

A = 0;

fA = f(0);

f1 = f(t);

f2 = f1;

clf

alpha = 1.0:0.01:3.0;

hold on

while(f2 == f1)

if(f1 > fA)

fC = f1;

C = t;

fB = f(0.5*t);

25

B = 0.5*t;

lambdastar = (4*fB-3*fA-fC)*0.5*t/(4*fB-2*fC-2*fA);

elseif(f1 <= fA)

fB = f1;

B = t;

f2 = f(2*t);

if(f2 > f1)

fC = f2;

C = 2*t;

lambdastar = (4*fB-3*fA-fC)*t/(4*fB-2*fC-2*fA);

else

f1=f2;

t = 2*t;

endif

endif

endwhile

a = fA;

b = (4*fB-3*fA-fC)/(2*t);

c = (fC+fA-2*fB)/(2*t*t);

h = a + b*lambdastar + c*lambdastar*lambdastar;

fstar = f(lambdastar);

epsilon = abs((h-fstar)/fstar)

X = [A,B,C];

Y = [fA,fB,fC];

p = polyfit(X,Y,2);

YY = polyval(p,alpha);

plot(alpha,YY,’rs’)

while(epsilon > eps0)

if(lambdastar > B)

if(fstar < fB)

A = B;

B = lambdastar;

26

C = C;

else

A = A;

B = B;

C = lambdastar;

endif

else

if(fstar < fB)

A = A;

B = lambdastar;

C = B;

else

A = lambdastar;

B = B;

C = C;

endif

endif

fA = f(A);

fB = f(B);

fC = f(C);

lambdastar = (fA*(B^2-C^2) + fB*(C^2-A^2) + fC*(A^2-B^2))/(2*(fA*(B-C)+fB*(C-A)+fC*(A-B)));

a = fA;

b = (4*fB-3*fA-fC)/(2*t);

c = (fC+fA-2*fB)/(2*t*t);

h = a + b*lambdastar + c*lambdastar*lambdastar;

fstar = f(lambdastar);

epsilon = abs((h-fstar)/fstar)

X = [A,B,C];

Y = [fA,fB,fC];

p = polyfit(X,Y,2);

YY = polyval(p,alpha);

#plot(alpha,YY,’go’)

27

endwhile

disp("The lambda star is: "),disp(lambdastar)

plot(alpha,alpha.^5 - 5.* alpha.^3 - 20.*alpha .+ 5)

X = [A,B,C];

Y = [fA,fB,fC];

p = polyfit(X,Y,2);

YY = polyval(p,alpha);

plot(alpha,YY,’k*’)

5.3 Direct root methods

Direct root methods try to get the minima of the given function using the
fact that the necessary condition for minima is that the first derivative is
zero at the point. Hence, by finding the zeros of the first derivative, one
can obtain the minima point. In this section, we show the GNU Octave
implementations of three direct root methods, namely Newton(-Raphson),
quasi-Newton and secant methods to find the minimum of the function

0.65 − 0.75

(1 + λ2)
− 0.65λ tan−1

(
1

λ

)

5.3.1 Newton(-Raphson) method

function y = g(x)

y = 1.5*x/(1+x^2)^2 + 0.65*x/(1+x^2)-0.65*atan(1/x);

endfunction

function z = gp(x)

z = (2.8-3.2*x^2)/(1+x^2)^3;

endfunction

x0 = input ("Give the starting point: ");

epsilon = input("Give the accuracy: ");

28

i=0

while(abs(g(x0)) > epsilon)

x1 = x0 - (g(x0)/gp(x0));

x0=x1;

i=i+1

endwhile

disp("The solution is: "),disp(x0)

5.3.2 Quasi-Newton method

function y = f(x)

y = 0.65 - 0.75/(1+x^2)-0.65*x*atan(1/x);

endfunction

x0 = input ("Give the starting point: ");

dx = input ("Give the step size: ");

epsilon = input("Give the accuracy: ");

deps = 1000.0;

i=0

while(deps > epsilon)

f1 = f(x0);

fp = f(x0+dx);

fm = f(x0-dx);

x1 = x0 - (dx*(fp-fm))/(2.*(fp-2*f1+fm));

x0=x1;

deps = abs((fp-fm)/(2*dx));

i=i+1

endwhile

disp("The solution is: "),disp(x0)

5.3.3 Secant method

function y = g(x)

y = 1.5*x/(1+x^2)^2 + 0.65*x/(1+x^2)-0.65*atan(1/x);

29

endfunction

t0 = input ("Give the initial step length: ");

epsilon = input("Give the accuracy: ");

L1 = 0+eps;

A = L1;

fpA = g(A);

i=1;

if(g(t0) < 0)

L1 = t0;

A = L1;

fpA = g(A);

t0= 2*t0;

endif

B = t0;

fpB = g(B);

i = 1;

while(abs(g(L1)) >= epsilon)

L1 = A - fpA*(B-A)/(fpB-fpA);

if(g(L1) >= 0)

B = L1;

fpB = g(B);

else

A = L1;

fpA = g(L1);

endif

i=i+1;

endwhile

disp("The number of iterations: "),disp(i)

disp("The solution is: "),disp(L1)

30

6 Nonlinear programming: Unconstrained op-

timization techniques

Unconstrained minimization techniques are of two types: direct search meth-
ods (which do not involve derivatives) and descent methods (which involve
gradients (first-order methods) and gradients and Hessians (second-order
methods)).

6.1 Direct search method

6.1.1 Random walk method

more on

x1(1) = input("Give the first component of initial point :");

x1(2) = input("Give the second component of initial point:");

lambda = input("Give the step length:");

minlam = input("Give the minimum allowable step length:");

N = input("Maximum number of iterations:");

i=1;

f1 = f(x1);

while(lambda > minlam)

while(i<=N)

u = 2.*(0.5-rand(size(x1)));

if(norm(u) > 1) u = zeros(size(x1));

else

u = u./norm(u);

endif

x = x1+lambda*u;

f2 = f(x);

if(f2>f1) i = i+1;

else

x1=x;

f1 = f(x);

31

i=1;

endif

endwhile

lambda = 0.5*lambda;

i=1;

endwhile

display("The optimum point is:"),disp(x1)

display("The optimum value is:"),disp(f(x1))

fminsearch(@(x) x(1)-x(2)+ 2.*x(1)^2+ 2*x(1)*x(2) + x(2)^2 ,[-2,2])

fminunc(@(x) x(1)-x(2)+ 2.*x(1)^2+ 2*x(1)*x(2) + x(2)^2 ,[-2,2])

6.1.2 Univariate method

more on

function y = f(x,y)

y = x-y+2*x*x+2*x*y+y*y;

endfunction

ss = input ("Give the initial step-size: ");

epsilon = input ("Give the required accuracy: ");

a = ss;

b = ss;

x = 0;

y = 0;

x1 = x+ ss;

y1 = y+ ss;

i=0;

while(abs(f(x,y) - f(x1,y1)) > epsilon && i < 10000)

if(f(x+ss,y) > f(x,y))

ss = -ss;

endif

while (f(x,y)-f(x+ss,y) > 1.e-2*epsilon)

x = x+ss;

ss = 2*ss;

32

endwhile

if(f(x,y+a) > f(x,y))

a = -a;

endif

while (f(x,y)-f(x,y+a) > 1e-2*epsilon)

y = y+a;

a = 2*a;

endwhile

i = i+2;

ss = b;

a=b;

x1 = x + 0.5*b;

y1 = y + 0.5*b;

endwhile

disp("Number of iterations:"),disp(i)

disp("Optimum point:"),disp(x)

disp("and:"),disp(y)

disp("Minima:"),disp(f(x,y))

6.2 Scaling and contour plots

6.2.1 Script for scaling

A = [12,-6; -6,4];

B = [-1;-2];

[V,lambda] = eig(A);

Ab = V’*A*V;

S = zeros(size(Ab))

a = size(Ab);

for i=1:a(1)

S(i,i) = 1./sqrt(Ab(i,i));

endfor

T = V*S;

B’*T

0.5*T’*A*T

33

6.2.2 Script for plotting contours

f = @(x,y) 2.516561.*x-0.015907.*y+0.5.*x.*x+0.5.*y.*y;

ezcontour(f,[-25 25 -25 25])

print -djpg ScaledContour.jpg

g = @(x,y) 6.*x.*x-6.*x.*y+2.*y.*y-x-2.*y;

ezcontour(g,[-20 25 -20 25])

print -djpg UnScaledContour.jpg

The resultant contour plots are shown in Fig. 6.2.2 and Fig. 6.2.2.

34

6.3 Gradient methods

6.3.1 Cauchy method

function y = f(x)

y = x(1)-x(2) + 2*x(1)^2 + 2*x(1)*x(2)+x(2)^2;

endfunction

function yp = fp(x)

yp(1) = 1.0 +2*x(2) + 4*x(1);

yp(2) = -1.0 + 2*x(1) + 2*x(2);

endfunction

more on

x0(1) = input("Give the starting point: first component:");

x0(2) = input("Give the starting point: second component:");

i=1;

while(norm(fp(x0)) > 1.e-6)

S = -fp(x0);

ss = 0.01;

x1 = x0+ss*S;

while(ss > 1.e-12)

while((f(x0) - f(x1)) > 0)

x0 = x1;

x1 = x0+ss*S;

endwhile

x0 = x0-ss*S;

ss = 0.5*ss;

endwhile

x0=x1;

i=i+1;

endwhile

35

disp("Number of iterations:"),disp(i)

disp("Solution:"),disp(x0)

disp("Function value:"),disp(f(x0))

disp("Norm of fprime:"),disp(norm(fp(x0)))

6.3.2 Fletcher-Reeves method

function y = f(x)

y = x(1)-x(2) + 2*x(1)^2 + 2*x(1)*x(2)+x(2)^2;

endfunction

function yp = fp(x)

yp(1) = 1.0 +2*x(2) + 4*x(1);

yp(2) = -1.0 + 2*x(1) + 2*x(2);

endfunction

more on

x0(1) = input("Give the starting point: first component:");

x0(2) = input("Give the starting point: second component:");

i=1;

S0 = -fp(x0);

nfp0 = norm(S0);

ss = 0.01;

x1 = x0+ss*S0;

while(ss > 1.e-12)

while((f(x0) - f(x1)) > 0)

x0 = x1;

x1 = x0+ss*S0;

endwhile

x0 = x0-ss*S0;

ss = 0.5*ss;

36

endwhile

x0 = x1;

nfp1 = norm(fp(x0));

S1 = -fp(x1) + nfp1^2*S0/nfp0^2;

while(norm(fp(x0)) > 1.e-6)

S0 = S1;

nfp0 = norm(S0);

ss = 0.01;

x1 = x0+ss*S1;

while(ss > 1.e-12)

while((f(x0) - f(x1)) > 0)

x0 = x1;

x1 = x0+ss*S1;

endwhile

x0 = x0-ss*S1;

ss = 0.5*ss;

endwhile

x0=x1;

nfp1 = norm(fp(x0));

S1 = -fp(x1) + nfp1^2*S0/nfp0^2;

i=i+1;

endwhile

disp("Number of iterations:"),disp(i)

disp("Solution:"),disp(x0)

disp("Function value:"),disp(f(x0))

disp("Norm of fprime:"),disp(norm(fp(x0)))

6.3.3 Newton’s method

function y = f(x)

y = x(1,1)-x(2,1) + 2*x(1,1)^2 + 2*x(1,1)*x(2,1)+x(2,1)^2;

37

endfunction

function yp = fp(x)

yp(1,1) = 1.0 +2*x(2,1) + 4*x(1,1);

yp(2,1) = -1.0 + 2*x(1,1) + 2*x(2,1);

endfunction

function J = fpp(x)

J(1,1) = 4;

J(1,2) = 2;

J(2,1) = 2;

J(2,2) = 2;

endfunction

more on

x0(1,1) = input("Give the starting point: first component:");

x0(2,1) = input("Give the starting point: second component:");

i=1;

JJ = inv(fpp(x0))

while(norm(fp(x0)) > 1.e-7)

S = -JJ*fp(x0);

ss = 0.01;

x1 = x0+ss*S;

while(ss > 1.e-12)

while((f(x0) - f(x1)) > 0)

x0 = x1;

x1 = x0+ss*S;

endwhile

x0 = x0-ss*S;

ss = 0.5*ss;

endwhile

x0=x1;

38

i=i+1;

endwhile

disp("Number of iterations:"),disp(i)

disp("Solution:"),disp(x0)

disp("Function value:"),disp(f(x0))

disp("Norm of fprime:"),disp(norm(fp(x0)))

6.3.4 Marquardt method

function y = f(x)

y = x(1,1)-x(2,1) + 2*x(1,1)^2 + 2*x(1,1)*x(2,1)+x(2,1)^2;

endfunction

function yp = fp(x)

yp(1,1) = 1.0 +2*x(2,1) + 4*x(1,1);

yp(2,1) = -1.0 + 2*x(1,1) + 2*x(2,1);

endfunction

function J = fpp(x)

J(1,1) = 4;

J(1,2) = 2;

J(2,1) = 2;

J(2,2) = 2;

endfunction

more on

x0(1,1) = input("Give the starting point: first component:");

x0(2,1) = input("Give the starting point: second component:");

i=1;

alpha1 = 10000;

c1 = 0.25;

c2 = 2.0;

epsilon = 1.0e-12;

39

JJ = fpp(x0);

f0 = f(x0);

while(norm(fp(x0)) > epsilon)

x1 = x0 - inv(JJ+alpha1*eye(size(JJ)))*fp(x0);

f1 = f(x1);

if(f1 < f0)

alpha1 = c1*alpha1;

i=i+1;

else

alpha1 = c2*alpha1;

i=i+1;

endif

x0 = x1;

f0 = f(x0);

endwhile

disp("Number of iterations:"),disp(i)

disp("Solution:"),disp(x0)

disp("Function value:"),disp(f(x0))

disp("Norm of fprime:"),disp(norm(fp(x0)))

6.4 fminsearch and fminunc

The GNU octave commands fminsearch and fminunc can also be used
for nonlinear optimization. While fminunc uses gradient search (BFGS),
fminsearch uses Nelder-Mead algorithm.

40

7 Nonlinear programming: constrained opti-

mization

Sequential quadratic programming can be used to solve nonlinear program-
ming problems with constraints. Here is an example:

function r = g (x)

r = [-0.6/x(1) - 0.3464/x(2) + 0.1;

-6.0+x(1);

-7.0+x(2)];

endfunction

function obj = f (x)

obj = 0.1*x(1) + 0.05773*x(2);

endfunction

x0 = [-1.0;1.0];

[x, obj, info, iter, nf, lambda] ...

= sqp (x0, @f, [], @g,0,100,1000,1.e-12)

The above script solves the following optimization problem (solved problem
7.5 of S S Rao [1]:

Minimize f(X) = 0.1x1 + 0.05773x2

subject to

g1(X) = 0.6
x1

+ 0.3464
x2

− 0.1 ≤ 0

g2(X) = 6 − x1 ≤ 0

g3(X) = 7 − x2 ≤ 0

8 Exercises

1. Write GNU Octave scripts to solve the following LP problem.

Maximize f = −2x1 − x2 + 5x3

41

subject to

x1 − 2x2 + x3 ≤ 8

3x1 − 2x2 ≥ −18

2x1 + x2 − 2x3 ≤ −4

xi ≥ 0, i = 1, 2, 3

2. Write GNU Octave scripts to solve the following LP problem.

Maximize f = x+ 2y

subject to

x− y ≥ −8

5x− y ≥ 0

x+ y ≥ 8

−x+ 6y ≥ 12

5x+ 2y ≤ 68

x ≤ 10

x ≥ 0, y ≥ 0

3. Write a GNU Octave script to take (a) the interval and (b) the required
number of iterations as inputs and identify the interval of uncertainty
using the Fibanocci method. The flowchart is given in p. 245 of S S
Rao [1].

4. Write a GNU Octave script to take the initial point X, the direction S
and initial step size t0 as inputs and implement the cubic interpolation
method of identifying the minimizing λ̃ for a given function (Example
5.11; p. 263 of S S Rao [1]). The flowchart is given in p. 262 of S S
Rao [1].

5. Consider the excess free energy in a regular solution model.

∆G = Ωx(1 − x) +RT [x log(x) + (1 − x) log (1 − x)]

Let us non-dimensionalise:

∆G

RT
=

Ω

RT
x(1 − x) + [x log(x) + (1 − x) log (1 − x)]

42

Let us assume some α = Ω/RT . α is an inverse temperature.

Let us call the non-dimensionalised free energy ∆G′ = ∆G/RT

Plot ∆G′ for three different α: namely 2.0, 3.0 4.0 and 5.0

From these plots, it is clear that at high temperatures (α < 2) there is
only one minimum for ∆G′). However, for lower temperatures (α > 2),
there are two minima – one to the left of composition 0.5 and the other
to the right. At any given temperature, if we identify these composi-
tions that minimize the free energy, then the plot of the composition as
a function of (normalised) temperature (1/alpha) is the phase diagram.
Write a GNU Octave script for obtaining such a phase diagram.

6. Implement Powells method using GNU Octave. The flow-chart for the
same is given on p.305 of S S Rao [1].

7. Implement DFP method using the algorithm given in pp. 333-334 of S
S Rao [1].

43

9 Solutions to selected problems

1. # This is the octave script to solve the (exercise) problem 3.1 of S S Rao.

Note that the exercise asks only to state the LP problem in standard form.

However, for doing the computations in Octave standard form is not

necessary.

Preamble

clear all

clf

The first part: definition of the problem

Cost coefficients

c = [-2,-1,5]’;

Matrix of constraint coefficients

A = [1,-2,1; 3,-2,0;2,1,-2];

The right hand side of constraints

b = [8,-18,-4]’;

Lower bound for the design variables

lb = [0,0,0]’;

Upper bound for the design variables

ub = [];

Constraint type: U and L indicate inequalities with upper and lower bound

respectively

ctype = "ULU"

Variable type: C is for continuous

vartype = "CCC";

Sense: if 1, it is minimization; if -1, it is maximization

s = -1;

The second part: parameters for computation

Level of messages ourput by solver. 3 is full output. Default is 1.

param.msglev = 3;

The limit on number of simplex iterations

param.itlim = 10;

44

The third part: Optimization

glpk function is the one that solves the Linear Programming (LP) problem.

[xmin, fmin, status, extra] = glpk(c,A,b,lb,ub,ctype,vartype,s,param);

The fourth part: Output the solution

xmin

fmin

status

extra

2. # This is the octave script to solve the (exercise) problem 3.16 of S S Rao.

Preamble

clear all

clf

The first part: definition of the problem

Cost coefficients

c = [1,2]’;

Matrix of constraint coefficients

A = [1,-1; 5,-1; 1,1;-1,6;5,2;1,0];

The right hand side of constraints

b = [-8,0,8,12,68,10]’;

Lower bound for the design variables

lb = [0,0]’;

Upper bound for the design variables

ub = [];

Constraint type: U and L indicate inequalities with upper and lower bound

respectively

ctype = "LLLLUU"

Variable type: C is for continuous

45

vartype = "CC";

Sense: if 1, it is minimization; if -1, it is maximization

s = -1;

The second part: parameters for computation

Level of messages ourput by solver. 3 is full output. Default is 1.

param.msglev = 3;

The limit on number of simplex iterations

param.itlim = 10;

The third part: Optimization

glpk function is the one that solves the Linear Programming (LP) problem.

[xmin, fmin, status, extra] = glpk(c,A,b,lb,ub,ctype,vartype,s,param);

The fourth part: Output the solution

xmin

fmin

status

extra

3. function y = G(x,a)

y = a.*x.*(1.-x) .+ x.*log(x) + (1.-x).*log(1.-x);

endfunction

clf

hold on;

x=0.0001:0.0001:0.9999;

a = 1.0;

for i=1:4

a = a+1;

plot(x,G(x,a));

46

endfor

print -djpg FreeEnergy.jpg

clf

a(1) = 2.0;

for i=1:400

c(i) = fminbnd(@(x) G(x,a(i)),0.0001,0.4999,optimset(’TolX’,1.e-12));

d(i) = fminbnd(@(x) G(x,a(i)),0.5001,0.9999,optimset(’TolX’,1.e-12));

a(i+1) = a(i) + 0.01;

endfor

for i=1:400

b(i) = a(i);

endfor

plot(c,1./b,’rs-’)

hold on

plot(d,1./b,’rs-’)

print -djpg RegSolPhDia.jpg

The figures generated by the script are as shown in Fig. 3 and 3.

47

48

References

[1] Engineering optimization: Theory and practice, S S Rao, New Age In-
ternational Publishers, Third enlarged edition, 2013.

49

