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Modeling of Cardiovascular Variability 
Using a Differential Delay Equation 

Silvio Cavalcanti" and Enzo Belardinelli 

Abstract-The influence of time delay in the baroreflex control 
of the heart activity is analyzed by using a simple mathematical 
model of the short-term pressure regulation. The mean arterial 
pressure in a Windkessel model is controlled by a nonlinear 
feedback driving a nonpulsatile model of the cardiac pump in 
accordance with the steady-state characteristics of the arterial 
baroreceptor reflex. A pure time delay is placed in the feed- 
back branch to simulate the latent period of the baroreceptor 
regulation. Because of system nonlinearity model dynamics is 
found to be highly sensitive to time delay and changes of this 
parameter within a physiological range cause the model to exhibit 
different patterns of behavior. For low values of time delay 
(shorter than 0.5 s) the model remains in a steady state. When 
time delay is longer than 0.5 s, a Hopf bifurcation is crossed 
and spontaneous oscillations occur with frequencies in the high- 
frequency (HF) band. Further increases of time delay above 1.2 s 
cause the oscillations to become more complex, and following the 
typical Feigenbaum cascade, the system becomes chaotic. In this 
condition heart rate, pressure, and flow show evident variability. 
The heart rate power spectrum exhibits a peak whose frequency 
moves from the HF to LF band depending on whether simulated 
time delay is as short as the vagal-mediated control or long as 
the sympathetic one. 

I. INTRODUCTION 

NE of the peculiar features of cardiovascular signals 0 is their pulsatile nature: Cyclical heart activity makes 
quantities such as pressure, flow, electrocardiogram (ECG), 
etc., rhythmically time-varying. Moreover, the cardiac cycle 
period continuously changes, and even during resting condi- 
tions, the interbeat interval of the healthy heart is characterized 
by unpredictable variations. Consequently, the frequency of 
events scanning the cardiac rhythm is not stable, and beat 
after beat, it shows a slow variability. Together with the heart 
rate, also blood pressure, flow, vessel lumens and peripheral 
resistances, exhibit apparent random fluctuations in magnitude 
and frequency. In a stationary state of the cardiovascular 
system, the signal variability is about 10% with respect to 
the mean value. 

Experimental studies on variability have permitted the ex- 
ploration of both the physiological and the clinical aspects 
of the cardiovascular system [ 11. Variability signals such 
as beat-to-beat heart rate detected by measuring the R-R 
interval in ECG or in plethysmographic tracings [2]  as well 
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as systolic or diastolic values of arterial blood pressure [31, 
are assumed to carry a great deal of information about the 
state of the cardiovascular and autonomic nervous systems. 
Neural controls of cardiovascular functions play an important 
role in many patho-physiological conditions such as arterial 
hypertension, myocardial ischemia, heart failure, etc., and 
variability analysis coupled with cardiovascular reflex tests 
provide a noninvasive tool useful in clinical medicine to assess 
the state of the neuro-cardiovascular system [4], [5]. 

Neural controls of cardiovascular functions are effected 
through the autonomic nervous system and in particular, by 
the sympathetic and parasympathetic subsystems [6] and [7]. 
The interplay between the cardiovascular system and the 
controlling neural subsystems is on the basis of 
as a track of this interaction different rhythms 
in signals [8]. Frequency analysis of the beat-to-beat 
series has been used to detect the rhythms hidden in 
(e.g., [9]). Power spectral analysis of the beat-to-beat heart 
rate reveals three distinct components which have been inter- 
preted as different physiological rhythms oscillating at specific 
frequencies. In humans, the power in the high frequency (HF) 
band-0.15-0.5 Hz-is sensitive to the respi 
is correlated with vagal efferent input to the 
for this reason, this spectral component of the variability is 
regarded as a marker of the parasympathetic activity [lo]. 
The peak in the low frequencies (LF) band-0.06-0.15 Hz-is 
believed to be due to the baroreceptor mediated blood pressure 
control and includes contributions from both the sympathetic 
and parasympathetic nervous systems. Pressure oscillations at 
around six cycles a minute+.g., Mayer waves-fall into this 
band [ l l ] .  Finally, the power in very-low- 
band-below 0.06 Hz-has been linked with the humoral and 
temperature regulations and with the slow vasomotor activity. 
On the basis of the spectral decompo 
LF and HF components were proposed 
markers of neural activity and the ratio 
to provide an index of the sympatho-va 

closely examine the genesis o 
in cardiovascular signals. In 
can be justified in different w 
as a sign of the variability of 
an example, the respiratory rhy 
on the heart rate-the so-calle 
[ 121-and the power in the HF band depends on the Eespiratory 
activity. But the variability is not necessarily caused by 
external driving oscillations only. In the cardiovascular system 

To correctly construe power spectra it is very important to 
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there are complex oscillations occurring locally in subsystems 
which, through reflex mechanisms, can propagate to other parts 
of the system. For instance, local controls of microcirculation 
and in particular, the myogenic reactivity, induce spontaneous 
vasomotion that has a frequency component close to the LF 
band [ 131. Vasomotion influences systemic blood pressure and 
through the baroreceptor reflex, vasomotion influences the 
heart rate [14]. 

Besides these justifications, there is another interpretive 
key of variability based on the nonlinear dynamics of the 
cardiovascular system coupled with its controls. From this 
point of view, the variability of cardiovascular signals and their 
apparent disorder is interpretable as a complex time evolution 
typical of chaotic systems. The hypothesis that the cardiovas- 
cular system may present some aspects of deterministic chaos 
has recently been investigated [ 151, [ 161. Measurements of 
nonlinear metrics from heartbeat data-correlation dimension, 
Lyapunov exponents, etc.-have been consistent with the 
idea that heart rate fluctuations represent deterministic chaos 
[17], [18]. This paper intends to investigate this aspect of 
cardiovascular variability with specific attention to the role 
that the baroreceptor reflex plays in the phenomenon. The 
baroreflex acts as a nonlinear negative-feedback which tends to 
stabilize arterial pressure against endogenous and exogenous 
perturbations. Actually, this homeostatic mechanism exhibits 
a short dead time at the onset of the control action due to 
necessary electrochemical transductions and transmissions. In 
humans, the baroreflex changes of heart activity start after 
at least 0.5 s and the control action is fulfilled with a 3- 
s time delay [19] and [20]. It is well known that nonlinear 
controls acting with a pure time delay can cause an oscillatory 
evolution and in particular conditions, these oscillations can 
become chaotic [21]. It is the aim of the present study to 
analyze the influence of the time delay by a simple nonpulsatile 
mathematical model of the baroreflex regulation of arterial 
pressure, in order to prove that time delays within a range of 
physiological importance are sufficient to drive the system to 
complex behavior and in particular, to oscillate chaotically. 

11. METHODS 
The influence of time delay in short-term baroreflex regu- 

lation of arterial pressure was analyzed by means of a math- 
ematical model whose block diagram is shown in Fig. 1. For 
the sake of simplicity, we restricted the analysis to the mean 
values only-i.e., to the time-averaged components-leaving 
out of consideration the intrinsic pulsatile nature of the cardiac 
pump. However, the mean values were also considered time- 
varying because of system variability. The dynamic linking 
between mean arterial pressure, P( t ) ,  and mean aortic flow, 
Q(t ) ,  was described by adopting a very simple model of 
circulation (Fig. 1). It is the classic three-element Windkessel 
model [22], that is a suitable representation of the arterial 
load impedance of the heart. This impedance consists of a 
peripheral resistance, R, a total arterial compliance, C,  and an 
aortic characteristic impedance, T .  Although these parameters 
are time-varying because of regulating mechanisms [23], in the 
present study they were kept to a constant physiological value. 

I Circulation I 

Steady-state baroreflex 
characteristics 

Delay 

V,(t)=V(t - 7) 

40 60 80 100 120 140 

Fig. 1. Schematic representation of the mathematical model employed to 
study the influence of the time delay in the baroreflex regulation of heart 
activity; the model is nonpulsatile and the heart is treated as a continuous 
flow pump; P is the mean arterial pressure, Q the mean aortic flow; baroreflex 
regulation involves cardiac period T and stroke volume V. 

The assumption of time-invariant Windkessel parameters was 
made in order to stress the role of baroreflex control of the 
heart activity only, intentionally leaving out the baroreflex con- 
trol of the circulatory system. Values of Windkessel parameters 
(Table I) were obtained best-fitting the input impedance data 
measured in five normal human subjects [24]. On the basis of 
the Windkessel theory, the dynamic relationship between the 
mean arterial pressure, P( t ) ,  and mean cardiac output, Q(t ) ,  is 

1 
dPs(t’ = wt[RQ(t)  - Ps(t)] ,  with wt = -, (1) d t  RC 

P( t )  = Ps( t )  + rQ(t) .  (2) 

Mean aortic flow, Q(t ) ,  was regarded as input and the mean 
pressure, P( t ) ,  as output (Fig. 1). Since the model was non- 
pulsatile, the mean aortic flow, Q(t),  was simply expressed 
(Fig. 1) as the ratio between the mean components of stroke 
volume, V(t ) ,  and heart period, T(t) .  

Short-term regulation of the arterial pressure was modeled 
as an algebraic nonlinear feedback driving cardiac activity on 
the basis of the mean arterial pressure, P(t ) .  We assumed the 
period of the cardiac cycle to depend on the pressure in the 
steady-state according to the sigmoidal law 

with y >> T, - T,. ( 3 )  

Relationship (3) reproduces the characteristic saturation effects 
occurring in the baroreflex-dependent control of heart rate 
when pressure reaches low and high levels (see Fig. 2). The 
lower (Ts) and upper (Tm) plateaus establish the shorter and 
longer cardiac period and match, respectively, the maximal 
vasodepressor-induced sympathetic excitation and the maxi- 
mum pressor-induced vagal activation [25].  P, corresponds 
to the steady level of mean arterial pressbre, that is the arterial 
pressure when (1) is in equilibrium; a and y, determine range 
and slope of the linear region of the mean pressure-heart 
period curve, i.e., the baroreflex sensitivity. The value of these 
parameters (Table I) was estimated by best-fitting data drawn 
from physiological literature [26]. 
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TABLE I 

Windkessel 

R 1.2103 [dyns/cm5] 
r 52 [dyn s/cm5] 

c 110-3 [cm5/dyn~ 

Heart Rate 

T, 0.66 [s] 

T, 1.2 [SI 

P, 89 [“Hsl 
a 31 
y 6.71013 

Stroke Volume 

1.3 r 
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cardiac pump, the steady-state stroke volume-pressure curve 
was modeled using the following expression: 

V ( P )  = -k ’ with P 2 P, (4) 

1 + P (g - 1) 

where V,,, is the maximum stroke volume and P,, is the 
pressure for which cardiac output is null. 

To take into account the latent period involved in the 
baroreceptor reflex a pure time delay was placed in the 
feedback branch (Fig. 1). In this way, heart rate and stroke 
volume were retarded by a period r with respect to the pressure 

Equations (1)-(4) completely define the mathematical model 
and they have been integrated with respect to time using the 
Runge-Kutta method. Parameters were assigned to reproduce 
human physiological data (see Table I). The value of model 
parameters was the same in all the simulations; only the value 
of the delay, r ,  of the control loop was changed in order 
to study the sensitivity of model dynamics to this parameter. 
Borst and Karemaker [19] observed in humans a time delay 
of about 0.6 s in the onset of the peak-to-peak interval 
prolongation after electrical stimulation of carotid sinus nerves, 
about 1 s to change the AV-interval, and from 2-3 s for the 
start of the decrease in the arterial pressure. In experiments 
of open-loop transfer function from carotid sinus pressure 
to aortic pressure Kubota et al. [30] found in vagotomized 
dogs a time delay in the range 1.1-2.5 s. Moreover, Berger 
et al. [31] estimated distinctly different delays in response 
to vagal or sympathetic stimulations: vagal mediate changes 
begin almost immediately (about 0.6 s), whereas sympathetic 
mediated changes may begin after 1.7-2 s. Delays in the range 
0.5-3 s are also consistent with the response of heart activity 
to a mild arterial hemorrhage [20]. 

P( t ) .  

70 80 90 100 I10 120 
Pressure [ “ H g ]  

Fig. 2. Heart period versus arterial pressure in steady state. Data from [22] 
is interpolated by the relationship (3 ) .  Pressure and heart period when (1) is 
at the equilibrium are also indicated. 

Since the baroreflex modulation of heart activity affects 
together with heart period, also the heart contractility, the 
mean stroke volume, V( t ) ,  was assumed to depend on the 
arterial pressure. Studies of baroreceptor-heart reflex [27]-[29] 
show that stroke volume is maintained nearly constant when 
the mean pressure is within a physiological range. In fact, 
when pressure acting on arterial baroreceptors decreases, the 
resultant increase in the sympathetic tone drives the heart to 
faster contractions without causing a significant increase in 
the cardiac output, because of the shorter time of ventricular 
filling and the simultaneous increase in the arterial load. 
On the contrary, when mean arterial pressure falls below 
physiological levels, stroke volume rapidly decreases, because 
of the asymptotic trend of the heart to failure and seriously 
reduces cardiac output, when systemic blood pressure goes to 
very low levels. In order to reproduce this behavior of the 

111. RESULTS 
Assuming that baroreflex changes of heart activity occur 

in three cardiac cycles, delay 7- in the baroreceptor control 
loop at first ranges between 2-3 s. When the value of r is 
chosen in this range, the model behaves chaotically: pressure, 
heart rate, and flow exhibit very irregular time evolution 
with evident variability (Fig. 3). This range of parameter r 
is indicated in the following as the chaotic region. In this 
region the model is characterized by sensitive dependence 
on the initial condition that is a typical feature of chaotic 
systems: after the transient is exhausted, a slight perturbation 
of the trajectory radically changes the system time evolution 
(Fig. 4). The stretch and folding mechanism-which is at the 
basis of the infinite sensitivity to trajectory perturbations-is 
evident in Fig. 5 where the strange attractor is represented in 
three-dimensional (3-D))space. 

When delay r is less than 2 s, the model is no longer chaotic 
and periodic oscillations occur (Fig. 6). System evolution is 
oscillatory as long as r is between 0.6-2 s and for this 
reason this range is indicated as the periodic region. In 
this region, when the transient is extinct, system trajectories 
converge on a limit cycle (Fig. 6). Amplitude and frequency 
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Fig. 3. 
time delay is in the chaotic region (7 = 2.5 s); the transient is canceled. 

Fig. 3 Time waveforms of (a) mean pressure and (b) heart rate when 

3 90-  

80- Y 

7 0 -  

8 60- 
5 

100, 

Fig. 5. Chaotic trajectory in a 3-D-space; 2.5 min of simulations after the 
transient is extinguished are shown. 

a 
3 75 d 
F! 
5 SOL 

0 10 20 30 40 50 
Time [SI 

Fig. 6.  A complex periodic oscillation occurs for a time delay in the higher 
part of the periodic region (T = 1.8 s). In the heart rate curve the oscillation 
periodicity is marked with a circle. 

JU 

0 20 40 60 
Time [SI 

Fig. 4. Sensitive dependence on the initial condition: as an effect of the 
initial perturbation (less than 0.1%) the trajectories diverge and they become 
uncorrelated. 

of oscillation depend on the value of r and, in particular, 
by increasing parameter r the attracting limit cycle expands 
and the oscillation frequency decreases (Fig. 7). Within the 
periodic region the system undergoes a flip bifurcation cascade 
and whenever a flip bifurcation is crossed the doubling of the 
oscillation period takes place and the time waveform of signals 
becomes more complex. When a flip bifurcation value is 
overcome the limit cycle suddenly becomes nonstable, turning 
into a saddle cycle and a new stable cycle with a double period 

appears (Fig. 8). The cascade of period doubling bifurcations 
accumulate to a value of r equal to about 2 s, beyond which 
the system becomes chaotic. This accumulation value marks 
the frontier between the periodic and the chaotic region. 

Shortening the time delay further below the periodic re- 
gion- i.e., for r less than 0.5 s-the limit cycle vanishes 
and the system trajectory converges to a steady state which is 
independent of 7 (Fig. 9). The steady state and the periodic 
regions are separated by a Hopf supercritical bifurcation. 
When, on reducing T ,  the Hopf bifurcation is crossed, the cycle 
limit collapses at the equilibrium point which, as result of the 
collision, becomes a stable focus. In this situation, pressure, 
flow, and heart rate reach a stable fixed value and as long 
as the system is not subject to external perturbations, it holds 
this equilibrium condition. 
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delay the oscillation frequency decreases. 
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Fig. 8. Period-doubling bifurcation. The two limit cycles are for 1.2 s 
(dash-dot line) and 1.4 s (solid line) time delays, respectively. The power 
is overall around 0.25 Hz for the delay equal to 1.2 s (spectrum in the low 
right part of the figure); when the flip bifurcation is crossed-delay equal to 
1.4 s-this harmonic is at 0.22 Hz and a sub- and a super-harmonic appears 
in the spectrum. 

The oscillation emerging from the Hopf bifurcation is char- 
acterized by a high frequency (about 0.45 Hz) and oscillations 
with frequencies in the HF band-i.e., greater than 0.15 
Hz-can be observed as long as a short value is assigned 
to time delay (0.6-1.2 s). On increasing T the frequency of 
the oscillation decreases and when the first flip bifurcation 
occurs the frequency is equal to about 0.2 Hz (Fig. 8). After 

90 r 90 I 

82 84 86 88 90 92 0 IO 20 30 
Pressure [mmHg] Time [SI 

Fig. 9. Transient response to an initial perturbation when time delay is 
equal to 0.6 s. The system trajectory converges on a very small limit cycle 
surrounding by an unstable focus. For time delay shorter than this value the 
limit cycle collapses and the equilibrium point becomes stable. 

I 1  I 

1 -  

2 0 . 8 -  
..-I WY 

0.6- 
0 0.1 0.2 0.3 0.4 0.5 

0 0.1 0.2 0.3 0.4 0.5 
Frequency [Hz] 

Fig. 10. Power spectrum of the heart rate when system time evolution is 
chaotic (7 greater than 2 s). Three clearly separated components are evident 
in the autoregressive spectrum: one component is in the VLF band, one is in 
the LF band, and a small peak is in the HF band; the broad band component is 
evident in the FFT-spectrum (inset). Power density is normalized with respect 
to the LF peak. 

the first flip bifurcation takes place, as an effect of the period 
doubling, part of the power moves from this frequency to a 
sub- and to a super-harmonic with frequencies equal to 0.1 
and 0.3 Hz, respectively, and two new spikes matching these 
frequencies appear in the power spectrum (Fig. 8). Whenever 
a new flip bifurcation is crossed, these spikes become more 
evident and new harmonics with frequencies that are again 
multiple and sub-multiple of these spikes come out in the 
power spectrum. When the flip bifurcation cascade is fully 
crossed and the system is in the chaotic region, the period 
doubling phenomenon gives rise to the accumulation of a 
continuous broad-band power spectrum with some distinct 
spikes superimposed (Fig. 10). The noise-like component is 
a characteristic exhibited by spectra of chaotic signals while 
spikes indicate the presence of some predominant rhythms 
embedded in the signal. The largest power component is 
in the LF band with a central frequency at about 0.12 Hz, 
whereas a small component falls in the HF band around 0.4 
Hz. When the system moves from the chaotic region to the 
periodic one, the noise-like component, being a characteristic 
of a chaotic dynamics, vanishes from the power spectrum, 
whereas rhythms with frequencies spaced at integer multiples 
of a frequency close to 0.1 Hz persist (Fig. 11). 
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Fig. 11. Autospectrum of the heart rate curve shown in Fig. 6 (T = 1.8 s). 

Iv .  DISCUSSION AND CONCLUSIONS 

The present study is intended to analyze the influence of 
time delay in the human baroreceptor-mediated reflex. To this 
end, a very simple mathematical model of the interaction 
between the cardiovascular system and baroreceptor control 
of arterial pressure has been used. In making the model some 
assumptions were made that will be briefly discussed here. 

First of all, the pulsatile nature of the cardiac pump was 
neglected since we were mainly interested in the average 
system behavior only. Really, the marked nonlinearities of the 
relationships governing the cardiovascular system cause strong 
interplay between pulsatility and system dynamics [32], [33]. 
We also implemented a pulsatile model of the cardiac pump 
and more complex dynamics with quasiperiodic oscillations 
and different ways of achieving chaos were observed (unpub- 
lished results). Despite the fact that pulsatility made the system 
behavior richer, the influence of the time delay was the same as 
in the model without pulsatility, and for this reason, pulsatility 
was not included in the present analysis. 

The baroreceptor reflex affects not only heart activity but 
also the circulatory system and, in particular, peripheral re- 
sistances. Low-frequency oscillations may also be caused by 
the slow temporal response of the a-adrenergic effector mech- 
anism controlling the muscular tone of peripheral circulation 
[34] and [35]. Madwed et al. [36] explored this hypothesis and 
concluded that this negative-feedback, which operates with a 
time delay of 5 s, is able to induce low-frequency oscillations. 
In our model, this aspect of the autonomic regulation was 
neglected in order to emphasize the role of cardiac control in 
the genesis of heart rate fluctuations. 

Baroreceptor-mediated regulation of the heart activity was 
modeled with a pure algebraic scheme, neglecting its dynam- 
ics. Kubota et al. [30], [37] evaluated the transfer function 
from carotid sinus pressure to aortic pressure, under open- 
loop conditions in vagotomized dogs and they proposed a 
second order low-pass filter as an appropriate representation of 
the barorellex dynamics. We introduced the filter proposed b y  
Kubota et al. [37] into the control feedback: model behavior 
was still characterized by three distinct regimes-steady-state, 
periodic, and chaotic-and values of T marking the boundary 
between these regions were shorter, making the transition to 
chaos easier. 

987 ABILITY USING A DIFFERENTIAL DELAY EQUATION 

A widespread method used to study variability is the spectral 
analysis of the time discrete series of cardiovascular signals. 
The aim of this method is the spectral decomposition of 
signals in order to point out the most significant frequency 
component. After Sayer [2], spontaneous fluctuations in heart 
rate have usually been separated into three spectral bands: 
VLF (<0.05 Hz), LF (0.05-0.15 Hz), and HF (>0.15 Hz). The 
power spectral density of heart rate time series, measured on a 
healthy subject, exhibits a continuous broad-band component 
with three distinct peaks superimposed, respectively, in the 
VLF, LF, and HF band. Chess et al. [lo] found that the 
HF component is mediated entirely by the parasympathetic 
division. Akselrod et al. [38] confirmed the role of vagal 
modulation in mediating heart rate oscillations beyond 0.15 
Hz and established the importance of the sympathetic sys- 
tem in the genesis of LF oscillations. Several authors [4], 
[9], [39] confirmed these findings providing new insights 
into the role of the autonomic regulation in cardiovascular 
signal variability. Differences in frequencies of vagal- and 
sympathetic-mediated heart fluctuations reflect different re- 
sponse properties. In particular, vagal control and sympathetic 
control are characterized by distinctly different latent periods. 
Borst and Karemaker [19] established the dead time between 
the start of the carotid sinus nervous stimulation and the 
onset of the reflex in the cardiac activity in humans. They 
found that cardiac cycle prolongation-which involves the 
vagal activation-started after a short delay of about 0.6 
s, i.e., within the same cardiac beat. On the contrary, the 
atrial response to sympathetic stimulations is characterized 
by a much longer delay. Samaan [40] reported a dead time 
greater than 2.5 s in the onset of the heart rate rise after 
the initiation of sympathetic stimulation and Berger et al. 
[31], using frequency domain analysis, found a roughly 1.7 
s pure time delay. Our model does not distinguish either the 
sympathetic and parasympathetic pathways or the sympatho- 
vagal balance. Since these two subsystems drive the sinus node 
simultaneously it is not possible to quantitatively compare the 
results presented here with the experimental ones. However, it 
is possible to qualitatively correlate the simulation results with 
the physiological observations. First of all, present theoretical 
analysis confirms that time delay in the baroreceptor regu- 
lation of arterial pressure may be the cause of spontaneous 
fluctuations in the cardiovascular system [35]. Moreover, 
rhythms embedded in the simulated signals are sensitive to the 
time delay and their frequencies correlate the physiological 
ones depending on whether the delay simulated is close 
to the vagal or the sympathetic one: when the time delay 
value is set similar to those characterizing the vagal-mediated 
control action (time delay shorter than 1 s) the frequency 
of oscillations falls into the HF band; when time delay is 
similar to the sympathetic one power is nearly in the LF 
band. Finally, Goldberger et al. [41] have recently observed 
that the variability of heart rate decreases after phenylephrine 
infusion that increases the vagal efferent discharge rate. This 
result is also consistent with the present analysis, since the 
variability of simulated data tends to decrease and the fluc- 
tuations become more regular when time delay tends to the 
vagal one. 
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Chaotic and periodic regions are sensitive to the heart rate 
gain as well as to the Windkessel parameters. For instance, 
in the simulations presented here the heart rate gain was 
assumed to be equal to 1.02 bpm/mmHg according to [27]. 
By increasing the heart rate gain the transition to chaos occurs 
for lower values of r-as long as 1 s-and the frequency of 
oscillation in the periodic regime is higher. The same effect 
can also be obtained by increasing peripheral resistance. 

The power component in the VLF band occurring in the 
spectra of the in vivo data is generally associated to humoral 
and temperature regulatory mechanisms. Our model does not 
incorporate both these regulatory mechanisms because they 
do not take part in the arterial pressure short-time regulation 
and because it is reasonable to assume that chaotic dynamics 
persists also when there are slow controls acting on longer 
temporal scales. In the present analysis, power in the VLF 
band is observed only when a long time delay is simulated 
(greater than 2 s), and it is due to the doubling period cascade 
preluding the chaotic regime which induces an accumulation 
of power in this band. 

In this paper, cardiovascular signal variability has been 
reproduced without taking into account either external vagal 
stimulations, like those induced by the respiratory rhythm, or 
the intrinsic variability of neural control signals [42] con- 
sidered by some authors to be one of the primary sources 
of heartbeat chaos [43]. We have interpreted beat-to-beat 
variability of cardiovascular signals as a result of the inter- 
action between the baroreceptorial control and the plant, i.e., 
the uncontrolled cardiovascular system. Thus, variability may 
also be an effect of a complex interaction between different 
subsystems besides complex behavior peculiar of a single part. 
From this point of view, studies of isolated single parts of the 
cardiovascular system could lead to preventing the appearance 
of peculiar behavior. 

For the sake of brevity, we have not included in this paper 
a thorough quantitative analysis of the chaotic dynamics, lim- 
iting the observation to the sensitive dependence on the initial 
condition, to the fractal dimension of the strange attractor, 
and overall, to the classic way in which the model achieves 
the chaos: the typical Eeigenbaum cascade. Cardiovascular 
system behavior is of course more complex than that of the 
model and it could become chaotic in different ways. However, 
the present analysis shows that the baroreflex is a potential 
cause for the chaos in cardiovascular signals. Moreover, the 
high sensitivity of model dynamics to the parameter changes 
can be a reasonable explanation of the variety of behavior 
that the cardiovascular system exhibits also in physiological 
conditions. 

Methods based on the hypothesis of linear phenomena such 
as Fourier analysis, linear model, transfer function, etc., have 
contributed greatly to the study of signal variability but to 
fully explain this phenomena it is necessary to take into 
account +e nonlinear nature of the system. Nonlinearities are 
important to understand rhythms hidden in the signals and the 
shifting of power between components at different frequencies 
is a typical effect of nonlinearities. Moreover, nonlinearities 
enable us to reproduce complex system phenomena by simple 
mathematical models of low order and with only a few 

parameters. Mathematical models like the one proposed in 
this paper could be employed to study neuropathic subjects 
in terms of autonomic functioning and could also provide a 
quantitative evaluation of different cardiovascular autonomic 
function tests. 
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