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1.1. ABSTRACT 

Among many factors affecting harvester productivity, operators´ skills and abilities 

are crucial for overall success of forest logging companies. Moreover, general 

knowledge about the time frame needed for a harvester operator to reach stable 

productivity is the main issue when planning production for a learning period. In this 

study twenty-five operators were assessed during their learning process, which 

resulted in different skill level development between them. Therefore, correlations 

were performed to establish whether it is possible to identify more productive 

operators during earlier stages of the learning process. Data used in this study was 

obtained from forest machines equipped with on board computers, created by 

StanForD guidelines. All observed productivities have been relativized by local 

models using species and volume per tree as dependent variables. According to the 

results, an average of 974,5 productive working hours are needed for an operator to 

reach a stable performance. Moreover, for the studied population, a correlation 

coefficient (R) of 0,87 was established between performance at already 100 

accumulated PWH with corresponding final performance. Hence, it can conclude, that 

operators with higher abilities to operate harvester machines can be spotted already in 

the initial phases of the learning process. This fact can potentially save time to forest 

machinery owners when selecting operators, which would furthermore result in an 

enhanced overall production. 

Keywords: Uruguay; learning curve; productivity; human influence; harvester 

operation; forest operator. 

 

 

 



 

 

1.2. INTRODUCTION 

In the recent history, forest operations in Uruguay had a significant increase due to 

large industrial investments mostly for cellulose propose, which have a constant need 

of wood supply. The annual wood flow for the mentioned industry, reaches around 9 

million cubic meters of round wood, which equals to around 64% of the total wood 

removal (MGAP DGF, 2018; Uruguay XXI, 2017). 

In order to fulfil this wood demand in Uruguay, the adopted technology in 

forest operations is mostly developed by Scandinavian countries under the logging cut-

to-length system. Olivera et al. (2016), stated that 60 % of the forest harvesting 

operations are as described, and harvester – forwarder scheme is widely used. 

  Lorenzo (2010), quoted that by the year 2008 (before the first large pulp mill 

started its operations in Uruguay), the total number of forest machines in the forestry 

sector was roughly one hundred. Currently, with information gathered for this study, 

the total number of forest machines working in the forest logging sector is around 350. 

Meaning that, following the forest industry development, the mechanization of forest 

operations in Uruguay has also grown dramatically during the last 10 years. 

Consequentially, there is a continuous demand for qualified operators to drive this 

growing number of machines.  

1.2.1. Harvester Productivity 

When assessing harvester productivity models, the traditional methodology has mostly 

been carried out using time and motion techniques, which is largely defined as time 

and work consuming (Purfürst, 2010; Strandgard et al., 2013). Moreover, this type of 



 

 

studies have a narrow scope since they are made for a small sample size and short time 

lapses. On the other hand, automatic data collection by on board computer (OBC), 

which is a standard equipment on almost every single grip harvester and forwarder, is 

a potentially efficient and cheaper way of collecting harvester performance data from 

larger number of harvesters and/or over longer time periods. Despite the fact that 

logging machines have been equipped with computers on board for already many 

years, the automated harvest data collection, received little attention to date. 

In order to handle same information between different type/brand of machines, 

OBC collects and stores data of operations regarding international guidelines known 

as Standard for Forest Machine Data and Communication (Arlinger et al., 2012; 

Räsänen & Sorsa, 2010; Skogforsk, 2015), abbreviated as StanForD. Strandgard et al. 

(2013), assessed productivity of harvester machines, comparing traditional techniques 

and OBC collected data. Among the outcomes, no significant difference has been 

found between different data collecting methodologies. 

Forest harvester machine productivity, is a very relevant aspect that must be 

addressed by every forest company, due to the fact that this type of technology requires 

large investments and operational costs (Bramucci & Seixas 2002, Akay et al. 2004). 

The same authors stated that many factors can influence the productivity of the 

harvester, among others: slopes, topography, volume per tree, species, volume per 

hectare are widely mentioned.  Kirk et al. (1997), described that operational 

productivity of a harvester machine has a strong correlation with the tree size: as 

volume per tree decreases, productivity (m3 per hour) also decreases.  



 

 

Productivity has been studied in Eucalyptus spp. plantations in the South 

America. The factors mostly addressed in those studies were effect of species and 

volume per tree. Among the results, regression models were obtained for different 

species and volume per tree was used as a dependent variable (Bramucci & Seixas 

2002; Olivera et al. 2016; da Silva 2012). It has also been concluded, that higher 

volume per tree results in a higher productivity (m3 per hour) of the harvester machine. 

Regarding different eucalyptus species, when they represent straighter, non-crooked 

stems and softer branches, higher productivity (m3 per hour) of harvesters can be 

expected. Furthermore, Olivera et. al. in 2016, also measured other aspects in the 

productivity such as slopes and shift (day-night) effects, however no significant 

differences have been observed in the studied scenario. On the other hand, there was 

significant differences in performances between operators, even though they had the 

same training programs.  

1.2.2. Human influence in productivity 

Due to the high capital investment required for mechanized logging systems, a skilled 

operator is an essential part of profitable and sustainable business plan. Since the unit 

cost (U$ m-3) is heavily influenced by the production rate, ability to learn new tasks 

quickly and efficiently, is crucial (Kirk et al., 1997). 

Experience and skills of an operator have been an interest of many scientists 

and authors (Gellerstedt, 2002; Häggström, 2015; Purfürst & Erler, 2011; Purfürst, 

2007; Westerberg & Shiriaev, 2013). Purfürst and Erler (2011), reported that at stand 

level, operators differ by a factor of 2.2 working at thinning operations in Germany. 

Furthermore, large productivity differences up to 40% has also been observed for 



 

 

different operators using the same harvester (Kärhä et al., 2004). 

The human influence is a hard and complex aspect to asses (Nurminen et al., 

2006) , but one of the outcomes that various authors mention is despite the variability 

between operators, experience is positively correlated with higher performance 

(Häggström, 2015; Purfürst, 2010). 

1.2.3. Learning Curve  

The learning curve can be defined as a relation between performance level and the 

experience of an operator (Purfürst, 2010). It can be expected that the productivity will 

increase with the higher level of experience of the operator. The replacement of an 

experienced operator by a new harvester operator can be estimated by a production 

loss of about 49,650 Euros (S. Gellerstedt et al., 2005); the reason for that is the time 

needed to reach potential productivity.  

Purfurst (2010), studied the learning curve of operators working with conifers 

in Germany among a variety of scenarios but mainly at thinning operations. From the 

mentioned study, it has been concluded that it takes around eight months for an 

operator to achieve a stable performance, although the variability among operators is 

high. In another study in Canada, it was described that the time span to reach an 

experienced level goes between 8 and 12 months (Calabrese, 2000). 

Learning curve length can also be addressed using number of productive or 

effective working hours. It has been found, that in order to achieve an experienced 

level operator, the amount of hours needed is between 1000 and 1500 working hours 

(Wagner, 2004). 



 

 

In Uruguay, there is a lack of information regarding learning process that an 

operator must go through when working with forest machines. Furthermore, similar 

sites of forest production can be found in Brazil and Chile, however there are no 

published studies of the harvester operators’ learning curves.  

1.2.4. Selecting harvester operators 

Selecting an operator is another important area requiring attention, however there are 

no established selection programs formalized in Uruguay. Potential losses as a result 

by selecting operators with low or inappropriate performance, could be extensive (Kirk 

et al., 1997). Therefore, formal selection and knowledge from the learning programs 

would improve the chances to employ only suitable candidates. In a competitive 

market, where efficiency in every process must be accomplished to assure the 

competitiveness on the long term, skilled operators are essential 

Pagnussat et. al. (2017), stated that skills and abilities of the operator are 

important, however behavioural profile has to be also considered to accomplish stable 

operators. The behavioural profile is defined as an individual’s natural predisposition 

for a particular kind of work. Furthermore, it was argued that to improve the efficiency 

of forest operations and increase productivity, it is crucial to hire workers with tacit 

knowledge or natural abilities as well as the right personality, combined with sources 

of motivation (Parise, 2005; Volodina et al., 2015). 

In regard to abovementioned, some questions arise: How long would it take for 

a new operator to reach an acceptable and stable production when driving a harvester 

machine? Is it possible to select potentially higher performance operator already in 



 

 

early learning phases? Hence, the objectives of this study are: a) Describe the learning 

curve of harvester operator in the Uruguayan scenario of pulp production and b) 

Measure correlations between initial performances of new operator and final 

performance after learning period. 

With this knowledge, forest companies would improve the ability to identify 

for how long production, and in turn the operation´s cash flow, are likely to be affected 

by new operators. Furthermore, it would enable them more accurate wood flow plan 

estimations from newly mechanized logging operations. In addition, the opportunity 

to identify skilled operators in the early stages of selection, could be an overall 

production enhancement for logging companies.  

1.3. MATERIALS AND METHODS 

For a period of three years, a database of 35 operators with no previous experience has 

been assessed, collecting every individual productivity over the time throughout their 

learning process. From those, 25 resulted with accurate information that was 

incorporated in this study. All operators have gone through the same agenda to operate 

directly a harvester machine, which included 50 hours of simulator led by harvester 

professional trainers and then 50 hours of operation in situ also escorted by trainers. 

During the simulation phase, future operators were subjectively evaluated by trainers 

regarding different aspects of the operation: tree approaching, felling technique, fork 

stems handliness, crane coordination, stump height, bucking position, prolixity of 

processed logs, among others. Furthermore, they were also given theoretical 

knowledge about forest operations. 



 

 

After the simulation phase operators were working directly on the machinery 

(harvesters). A fleet of 20 harvester provided the data for the whole study. All of them, 

were brand/model: PONSSE Ergo, crane type: PONSSE C44, and PONSSE H7 

harvester head was the most used one. Because all harvesters had the same technology, 

the effects added by different technologies were avoided. In addition, during the study, 

clear cut logging methodology was applied and fully debarked of 6,5 meters length 

logs were produced. 

All machines used, were equipped with OBC and control systems software 

OPTI 4G Ponsse version 4.728. Data has been processed since operator started 

working directly in a harvester until their performance showed to be stable. It has been 

recorded and stored according StanForD standards in defined drf, prd, stm files 

(Skogforsk, 2015). Among them, drf files were mostly used, which are specific for 

operational time monitoring and contain complete shift information of events during 

working hours, detailed in sub shifts. To reduce the influence of time when the 

machine was not productive, all production related times were included: processing, 

terrain travel and road travel; as shows in the figure 1. According to IUFRO (1995) 

partition of working time corresponds with “productive working time” (PWH). The 

computer was settled to record the sub shift classification within an interval of 3 

minutes, as it is the common setting for uruguayan loggers.  

 

Figure 1. Scheme of time decomposition during working shift, sub shift in drf files, highlighted the 

time considered for this study. Adapted from StanForD. 

During logging, operators were working in different forest stands, in the east 

processing terrain travel processing maintenance meal break processing road travel repair road travel processing

time shift schedulle

Productive Working Time (PWT)



 

 

and west of Uruguay, all of them Eucalyptus ssp. owned by the company Montes del 

Plata. Before attaining into any stands, the mentioned forest company, provided 

inventory data with information showed in table 1. 

Table 1. Detail of inventory information counted for every stand where the study was carried out. 

Variable Description 

Stand ID Identification number  

Year year of plantation 

Species Eucalyptus globulus ssp. globulus,  
Eucalyptus globulus ssp. maidennii,  
Eucalyptus grandis,  
Eucalyptus dunnii,  
Eulcalyptus viminalis 

Regime Regime of the forest:  

Dt.In. date when the inventory has been done 

Sup area of the stand in hectares 

age years of the stand 

N trees per hectare 

N>8 trees per hectare with commercial value (higher than 8 cm at DBH) 

DBH diameter at breath height (cm) 

HM Medium height of the trees (m) 

HD Dominant height (m) 

Va medium volume per tree (m3/tree) 

IMA Medium annual increment (m3/year/hectare) 

V mcs commercial volume per hectare 

VT total commercial volume of the stand 

E Inv Error of the inventory 

Group specie Aggrupation regarding specie and location: Glob_1, Glob_2, Maid_1, 

Gran_1. (Defined for this study) 

For the purpose of this study, every stand has been grouped in four categories 

according to Eucalyptus spp. species and location. Then, each group, was assigned by 

a corresponding productivity model (known by historic data of companies involved) 

with volume per tree as independent variable. Finally, those regression models were 

used to relativize each instant productivity of operators (observations) while they were 

accumulating working hours. Therefore,  



 

 

PR = PI / PE                                              (1)  

Where, PR is the relativized productivity or Performance, PI is the observed 

productivity in m3 PWH-1 or trees PWH-1 (observations), and PE is the expected 

productivity (m3 PWH-1 or trees PWH-1) according to known models and the matching 

inventory data.  

Then, considering PR as a dependent variable and Accumulated PWH (APWH) 

as independent variable, nonlinear models were carried out using InfoStat (2016) 

software to establish which model fit best. Therefore, general model as bellow: 

PR (f) = APWH                                      (2) 

 Assuming, that models for expected productivity (PE) are accurate and the 

sample of operators have a normal distribution, it is expected that the average 

coefficient of PR, when operators reach stable productivity, will be close to 1. 

1.3.1. Criteria for discarding data 

Some observations were discarded from the database. The criteria to limit the 

dismissed data is detailed as bellow:  

(1) Shifts that the report by operator showed issues with the operative system 

of the machine, in order to avoid data loaded when the machine could be 

recording wrong measurements, e.g.  sensors issues.  

(2) Shifts that a non-conventional assignment was required, e.g. road edge 

cuttings.  



 

 

(3) Observations with working time laps shorter than 15 minutes or less than 

20 processed trees, in order to avoid sub or over valuated data.  

1.3.2. General analysis 

To select which model fitted best, Akaike’s information criterion (AIC) at 0.01 

level of significance has been used to compare models. Therefore, the model with 

lowest AIC value is the most suitable to describe the learning curve. A stepwise 

process, of selecting the fit model for learning curve, has been done for each operator 

separately, and then, for all the operators together in order to obtain the general model.  

Afterwards, tests with the selected models were carried out, to confirm the 

accuracy. Hence, the fit model was checked for homoscedasticity and normality of 

errors, predicted values of the model and observations were used for linear regression 

to visualize distribution and to obtain parameters such as correlation with the selected 

model, among others. 

1.3.3. Individual analysis 

Other analyses were carried out for each operator. First, it was defined the amount of 

productive working hours needed to reach a stable performance individually. The 

learning curve, in general, shows significant increases in productivity over 

accumulated working hours, which due to the fluctuation of the data and the variability 

of all factors that influence productivity, does not fall again. For the strong variation 

of data and the fact that the curve becomes asymptotic, it is not possible to define the 

end of the learning phase in a purely mathematical way. Therefore, the same approach 

described by Purfurst (2010), was used to determine the end of the learning: when the 

curve shows to reach a stable level and has been recorded the first large maximum, 



 

 

combining visual and mathematical properties.  

Then, for each individual operator, the average performance value at every 50-

accumulated productive working hours and corresponding final performance has been 

estimated. Finally, in order to propose other ways of measuring duration of the learning 

process, it was defined for each operator the required amount of days, processed stems 

and volume to reach stable productivity.   

1.3.4. Correlations 

All information has been summarized by initial performance (Pi), every 50-

accumulated productive working hours (P50, P100, P150, P200, etc.) and final 

performance (Pf). This information was settled to assess correlations between 

performances at initial stages of the learning process with final performance. Since it 

is not possible to make repetitions for each operator at different moments of APWH, 

Spearman coefficient was carried out to estimate correlations. Furthermore, Principal 

Component Analysis was used to evaluate association among different groups of 

variables.  

To accomplish the proposed objectives, during this three-year period of 

collecting information, it has been gattered a database of 1.634.217 trees, or 337.440 

cubic meters of wood, that has been processed. 

1.4. RESULTS 

1.4.1. General model 

A general model of the learning curve was established with the observations of 25 

operators during their learning process. The best fitted model corresponds to a 



 

 

Monomolecular model, meaning that productivity starts at the lowest level, then rises 

at decreasing rate over time; and finally, at the end, the curve asymptotes. Despite, the 

Monomolecular model showed to have the lowest AIC coefficient, the Logistic 

presented a very close value. Regarding this result, Parker et al., (1996) and Purfürst 

(2010), explained the learning curve as a logistic model with an initial phase of 

increasing increments that switches to decreasing increments becoming asymptotic at 

the final phase.  

Figure 2 shows the resulted curve, including the dispersion of all observations 

from this study. Each parameter of the model was obtained with p>values lower than 

0,001. Equation (3) presents the general learning model and parameters are shown in 

table 2.  

𝑃𝑅 =  [𝑎𝑙𝑓𝑎 ∗ (1 − 𝑏𝑒𝑡𝑎 ∗ 𝑒(−𝑔𝑎𝑚𝑚𝑎∗𝐴𝑃𝑊𝐻))]                         (3) 

 
Table 2. Parameters alfa, beta and gamma from the learning general model of harvester operators. 

Parameter 
Cota 

INF 

Conta 

SUP 

Initial 

Value 
Estimation E.E. T p-value 

ALFA -1e030 -1e030 1,734 1,030 0,009 111,278 <0,0001 

BETA -1e030 -1e030 0,001 0,734 0,012 60,239 <0,0001 

GAMMA -1e030 -1e030 0,001 0,003 1,3E-04 22,260 <0,0001 
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Figure 2. Performance distribution regarding Accumulated Productive Working Hours and regression 

learning model. 

With the resulted learning model, is observed that performance of an average 

operator at initial time, when operating harvester machine, is placed in 27,4% of the 

potential. The average increment, in relative terms of productivity, is 0,08% per PWH; 

and higher rates are at the beginning, reaching 47,0% of the potential productivity 

within 100 PWH (performance increased at this phase by 0,21% per PWH). 
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Figure 3. Linear regression with predicted values from the general model and observations. 
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Figure 4. Standardized residuals distribution for general model. 

Figure 3 shows a coefficient of determination (R2) of 0,469 between prediction 

of the model and observations, therefore, 46,9% of variability in all observations is 

explained by the model. Regarding distribution of the standardized residuals, showed 

in the figure 4, a normal distribution is observed. In both figures, gathering of 

observations towards value 1 is noted, meaning that the performance of operators was 

stabilized at this level, hence, previous local productivity regression models were 

suitable for type of production and the studied forest scenarios. 

1.4.2. Individual Analysis 

Some of the individual models (which fitted best for each individual operator) are 

represented in figures 5, then, summary of the analysed data on table 3. 
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Figure 5. Individual learning models for a sample of studied operators, where: a and b corresponds to 

Monomolecular model; c, d and e corresponds to Logistic model; and f correspond to Gompertz model.



 

 

Table 3. List of operators with corresponding data of: coefficient of determination (R2) for the fitted 

individual model, performances level at different accumulated working hours (Pi, P50, P100, P200, P500, 

P750, P1000), final performances (Pf) and amount of PWH to reach final performance. In the bottom of 

the table are the average values (Average) for each variable and the predicted values from de General 

Model (G Model). 

Op. R2 Pi P50 P100 P200 P500 P750 P1000 Pf hrs_ 

1 0,84 0,138 0,264 0,332 0,547 0,813 0,950 1,027 1,029 1016,8 

2 0,52 0,500 0,834 0,688 0,803 1,155 1,181 1,432 1,320 1046,1 

3 0,74 0,450 0,449 0,518 0,579 1,090 1,205 1,175 1,157 717,9 

5 0,81 0,188 0,255 0,308 0,453 0,736 0,906 1,054 1,000 929,0 

7 0,70 0,216 0,417 0,701 0,726 1,143 1,112 1,223 1,098 788,2 

8 0,45 0,377 0,892 1,050 1,092 1,292 1,292 1,359 1,376 587,3 

9 0,83 0,205 0,323 0,460 0,560 0,870 0,977 1,047 1,040 890,8 

11 0,89 0,227 0,265 0,346 0,506 0,945 1,041 1,104 0,998 742,9 

13 0,67 0,250 0,395 0,672 0,986 1,319 1,144 1,270 1,258 602,2 

14 0,82 0,111 0,194 0,238 0,334 0,362 0,673 0,812 0,803 1052,9 

15 0,76 0,270 0,323 0,320 0,489 0,575 0,798 0,877 0,849 1014,5 

16 0,60 0,258 0,386 0,550 0,577 0,899 0,960 1,043 1,107 1168,0 

17 0,65 0,266 0,362 0,522 0,614 0,708 0,801 0,938 1,043 1187,5 

19 0,62 0,259 0,277 0,559 0,577 1,083 0,923 1,024 1,129 1153,7 

20 0,62 0,322 0,365 0,473 0,523 0,743 0,807 0,923 0,897 972,4 

21 0,74 0,329 0,360 0,352 0,472 0,671 0,803 0,865 0,885 1163,6 

23 0,72 0,255 0,376 0,433 0,474 0,751 0,843 0,965 1,011 1235,5 

24 0,70 0,203 0,312 0,432 0,519 0,760 0,903 0,940 0,952 1214,5 

25 0,71 0,232 0,309 0,391 0,398 0,656 0,888 0,839 0,956 1288,9 

26 0,74 0,108 0,378 0,343 0,428 0,652 0,825 0,780 0,945 1282,4 

28 0,68 0,439 0,511 0,570 0,711 0,980 1,141 1,115 1,104 932,6 

29 0,74 0,258 0,356 0,528 0,659 0,938 1,126 1,160 1,154 920,3 

30 0,69 0,333 0,436 0,456 0,673 0,849 1,007 1,042 1,038 878,8 

31 0,69 0,378 0,460 0,498 0,785 0,874 1,029 0,986 1,005 773,8 

34 0,81 0,417 0,453 0,449 0,540 0,866 0,945 1,021 0,994 824,0 

Av. 0,71 0,280 0,398 0,488 0,601 0,869 0,971 1,041 1,046 975,4 

G. M. 0,47 0,274 0,370 0,470 0,615 0,861 0,950 0,992 1,009  

Op.: operator number, R2: coefficient of determination, Pi: initial performance, P50: average performance 

at 50 PWH, P100: average performance at 100 PWH, P200: average performance at 200 PWH, P500: 

average performance at 500 PWH, P750: average performance at 750 PWH, P1000: average performance 

at 1000 PWH, Pf: stabilized performance (final), hrs: number of PWH to reach stable performance.  

Table 3 shows summarized performances at different moments of the learning 

progress for each studied operator, R2 of each individual model and number of hours 

needed to reach stable performance. R2 values for the general model, showed a coefficient 

of 0,47 which is high considering that all the operator effects are included for this model. 

When assessing at individual models, R2 values are higher (average of 0,71) as it would 



 

 

be expected. The average number of hours needed to achieve the stable performance is 

975,4 PWH; or expressed otherwise, regarding this study, the end of the learning curve 

corresponds to an average of 142 days (around 6,5 months) or 10.007,5 m3 processed 

wood. The average Initial performance is 28% of the expected potential, showing at 100 

APWH an average of 49% of its potential; similar results were also observed by applying 

the general model. 

1.4.3. Correlations 

Correlation of measured productivity, between all learning process phases and final 

performance of each individual operator, are presented in table 4. It shows, when 

assessing first stages from 100 APWH and further, performances are already highly 

correlated (coefficients above 0,83) with final performance, those values presented high 

values of significance (p value < 0,01). 

Table 4. Correlation coefficients between performances at different initial stages and at the end of the 

learning period on the left side of the table, p-values for each coefficient on the right side of the table. 

 Pi P50 P100 P150 P200 Pf 

Pi 1,00 2,8 E-4 0,01 2,3 E-3 0,01 0,02 

P50 0,74 1,00 7,4 E-4 1,7 E-4 6,1 E-4 0,01 

P100 0,52 0,69 1,00 6,8 E-6 1,8 E-5 1,9 E-5 

P150 0,62 0,77 0,92 1,00 3,8 E-6 3,7 E-5 

P200 0,55 0,70 0,87 0,94 1,00 4,6 E-5 

Pf 0,46 0,54 0,87 0,84 0,83 1,00 

Pi (initial performance level), P50 (50 APWH performance level), P100 (100 APWH performance level), 

P150 (150 APWH performance level), P200 (200 APWH performance level) and Pf (final performance 

level). 

In figure 6, Principal Component Analysis is designed to visualize the association 

between initial learning phases performances with final performance and in turn how 

operators are ordered. It shows the operators distribution by their performance: on the 

right side are located those with higher performance values and on the left side are those 

with lower performances values during learning process. In addition, concerning 

performances during initial times, is possible to state that individual performances at 100 



 

 

APWH and further are positively and strongly associated with its final performance; 

while initial performance and at 50 APWH are positively associated but not as strongly. 

Hence, outstanding operators at initial phases are highly probable to have higher potential, 

in terms of productivity (m3/PWH), when its learning is fulfilled.  

 

 

1.5. DISCUSSION 

The described general model explains the learning development until an operator reaches 

stable productivity; operator being without previous experience and learning process 

including 50 hours in simulator and theorical instructions as described in materials and 

methods. Since this curve was done in relative terms of productivity, any company with 

the knowledge of potential productivity regarding their own scenarios, will be able to plan 

and estimate the wood flows when they are facing training process of new operators. 

The learning process can be described as the following:  

Figure 6. Biplot of performances among different initial time periods and when stabilized (final 

performance). Op (operator’s distribution regarding matching performances during learning), Pi 

(initial performance level), P50 (50 APWH performance level), P100 (100 APWH performance 

level), P150 (150 APWH performance level), P200 (200 APWH performance level) and Pf (final 

performance level). 



 

 

(1) An operator recognizes and memorizes the movements of the commands and 

keyboard controls while operating. At this phase productivity should have 

increasing increments (Parker et al. 1996). 

(2) After being familiarized with controls, by repetitions, the operator starts 

automatizing the movements, increasing coordination skills, e.g doing several 

movements at one time. Automatic mode and multitasking starts (Purfurst, 2010). 

(3) Operator makes fewer mistakes, understands how a tree reacts and anticipates 

future movements looking for efficiency along every stage of the process.  

When carrying out individual models, the first phase of the learning process defined 

above, is just visualized for scattered operators. Nevertheless, the majority of them did 

not show this phase. Probably because all the observations have been taken when 

operators had already started working in the machine and not when they were at the 

simulator, hence they mostly have already learned and were familiarized with the crane 

and harvester head controls. This could be a reason why this model happen to be 

monomolecular and not logistic as explained by other authors (Parker et al., 1996; 

Purfürst, 2010). 

The time frame needed for an operator to finish its learning, showed to be shorter 

than the figures presented by Purfürst (2010). It can be stated, that in pulp wood 

production studied scenario, when harvesting single assortment, using clear-cut as 

harvesting method and homogeneous forests (monoculture and even aged), operators 

might have faster learning. Therefore, the more homogeneous and standardized is the 

production, the shorter learning time is needed to reach potential performance. 

On the other hand, this study was done with relatively newer harvesters in 

comparison with other studies. Machines were continuously updated, enhanced and 



 

 

technology was improved, resulting in more intuitive commands, which makes it easier 

for new operators to develop control of the machine. Furthermore, as new development 

and researches are still being carried out by manufacture companies towards 

automatization in control systems, it can be expected faster learning periods for future 

operators at the phases 1 and 2 described above.  

In this study, the learning curve was assessed for just one type of cut to length 

system machine, therefore forwarder machines should be also addressed for the same 

purpose in order to count overall information of the logging system (harvester-forwarder). 

Using StanForD files from OBC, showed to be accurate and suitable when addressing 

productivity models of logging operations, especially at very standardized productions 

such us for pulp purposes. Hence, the methodology employed within this study can be 

also emulated for further productivity assessments. 

Another important finding is the possibility of recognizing higher productive 

operators already at early stages of the learning process. But due to the fact, that already 

at 100 PWH operators present a significant cost for any company, it is important to select 

skilled operators even sooner when possible. As subjective evaluations at the simulator 

phase did not corresponded with the same criteria for all studied operators, it was not 

possible to measure associations with final performance. Therefore, additional studies to 

identify skilled operators are needed; requiring the design of evaluation tools and/or 

methodologies at simulator phase of the learning process.  

Nevertheless, according to Häggström (2015), productivity is a system composed 

by three main parts: human (skills and abilities), technology (tools and prostheses) and 

the organization (culture and structure of the company). Therefore, to select operators just 

by their abilities to drive a machine must not be taken as an isolated criterion. Each 



 

 

company has its own structure, resources, ways to motivate teams, among other factors, 

that must be put in consideration. Hence, in order to accomplish an appropriate selection, 

behavioural profiles studies, customized by organization types, must be also included 

(Pagnussat & Lopes 2017). 

1.6. CONCLUSIONS 

A period of approximately six and a half months (975,4 PWH), depending on the shifts 

schedules of each company, is needed for an operator to reach a stable productivity. 

However, the productivity of an operator during their learning period is represented by a 

monomolecular model which becomes asymptotic when the learning is finished; hence, 

the operator can still slightly increase its productivity during some time. This study, gives 

forest logging companies information to make suitable plans of the wood flows during 

periods of training new operators in the organization. 

It is possible to encounter skillful and productive operators in early stages of the 

learning process; although behavioral profiles, regarding company’s culture and work 

organization, must be consider in order to be complemented with previous statement. The 

outcome could enhance overall harvesting production, either while building new 

harvesting teams or when replacing new operators for already existing ones. 
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