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Abstract
1.	 Temporal scale in animal communities is often associated with seasonality, despite 

the large variation in species activity during a diel cycle. A gap thus remains in 
understanding the dynamics of short-term activity in animal communities.

2.	 Here we assessed calling activity of tropical anurans and addressed how species 
composition varied during night activity in assemblages along gradients of local 
and landscape environmental heterogeneity.

3.	 We investigated 39 anuran assemblages in the Pantanal wetlands (Brazil) with 
passive acoustic monitoring during the peak of one breeding season, and first de-
termined changes in species composition between night periods (early, mid and 
late) using two temporal resolutions (1- and 3-hr intervals). Then, we addressed 
the role of habitat structure (local and landscape heterogeneity variables from 
field-based and remote sensing metrics) and ecological context (species richness 
and phylogenetic relatedness) in determining changes in species composition  
(a) between night periods and (b) across days.

4.	 Nocturnal calling activity of anuran assemblages varied more within the 1-hr 
resolution than the 3-hr resolution. Differences in species composition between 
early- and late-night periods were related to local habitat structure and phyloge-
netic relatedness, while a low variation in compositional changes across days was 
associated with low-heterogeneous landscapes. None of these relationships were 
observed using the coarser temporal resolution (3 hr).

5.	 Our findings on the variation of calling activity in tropical anuran assemblages 
suggest potential trade-offs mediated by fine-temporal partitioning. Local and 
landscape heterogeneity may provide conditions for spatial partitioning, while the 
relatedness among co-signalling species provides cues on the ecological overlap 
of species with similar requirements. These relationships suggest a role of niche 
dimensional complementarity on the structuring of these anuran assemblages 
over fine-temporal scales. We argue that fine-temporal differences between spe-
cies in breeding activity can influence the outcome of species interaction and 
thus, addressing temporal scaling issues can improve our understanding of the 
dynamics of animal communities.
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1  | INTRODUC TION

Time is a fundamental dimension of species ecological niches. 
Because organisms' responses and ecological patterns are scale-de-
pendent, the distinct time-scales experienced by natural commu-
nities are key to understand the effects of environmental changes 
on biodiversity (Dornelas et  al.,  2013; Sutherland et  al.,  2013). 
Nevertheless, ecological communities are often statically framed at 
specific spatial and temporal scales, which may potentially lead to 
mismatches between ecological pattern and process. In the spatial 
domain, communities are usually delimited by subjective criteria or 
habitat boundaries (Leibold & Chase, 2018; Wiens, 1989), with spa-
tial grain—that is, the resolution of spatial observations—determined 
by the extension of sampling units. In the temporal domain, study 
duration is usually emphasized in detriment of the timeframe used 
to depict the set of interacting species—that is, temporal resolution. 
However, empirical evidence indicates that species activity is largely 
variable and seldom constant over a diel period (Gaston,  2019; 
McCann et  al.,  2017) such as distinct daily patterns of foraging 
(Kronfeld-Schor et  al.,  2013) and breeding (Schalk & Saenz,  2016; 
Schwartz & Bee,  2013). On the one hand, predictable changes in 
species activity at short timeframes may be regulated by endoge-
nous rhythmicity mechanisms (Greenfield, 2015; Kronfeld-Schor & 
Dayan, 2003). Alternatively, exogenous factors such as climate and 
species interactions may determine short-term differences in species 
activity (Carothers & Jaksić, 1984; Hodge et  al.,  1996). Therefore, 
addressing short-term variation in the activity of animal commu-
nities, similarly to spatial variation, might lead to a more complete 
understanding of the ecological processes acting during community 
assembly (Castro-Arellano et al., 2010; Segre et al., 2014; Van Allen 
et al., 2017).

Ecological differences among interacting species mainly 
occur across three fundamental dimensions: food, space and 
time (Amarasekare,  2003; Kneitel & Chase,  2004; MacArthur 
& Levins,  1964). Although niche overlap is rather common in 
ecological communities, differences between niche dimensions, 
including fine-temporal partitioning (Schoener,  1974), have a 
fundamental role in promoting stable coexistence among species 
(Chesson, 2000; Kneitel & Chase, 2004). On the local scale and 
in the short term, negative interactions can promote the exclu-
sion of inferior competitors (Vellend, 2016), or alternatively, spe-
cies may reduce interference (e.g. for habitat-use and breeding 
sites) through temporal partitioning (Carothers & Jaksić, 1984; 
Humfeld, 2013; Schoener, 1974). Additionally, local dynamics are 
also influenced by larger spatial contexts (Leibold & Chase, 2018; 
Ricklefs,  1987), such that short-term dynamics (e.g. within 
days) may undergo alternative trajectories at increasing tem-
poral scales (e.g. across days). For instance, favoured dispersal 

in heterogeneous landscapes can increase the effective size 
of local communities (higher species richness and abundance), 
which reduces the stochastic component of community assem-
bly (e.g. fluctuations in small populations; Ron et  al.,  2018). 
However, spatial heterogeneity can likewise increase the pres-
ence of sink habitats and thus reduce competitive dominance 
between species (Hodge et al., 1996; Schreiber & Kelton, 2005). 
Therefore, understanding how communities vary in time (i.e. 
temporal beta-diversity; Baselga et  al.,  2015; Legendre & 
Gauthier, 2014) and the drivers of community-wide activity can 
shed light on the contribution of short-term dynamics of eco-
logical communities to the underlying processes across scales 
(Dubos et al., 2020).

Tropical anuran assemblages are excellent models to address 
short-term dynamics of species activity. The aggregated breeding 
activity in the rainy season (Hödl, 1977) gathers several species in 
communal water bodies, especially for species with aquatic ovi-
position (Duellman & Trueb, 1994), forming a potential competi-
tion arena for calling and spawning sites (Schwartz & Bee, 2013; 
Ulloa et  al.,  2019). The composition of species in these sites is 
influenced by the structural heterogeneity of breeding habitats, 
where species advertise calls to attract mates (Sugai et al., 2019). 
Additionally, landscape context influences species persistence 
(e.g. by maintaining low levels of desiccation in forested patches) 
and dispersal dynamics underlying variation in the composition 
of assemblages (Signorelli et  al.,  2016; Werner et  al., 2007). 
Nonetheless, short-term variation in species activity has been 
mainly addressed with respect to meteorological and social factors 
(Dubos et al., 2020; Guerra et al., 2020; Llusia et al., 2013; Oseen & 
Wassersug, 2002; Saenz et al., 2006; Schalk & Saenz, 2016) and the 
role of ecological processes driving such dynamics remain largely  
unexplored.

This knowledge gap can be traced back to historically challeng-
ing conditions in addressing nocturnal phenomena (Gaston, 2019), in 
addition to the human-observer limitation in investigating multiple 
sites simultaneously. Currently, modern techniques enabling passive 
acquisition of high-resolution data have been solving these prac-
tical issues and steadily improving our capacity to address diverse 
ecological phenomena (Gaston, 2019; Rocchini et al., 2016). Among 
these developments, automated acoustic devices have facilitated 
the systematic collection of environmental sounds, providing new 
opportunities to investigate multiple perspectives of animals that 
rely on acoustic communication (Sugai et al., 2019). The ‘nocturnal 
problem’ (Gaston, 2019) can therefore be potentially revisited using 
the framework of acoustic monitoring.

Here, we used acoustic monitoring to investigate variation in 
night activity of tropical anuran assemblages across distinct eco-
logical gradients. Based on the incidence of vocal active species, 
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we first assessed whether species composition varied through 
different night periods (early, mid and late) using two temporal 
resolutions (1- and 3-hr intervals, Figure 1a,b). We then assessed 
if changes in species composition between night periods was 
associated with gradients representing habitat structure (local 
and landscape habitat heterogeneity) and the ecological context 
(species richness and phylogenetic relatedness, here used as a 
proxy of ecological similarities, Figure  1c.1). We also assessed 
whether the regularity of nightly variation in species composi-
tion across monitored days (i.e. variance of temporal beta diver-
sity; Figure  1c.2) was influenced by the same potential drivers. 
We expected that an increase in the competitive potential of 
different species within the assemblage (higher species richness 
and phylogenetic relatedness) would promote deterministic ex-
clusion of species across the night and thus decrease the simi-
larity in species composition between night periods. Moreover, 
we expected that an increase in habitat heterogeneity (local and 
landscape) would increase potential for spatial partitioning and 
thus maintain similar species composition between night periods. 
We used the two temporal resolutions (1- and 3-hr intervals) to 
determine whether the above expectations hold across tempo-
ral resolutions. Furthermore, we assessed the contribution of 
the habitat and ecological gradients to the spatial variation of all 

species registered at each site to address their importance at the 
metacommunity scale.

2  | MATERIAL S AND METHODS

2.1 | Study area and environmental characterization

We studied pond-breeding anuran assemblages in an area of ap-
proximately 100 km2 located in the southern region of the Pantanal 
wetlands in Brazil, Aquidauana municipality (Latitude −19.534227, 
Longitude −56.144935; WGS-84; Figure 2a). Breeding activity takes 
place during the rainy season (October–April) when monthly mean 
temperatures range from 20.1 to 33.2°C and monthly rainfall from 
96 to 231  mm (Fick & Hijmans,  2017). As most tropical anurans 
have the highest activity levels during the peak of the rainy season 
(Duellman & Trueb, 1994), our sampling was concentrated at the end 
of January 2017, which corresponded to the month of highest precip-
itation for that season (231 mm, Fick & Hijmans, 2017). Landscapes 
of this southernmost region are influenced by the neighbouring 
Cerrado (tropical savanna) and include grasslands, open wood sa-
vanna and forested woodland (Evans & Costa,  2013). Permanent 
bodies of standing water used by anurans are embedded among 

F I G U R E  1   Conceptual scheme depicting (a) temporal resolution: incidence of vocal active species registered for 2 min each 20 min over 
the early, mid and late periods of the night (19:00–04:00 hr, UTC-4) and summarized with two temporal resolutions: 1- and 3-hr intervals. 
Similarity in species composition was computed for pairwise combinations of temporal units within a night cycle. (b) We investigated 
whether species composition differed between night periods using the two temporal resolutions. Second, we addressed the potential role 
of distinct ecological processes on the variation of species composition in nightly activity by fitting relationships on (c.1) the differences in 
species composition from the early-late night period and (c.2) the variance of such differences across the different monitored days
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patches of these vegetation formations and have their low-lying  
adjacent areas composed of seasonally flooded grasslands that often 
inundate during the rainy season (Prado et  al.,  2005). The aquatic 
vegetation of these freshwater water bodies comprises erectophile 
grass-like plants from Cyperaceae and Typhaceae families, and float-
ing emergent plants from Pontederiaceae, Araceae, Salviniaceae and 

Nymphaceae families (Delatorre et al., 2020; Evans & Costa, 2013; 
Pott & Pott, 2000).

We used a geographical information to stratify sampling sites 
over a gradient of landscape heterogeneity. First, we manually 
mapped all ponds in the study area and randomly selected one loca-
tion per pond, located on the shore, and distant at least 1 km apart of 
each other (n = 72). We then calculated the Normalized Difference 
Vegetation Index—NDVI (Rouse et al., 1974) using RapidEye3A sat-
ellite images (5-m pixel size, RapidEye AG, 2011) and extracted av-
erage NDVI values for 200-m radius buffers (125.6 m2) centred on 
each location. Finally, we ordinated all 72 sites based on NDVI values 
and selected 39 sites representing the entire range of average NDVI, 
that is, better captured the gradient of vegetation heterogeneity; 
from fully forested to fully open grasslands. Because forested areas 
prevent anurans from overheating and dehydration during day-
light and decrease resistance for movement among habitat patches 
(Bowler & Benton, 2005; Buskirk, 2012; Silva et al., 2012), we used 
NDVI to represent Landscape heterogeneity.

These 39 sites were located on freshwater ponds with mean size 
of 9.07 ± 8.65 SD hectares. To characterize the breeding sites, we reg-
istered the components of the terrestrial and aquatic terrains. From a 
central point established by the closest distance between the audio 
recorder and the water margins (5–10 m), we distributed one transect 
perpendicular to the margin of the pond every 3 m, with 10 transect 
for each side of the central point, totalizing 20 transects. Each tran-
sect was 6 m in length, with 3 m towards the outside (terrestrial) and 
3 m towards the inside of the pond (aquatic), covering approximately 
90 m2 of each terrestrial and aquatic habitat. In each transect, we po-
sitioned a straight reference line and measured, for the terrestrial side, 
the length (cm) occupied by bare ground and shrub vegetation along 
the line. Additionally, at each 1-m interval, we measured the Leaf Area 
Index (LAI—the ratio of foliage area to ground area; Bréda, 2003) as 
a proxy of canopy openness. As the vegetation type surrounding the 
freshwater ponds are predominantly grasslands and open wood sa-
vanna, LAI was used here to represent the density (openness) of the 
short-stratum grassy/herbaceous terrain. We measured LAI with a 
LAI-2200C Plant Canopy Analyzer model (LI-COR Biosciences, 1992) 
using a 45° forward view cap. For the aquatic side, we measured the 
length (cm) occupied by free water surface (i.e. no vegetation above 
the water surface), aquatic vegetation above the water surface (i.e. 
floating and emergent aquatic plants) and the flooded vegetation from 
seasonal grasslands contouring the ponds, being represented by two 
vertical strata of grassy vegetation (<20 cm and >20 cm, with the later 
also comprising emergent aquatic vegetation; Delatorre et al., 2015), 
and flooded shrub vegetation. Additionally, at each 1-m interval, we 
measured pond depth. The length occupied by each variable was 
summed, except for LAI and pond depth, which were averaged (mean 
depth 1 ± 0.46 m). All variables for the terrestrial and aquatic habitats 
were standardized to zero mean and unit variance.

To represent the heterogeneity of the breeding sites with reduced 
dimensionality, we performed a principal component analysis (PCA) 
on the variables representing the aquatic and terrestrial habitats with 
r package FactoMineR (Lê et al., 2008

F I G U R E  2   (a) Study region and spatial distribution of the 39 
monitored sites used by anuran assemblages in south Pantanal 
wetlands, Brazil, and (b) frequency distribution of the variables 
(standardized to zero mean and unit variance) representing 
ecological context and environmental structure: phylogenetic 
relatedness (SOS scores), species richness, habitat structure 
represented by two principal component axes summarizing 
aquatic and terrestrial variables, and landscape heterogeneity 
(NDVI). Boxplots represent the median, 25% and 75% quantiles 
(white box) and min-max values (whiskers) are surrounded by 
violin plots (kernel density plots representing the probability 
density)

10.5
km

(a)

(b)
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). We used the first two PC axes (28% and 21.2% of variation, 
Figure 2b) to represent two gradients of habitat vegetation hetero-
geneity. The first axis (PC1) represented a gradient of vegetational 
heterogeneity on the aquatic habitat that ranges from flooded grass-
lands to typical permanent ponds. Sites with positive scores were 
positively associated with aquatic vegetation and free water surface, 
whereas sites with negative scores were positively associated with 
high-stratum grassy vegetation (grass  >  20 cm). The second axis 
(PC2) represented a gradient of increasing heterogeneity on the 
terrestrial habitat. Sites with positive scores were associated with 
the presence of shrub vegetation both on the terrestrial and aquatic 
sides and with increased density of the grassy/herbaceous vegeta-
tion on the terrestrial terrain (LAI; Table S1; Figure S1).

2.2 | Anuran assemblages

We used passive acoustic monitoring to record anuran calling ac-
tivity for 3–5 consecutive days on each site using 21 automated 
audio recorders (4 SM4, 15 SM3 and 2 SM2 models from Wildlife 
Acoustics) that were rotated among sites during a total period of 
10 days (18th–27th January 2017). We attached recorders on trees 
or wooden stakes distant no more than 10 m from the monitored 
pond, at approximately 1.5 m height, to improve sound recordings. 
Our recording schedule consisted of 2 min of stereo recording every 
20  min from 19:00 to 4:00  hr (UTC-4), to exclude the hours with 
bird and invertebrate overlapping sounds around sunset and sunrise. 
Sounds were recorded at a rate of 44.1 kHz and 16-bit audio depth 
(uncompressed WAV format), with a gain of 6 and 12 dB on each 
channel. Anuran advertisement calls were detected and identified 
by the main author using visual inspection of spectrograms (window 
size of 512, Hamming window) and aural recognition in Audacity 
software (Audacity Team,  2018). Call parameters were quantified 
with Raven Pro 1.4 (Bioacoustics Research Program, 2014) and com-
pared with reference calls for dubious vocalizations.

After identifying all species calling from 19:00 to 04:00  hr, 
we determined the composition of species in each signalling as-
semblage considering 1- and 3-hr time periods. Night activity 
was divided into three periods, namely early (19:00–22:00), mid 
(22:00–01:00) and late (01:00–04:00) periods. For each site, we 
calculated the similarity in species composition between night 
periods using both 1- and 3-hr intervals, on each day (Figure 1a). 
For the 1-hr resolution, we calculated hour-to-hour compositional 
similarity and coded the respective pair of night periods (within 
and between early, mid and late). For the 3-hr resolution, pairwise 
compositional similarity corresponded to the combinations be-
tween early, mid and late periods of the night. Because we were 
interested in the nightly variation determined by between-period 
differences (early-mid, mid-late and early-late), we excluded with-
in-period similarities. We calculated the Jaccard coefficient (s) to 
represent similarity, an index broadly used to represent spatial 
beta diversity (Baselga et al., 2015; Jost et al., 2010) using r pack-
age vegan (Oksanen et al., 2018). Because the function ‘vegdist’ in 

vegan calculates Jaccard (and other coefficients) as dissimilarity, 
to facilitate interpretation, we converted it to express similarity 
values (1 − sij), where 1 indicates maximum similarity in the com-
position of vocal active species.

Species sharing recent ancestry tend to show similar ecological re-
quirements given niche conservatism (Wiens & Graham, 2005). To rep-
resent the degree of ecological similarity among coexisting species, we 
calculated the specific overrepresentation score (SOS), a measure that 
represents how specific lineages contribute to the distribution of spe-
cies across communities (Borregaard et al., 2014). First, using a com-
prehensive time-calibrated phylogenetic tree of amphibians (Pyron 
& Wiens,  2011) pruned to the species found in the study area, we 
calculated whether specific sister lineages pairs contributed more to 
the phylogenetic structure and species co-occurrence than expected 
by a null model (geographical node divergence—GND; Borregaard 
et al., 2014). The node between Hylidae (except for Phyllomedusidae) 
and Leptodactylidae showed the highest GND score (0.5; Figure S2), 
and we thus calculated SOS values considering this specific node. SOS 
are the standardized effect sizes from the observed species richness of 
each sister lineage referenced to a null model that breaks the phyloge-
netic dominance of this lineage pair (using the quasiswamp algorithm; 
Borregaard et al., 2014). We used all species registered at each site to 
calculate SOS, with positive and negative values representing assem-
blages with higher overrepresentation of Hylidae and Leptodactylidae 
species, respectively. Therefore, more extreme values represented as-
semblages with higher ecological similarities.

2.3 | Analyses

To test whether species composition differed across night periods, 
we fitted a general linear mixed model (GLMM) on compositional 
similarity for each time resolution (1- and 3-hr intervals), using the 
associated combination of night period (three levels: early-mid, mid-
late and early-late) as fixed factor, and site (n = 39) and monitored 
day (10 distinct days) as random factors. We checked normality 
and homoscedasticity through visual examination of residuals and 
probability plots (Q-Q plots) and ranked them with models with null 
intercept effect only and random effects using Akaike Information 
Criterion (Burnham & Anderson, 2002) corrected for small sample 
sizes (AICc). Confidence intervals for model coefficients were esti-
mated by computing likelihood profiles using package lme4 (Bates 
et al., 2015). Models with delta AIC (dAICc) <2 were considered 
equally plausible and variables which corresponding 95% confidence 
interval (CI) did not include zero were considered significant. We es-
timated the coefficient of determination (R2) for the mixed models 
based on Nakagawa et al. (2017), where the marginal coefficient (R2

m

) refers to the variation explained by fixed effects, and the condi-
tional coefficient (R2

c
) consider both fixed and random structures. 

As a visual display of overall nightly variation in species composi-
tion, we applied a non-metric multidimensional scaling (nMDS) on 
the composition of vocal active species on the early- and the late 
night-periods at each day and site. Then, we plotted the centroid of 
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each site and combination of night period. Low variation in species 
composition between early and late periods would be represented 
by short distances between the periods.

To assess whether changes in species composition in a night 
cycle were influenced by environmnetal gradients representing hab-
itat structure (local and landscape habitat heterogeneity and the 
ecological context (species richness and SOS scores considering all 
species registered at each site), we fitted a GLMM on the composi-
tional similarity for the early-late period and used the first two PC 
axes representing habitat structure, NDVI, species richness and SOS 
scores as fixed factors, and site and monitoring day as random fac-
tors. Models were built for both temporal resolutions and ranked 
with AICc, including a model with null intercept effect only, and the 
same abovementioned procedures were used to check residual nor-
mality and to estimate the confidence intervals and R2.

To test whether variation in nightly compositional changes across 
days was influenced by the distinct ecological drivers, we first calcu-
lated the variance of all compositional similarities from the early-late 
period for all days per site. Then, we built different general linear 
models representing (a) global model with all predictors, (b) local het-
erogeneity only (PC1 and PC2), (c) landscape heterogeneity (NDVI), (d) 
ecological context of assemblages (species richness and SOS) and (e) 
a null model with the intercept only. Multicollinearity was low for the 
full models (1-hr model VIF = 1.35, 3-hr model VIF = 1.41). We ranked 
these models using AICc and further determined whether adding a 
quadratic term lead to differences in the models (using dAICc). We 

used a log transformation to ensure homoscedasticity of the residuals 
and evaluated Q–Q residual plots to check normality assumptions.

Additionally, to understand the combined importance of habitat 
structure and ecological context across local assemblages (i.e. meta-
community), we used the incidence of all anuran species recorded at 
each site and applied a redundancy analysis (RDA) to determine the 
amount of variation explained by phylogenetic relatedness (SOS val-
ues), local vegetation heterogeneity (first two PC axes on aquatic and 
terrestrial habitat variables), landscape heterogeneity (NDVI) and 
species richness. We used an ANOVA-like permutation test (×1,000) 
to assess model significance with the vegan package (Oksanen et al., 
2018) in R software version 4.0.2 (R Core Team, 2020).

3  | RESULTS

We recorded 24 anuran species distributed in four families, with 
Hylidae (n = 12) and Leptodactylidae (n = 9) being the most rep-
resentative families (Table  S2). Species richness varied from 6 to 
19 species per site (

‼

x = 10.5 ± 3 SD), while hourly species richness 
ranged from a mean of 5.14 to 5.78 species (

‼

x  =  5.48  ±  2.1 SD, 
Figure  S3). Overall, mean similarity in species composition was 
higher between early-mid and mid-late periods, both at the 1-hr 
(early-mid: 0.69 ± 0.19 SD, mid-late: 0.71 ± 0.2 SD and early-late: 
0.64  ±  0.2 SD) and 3-hr resolutions (early-mid: 0.77  ±  0.16 SD, 
mid-late: 0.78 ± 0.16 SD and early-late: 0.71 ± 0.18 SD, Figure 3a). 

F I G U R E  3   (a) Similarity in species 
composition between night periods 
using two temporal resolutions (1- and 
3-hr intervals). General linear mixed 
models fit on the compositional similarity 
between early-late periods for all days at 
the 1-hr resolution show an association 
with (b) overrepresentation of species 
from the family Hylidae (SOS positive 
values) in assemblages and (c) a PCA 
axis representing terrestrial vegetational 
heterogeneity on the breeding sites. 
Using Akaike Information Criteria, we 
ranked five potential models (general 
linear models) explaining the variance 
of compositional similarity between 
early-late periods in all days: landscape 
heterogeneity (NDVI), habitat structure 
(PC1 + PC2) and ecological context 
(species richness and SOS scores), and 
found (d) a positive relationship of the 
variance of compositional similarity 
between early-late periods for all days  
and landscape heterogeneity (NDVI) 
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However, as shown by GLMM, differences in compositional simi-
larity between night periods were poorly explained by the fixed 
factors (i.e. combinations of nocturnal periods; R2

c
 < 0.04), with the 

highest variation attributed to random factors both for the 1- and 
3-hr resolutions (R2

c
 > 0.42; Table 1). A decay in compositional simi-

larity was observed only for the combination of early-late periods 
for both temporal resolutions (β 1-hr = −0.05 and 95% CI [−0.06, 
−0.04]; β 3-hr = −0.06 and 95% CI [−0.09, −0.03], Table 2).

The compositional similarity of vocal active species between 
early-late nocturnal periods was positively related to phylogenetic 
relatedness (SOS scores) and the PC2 representing local habitat 
heterogeneity (R2

m
 = 0.11, R2

c
 = 0.6; Table 1). Specifically, high com-

positional similarities were associated with an increase in the over-
representation of species from the family Hylidae (SOS scores, β 
1-hr =  0.05 and 95% CI [0.01, 0.09]; Figure 3b; Table 2), and an 
increase in vegetation heterogeneity on the terrestrial terrain of 
breeding habitats (PC2- local habitat; β 1-hr  =  0.03 and 95% CI 
[0.01, 0.06]; Figure 3c; Table 2). However, these relationships were 
observed only for compositional similarities calculated at the 1-hr 
resolution (Table 1). The nMDS ordination of sites and night pe-
riods of activity shows varying degrees of variability in the com-
position of vocal active species between early and late periods 
(Figure 4a).

The models including landscape heterogeneity (NDVI) with and 
without the quadratic term were considered equally plausible mod-
els explaining the variability of nightly similarities across days, for the 
1-hr resolution (Table 3). The model with a quadratic term (R2 = 0.25, 
p = 0.005; Figure 3d) indicates that assemblages with similar varia-
tion of compositional similarity across different days were located in 
more heterogeneous landscapes (higher NDVI). Model ranking using 
the 3-hr resolution indicates that the fit with NDVI is not different 
from an effect from a null model (Table 3).

Spatial variation in assemblage composition was partially ex-
plained by the predictors representing distinct ecological gradients 

(R2  =  0.34, p  =  0.001; Figure  4a, Table  S3). Specifically, three 
orthogonal axes of explanatory variables could be distinguished, 
with species richness showing a positive association with the 

TA B L E  1   Model selection (against a null model) and coefficient of determination of general linear mixed models fitted on (1) 
compositional similarities (1- Jaccard dissimilarity coefficient, 1- and 3-hr temporal resolutions) of vocal active anuran assemblages with 
combinations of night periods as fixed effect (early: 19:00, 20:00, 21:00; mid: 22:00, 23:00, 00:00; late: 01:00, 02:00, 03:00, UTC-4) and 
on (2) compositional similarity between early-late period with phylogenetic relatedness of assemblages (SOS scores), species richness, PC1 
and PC2 representing local habitat structure, and landscape heterogeneity (NDVI) as fixed effects. Monitored day and site were included as 
random effects. R2

m
, marginal r-squared; R2

c
, conditional r-squared. Best models are highlighted in bold

deltaAICc AICc df weight R
2

m
R
2

c

(1) Compositional similarity ~ night periods

1-hr null 117.2 −2,583.5 4 <0.001

1-hr 0 −2,700.7 6 1 0.02 0.42

3-hr null 20 −355.4 4 <0.001

3-hr 0 −375.4 6 1 0.04 0.53

(2) Early-late compositional similarity ~ drivers

1-hr null 2.6 −1,269.8 4 0.22 0.11 0.48

1-hr 0 −1,272.4 9 0.78

3-hr null 0 −673.7 3 0.901 0.08 0.53

3-hr 4.4 −669.2 8 0.09

TA B L E  2   Model coefficients from general linear mixed models 
fitted on (a) compositional similarities (1- and 3-hr temporal 
resolutions) of vocal active anuran assemblages with combinations 
of night periods as fixed effect, and on (b) compositional similarity 
between early-late period with phylogenetic relatedness of 
assemblages (SOS scores), species richness, PC1 and PC2 
representing local habitat structure, and landscape heterogeneity 
(NDVI) as fixed effects. Monitored day and site were included 
as random effects. LCI, lower confidence interval; UCI, upper 
confidence interval [95%]. Significant results are highlighted in bold

t-value beta LCI UCI

(1) Compositional similarity ~ night periods

1-hr

Intercept (early-mid) 59.8 −0.69 0.67 0.71

Mid-late 3.2 0.02 0.01 0.03

Early-late −8.4 −0.05 −0.06 −0.04

3-hr

Intercept (early-mid) 52.8 0.77 0.74 0.79

Mid-late 1 0.01 −0.01 0.04

Early-late −4.4 −0.06 −0.09 −0.03

(2) Early-late compositional similarity ~ drivers

1-hr

Intercept 10.7 0.7 0.57 0.83

PC1-Habitat 
heterogeneity

0.7 0.01 −0.01 0.03

PC2-Habitat 
heterogeneity

2.6 0.03 0.01 0.06

SOS scores 2.6 0.05 0.01 0.09

NDVI 0.4 0.01 −0.03 0.05

Species richness −1 −0.01 −0.02 0.01
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first RDA axis, SOS scores showing a negative association with 
the second RDA axis and NDVI (and PC1 and PC2 to a lesser de-
gree) showing a positive association with the second RDA axis 
(Figure 4b).

4  | DISCUSSION

The scale dependence of ecological phenomena requires ascertain-
ing the spatial and temporal framings of ecological communities 
(Soininen, 2010; Van Allen et al., 2017; Viana & Chase, 2019). Although 
ecologists have largely neglected fine resolution-time-scales (Estes 
et al., 2018), our closer look at the temporal axis of tropical anuran 
assemblages unveiled that variation in species activity is influenced 
by the environmental structure (both local and landscape heterogene-
ity) and the phylogenetic relatedness of assemblages. However, these 
relationships were found for the 1-hr temporal resolution of species 
activity but not for the 3-hr resolution, indicating that even small 
changes in temporal resolution may lead to scaling issues. We discuss 
our findings in the light of potential trade-offs between ecological 
overlap among coexisting species and temporal and spatial partition-
ing across the gradients of local and landscape heterogeneity.

Similarity in the composition of vocal active species between 
night periods was higher at localities with more heterogeneous 
habitats and in assemblages overrepresented by species of the 
family Hylidae, which typically use the vertical stratum of vegeta-
tion as micro-habitat. Accordingly, high complexity in the vertical 
stratum of vegetation reduces spatial overlap for semi-terrestrial 
and arboreal species (Hödl,  1977; Silva et  al.,  2011), improving 
chances for species to acoustically communicate and find mates 
with the benefit of reduced negative interactions (Gaston,  2019; 
Kronfeld-Schor & Dayan,  2003). Also, a decay in compositional 

F I G U R E  4   (a) A non-metric multidimensional scaling for the 
combination of species registered on early and late periods 
at each site, depicting overall short-term variability in species 
composition (species names are listed in Table S2). Points indicate 
the centroid of species composition on each site and period.  
(b) Two first axes of a redundancy analysis (RDA) using total 
species incidence per site and phylogenetic relatedness (SOS 
scores), local habitat heterogeneity (first two PC axes on 
habitat variables), landscape heterogeneity (NDVI) and total 
species richness. Dots represent sites ordinated according 
to their compositional similarities and angle between arrows 
(environmental and ecological gradients) and response variables 
(species) indicate their linear correlation

TA B L E  3   Ranking of models fitted on the variance (log) of 
compositional similarities for 1- and 3-hr temporal resolutions, 
considering early-late night periods for all days. Models were 
ranked using AICc and comprised (a) landscape heterogeneity 
(NDVI), (b) ecological context of assemblages (SOS scores and 
species richness), (c) local habitat structure (PC1 and PC2),  
(d) a global model containing all variables and (e) a null model  
with intercept only. Significant results are highlighted in bold

dAICc df Weight

1-hr

~NDVI 0 3 0.867

~SOS + species richness 5.2 4 0.063

Null model 5.9 2 0.045

Global model 7.5 7 0.021

~PC1 + PC2 (habitat structure) 10.8 4 0.004

1-hr

~NDVI + ~NDVI2 0 4 0.59

~NDVI 0.7 3 0.41

3-hr

~NDVI 0 3 0.48

Null model 1.3 2 0.245

Global model 2.2 7 0.161

~PC1 + PC2 (habitat structure) 3.3 4 0.09

~SOS + species richness 6 4 0.023
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similarity between night periods was observed in localities with 
low vegetational heterogeneity and overrepresented by species of 
the family Leptodactylidae, composed predominantly of terrestrial 
species lacking adaptations to perch in vertical structures. These 
two contexts may increase chances for direct species interactions 
when searching for calling and breeding sites (Borzée et al., 2016; 
Hödl, 1977), and one possibility is that deterministic exclusion of 
competing species through the night could drive the decay in com-
positional similarity, with the persistence of few dominant species. 
However, we were unable to detect a clear pattern of lower spe-
cies richness over diel periods, as would be presumably expected 
in such circumstances (Figure S4). Conversely, temporal patterns of 
anuran activity may be regulated by distinct strategies in response 
to resource availability and competition (Humfeld, 2013; McCauley 
et al., 2000). In this sense, a decay in nightly compositional similar-
ity could reflect temporal partitioning among species with similar 
ecological requirements in localities with limited potential for mi-
crohabitat partitioning. Furthermore, we also acknowledge that a 
wider variation in microclimatic factors in these less heterogeneous 
sites could also account for the observed decay in nightly activity 
(Llusia et al., 2013; Saenz et al., 2006), although we were unable to 
address these factors. Altogether, the variation in night activity of 
anuran assemblages indicates potential trade-offs between micro-
habitat and temporal partitioning, being consistent with a role of 
niche complementary on the structuring of ecological communities 
(Mason et al., 2008; Schoener, 1974).

Anuran assemblages located at sites with increasing landscape 
heterogeneity (NDVI), ranging from open grasslands to areas with 
increased forest cover, showed higher variability in nightly com-
positional similarities across the monitored days. For amphibians, 
landscape structure has a large influence on organisms' movement 
into breeding sites and on their maintenance during the interlude of 
calling activity and interbreeding season (Becker et al., 2010). For in-
stance, higher solar radiation in open grassland compared to closed 
canopy sites can hinder the persistence and movement of species un-
able to cope with intense evaporative water loss (Rothermel, 2004). 
Landscape heterogeneity indeed contributed to explaining the spa-
tial variation in species composition observed at the metacommunity 
scale of the anuran assemblages here investigated. In this context, 
low-heterogeneous landscapes may emphasize the role of environ-
mental filtering in sorting out species with low environmental tol-
erance and dispersal capability, and the dynamics resulting from 
the same set of species sorted into these environments may relate 
to the low variability in nightly compositional similarities observed 
across days. Conversely, an increase in landscape heterogeneity and 
forest cover reduces overheating and desiccation during daylight, 
which favours spatial dynamics by decreasing movement resistance 
among habitat patches and within species home range (Bowler & 
Benton, 2005; Buskirk, 2012; Silva et al., 2012). Since chorusing for-
mations start with a few early individuals establishing spatial domi-
nance, the order of species arrival may constraint opportunities for 
late arrivals, and communities may undergo distinct dynamics over 
nocturnal activity (Fukami,  2015). In this sense, spatial dynamics 

and priority effects may increase stochasticity on the assembly of 
communities and counteract competitive interactions at fine scales 
(Amarasekare, 2003). Previous findings of large compositional vari-
ation of amphibians have underscored a role of stochasticity on 
the assembly of communities (Richter-Boix et  al.,  2007; Werner 
et al., 2007), and our findings suggest that increasing landscape het-
erogeneity may indirectly increase the effects of spatial-related sto-
chastic processes on signalling anuran assemblages.

The nightly compositional similarity was relatively high (
‼

x = 0.64 
between early-late period, 1-hr resolution), indicating that a large 
portion of species maintains continuous calling activity throughout 
the night. The phenomenon of anuran chorusing may emerge with 
a single signalling individual whose calling activity induces compet-
ing conspecific males to start advertising, initiating a chain reac-
tion that may last for hours (Brooke et al., 2000; Llusia et al., 2013; 
Prado et al., 2005; Wells & Schwartz, 2007). Chorusing formation 
may benefit calling energetic costs by increasing attractiveness 
for mates to a common breeding site and minimizing predation 
risk (Schwartz & Bee,  2013). Although chorusing attendance and 
diel activity patterns are widely described in species-specific stud-
ies (Bertoluci & Rodrigues,  2002; Gottsberger & Gruber,  2004; 
Heinermann et al., 2015; Lopez et al., 2011; Schalk & Saenz, 2016), 
community-wide approaches remained elusive (Dubos et al., 2020; 
Guerra et al., 2020; Ulloa et al., 2019). Considering our findings on 
the influence of habitat heterogeneity and species interactions on 
nightly compositional variation of anuran assemblages, we argue 
that future studies should take into consideration the contribution 
of ecological contexts in species calling activity, in addition to abi-
otic factors such as temperature and rainfall. Potential effects of 
heterospecifics in calling behaviour have mainly been investigated 
in light of acoustic communication, with species eventually altering 
signalling parameters or behaviour when exposed to heterospecific 
calls (Both & Grant, 2012; Phelps et al., 2006), while the influence of 
species interactions on calling activity still remains to be elucidated. 
Therefore, addressing a range of conditions on which potential in-
teractions may occur, that is, distinct habitats and combinations of 
competing species, may increase our understanding of the acoustic 
communication in multi-species systems.

Our findings highlight the importance of temporal scaling effects 
in inferring community assembly processes. In the spatial domain, 
larger sampling units enable more individuals and species to be re-
corded while environmental variation is often described with coarser 
resolution and thus less detailed (Wiens, 1989). For this reason, a mis-
match between the resolution used to describe both response and 
predictor variables often leads to lower explanation power of species 
occupancy (Barton et al., 2013; Sugai, et al., 2019) and therefore, a 
perceived weaker importance of the environment in explaining com-
munity structure (Viana & Chase, 2019). Similarly, mismatches can 
also emerge with the temporal resolution used to describe ecologi-
cal communities. Considering that competitive interactions and pre-
dation pressure are important determinants of diel species activity 
(Kronfeld-Schor et al., 2013; McCann et al., 2017), disregarding diel 
differences in animal activity within communities leads to a poorer 
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representation of co-occurring species. Consequently, temporal res-
olution may yield an ecological pattern unrelated to the actual mech-
anisms driving community assembly (Gaston, 2019).

Theory predicts that changes in the seasonal timing of spe-
cies activity alter the temporal overlap of competing species and 
potentially affect the strength of species interaction, either stabi-
lizing coexistence or increasing competitive inequalities (Godoy & 
Levine, 2014; Rudolf, 2019). Our findings, however, raise the possi-
bility that diel differences in species activity may change the mag-
nitude of competitive interactions (Brumm, 2006; Humfeld, 2013; 
Schwartz,  1987). Importantly, we found that even a small change 
in temporal resolution (from 1- to 3-hr resolution) was enough to 
prevent finding a relationship with habitat structure and ecologi-
cal context (phylogenetic dominance). Therefore, using appropriate 
temporal resolution in breeding phenology investigations can re-
veal differences in species activity that account to reduce negative 
interactions.
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