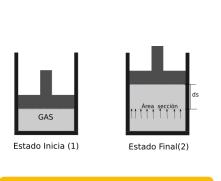
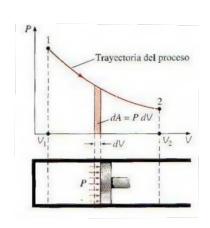

Primera ley - sistemas cerrados

Laidy Esperanza Hernandez Mena

September 5, 2022

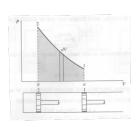

PRIMERA LEY DE LA TERMODINÁMICA

Energía de un sistema	
E2-E1= (EC2-EC1)+(EP2-EP1)+ (U2-U1)	Variación de la energía total
$\Delta E = \Delta EC + \Delta EP + \Delta U$	
$\Delta \; E_{\mathit{sistema}} = E_{\mathit{entra}} - E_{\mathit{sale}}$	
$\Delta E = E2 - E1 = Q - W$	Conservación de la energía para
	sistemas cerrados
$\Delta U = Q - W$	Sistemas estacionarios
$Q_{ciclo} = W_{ciclo}$	Cantidades netas de energía
	transferidas por calor y trabajo
$Q=Q_{neto,entrada}=Qen-Qsal$	Entrada neta de Calor
$W=W_{neto,salida}=Wsal-Went$	Salida neta de trabajo
	-

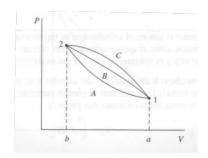


ANÁLISIS DE SISTEMAS CERRADOS

Trabajo de frontera móvil

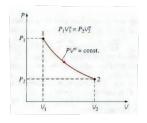

$$\delta W = F \times \Delta s = PAds = PdV$$

 $W = \int_{1}^{2} PdV$


Área= A=
$$\int_1^2 dA = \int_1^2 PdV$$

ANÁLISIS DE SISTEMAS CERRADOS

Sistema compresible



Cada trayectoria tendrá un área diferente que representa la magnitud del trabajo.

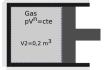
$$W = \int_{1}^{2} CV^{-n} dV$$

$$W = C \frac{V_{2}^{-n+1} - V_{1}^{-n-1}}{-n+1}$$

$$W = \frac{P2V2 - P1V1}{1-n}$$
Dado que: C=P2V2ⁿ = P1V1ⁿ.

Para un gas ideal PV=mRT
$$W = \frac{mR(T2 - T1)}{1-n}$$

Ejemplos


Un gas en un dispositivo cilindro-pistón sufre un proceso de expansión para el que la relación entre la presión y el volumen viene dada por pV= cte

La presión inicial es 3 bar, el volumen inicial es $0.1m^3$ y el volumen final es $0.2 m^3$. Determine el trabajo, en KJ, para el proceso si :

- a) n=1,5
- b) n=1
- c) n=0

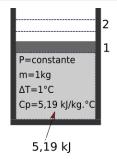
La pared móvil es el único modo de trabajo La expansión es un proceso politropico

E . 1	/
Ental	nıa
	۳. ۳

U+ PV	"la definición familiar de entalpía tal	
	como la introdujo Gibbs en 1875 ('función	
	de calor para presión ')	
H = U + PV	El físico holandés Heike Kamerlingh	
	Onnes (1853-1926) le dio a H el nom-	
	bre de entalpía, de el griego, (en), en,	
	y (thalpos), calor, o de la única palabra	
	griega, (enthalpos), calentar dentro)	

Energía Interna y Entalpía especifica

H= U+ PV [KJ]	Entalpía Total
h = u + pv [KJ/kg]	Entalpía especifica
$\overline{h} = \overline{u} + p\overline{v}[KJ/kmol]$	
h = (1-x)hf + x hg	Entalpía específica
h = hf + x(hg-hf)	
u = (1-x)uf + x ug	Energía Interna
u = uf + x(ug-uf)	

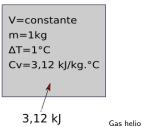

Calores específicos

Definición:

Energía requerida para elevar en un grado la temperatura de una unidad de masa de sustancia. Depende como se ejecute el proceso:

Cv,calor especifico a volumen constante

Cp, Calor especifico a presión constante



Presión constante

$$cp dT = dh$$
 $cp = (\frac{dh}{dt})_p$

Cambio de entalpía con la temperatura a presión constante

$$dh = cp(T) dT$$

Volumen constante

$$cv dT = du$$

 $cv = (\frac{du}{dT})_v$

Cambio de energía interna con temperatura a volumen constante du=cv(T) dT

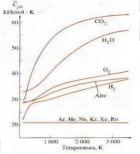
Energía interna, entalpía y calores específicos de gases ideales

Energía Interna

du=cv(T) dT
u=u(T)

$$\Delta u = u_2 - u_1 = \int_1^2 cv(T) dT(kJ/kg)$$

 $u_2 - u_1 = cv_{prom}(T2 - T1)(kJ/kg)$


Entalpía

Pv=RT h=u+Pv=u+RT h=h(T) Entalpía del gas ideal es función de la temperatura dh= cp(T) dT $\Delta h = h_2 - h_1 =$ $\int_1^2 cp(T)dT(kJ/kg)$ $h_2 - h_1 =$ $cp_{prom}(T2 - T1)(kJ/kg)$

Formas de determinar energía interna y entalpía:

- 1. Mediante tablas
- Por medio de las relaciones cv y cp en función de la temperatura, despues de integrar
 Mediante calores específicos
- 3. Mediante calores específicos promedio.

Gases monoatomicos como helio, argón, neón tienen solo energías de traslación y electrónic, y presentan poca o ninguna variación del calor especifico.

Cambio de entalpía

Si se emplea la definición de entalpia h=u+Pv y V=cte El cambio de entalpia de sustancias incompresibles esta dada por: dh=du+vdP

$$\Delta h = \Delta u + v \Delta P$$

$$\Delta h = c p_{prom} \Delta T + v \Delta P (kJ/kg)$$

Para sólidos, $v\Delta P(kJ/kg)$ es insignificante, por tanto :

$$\Delta h = \Delta u = c p_{prom} \Delta T$$

Para líquidos

1. Procesos a presión constante, como los calentadores

$$(\Delta P = 0)$$
; $\Delta h = \Delta u = cp_{prom}\Delta T$

2. Procesos a temperatura constantes, como en las bombas $(\Delta T = 0)$

$$\Delta h = v \Delta P$$