


�������	


���
���������


��
������
����	



�������


���
��������



This page intentionally left blank 



�������	


���
���������


��
������
����	



�������


���
��������

��������
��
� ��������



MATLAB ® and Simulink ® are trademarks of the MathWorks, Inc. and are used with permission. The MathWorks does 
not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB ® and Simulink ® 
software or related products does not constitute endorsement or sponsorship by the MathWorks of a particular pedagogi-
cal approach or particular use of the MATLAB ® and Simulink ® software.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2010 by Taylor and Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number: 978-1-4398-0672-2 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been 
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright 
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this 
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may 
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the 
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For 
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for 
identification and explanation without intent to infringe.
Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com 



Dedicated to

The cherished memories of my guru and guide

Most Revered Dr. Makund Behari Lal Sahab

DSc (Lucknow), DSc (Edinburgh) 

(1907–2002)

August Founder of Dayalbagh Educational Institute



This page intentionally left blank 



vii

Contents

Preface .......................................................................................................................................... xvii
Acknowledgments ...................................................................................................................... xxi
Author ......................................................................................................................................... xxiii

 1. Introduction to Systems ........................................................................................................1
1.1 System .............................................................................................................................1

1.1.1 System Boundary .............................................................................................3
1.1.2 System Components and Their Interactions ................................................3
1.1.3 Environment .....................................................................................................4

1.2 Classifi cation of Systems ..............................................................................................5
1.2.1 According to the Time Frame ........................................................................5
1.2.2 According to the Complexity of the System ................................................6
1.2.3 According to the Interactions .........................................................................6
1.2.4 According to the Nature and Type of Components ....................................7
1.2.5 According to the Uncertainties Involved .....................................................7

1.2.5.1 Static vs. Dynamic Systems ...............................................................8
1.2.5.2 Linear vs. Nonlinear Systems ...........................................................8

1.3 Linear Systems ...............................................................................................................9
1.3.1 Superposition Theorem ...................................................................................9
1.3.2 Homogeneity .................................................................................................. 10
1.3.3 Mathematical Viewpoint of a Linear System ............................................. 10

1.3.3.1 Linear Differential Equation ......................................................... 10
1.3.3.2 Nonlinear Differential Equations ................................................ 11

1.4 Time-Varying vs. Time-Invariant Systems .............................................................. 12
1.5 Lumped vs. Distributed Parameter Systems........................................................... 13
1.6 Continuous-Time and Discrete-Time Systems ........................................................ 13
1.7 Deterministic vs. Stochastic Systems ....................................................................... 15

1.7.1 Complexity of Systems .................................................................................. 15
1.8 Hard and Soft Systems ............................................................................................... 16
1.9 Analysis of Systems .................................................................................................... 18
1.10 Synthesis of Systems ................................................................................................... 18
1.11 Introduction to System Philosophy .......................................................................... 18

1.11.1 Method of Science .......................................................................................... 20
1.11.1.1 Reductionism .................................................................................. 20
1.11.1.2 Repeatability ................................................................................... 20
1.11.1.3 Refutation ........................................................................................ 20

1.11.2 Problems of Science and Emergence of System ......................................... 20
1.12 System Thinking ......................................................................................................... 21
1.13  Large and Complex Applied System Engineering: 

A Generic Modeling ................................................................................................... 24
1.14 Review Questions ....................................................................................................... 29
1.15 Bibliographical Notes .................................................................................................30



viii Contents

 2. Systems Modeling ................................................................................................................ 31
2.1 Introduction ................................................................................................................. 31
2.2 Need of System Modeling ..........................................................................................33
2.3 Modeling Methods for Complex Systems ...............................................................34
2.4 Classifi cation of Models .............................................................................................35

2.4.1 Physical vs. Abstract Model .........................................................................35
2.4.2 Mathematical vs. Descriptive Model ..........................................................36
2.4.3 Static vs. Dynamic Model ............................................................................. 37
2.4.4 Steady State vs. Transient Model ................................................................. 37
2.4.5 Open vs. Feedback Model............................................................................. 37
2.4.6 Deterministic vs. Stochastic Models ........................................................... 37
2.4.7 Continuous vs. Discrete Models .................................................................. 37

2.5 Characteristics of Models ...........................................................................................38
2.6 Modeling ......................................................................................................................38

2.6.1 Fundamental Axiom (Modeling Hypothesis) ...........................................40
2.6.2 Component Postulate (First Postulate) .......................................................40
2.6.3 Model Evaluation ........................................................................................... 41
2.6.4 Generic Description of Two-Terminal 

Components .................................................................................................... 41
2.6.4.1 Dissipater Type Components .......................................................... 41
2.6.4.2 Delay Type Elements ........................................................................42
2.6.4.3 Accumulator Type .............................................................................42
2.6.4.4 Sources or Drivers .............................................................................43

2.7 Mathematical Modeling of Physical Systems .........................................................43
2.7.1 Modeling of Mechanical Systems ................................................................46

2.7.1.1 Translational Mechanical Systems............................................... 47
2.7.1.2 Rotational Mechanical Systems ...................................................64

2.7.2 Modeling of Electrical Systems .................................................................... 78
2.7.3 Modeling of Electromechanical Systems ...................................................84
2.7.4 Modeling of Fluid Systems ........................................................................... 87

2.7.4.1 Hydraulic Systems ......................................................................... 87
2.7.5 Modeling of Thermal Systems ..................................................................... 92

2.8 Review Questions .......................................................................................................99
2.9 Bibliographical Notes ............................................................................................... 102

 3. Formulation of State Space Model of Systems ............................................................. 103
3.1 Physical Systems Theory .......................................................................................... 103
3.2 System Components and Interconnections ........................................................... 103
3.3 Computation of Parameters of a Component ....................................................... 105
3.4 Single Port and Multiport Systems ......................................................................... 109

3.4.1 Linear Perfect Couplers ............................................................................... 110
3.4.2 Summary of Two-Terminal and Multiterminal 

Components .................................................................................................. 113
3.4.3 Multiterminal Components ........................................................................ 113

3.5 Techniques of System Analysis ............................................................................... 114
3.5.1 Lagrangian Technique ................................................................................ 115
3.5.2 Free Body Diagram Method ....................................................................... 115
3.5.3 Linear Graph Theoretic Approach ............................................................ 115

3.6 Basics of Linear Graph Theoretic Approach ......................................................... 116



Contents ix

3.7 Formulation of System Model for Conceptual System ........................................ 119
3.7.1 Fundamental Axioms .................................................................................. 121
3.7.2 Component Postulate .................................................................................. 121
3.7.3 System Postulate .......................................................................................... 121

3.7.3.1 Cutset Postulate ............................................................................ 122
3.7.3.2 Circuit Postulate ........................................................................... 124

3.8 Formulation of System Model for Physical Systems ............................................ 127
3.9 Topological Restrictions ........................................................................................... 131

3.9.1 Perfect Coupler ............................................................................................. 131
3.9.2 Gyrator ........................................................................................................... 131
3.9.3 Short Circuit Element (“A” Type) ............................................................... 132
3.9.4 Open Circuit Element (“B” Type) .............................................................. 132
3.9.5 Dissipater Type Elements ........................................................................... 132
3.9.6 Delay Type Elements ................................................................................... 132
3.9.7 Accumulator Type Elements ...................................................................... 132
3.9.8 Across Drivers .............................................................................................. 133
3.9.9 Through Drivers .......................................................................................... 133

3.10 Development of State Model of Degenerative System ......................................... 144
3.10.1 Development of State Model for Degenerate System.............................. 146
3.10.2 Symbolic Formulation of State Model for Nondegenerative 

Systems .......................................................................................................... 151
3.10.3 State Model of System with Multiterminal Components....................... 157
3.10.4 State Model for Systems with Time Varying and Nonlinear 

Components .................................................................................................. 162
3.11 Solution of State Equations ...................................................................................... 166
3.12 Controllability ........................................................................................................... 180
3.13 Observability ............................................................................................................. 181
3.14 Sensitivity ................................................................................................................... 182
3.15 Liapunov Stability ..................................................................................................... 184
3.16 Performance Characteristics of Linear Time Invariant Systems ........................ 186
3.17 Formulation of State Space Model Using Computer Program (SYSMO) .......... 187

3.17.1 Preparation of the Input Data .................................................................... 187
3.17.2 Algorithm for the Formulation of State Equations ................................. 187

3.18 Review Questions ..................................................................................................... 208
3.19 Bibliographical Notes ............................................................................................... 217

 4. Model Order Reduction ..................................................................................................... 219
4.1 Introduction ............................................................................................................... 219
4.2  Difference between Model Simplifi cation and Model Order Reduction .......... 220
4.3 Need for Model Order Reduction ........................................................................... 221
4.4 Principle of Model Order Reduction ...................................................................... 221
4.5 Methods of Model Order Reduction ......................................................................223

4.5.1 Time Domain Simplifi cation Techniques .................................................223
4.5.1.1 Dominant Eigenvalue Approach ...............................................223
4.5.1.2 Aggregation Method....................................................................228
4.5.1.3 Subspace Projection Method ...................................................... 232
4.5.1.4 Optimal Order Reduction ...........................................................233
4.5.1.5 Hankel Matrix Approach ............................................................233
4.5.1.6 Hankel–Norm Model Order Reduction ....................................234



x Contents

4.5.2 Model Order Reduction in Frequency Domain ......................................234
4.5.2.1 Pade Approximation Method .....................................................234
4.5.2.2 Continued Fraction Expansion ...................................................235
4.5.2.3 Moment-Matching Method .........................................................235
4.5.2.4 Balanced Realization-Based Reduction Method .....................236
4.5.2.5 Balanced Truncation ....................................................................238
4.5.2.6 Frequency-Weighted Balanced Model Reduction ................... 244
4.5.2.7 Time Moment Matching .............................................................. 249
4.5.2.8 Continued Fraction Expansion ................................................... 252
4.5.2.9 Model Order Reduction Based on the Routh 

Stability Criterion ......................................................................... 259
4.5.2.10 Differentiation Method for Model Order 

Reduction ....................................................................................... 263
4.6 Applications of Reduced-Order Models ................................................................ 273
4.7 Review Questions ..................................................................................................... 273
4.8 Bibliographical Notes ............................................................................................... 275

 5. Analogous of Linear Systems ..........................................................................................277
5.1 Introduction ...............................................................................................................277

5.1.1 D’Alembert’s Principle ................................................................................277
5.2 Force–Voltage ( f–v) Analogy ................................................................................... 278

5.2.1 Rule for Drawing f–v Analogous Electrical Circuits .............................. 278
5.3 Force–Current ( f–i) Analogy ................................................................................... 279

5.3.1 Rule for Drawing f–i Analogous Electrical Circuits ............................... 279
5.4 Review Questions ..................................................................................................... 298

 6. Interpretive Structural Modeling ................................................................................... 301
6.1 Introduction ............................................................................................................... 301
6.2 Graph Theory ............................................................................................................. 301

6.2.1 Net ..................................................................................................................305
6.2.2 Loop ...............................................................................................................305
6.2.3 Cycle ...............................................................................................................305
6.2.4 Parallel Lines ................................................................................................306
6.2.5 Properties of Relations ................................................................................306

6.3 Interpretive Structural Modeling ........................................................................... 307
6.4 Review Questions ..................................................................................................... 323
6.5 Bibliographical Notes ............................................................................................... 325

 7. System Dynamics Techniques ......................................................................................... 327
7.1 Introduction ............................................................................................................... 327
7.2 System Dynamics of Managerial and Socioeconomic System ........................... 327

7.2.1 Counterintuitive Nature of System Dynamics ........................................ 327
7.2.2 Nonlinearity ................................................................................................. 328
7.2.3 Dynamics ...................................................................................................... 328
7.2.4 Causality ....................................................................................................... 328
7.2.5 Endogenous Behavior ................................................................................. 328

7.3 Traditional Management .......................................................................................... 328
7.3.1 Strength of the Human Mind .................................................................... 328
7.3.2 Limitation of the Human Mind ................................................................. 328



Contents xi

7.4 Sources of Information ............................................................................................. 329
7.4.1 Mental Database ........................................................................................... 329
7.4.2 Written/Spoken Database ..........................................................................330
7.4.3 Numerical Database ....................................................................................330

7.5 Strength of System Dynamics ................................................................................. 331
7.6 Experimental Approach to System Analysis ........................................................ 332
7.7 System Dynamics Technique .................................................................................. 332
7.8 Structure of a System Dynamic Model ..................................................................333
7.9 Basic Structure of System Dynamics Models .......................................................334

7.9.1 Level Variables .............................................................................................334
7.9.2 Flow-Rate Variables .....................................................................................334
7.9.3 Decision Function ........................................................................................335

7.10 Different Types of Equations Used in System Dynamics Techniques ..............342
7.10.1 Level Equation ..............................................................................................342
7.10.2 Rate Equation (Decision Functions) ..........................................................343
7.10.3 Auxiliary Equations ....................................................................................343

7.11 Symbol Used in Flow Diagrams .............................................................................344
7.11.1 Levels .............................................................................................................344
7.11.2 Source and Sinks ..........................................................................................345
7.11.3 Information Takeoff .....................................................................................345
7.11.4 Auxiliary Variables ......................................................................................345
7.11.5 Parameters (Constants) ...............................................................................345

7.12 Dynamo Equations ...................................................................................................345
7.13 Modeling and Simulation of Parachute Deceleration Device ............................. 376

7.13.1 Parachute Infl ation ....................................................................................... 377
7.13.2 Canopy Stress Distribution ........................................................................ 378
7.13.3 Modeling and Simulation of Parachute Trajectory ................................. 378

7.14 Modeling of Heat Generated in a Parachute during Deployment ..................... 382
7.14.1 Dynamo Equations ......................................................................................384

7.15 Modeling of Stanchion System of Aircraft Arrester Barrier System .................385
7.15.1  Modeling and Simulation of Forces Acting on Stanchion 

System Using System Dynamic Technique .............................................. 387
7.15.2 Dynamic Model ........................................................................................... 389
7.15.3 Results ........................................................................................................... 390

7.16 Review Questions ..................................................................................................... 395
7.17 Bibliographical Notes ............................................................................................... 399

 8. Simulation ............................................................................................................................ 401
8.1 Introduction ............................................................................................................... 401
8.2 Advantages of Simulation ........................................................................................402
8.3 When to Use Simulations .........................................................................................403
8.4 Simulation Provides ..................................................................................................403
8.5 How Simulations Improve Analysis and Decision Making? .............................404
8.6 Application of Simulation ........................................................................................404
8.7 Numerical Methods for Simulation........................................................................405

8.7.1 The Rectangle Rule ......................................................................................406
8.7.2 The Trapezoid and Tangent Formulae ......................................................406
8.7.3 Simpson’s Rule ............................................................................................. 407
8.7.4 One-Step Euler’s Method ............................................................................ 410



xii Contents

8.7.5 Runge–Kutta Methods of Integration ....................................................... 410
8.7.5.1 Physical Interpretation ................................................................ 411

8.7.6 Runge–Kutta Fourth-Order Method ......................................................... 411
8.7.7 Adams–Bashforth Predictor Method ........................................................ 412
8.7.8 Adams–Moulton Corrector Method ......................................................... 413

8.8 The Characteristics of Numerical Methods .......................................................... 413
8.9 Comparison of Different Numerical Methods ..................................................... 413
8.10 Errors during Simulation with Numerical Methods ........................................... 414

8.10.1 Truncation Error........................................................................................... 414
8.10.2 Round Off Error ........................................................................................... 415
8.10.3 Step Size vs. Error ........................................................................................ 418
8.10.4 Discretization Error ..................................................................................... 418

8.11 Review Questions .....................................................................................................430

 9. Nonlinear and Chaotic System ........................................................................................433
9.1 Introduction ...............................................................................................................433
9.2 Linear vs. Nonlinear System ...................................................................................434
9.3 Types of Nonlinearities ............................................................................................434
9.4 Nonlinearities in Flight Control of Aircraft ..........................................................435

9.4.1 Basic Control Surfaces Used in Aircraft Maneuvers ..............................435
9.4.2 Principle of Flight Controls ........................................................................435
9.4.3 Components Used in Pitch Control ........................................................... 437
9.4.4 Modeling of Various Components of Pitch Control System ..................438
9.4.5 Simulink Model of Pitch Control in Flight ...............................................440

9.4.5.1 Simulink Model of Pitch Control in Flight Using 
Nonlinearities ...............................................................................440

9.4.6  Study of Effects of Different Nonlinearities on Behavior 
of the Pitch Control Model .........................................................................440
9.4.6.1 Effects of Dead-Zone Nonlinearities .........................................440
9.4.6.2 Effects of Saturation Nonlinearities .......................................... 441
9.4.6.3 Effects of Backlash Nonlinearities .............................................442
9.4.6.4 Cumulative Effects of Backlash, Saturation, Dead-Zone 

Nonlinearities ...............................................................................443
9.4.7 Designing a PID Controller for Pitch Control in Flight .........................445

9.4.7.1  Designing a PID Controller for Pitch Control in Flight 
with the Help of Root Locus Method 
(Feedback Compensation) ...........................................................445

9.4.7.2  Designing a PID Controller (Connected in Cascade 
with the System) for Pitch Control in Flight .............................454

9.4.7.3 Design of P, I, D, PD, PI, PID, and Fuzzy Controllers ..............456
9.4.8 Design of Fuzzy Controller ........................................................................ 461

9.4.8.1 Basic Structure of a Fuzzy Controller ....................................... 462
9.4.8.2 The Components of a Fuzzy System ......................................... 462

9.4.9 Tuning Fuzzy Controller ............................................................................ 469
9.5 Conclusions ................................................................................................................ 473
9.6 Introduction to Chaotic System .............................................................................. 478

9.6.1 General Meaning ......................................................................................... 478
9.6.2 Scientifi c Meaning ....................................................................................... 478
9.6.3 Defi nition ...................................................................................................... 479



Contents xiii

9.7 Historical Prospective .............................................................................................. 481
9.8 First-Order Continuous-Time System ....................................................................484
9.9 Bifurcations ................................................................................................................ 487

9.9.1 Saddle Node Bifurcation .............................................................................488
9.9.2 Transcritical Bifurcation .............................................................................488
9.9.3 Pitchfork Bifurcation ................................................................................... 490

9.9.3.1 Supercritical Pitchfork Bifurcation ............................................ 490
9.9.4 Catastrophes ................................................................................................. 492

9.9.4.1 Globally Attracting Point for Stability ...................................... 492
9.10 Second-Order System ............................................................................................... 493
9.11 Third-Order System .................................................................................................. 496

9.11.1 Lorenz Equation: A Chaotic Water Wheel ............................................... 498
9.12 Review Questions ..................................................................................................... 501
9.13 Bibliographical Notes ............................................................................................... 501

 10. Modeling with Artifi cial Neural Network ....................................................................503
10.1 Introduction ...............................................................................................................503

10.1.1 Biological Neuron ........................................................................................503
10.1.2 Artifi cial Neuron ..........................................................................................504

10.2 Artifi cial Neural Networks ......................................................................................505
10.2.1 Training Phase ..............................................................................................505

10.2.1.1 Selection of Neuron Characteristics ..........................................505
10.2.1.2 Selection of Topology ...................................................................505
10.2.1.3 Error Minimization Process .......................................................506
10.2.1.4 Selection of Training Pattern and Preprocessing ....................506
10.2.1.5 Stopping Criteria of Training .....................................................506

10.2.2 Testing Phase ................................................................................................506
10.2.2.1 ANN Model...................................................................................506
10.2.2.2 Building ANN Model ..................................................................508
10.2.2.3 Backpropagation ...........................................................................509
10.2.2.4 Training Algorithm ......................................................................509
10.2.2.5 Applications of Neural Network Modeling ............................. 510

10.3 Review Questions ..................................................................................................... 526

 11. Modeling Using Fuzzy Systems ...................................................................................... 527
11.1 Introduction ............................................................................................................... 527
11.2 Fuzzy Sets .................................................................................................................. 528
11.3 Features of Fuzzy Sets .............................................................................................. 531
11.4 Operations on Fuzzy Sets ........................................................................................ 532

11.4.1 Fuzzy Intersection ....................................................................................... 532
11.4.2 Fuzzy Union ................................................................................................. 532
11.4.3 Fuzzy Complement ...................................................................................... 532
11.4.4 Fuzzy Concentration ...................................................................................533
11.4.5 Fuzzy Dilation ..............................................................................................534
11.4.6 Fuzzy Intensifi cation ...................................................................................535
11.4.7 Bounded Sum ............................................................................................... 536
11.4.8 Strong α-Cut ................................................................................................. 537
11.4.9 Linguistic Hedges ........................................................................................ 538

11.5 Characteristics of Fuzzy Sets ...................................................................................540



xiv Contents

11.5.1 Normal Fuzzy Set ........................................................................................540
11.5.2 Convex Fuzzy Set .........................................................................................540
11.5.3 Fuzzy Singleton ............................................................................................540
11.5.4 Cardinality ....................................................................................................540

11.6 Properties of Fuzzy Sets ........................................................................................... 541
11.7 Fuzzy Cartesian Product ......................................................................................... 541
11.8 Fuzzy Relation ...........................................................................................................542
11.9 Approximate Reasoning ..........................................................................................545
11.10 Defuzzifi cation Methods..........................................................................................554
11.11 Introduction to Fuzzy Rule-Based Systems .......................................................... 556
11.12 Applications of Fuzzy Systems to System Modeling ........................................... 558

 11.12.1 Single Input Single Output Systems ....................................................... 559
 11.12.2 Multiple Input Single Output Systems...................................................564
 11.12.3 Multiple Input Multiple Output Systems ..............................................566

11.13 Takagi–Sugeno–Kang Fuzzy Models ..................................................................... 567
11.14 Adaptive Neuro-Fuzzy Inferencing Systems ........................................................568
11.15 Steady State DC Machine Model ............................................................................ 574
11.16 Transient Model of a DC Machine .......................................................................... 579
11.17 Fuzzy System Applications for Operations Research.......................................... 592
11.18 Review Questions ..................................................................................................... 602
11.19 Bibliography and Historical Notes .........................................................................603

 12. Discrete-Event Modeling and Simulation .....................................................................605
12.1 Introduction ...............................................................................................................605
12.2 Some Important Defi nitions ....................................................................................606
12.3 Queuing System ........................................................................................................609
12.4 Discrete-Event System Simulation .......................................................................... 611
12.5 Components of Discrete-Event System Simulation .............................................. 611
12.6 Input Data Modeling ................................................................................................ 615
12.7 Family of Distributions for Input Data .................................................................. 615
12.8 Random Number Generation .................................................................................. 616

12.8.1 Uniform Distribution .................................................................................. 616
12.8.2 Gaussian Distribution of Random Number 

Generation ..................................................................................................... 617
12.9 Chi-Square Test ......................................................................................................... 619
12.10 Kolomogrov–Smirnov Test ...................................................................................... 619
12.11 Review Questions ..................................................................................................... 619

Appendix A ................................................................................................................................. 621
A.1 What Is MATLAB®? .................................................................................................. 621
A.2 Learning MATLAB ................................................................................................... 621
A.3 The MATLAB System ............................................................................................... 621

A.3.1 Development Environment ........................................................................ 622
A.3.2 The MATLAB Mathematical Function Library ....................................... 622
A.3.3 The MATLAB Language ............................................................................. 622
A.3.4 Handle Graphics .......................................................................................... 622
A.3.5 The MATLAB Application Program Interface (API) .............................. 623

A.4 Starting and Quitting MATLAB ............................................................................. 623
A.5 MATLAB Desktop ..................................................................................................... 623



Contents xv

A.6 Desktop Tools ............................................................................................................ 623
A.6.1 Command Window ..................................................................................... 623
A.6.2 Command History ....................................................................................... 624

A.6.2.1 Running External Programs ....................................................... 624
A.6.2.2 Launch Pad .................................................................................... 625
A.6.2.3 Help Browser ................................................................................ 625
A.6.2.4 Current Directory Browser ......................................................... 626
A.6.2.5 Workspace Browser ...................................................................... 626
A.6.2.6 Array Editor .................................................................................. 626
A.6.2.7 Editor/Debugger ........................................................................... 627
A.6.2.8 Other Development Environment Features ............................. 627

A.7 Entering Matrices ...................................................................................................... 627
A.8 Subscripts ...................................................................................................................630
A.9 The Colon Operator ..................................................................................................630
A.10 The Magic Function .................................................................................................. 631
A.11 Expressions ................................................................................................................ 631

A.11.1 Variables ........................................................................................................ 632
A.11.2 Numbers ........................................................................................................ 632
A.11.3 Operators ....................................................................................................... 632
A.11.4 Functions ....................................................................................................... 632

A.11.4.1 Generating Matrices .....................................................................633
A.12 The Load Command .................................................................................................633
A.13 The Format Command .............................................................................................635
A.14 Suppressing Output ..................................................................................................635
A.15 Entering Long Command Lines .............................................................................635
A.16 Basic Plotting .............................................................................................................636

A.16.1 Creating a Plot ..............................................................................................636
A.16.2 Multiple Data Sets in One Graph ...............................................................636
A.16.3 Plotting Lines and Markers ........................................................................636
A.16.4 Adding Plots to an Existing Graph ........................................................... 637
A.16.5 Multiple Plots in One Figure ...................................................................... 637
A.16.6 Setting Grid Lines ........................................................................................638
A.16.7 Axis Labels and Titles .................................................................................638
A.16.8 Saving a Figure .............................................................................................638
A.16.9 Mesh and Surface Plots ...............................................................................638

A.17 Images .........................................................................................................................640
A.18 Handle Graphics .......................................................................................................640

A.18.1 Setting Properties from Plotting Commands ..........................................640
A.18.2 Different Types of Graphs ..........................................................................640

A.18.2.1 Bar and Area Graphs ................................................................... 641
A.19 Animations ................................................................................................................644
A.20 Creating Movies ........................................................................................................644
A.21 Flow Control ..............................................................................................................645

A.21.1 If ......................................................................................................................645
A.21.2 Switch and Case ...........................................................................................646

A.21.2.1 For ...................................................................................................646
A.21.2.2 While ..............................................................................................647
A.21.2.3 Continue ........................................................................................647
A.21.2.4 Break ...............................................................................................647



xvi Contents

A.22 Other Data Structures ..............................................................................................648
A.22.1 Multidimensional Arrays ...........................................................................648
A.22.2 Cell Arrays ....................................................................................................650
A.22.3 Characters and Text .....................................................................................650

A.23 Scripts and Functions ...............................................................................................654
A.23.1 Scripts ............................................................................................................654
A.23.2 Functions .......................................................................................................655

A.23.2.1 Global Variables ..........................................................................655
A.23.2.2 Passing String Arguments to Functions ..................................656
A.23.2.3 Constructing String Arguments in Code .................................656
A.23.2.4 A Cautionary Note ......................................................................656
A.23.2.5 The Eval Function ....................................................................... 657
A.23.2.6 Vectorization ................................................................................ 657
A.23.2.7 Preallocation ................................................................................658
A.23.2.8 Function Handles ........................................................................658
A.23.2.9 Function Functions .....................................................................658

Appendix B: Simulink ............................................................................................................. 661
B.1 Introduction ............................................................................................................... 661
B.2 Features of Simulink ................................................................................................. 661
B.3 Simulation Parameters and Solvers ........................................................................ 661
B.4 Construction of Block Diagram ..............................................................................663
B.5 Review Questions ..................................................................................................... 667

Appendix C: Glossary .............................................................................................................. 671
C.1 Modeling and Simulation ........................................................................................ 671
C.2 Artifi cial Neural Network ....................................................................................... 676
C.3 Fuzzy Systems ........................................................................................................... 678
C.4 Genetic Algorithms ...................................................................................................680
Bibliography ......................................................................................................................... 681

Index ............................................................................................................................................. 693



xvii

Preface

Systems engineering has great potential for solving problems related to physical, concep-
tual, and esoteric systems. The power of systems engineering lies in the three R’s of science, 
namely, reductionism, repeatability, and refutation. Reductionism recognizes the fact that 
any system can be decomposed into a set of components that follow the fundamental laws of 
physics. The diversity of the real world can be reduced into laboratory experiments, which 
can be validated by their repeatability, and one can make intellectual progress by the refu-
tation of hypotheses. Due to advancements in systems engineering for handling complex 
systems, modeling and simulation have, of late, become popular.

Modeling and simulation are very important tools of systems engineering that have 
now become a central activity in all disciplines of engineering and science. Not only do 
they help us gain a better understanding of the functioning of the real world, they are also 
important for the design of new systems as they enable us to predict the system behavior 
before the system is actually built. Modeling and simulation also allow us to analyze sys-
tems accurately under varying operating conditions.

This book aims to provide a comprehensive, state-of-the-art coverage of all important 
aspects of modeling and simulation of physical as well as conceptual systems. It strives to 
motivate beginners in this area through the modeling of real-life examples and their simu-
lation to gain better insights into real-world systems. The extensive references and related 
literature at the end of every chapter can also be referred to for further studies in the area 
of modeling and simulation.

This book aims to

Provide a basic understanding of systems and their modeling and simulation• 

Explain the step-by-step procedure for modeling using top-down, bottom-up, and • 
middle-out approaches

Develop models for complex systems and reduce their order so as to use them • 
effectively for online applications

Present the simulation code in MATLAB• ®/Simulink® for gaining quick and useful 
insights into real-world systems

Apply soft computing techniques for modeling nonlinear, ill-defi ned, and com-• 
plex systems

The book will serve as a primary text for a variety of courses. It can be used as a fi rst course 
in modeling and simulation at the junior, the senior, or the graduate levels in engineering, 
manufacturing, business, or computer science (Chapters 1 through 3, 5, and 8), providing a 
broad idea about modeling and simulation. At the end of such a course, the student would 
be prepared to carry out complete and effective simulation studies, and to take advanced 
modeling and simulation courses.

This book will also serve as a second course for more advanced studies in modeling and 
simulation for graduate students (Chapters 6 through 11) in any of the above disciplines. 
After completing this course, the student should be able to comprehend and conduct simu-
lation research.



xviii Preface

Finally, this book will serve as an introduction to simulation as part of a general course 
in operations research or management science (Chapters 1 through 3 and 6 through 8, 
Chapter 12).

Organization of the Book

Early chapters deal with the introduction of systems and includes concepts and their 
underlying philosophy; step-by-step procedures for the modeling of different types of 
systems using appropriate modeling techniques such as the graph-theoretic approach, 
interpretive structural modeling, and system dynamics modeling, are also discussed.

Focus then moves to the state of the art of simulation and how simulation evolved from 
the pre-computer days into the modern science of today. In this part, MATLAB/Simulink 
programs are developed for system simulation.

FIGURE P1
Schematic outline of the book.

Analysis

Simulation using
MATLAB/Simulink

(Chapter 8)

Model order
reduction

(Chapter 4)

System dynamics
technique

(Chapter 7)
Soft computing

technique
(Chapters 10 and 11)

State space model
using graph theoretic

approach
(Chapter 3)

Nonlinear and chaotic
systems

(Chapter 9)

Interpretive structural
modeling (Chapter 6)

System
Chapters 1 and 5

Modeling
concepts

(Chapter 2)

Discrete event systems
(Chapter 12)



Preface xix

We then take a fresh look at modern soft computing techniques (such as artifi cial neural 
networks [ANN], fuzzy systems, and genetic algorithms, or their combinations) for the 
modeling and simulation of complex and nonlinear systems.

Finally, chapters address the discrete systems modeling. The schematic outline of this 
book is shown in Figure P1.

Software Background

The key to the successful application of modeling and simulation techniques depends on 
the effective use of their software. For this, it is necessary that the student be familiar 
with their fundamentals. In this book, MATLAB/Simulink programming software are 
used. Appendix B provides some background information on MATLAB/Simulink. The 
MATLAB programs included in this book are easier to understand than the programs 
written in other programming languages such as C/C++.

MATLAB® is a registered trademark of The MathWorks, Inc. For product information, 
please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com



This page intentionally left blank 



xxi

Acknowledgments

I express my profound and grateful veneration to Prof. P. S. Satsangi, chairman, 
 advisory committee on education in the Dayalbagh Educational Institute, Agra, Uttar 
Pradesh, India. Prof. Satsangi taught me modeling and simulation methodologies, and 
software engineering at the postgraduate (MTech) level and guided me during my 
MTech and PhD in the area of modeling and simulation. He is the fountain source of 
my inspiration and intuition in this area. I thank him with due reverence. I am also 
thankful to Prof. P. K. Kalra, Indian Institute of Technology, Kanpur, India, for the 
encouragement, support, and visionary ideas he provided during my research. I am 
very deeply indebted to Prof. O. P. Malik, University of Calgary, Alberta, Canada, for 
providing all the facilities in his laboratory to pursue my experimental work on mod-
eling and control during my BOYSCAST (Better Opportunities for Young Scientists 
in Chosen Areas of Science and Technology) fellowship, offered by the Department 
of Science and Technology, Government of India, during 2001–2002, and, later, in the 
summer of 2005 and 2007.

I wish to express my deep gratitude to Prof. Helmut Röck and Prof. Anand Srivastava, 
Universitate Zu Kiel, Kiel, Germany, and to Prof. Chaudhary, Imperial College London, 
United Kingdom, for providing all the facilities and help during my visit to these institu-
tions in the summer of 2007.

I would also like to thank Prof. Westwick and Garwin Hancock, University of Calgary, 
Alberta, Canada; Prof. P.H. Roe, system design engineering, and Prof. Shesha Jayaram, 
High Voltage Lab, University of Waterloo, Ontario, Canada; and S. Krishnananda at the 
Dayalbagh Educational Institute, Agra, Uttar Pradesh, India, for their good wishes and 
help extended during the preparation of this book. Thanks are also due to my colleagues 
Anand Sinha, Gaurav Rana, Himanshu Vijay, and Ashish Chandiok for all their help.

I am thankful to Jessica Vakili and Amber Donley, project coordinators; Nora Konopka, 
publisher of engineering and environmental science books; and other team members from 
Taylor & Francis who directly or indirectly helped in realizing this book.

Finally, I am grateful to my wife, Dr. Lajwanti, and my daughters, Jyoti and Swati, who 
had to endure many inconveniences during the course of writing this book.

I also express my deepest gratitude to many, not mentioned here, for their support in 
countless ways when this book was written.

Devendra K. Chaturvedi
Dayalbagh Educational Institute (Deemed University)

Agra, Uttar Pradesh, India



This page intentionally left blank 



xxiii

Author

Devendra K. Chaturvedi was born in Madhya Pradesh, India, 
on August 3, 1967. He graduated in electrical engineering from 
the Government Engineering College, Ujjain, Madhya Pradesh, 
India in 1988, and did his MTech in engineering systems and 
management in 1993. He then pursued his PhD in electrical 
power systems in 1998 from the Dayalbagh Educational Institute 
(Deemed University), Agra, India. Currently, he is working 
as a professor in the Department of Electrical Engineering, 
Dayalbagh Educational Institute (Deemed University). He has 
won several awards and recognition including the President’s 

Gold Medal and the Director’s Medal of the Dayalbagh Educational Institute (Deemed 
University) in 1993, the Tata Rao Medal in 1994, the Dr. P. S. Nigam U.P. State Power Sector 
Award in 2005 and 2007, the Musaddi Lal Memorial Award in 2007, and the institutional 
prize award in 2005 from the Institution of Engineers, India. He was awarded a BOYSCAST 
fellowship of the Department of Science and Technology, Government of India, in 2001.

He is a regular visiting fellow at the University of Calgary, Alberta, Canada. He has 
many national and international research collaborations in the area of modeling and 
simulations, soft computing, intelligent adaptive control systems, and optimization. He 
has also organized many short-term courses in the area of modeling and simulation of 
systems, and fuzzy systems and its applications. He serves as a consultant at the Aerial 
Delivery Research and Development Establishment, Agra, and at the Defense Research 
and Development Organisation (DRDO) lab, Government of India. He has organized 
many national seminars and workshops on theology; ethics, values, and social service; 
professional ethics; ethics, agriculture, and religion; the relationship between religion and 
the future of mankind; and the teachings of the Bhagavad Gita and the religions of saints.

He has authored a book, Soft Computing and Its Applications to Electrical Engineering, 
published by Springer, Germany (2008). He has also edited a book, Theology, Science, and 
Technology: Ethics and Moral Values, published by Vikas Publishing House, Delhi (2005).

His name is included in the Marquis Who’s Who in Engineering and Science in Asia (2006–
2007), the Marquis Who’s Who in Engineering and Science in America (2006–2007), and the 
Marquis Who’s Who in World (2006–2007). He is a fellow of the Institution of Engineers, 
India, and a member of many professional bodies such as the IEEE, the IEE, the Indian 
Society for Technical Education (ISTE), the Indian Society of Continuing Engineering 
Education (ISCEE), the Aeronautical Society of India, and the System Society of India.



This page intentionally left blank 



1

1
Introduction to Systems

Science teaches us to search for “truth,” think with reason and logic; accept your 
mistakes; tolerate other’s point of view and suggestions and make an effort to shift from 
diversity to unity.

Dr. M. B. Lal Sahab

A complex system that works is invariably found to have evolved from a simple system 
that works.

John Gaule

To manage a system effectively, you might focus on the interactions of the parts rather 
than their behavior taken separately.

Russell L. Ackoff

1.1 System

Most systems that surround us are multidimensional, extremely complex, time varying, 
and nonlinear in nature as they are comprised of large varieties of actively or passively 
interacting subsystems. These systems consist of interacted subsystems, which have sepa-
rate and confl icting objectives. The term system is derived from the Greek word systema, 
which means an organized relationship among functioning units or components. It is used 
to describe almost any orderly arrangement of ideas or construct.

According to the Webster’s International Dictionary, “A system is an aggregation or assem-
blage of objects united by some form of regular interaction or interdependence; a group of 
diverse units so combined by nature or art as to form an integral; whole and to function, 
operate, or move in unison and often in obedience to some form of control.…”

A system is defi ned to be a collection of entities, for example, people or machines that 
act and interact together toward the accomplishment of some logical end. In practice, what 
is meant by “the system” depends on the objectives of a particular study. The collection 
of entities that compose a system for one study might be only a subset of another larger 
system. For example, if one wants to study a banking system to determine the number 
of tellers needed to provide adequate service for customers who want just to encash or 
deposit, the system can be defi ned to be that portion of the bank comprising of the tellers 
and the customers. Additionally, if, the loan offi cer and the safety deposit counters are to 
be included, then the defi nition of the system must be more inclusive accordingly.

The state of a system is to be defi ned as an assemblage of variables necessary to describe 
a system at a particular instant of time with respect to the objectives of the study. In this 
case of study of a banking system, possible state variables are the number of busy tellers, the 
number of customers in the bank, and the line of arrival of each customer in the bank.



2 Modeling and Simulation of Systems Using MATLAB and Simulink

The fundamental feature in the system’s concept is that all the aggregation of entities 
united, have a regular interaction, as a fi nite number of interfaces as shown in Figure 1.1. 
Considering a hierarchy among systems, a system can also be expressed as a collection 
of various subsystems and the subsystem is a further collection of interconnected compo-
nents. The system behavior can be comprehended as combined interconnected components 
behavior. So, a large system can be regarded as a collection of different interconnected 
components.

More appropriately, a large-scale system may be viewed at the supremum of the hierarchy 
and components at the bottom most level (root level). The power of the system’s concept is its 
sheer generality, which can be emphasized by general systems theory.

Some examples of the systems are

Esoteric systems• 

Medical/biological systems• 

Socioeconomic systems• 

Communication and information systems• 

Planning systems• 

Solar system• 

Environmental systems• 

Manufacturing systems• 

Management systems• 

Transportation systems• 

Physical systems—electrical, mechanical, thermal, hydraulic systems, and combi-• 
nations of them

Every system consists of subsystem or components at lower levels and supersystems at 
higher levels, as shown in Figure 1.2. One needs to be extremely careful to defi ne such 
a hierarchically nested system because this will determine the kind of results one will 
obtain.

A system is characterized by the following attributes:

System boundary• 

System components and their interactions• 

Environment• 

FIGURE 1.1
System as collection of interconnected components.

C1
C4

C3

Cn

C6
C5

System boundary

Input Output

EnvironmentSystem



Introduction to Systems 3

1.1.1 System Boundary

To study a given system, it is necessary to determine what comprises (falls inside and what 
falls outside) a system. For this a demarcation is required to differentiate entities from 
the environment. Such a partition is called a system boundary. The system boundaries 
are observer-dependent, time-dependent, and most importantly system-dependent. The 
different observers may draw different boundaries for the same system. Also, the same 
observer may draw the system boundaries differently for different times.

Finally, they may also be drawn differently with respect to the nature of the study, that 
is, steady state or transient. For example, in case of steady-state study of series R–L circuit, 
only R is to be included in the system boundary, but in transient study, both R and L must 
be considered in the system.

Some salient points about the system boundary are

It is a partitioning line between the environment and the system.• 

System is inside the boundary and environment is outside the system.• 

A real or imaginary boundary separates the system from the rest of the universe, • 
which is referred to as the environment or surroundings.

System exchanges input–output from its environment.• 

This boundary might be material boundary (like the skin of a human body) or • 
immaterial boundary (like the membership to a certain social group).

Considering a system boundary in systems analysis and evaluation is of immense • 
importance as it helps in identifying the system and its components. The interac-
tion between a system and its environment takes place mainly at the boundaries. 
It determines what can enter or leave a system (input and output).

System boundary may be crisp (clearly defi ned) or fuzzy (ill defi ned). In crisp • 
boundaries, it is quite clear that what is inside the boundary (i.e., part of system) 
and what is outside the boundary (i.e., part of environment). In fuzzy boundaries, 
it is not very clear whether a particular component belongs to the environment or 
the system.

1.1.2 System Components and Their Interactions

System component is a fundamental building block. It is quite easy to fi nd the input–
output relations for the system components with the help of some fundamental laws 

FIGURE 1.2
Hierarchically nested set of systems.

Supersystem

System-1

Subsystem Subsystem

System-2 System-n



4 Modeling and Simulation of Systems Using MATLAB and Simulink

of physics, which is called the mathematical model for components. It may be written 
in the form of difference or differential equations. They are pretty simple and easily 
understandable.

Business system environment includes customers, suppliers, other industries, and gov-
ernment. Its inputs include materials, services, new employees, new equipments, facilities, 
etc. Output includes product, waste materials, money, etc.

It is static or dynamically changing with time, input, or state of the system.• 

Interaction may be constrained or nonconstrained type.• 

The component interaction may be unidirectional or bidirectional.• 

Interaction strength may be 0, 1, or between 0 and 1.• 

 a. If interaction strength is zero (0) then there is no interaction.

 b. If interaction strength is one (1) it means full interaction and if the interaction 
strength lies between zero and one, then the interaction is partial interaction.

1.1.3 Environment

A living organism is a system. Organisms are open systems: they cannot survive without 
continuously exchanging matter and energy with their environment. When we separate a 
living organism from its surrounding, it will die shortly due to lack of oxygen, water, and 
food. The peculiarity of open systems is that they interact with other systems outside of 
themselves. This interaction has two components: input, that is, what enters the system 
from outside the boundary, and output, that is, what leaves the system boundary to the 
environment. In order to speak about the inside and the outside of a system, we need to 
be able to distinguish between the system and its environment, which is in general sepa-
rated by a boundary (for example, living systems, skin is the boundary). The output of a 
system is generally a direct or indirect result to a given input. For example, the food, drink, 
and oxygen we consume are generally separated by a boundary and discharged as urine, 
excrements, and carbon dioxide. The transformation of input into output by the system is 
usually called throughput.

A system is intended to “absorb” inputs and process them in some way in order to 
produce outputs. Outputs are defi ned by goals, objectives, or common purposes. In order 
to understand the relationship between inputs, outputs, and processes, you need to 
understand the environment in which all of this occurs. The environment represents 
everything that is important to understand the functioning of the system, but is not a 
part of the system. The environment is that part of the world that can be ignored in the 
analysis except for its interaction with the system. It includes competition, people, tech-
nology, capital, raw materials, data, regulation, and opportunities.

When we are concerned only with the input and corresponding output of a system, 
while undermining the internal intricacies of component-level dynamics of the system, 
such study may be called as black box study. For example, if we consider a city, we may 
safely measure the total fuel consumption (input) of the city and the level of emissions 
(output) out of such consumptions without actually bothering about trivial details like 
who/what consumed more and who/what emitted or polluted the most. Such point of 
view considers the system as a “black box,” that is, something that takes input, and pro-
duces output, without looking at what happens inside the system during process. Contrary 



Introduction to Systems 5

to the former, when we are equally concerned about the internal details of the system and 
its processes besides the input and output variable, such an approach of system is con-
sidered as white box. For example, when we model a city as a pollution production system, 
regardless of which chimney emitted a particular plume of smoke, it is suffi cient to know 
the total amount of fuel that enters the city to estimate the total amount of carbon dioxide 
and other gases produced. The “black box” view of the city will be much simpler and 
easier to use for the calculation of overall pollution levels than the more detailed “white 
box” view, where we trace the movement of every fuel tank to every particular building 
in the city.

The system as a whole is more than the sum of its parts. For example, if person A alone 
is too short to reach an apple on a tree and person B is too short as well, once person B sits 
on the shoulders of person A, they are more than tall enough to reach the apple. In this 
example, the product of their synergy would be one apple. Another case would be two 
politicians. If each is able to gather 1 million votes on their own, but together they were 
able to appeal to 2.5 million voters, their synergy would have produced 500,000 more votes 
than had they each worked independently.

1.2 Classification of Systems

Systems can be classifi ed on the basis of time frame, type of measurements taken, type of 
interactions, nature, type of components, etc.

1.2.1 According to the Time Frame

Systems can be categorized on the basis of time frame as

Discrete

Continuous

Hybrid

A discrete system is one in which the state variables change instantaneously at separated 
points in time, for example, queuing systems (bank, telephone network, traffi c lights, machine 
breakdowns), card games, and cricket match. In a bank system, state variables are the number 
of customers in the bank, whose value changes only when a customer arrives or when a 
customer fi nishes being served and departs.

A continuous system is one in which the state variables change continuously with respect 
to time, for example, solar system, spread of pollutants, charging a battery. An airplane 
moving through the air is an example of a continuous system, since state variables such as 
position and velocity can change continuously with respect to time.

Few systems in practice are wholly discrete or wholly continuous, but since one type of 
change predominates for most systems, it will usually be possible to classify a system as 
being either discrete or continuous.

A hybrid system is a combination of continuous and discrete dynamic system behav-
ior. A hybrid system has the benefi t of encompassing a larger class of systems within its 



6 Modeling and Simulation of Systems Using MATLAB and Simulink

structure, allowing more fl exibility in modeling continuous and discrete dynamic phe-
nomena, for example, traffi c along a road with traffi c lights.

1.2.2 According to the Complexity of the System

Systems can be classifi ed on the basis of complexity, as shown in Figure 1.3.

Physical systems

Conceptual systems

Esoteric systems

Physical systems can be defi ned as systems whose variables can be measured with physi-
cal devices that are quantitative such as electrical systems, mechanical systems, computer 
systems, hydraulic systems, thermal systems, or a combination of these systems. Physical 
system is a collection of components, in which each component has its own behavior, used 
for some purpose. These systems are relatively less complex. Some of the physical systems 
are shown in Figure 1.4a and b.

Conceptual systems are those systems in which all the measurements are conceptual or 
imaginary and in qualitative form as in psychological systems, social systems, health care 
systems, and economic systems. Figure 1.4c shows the transportation system. Conceptual 
systems are those systems in which the quantity of interest cannot be measured directly 
with physical devices. These are complex systems.

Esoteric systems are the systems in which the measurements are not possible with physi-
cal measuring devices. The complexity of these systems is of highest order.

1.2.3 According to the Interactions

Interactions may be unidirectional or bidirectional, crisp or fuzzy, static or dynamic, etc. 
Classifi cation of systems also depends upon the degree of interconnection of events from 

FIGURE 1.3
Classifi cation of system based on complexity.

Biological
systemsSocioeconomic

systems

Conceptual
systems

Psycho
systems

Esoteric
systems

Black
Box

White
box

Chemical
systems

Thermal/hydraulic
systems

Mechanical
systems

Electrical
systems

Physical
systems

Speculation

Prediction

Analysis Control

Design/
control

Design



Introduction to Systems 7

none to total. Systems will be divided into three classes according to the degree of inter-
connection of events.

 1.  Independent—If the events have no effect upon one another, then the system is classi-
fi ed as independent.

 2.  Cascaded—If the effects of the events are unilateral (that is, part A affects part B, B 
affects C, C affects D, and not vice versa), the system is classifi ed as cascaded.

 3.  Coupled—If the events mutually affect each other, the system is classifi ed as 
coupled.

1.2.4 According to the Nature and Type of Components

 1. Static or dynamic components

 2. Linear or nonlinear components

 3. Time-invariant or time-variant components

 4. Deterministic or stochastic components

 5. Lumped parametric component or distributed parametric component

 6. Continuous-time and discrete-time systems

1.2.5 According to the Uncertainties Involved

Deterministic—No uncertainty in any variables, for example, model of pendulum.

Stochastic—Some variables are random, for example, airplane in fl ight with random wind 
gusts, mineral-processing plant with random grade ore, and phone network with random 
arrival times and call lengths.

FIGURE 1.4
Different types of systems. (a) Mechanical system. (b) Electronic circuit. (c) Transportation system.

F(t)

Mass

(a) (b)

Population
center

(c)



8 Modeling and Simulation of Systems Using MATLAB and Simulink

Fuzzy systems—The variables in such type of systems are fuzzy in nature. The fuzzy 
variables are quantifi ed with linguistic terms.

1.2.5.1 Static vs. Dynamic Systems

Normally, the system output depends upon the past inputs and system states. However, 
there are certain systems whose output does not depend on the past inputs called 
static or memoryless systems. On the other hand, if the system output depends on the 
past inputs and earlier system states which essentially implied that the system has 
some memory elements, it is called a dynamic system. For example, if an electrical 
system contains inductor or capacitor elements, which have some fi nite memory, due 
to which the system response at any time instant is determined by their present and 
past inputs.

1.2.5.2 Linear vs. Nonlinear Systems

The study of linear systems is important for two reasons:

 1. Majority of engineering situations are linear at least within specifi ed range.

 2. Exact solutions of behavior of linear systems can usually be found by standard 
techniques.

Except, a handful special types, there are no standard methods for analyzing nonlin-
ear systems. Solving nonlinear problems practically involves graphical or experimental 
approaches. Approximations are often necessary, and each situation usually requires 
special handling. The present state of art is such that there is neither a standard tech-
nique which can be used to solve nonlinear problems exactly, nor is there any assurance 
that a good solution can be obtained at all for a given nonlinear system.

The Ohm’s law governs the relation between the voltage across and the current through a 
resistor. It is a linear relationship because voltage across a resistor is linearly proportional 
to the current through it.

 ∝V I  

But even for this simple situation, the linear relationship does not hold good for all condi-
tions. For instance, as the current in a resistor increases exceedingly, the value of its resis-
tance will increase due to increase in temperature of the resistor:

 
= + αt (1 )R R T

 

The amount of change in resistance is being dependent upon the magnitude of the current, 
and it is no longer correct to say that the voltage across the resistor bears a linear relation-
ship to current through it.

Similarly, the Hooke’s law states that the stress is linearly proportional to the strain in a 
spring. But this linear relationship breaks down when the stress on the spring is too great. 
When the stress exceeds the elastic limit of the material of which the spring is made, stress 



Introduction to Systems 9

and strain are no longer linearly related. The actual relationship is much more complicated 
than the Hooke’s law situation, that is,

 
σ ∝ εStress( ) Strain( )

 

Therefore, we can say that restrictions always exist for linear physical situation, saturation, 
breakdown, or material changes with ultimate set in and destroy linearity. Under ordinary 
circumstances physical conditions in many engineering problems stay well within the 
restrictions and the linear relationship holds good.

Ohm’s law and Hooke’s law describe only special linear systems. There exist systems 
that are much more complicated and are not conveniently described by simple voltage–
current or stress–strain relationships.

1.3 Linear Systems

An engineer’s interest in a physical situation is very frequently the determination of the 
response of a system to a given excitation. Both the excitation and the response may be 
any physically measurable quantity, depending upon the particular problem, as shown in 
Figure 1.5. The linear system obeys superposition and homogeneity theorems.

1.3.1 Superposition Theorem

Suppose that an excitation function, e1(t), which varies with the time in a specifi ed man-
ner, produces a response function, ω1(t), and a second excitation function, e2(t) produces a 
response function, ω2(t).

Symbolically, the above-mentioned observation may be written as

 1 1( ) ( )e t t→ ω
 

and

 
→ ω2 2( ) ( )e t t

 

For the linear system, if these excitations applied simultaneously

 
+ → ω + ω1 2 1 2( ) ( ) ( ) ( )e t e t t t

 

FIGURE 1.5
Representation of two-port system.

Response
ω(t)

Excitation
e(t) Systems



10 Modeling and Simulation of Systems Using MATLAB and Simulink

The above equation shows the superposition theorem, which can be described as a super-
position of excitation functions results in a response which is the superposition of the 
individual response functions.

1.3.2 Homogeneity

If there are n identical excitations applied to the same part of the system, that is, if

 
= = = =…1 2 3( ) ( ) ( ) ( )ne t e t e t e t

 

then for a linear system

 = =

= → ω = ω∑ ∑1 1

1 1

( ) ( ) ( ) ( )
n n

k k

k k

e t ne t t n t

 

Hence, a characteristic of linear systems is that the magnitude is preserved. This charac-
teristic is referred to as the property of homogeneity.

A system is said to be linear if and only if both the properties of superposition and 
homogeneity are satisfi ed.

1.3.3 Mathematical Viewpoint of a Linear System

Mathematically, we can defi ne linear systems as those whose behavior is governed by 
linear equations (whether linear algebraic equations, linear difference equations, or linear 
differential equations).

1.3.3.1 Linear Differential Equation

Consider the following differential equation:

 

ω ω+ + ω =
2

1 02

d d
( )

d d
a a e t

t t  

where
t is used as the independent variable
e is excitation function
ω is the response function

Coeffi cients a1 and a0 are system parameters determined entirely by the number, type, 
and the arrangement of elements in the system; they may or may not be functions of the 
independent variable t. Since, there are no partial derivatives in the above equation and the 
highest order of the derivative is 2, the equation above is an ordinary differential equation 
of second order. This equation is a linear differential equation of second order because 
neither the dependent variable ω nor any of its derivatives is raised to a product of two or 
more derivatives of dependent variable or a product of the dependent variable and one of 
its derivatives.

The validity of the principle of superposition here can be verifi ed as follows. We assume 
that the excitations e1(t) and e2(t) give rise to responses ω1(t) and ω2(t), respectively. Hence



Introduction to Systems 11

 

ω ω+ + ω =

ω ω+ + ω =

2
1 1

1 0 1 12

2
2 2

1 0 2 22

d d
( )

d d

d d
( )

d d

a a e t
t t

a a e t
t t  

Adding these equations, we have

 
ω + ω + ω + ω + ω + ω = +

2

1 2 1 1 2 0 1 2 1 22

d d
( ) ( ) ( ) ( ( ) ( ))

d d
a a e t e t

t t  

This shows that the principle of superposition applies for a linear system even when the 
coeffi cients a1 and a0 are function of the independent variable t.

1.3.3.2 Nonlinear Differential Equations

The differential equation becomes nonlinear if there is a product of the dependent variable 
and its derivative; power of the dependent variable; or power of a derivative of dependent 
variable. The existence of powers or other nonlinear functions of the independent variable 
does not make an equation nonlinear. Some nonlinear differential equations are

 

−

+ + =

+ + = θ
θ

⎛ ⎞
+ + =⎜ ⎟⎝ ⎠

2
2

2

2 3

22
2

2

d d
4 5 7 (product of dependent variable and its derivative)

d d

d
sin (second power of dependent variable)

d

d d
4 (power of a derivative of dependent variable)

d d
t

y y
y y t

t t

u
u u

y y
t t y e

t t
 

Notes:

 1. Order of a differential equation is the highest order derivative present in the dif-
ferential equation.

 2. Degree of a differential equation is the power of highest order derivative of the 
equation.

 3. An ordinary linear differential equation of an arbitrary order n may be written as

 

−

− −
ω ω ω+ + + + ω =�

1

1 1 01

d d d
( ) ( ) ( ) ( ) ( )

d d d

n n

n nn na t a t a t a t e t
t t t  

where the coeffi cients an(t), an−1(t), …, a1(t), a0(t) derived from system parameters and 
the right hand side of the equation, e(t) are given as functions of the independent 
variable t. The response ω(t) is determined by the system and the excitation function, 
respectively. The equation is said to be homogeneous if e(t) = 0, and nonhomoge-
neous if e(t) ≠ 0.



12 Modeling and Simulation of Systems Using MATLAB and Simulink

1.4 Time-Varying vs. Time-Invariant Systems

A system whose parameters change with time is called time-varying system. A familiar 
example of a time-varying system is the carbon microphone, in which the resistance is 
a function of mechanical pressure. Similarly, the mileage of a brand new car increases 
gradually as it is used progressively for sometime, and after attaining its maximum mile-
age, it steadily decreases.

If system parameters do not change with time then such systems are called time-
invariant (or constant parameter) systems.

If the excitation function e(t) applied to such a system is an alternating function of time 
with frequency f, then the steady-state response ω(t), after the initial transient has died out, 
appearing at any part of the system will also be alternating with the frequency f. In other 
words, time-invariant nonlinear systems create no new frequencies. For time-invariant 
systems if

 
( ) ( )e t t→ ω

 

then

 
( ) ( )e t t− τ → ω − τ

 

where τ is an arbitrary time delay.
Hence, the output of time-invariant system depends upon the shape and magnitude of 

the input and not on the instant at which the input is applied. If the input is delayed by 
time τ, the output is the same as before but is delayed by τ, as shown in Figure 1.6.

FIGURE 1.6
Time-invariant system responses. Application of input at time instant (a) t and (b) (t − τ).

ω(
t)

t

e(
t)

t

(a)

e(
t–

τ)

ω(
t–

τ)

tτ0 tτ0
(b)



Introduction to Systems 13

1.5 Lumped vs. Distributed Parameter Systems

A lumped system is one in which the components are considered to be concentrated at a 
point. For example, the mass of a pendulum in simple harmonic motion is considered to 
be concentrated at a point in space. This is a lumped parametric system because the mass 
is a point mass. This assumption is justifi ed at lower frequencies (higher wavelengths). 
Therefore, in lumped parameter models, the output can be assumed to be functions of 
time only. Hence, the system can be expressed with ordinary differential equations.

In contrast, distributed parametric systems such as the mass or stiffness of mechanical 
power transmission shaft cannot be assumed to concentrate at a point; thus the lumped 
parameter assumption breaks down. Therefore, the system output is a function of time 
and one or more spatial variables (space), which results in a mathematical model consist-
ing of partial differential equations. Figure 1.7 shows lumped and distributed parameter 
electrical systems.

1.6 Continuous-Time and Discrete-Time Systems

Systems whose inputs and outputs are defi ned over a continuous range of time (i.e., con-
tinuous-time signals) are continuous-time systems. On the other hand, the systems whose 
inputs and outputs are signals defi ned only at discrete instants of time t0, t1, t2, …, tk are 
called discrete systems, as shown in Figure 1.8. The digital computer is a familiar example 
of this type of systems.

The discrete-time signals arise naturally in situations which are inherently discrete time 
such as population in a particular town and customers served at ATM counter. Sometimes, 
we want to process continuous-time signals with discrete-time systems. In such situations 
it is necessary to convert continuous-time signals to discrete signals using analog-to-digital 
converters (ADC) and process the discrete signals with discrete systems. The output of 
discrete-time system is again converted back into continuous-time signals using digital-
to-analog converters (DAC), as shown in Figure 1.9.

The terms discrete-time and continuous-time signals qualify the nature of signal along 
the time axis (x-axis) and the terms analog and digital, on the other hand, qualify the 
nature of signal amplitude (y-axis), as shown in Figure 1.10.

FIGURE 1.7
Lumped- and distributed-parameter-electrical systems. (a) Transmission line parameters are distributed and 

(b) electrical circuit parameters are lumped.

(b)(a) 



14 Modeling and Simulation of Systems Using MATLAB and Simulink

FIGURE 1.8
Analog and digital systems. (a) Continuous time system and (b) discrete time system.

Discrete time
systemDiscrete time

inputs
Discrete time

outputs

(b)

Continuous time
systemContinuous time

inputs
Continuous time

outputs

(a) 

FIGURE 1.9
Processing continuous-time signals by discrete-time systems.

Continuous
time inputs

Continuous
time outputs

Discrete time
outputs

Discrete time
system

Discrete time
inputs

ADC ADC

FIGURE 1.10
Different types of signals. (a) Analog and continuous signal, (b) digital and continuous signal, (c) analog and 

discrete signal, and (d) digital and discrete signal.

(a) (b) 

(c) (d)



Introduction to Systems 15

1.7 Deterministic vs. Stochastic Systems

A system that will always produce the same output for a given input is said to be deter-
ministic. Determinism is the philosophical proposition that every event, including human 
cognition and behavior, decision, and action, is causally determined by an unbroken chain 
of prior occurrences.

A system that will produce different outputs for a given input is said to be stochastic. 
A stochastic process is one whose behavior is nondeterministic and is determined both by 
the process’s predictable actions and by a random element. Classical examples of this are 
medicine: a doctor can administer the same treatment to multiple patients suffering from 
the same symptoms, however, the patients may not all react to the treatment the same way. 
This makes medicine a stochastic process. Additional examples are warfare, meteorology, 
and rhetoric, where success and failure are so diffi cult to predict that explicit allowances 
are made for uncertainty.

1.7.1 Complexity of Systems

Another basic issue is the complexity of a system. Complexity of a system depends on the 
following factors:

Number of interconnected components• 

Type/nature of component• 

Number of interactions• 

Strength of the interaction• 

Type/nature of interactions• 

 a. Static or dynamic

 b. Unidirectional or bidirectional

 c. Constrained or nonconstraint interaction

Consider an example of a family. If there is only one person (component) in the family 
(system), then there is no interaction. Therefore, the number of interactions is zero. If there 
are two persons, say, husband and wife (two components) in the family, then they may 
talk each other. In this case, the number of interactions is two, that is, husband can say 
something to his wife and wife can reply to her husband. Similarly, if there are three 
persons in the family, say, husband, wife, and a child, then each one may interact with 
the rest two. The number of interactions in this case is 6 as shown in Figure 1.11. From the 
discussion it is clear that the number of interactions increases exponentially as the num-
ber of components is increased in the system and sometimes they become unmanageable, 
as shown in Figure 1.12 and Table 1.1.

The complexity of any system in modern times is quite large, whether it is an industrial orga-
nization, an engineering system (electrical, mechanical, thermal, hydraulic, etc.), or a social sys-
tem. The effi cient utilization of inputs to these systems calls for a thorough understanding of 
the basic structure of the system with a view to develop suitable control strategy for the appli-
cation of engineering techniques employing computers to achieve optimum performance in 
industrial organizations, equipment design, socio-economic activities, as well as management 
systems. The systems’ engineering based on system thinking and systems approach facilitates 
us to have a thorough understanding of the basic structure of the system.



16 Modeling and Simulation of Systems Using MATLAB and Simulink

1.8 Hard and Soft Systems

Peter Checkland is a British management scientist and 
professor of Systems at Lancaster University. He devel-
oped soft systems methodology (SSM): a methodol-
ogy-based systems thinking. Prof. Checkland became 
interested in applying systems ideas to messy manage-
ment problems while working as a manager in indus-
try. His ideas for SSM emerged from the failure of the 
application of, what he called, “hard” systems engineer-
ing in messy management problems. SSM developed 

TABLE 1.1

Effect of Number of Interactions 
with Number of Components

S.No

Number of 

Components

Number of 

Interactions

1 1 0

2 2 2

3 3 6

4 4 12

5 5 20

n n n(n − 1)

FIGURE 1.11
Number of components and number of interactions (a) 0, (b) 2, and (c) 6 in the family system.

Single
person

(a) (b)

Husband

Wife

(c)

Husband

Wife

Child

FIGURE 1.12
Relation between number of components and their interactions.

0

50

100

150

200

250

300

350

400

0 5 10 15 20

Number of components

N
um

be
r o

f i
nt

er
ac

tio
ns



Introduction to Systems 17

from this continuous cycle of intervention in ill-structured management problems and 
learning from the results (Checkland, 1999, 2006; Checkland and Winter, 2000; Winter and 
Checkland, 2003).

Soft system is a branch of systems thinking specifi cally designed for use and application in a 
variety of real-world contexts. David Brown stated that a key factor in its development was the 
recognition that purposeful human activity can be modeled systemically. Peter Checkland’s 
work has infl uenced the development of “soft” operations research (OR), which joins optimiza-
tion, mathematical programming, and simulation as part of the OR topography.

Just like Boland (1985) who has brought phenomenology in the fi eld of information 
systems, to critically examine this fi eld, raise consciousness, and clarify its path, so has 
Checkland (1981) done in the fi eld of systems thinking. In so doing, sense-making and 
the social construction of reality have become central notions in their respective fi elds. 
System thinking as comprehended by great thinkers and scientists is not only consid-
ering reality independent of observer but also the description of the participation of 
interconnected entities, cybernetic process, and their emergent properties. In fact, the 
system thinking is about how we attribute the world and construct the unity of our ever-
 changing reality.

In systems science jargon hard and soft systems are used to differentiate between different 
nature of system’s problems. The characteristics of soft system are

Ill-defi ned problems• 

Nonquantifi ed components/systems• 

No defi nite solution• 

Qualitative input and outputs• 

Similarly hard systems may be characterized by the following things:

The problems associated with such systems are well defi ned• 

They have a single, optimum solution• 

A scientifi c approach to problem solving will work well• 

Technical factors will tend to predominate• 

In hard systems approaches (or structured systems analysis and design methodology, 
SSADM), rigid techniques and procedures are used to provide unambiguous solutions to 
well-defi ned data and processing problems. These focus on computer implementations.

Checkland draws attention to these two alternative paradigms to explain the nature and 
signifi cance of systems thinking:

Paradigm 1—The world is considered to be systemic and is studied systematically.

Paradigm 2—The world is chaotic (i.e., it admits to many different interpretations) 
and we study it systemically.

Now the fi rst paradigm refl ects the notion of hard systems thinking and the second 
refl ects the notion of soft systems thinking. Hard systems thinking can be characterized as 
having an objective or end to be achieved, and a system can be engineered to achieve the 
stated objective. Soft systems thinking can be characterized as having a desirable end, but 
the means to achieve it and the actual outcome are not easily quantifi ed (Wilson, 2001).



18 Modeling and Simulation of Systems Using MATLAB and Simulink

1.9 Analysis of Systems

Analysis is the separation of the subject into its constituent parts or elements in an effort to 
either clarify or to enhance the understanding of the subject.

1.10 Synthesis of Systems

Synthesis is the study of composition or combination of parts or elements so that the 
system performs, behaves, or responds according to a given set of specifi cations.

1.11 Introduction to System Philosophy

Generally speaking, any entity, which may be subdivided into components or parts of a 
constituent, may be considered a system. We have been hearing about biological systems, 
physical systems, social systems, ecological systems, transportation systems, economic sys-
tems, linguistic systems, health care systems, etc. Systems concept enriched by Ludwig Von 
Bertalanffy, who was the fi rst mastermind to advocate general system theory or systemol-
ogy. When science failed to explain open systems, the concept of systems science came with 
rational explanation. In essence, he postulated, on the basis of formal analogies between 
physical, chemical, and biological systems, the existence of general systems law, which is 
equally applicable to physical systems as well as human and social systems. This new world 
view reaches farther than science or arts by itself and should ultimately include science, 
arts, ethics, politics, and spirituality (Satsangi, 2008).

Karl Ludwig von Bertalanffy (September 19, 1901, Vienna, Austria–June 12, 1972, New York, 
United States) was an Austrian-born biologist known as one of the founders of “general 
systems theory” or “general systemology.” He advocated the concepts of system to explain 
the commonalities (Wilson, 1999; Weinberg, 2001; Skyttner, 2006; Vester, 2007) and is often 
regarded as the father of modern system thinking.

Bertalanffy occupies an important position in the intellectual history of the twentieth 
century. His contributions went beyond biology, and extended to cybernetics, education, 
history, philosophy, psychiatry, psychology, and sociology. Some of his admirers even 
believe that von Bertalanffy’s general systems theory provides a conceptual framework 
for all these disciplines to integrate for holistic comprehension of what we see and 
perceive. The individual growth model published by von Bertalanffy in 1934 is widely 
used in biological models and exists in a number of permutations.

Bertalanffy’s contribution to systems theory is widely acclaimed for his theory of open sys-
tems. The system theorist argued that traditional closed system models based on classical 
science and the second law of thermodynamics were untenable. Bertalanffy maintained that 
“the conventional formulation of physics are, in principle, inapplicable to the living organism 
being open system having steady state. We may well suspect that many characteristics of 
living systems which are paradoxical in view of the laws of physics are a consequence of this 
fact.” (Bertalanffy, 1969a) However, while closed physical systems were questioned, ques-
tions equally remained over whether or not open physical systems could justifi ably lead to a 
defi nitive science for the application of an open systems view to a general theory of systems.



Introduction to Systems 19

In Bertalanffy’s model, the theorist defi ned general principles of open systems and the 
limitations of conventional models. He ascribed applications to biology, information the-
ory, and cybernetics. Concerning biology, examples from the open systems view suggested 
they “may suffi ce to indicate briefl y the large fi elds of application” that could be the “out-
lines of a wider generalization”; (Bertalanffy, 1969b) from which, a hypothesis for cyber-
netics. Although potential applications exist in other areas, the theorist developed only the 
implications for biology and cybernetics. Bertalanffy also noted unsolved problems, which 
included continued questions over thermodynamics, thus the unsubstantiated claim that 
there are physical laws to support generalizations (particularly for information theory), 
and the need for further research into the problems and potential with the applications of 
the open system view from physics.

Pre-Greek era was gripped in the realness of religion and magic. The main contribution 
of Greek philosophers was to remove the world from the pangs of magic and religion and 
to create an explanation to the working of the real-world rational explanation which was 
the subject of a new kind of inquiry.

Aristotle, one of the greatest Greek philosophers, was born at Stagira in northern Greece. 
He included his investigations of an amazing range of subjects, from logic, philosophy, 
and ethics to physics, biology, psychology, politics, and rhetoric. Aristotle appears to have 
thought through his views as he wrote, returning to signifi cant issues at different stages 
of his own development. The result is less a consistent system of thought than a complex 
record of Aristotle’s thinking about many signifi cant issues.

Aristotelian explanation for the world with its holistic notion is that “a whole is more 
than the sum of its parts.” This holistic notion forms a methodological and conceptual 
foundation of systems philosophy. He advanced the teleological outlook that objects in this 
world fulfi lled their inner nature or purpose.

Teleology is based on belief that things happen because of the purpose or design that 
will be fulfi lled by them. The scientifi c revolution started in the seventeenth century due 
to the pioneering work of Copernicus and Kepler pertaining to solar system and that of 
Galileo and Newton pertaining to terrestrial and celestial dynamics is proved to be the 
most powerful activity man has discovered. Copernicus and Kepler’s heliocentric model 
of the solar system demolished the Aristotelian solar system, which consisted of crystal-
line sphere upon which the planets moved in perfect circles. Galileo propounded that 
the earth is not the center of the world but the sun is the center and immovable. His work 
directly challenged Aristotelian view that motion needed a force to maintain it to produce 
acceleration. Newton developed the concepts and defi nitions to be used and stated the 
three laws of motion governing the classical dynamics. He discovered the motion of bod-
ies in vacuum thereby proving the basis of celestial mechanics, discussed the modifi ca-
tions introduced in fl uids, and ultimately demonstrated “the frame of the system of the 
world,” applied the ideas to solar system to accurately predict the facts about the motion 
of planets and developed laws of gravitation. He advocated the importance of expressing 
nature’s behaviors in the language of mathematics. Thus, the present day science may be 
seen as applications of Galileo Newtonian methodology to study of natural phenomena. 
Newton’s physics provided a mechanical picture of the universe, which survived severe 
tests and Aristotle’s teleological outlook and his holistic notion, seemed an unnecessary 
doctrine.

The Newtonian mechanics succeeded because its protagonists asked questions which in 
the range of experimental answer, by limiting their inquiries to physical, rather metaphysi-
cal problems, and in particular on those aspects of the physical world, which could be 
expressed in terms of mathematics. The core of scientifi c revolution was a belief in rational 



20 Modeling and Simulation of Systems Using MATLAB and Simulink

modes of thought applied to design and the subsequent analysis of experimentation is 
outstanding in that it works. Within well-defi ned limits, scientifi c evidence is trust worthy 
and that is why it has created the present world.

1.11.1 Method of Science

Science is a way of acquiring publicly testable knowledge of the world. It is characterized 
by the application of rational thinking to experience gained from observation and from 
deliberately designed experiments with an aim to develop the concise expression of the 
laws, which govern the regularities of the universe, expressing them mathematically if 
possible. This particular pattern of human activity can be summarized in three crucial 
characteristics as 3Rs, namely, reductionism, repeatability, and refutation.

1.11.1.1 Reductionism

There are three senses in which science is a reductionism:

 1. The real world is so rich in variety, so many, that in order to make coherent inves-
tigations of it, it is necessary to select some items only to examine, out of all those, 
which could be looked at. To defi ne an experiment is to defi ne a reduction of the 
world, one made for a particular purpose.

 2. Reductionism in explanation, that is, accepting the minimum explanation required 
by the facts.

 3. Breakdown problems and analyze piecemeal.

1.11.1.2 Repeatability

Repeatability refers to a characteristic of a system for a given excitation and the system out-
put remains same, independent of time and location. Repeatability of experiments makes 
the knowledge public or scientifi c and is its strength, for example, literary knowledge is a 
private knowledge. A critic, who wishes to convince us that Mr. X is a great novelist will 
explain why he thinks so. He will try to infl uence our opinion about a book of Mr. X. We 
may get convinced or not. Whether we agree or not depends upon our latter data. Such 
knowledge is private whereas scientifi c experiments may repeat by one and all and verifi ed. 
Thus they are public knowledge.

1.11.1.3 Refutation

The method of science is the method of bold conjectures with ingenious and severe attempt 
to refute them. The important message is—Do not be satisfi ed with normal science; try to 
fi nd ways of challenging the paradigm. This makes intellectual progress by the refutation 
of the hypothesis.

In brief, we may reduce the complexity of the variety of the real world in experiments, 
whose results are validated by repeatability and we may build knowledge by refutation of 
hypothesis.

1.11.2 Problems of Science and Emergence of System

Science is a great success in solving the problems of regular physical and materialistic sci-
ences and well-structured and explicitly defi ned problems of laboratory have resulted in a 



Introduction to Systems 21

comfortable life style. However, science has its own limitations. The reductionism which is 
a powerful tool also happens to be its weakness.

Scientists assume that the components of the whole are the same even when examined 
in isolation. This is true only for well-structured and regular physical system. However, 
if we move beyond them to study complex phenomena such as human society, the scien-
tifi c methods fail. This is more so in biological systems. The 3Rs of science is not capable to 
cope up with complexities. In unstructured sciences, progress is slow and methodological 
problems are there. This requires that different and other ways of thinking are needed to 
be explored. It is in this connection that Von Bertalanffy tried to exploit Aristotelian holis-
tic notion that “A whole is more than some of its parts” to advance system philosophy.

1.12 System Thinking

Bertalanffy argues that Aristotle’s holistic notion forms a defi nition of the basic system, 
which is still valid. According to him, order or aggregation of a whole or a system, exceed-
ing its parts when these are considered in isolation, is nothing metaphysical, not a super-
stition or a philosophical speculation. It is a fact of observation encountered whenever we 
look at a living organization, a social group, or even an atom. Articulates of Ludwig Von 
Bertalanffy are

 1. The fact that the study of living systems is a study of commonalties shared by 
systems of differing physical structures

 2. That physics cannot encompass organic phenomenon without fundamental modi-
fi cation and extension

 3. That the commonalties’ characteristics of biological systems are exemplary of 
other kinds of commonalties, which could form the basis for the general systems 
theory

 4. That biological systems (developmental systems) are open systems, able to 
exchange matter, energy, and information with their environments, and conse-
quently the second law of thermodynamics (that material systems should proceed 
from ordered to disordered states) is not even directly applicable to them

 5. That apparently purposive telic behavior of developing systems is entirely plausible

Therefore, we see that there is a sense in which we can learn something about a particular sys-
tem S, such as a developing organism, by studying some other purely reductionistic or physi-
cal sense, but nonetheless manifesting the same behavior is shared by systems of the utmost 
physical diversity. That is, physically disparate systems can nevertheless be models or analogs 
of each other. Thus the two distinct systems, S1 and S2 , can behave similarly only to the extent 
that they comprise alternate realizations of a common mathematical or formal structure.

The crucial difference between magic and science resides in the manner in which mod-
els are generated and through which specifi c properties of the system are captured. The 
hypothesis of Kabala, that makes it mysticism rather than science, is that the name of a 
system are manifested in the corresponding numerical properties of the associated num-
ber and can be studied thereby. A Mathematical object with system captures some aspects 
of the reality of the system. We seek to learn about the system by studying the properties 
of the associated model.



22 Modeling and Simulation of Systems Using MATLAB and Simulink

It is perhaps ironic that few achievements of scientifi c world should be nonreductionist 
character typical of system theoretic arguments. Hamilton showed that two distinct and 
independent branches of physics, namely, optics and mechanics could be conceptually uni-
fi ed not through reduction of optics to mechanics or vice versa but rather through the fact 
that both obeyed the same formal law, that is, realized the same formal system. Hamilton 
stopped there and 100 years later, Schrödinger exploited the commonalties between the 
two and developed wave mechanics.

Even mathematicians often construct mathematical models of other mathematical 
systems. The relation between a topological space (a differential and abstract subject) 
and an associated group (an algebraic system much simpler than topology) is a mod-
eling relation and it enabled us to learn about the homomorphism topological spaces 
by studying entirely different isomorphic groups of algebra system. This was further 
exploited to develop “Theory of Categories” which cuts across all other.

It was clearly demonstrated that where science fails to explain, system approach of 
exploiting commonalties applies. A.D. Hall and R.E. Fagan have thoughtfully defi ned sys-
tems thinking as below:

Systems thinking is the art and science of linking structure to performance, and per-
formance to structure—often for purposes of changing relationships so as to improve 
performance.

But, how should we look at a complex world? One approach is to break the complex 
world into smaller, more manageable pieces. The argument goes that if we can under-
stand the separate pieces, then we can put our separate understandings together to 
understand the whole. This is reductionism, or Cartesian thinking. It works for simple 
things. Cartesian thinking fails to address complex problems because, in the process 
of breaking up the overall system into parts, the connections and interactions between 
those parts get lost. Consider a comparison:

 1. If you break a brick wall into parts, you end up with a pile of bricks, with which 
you can rebuild the brick wall—nothing lost, and perhaps even something gained 
in an improved wall, as shown in Figure 1.13.

 2. Now if you break a human being into parts, you end up with a pile of organs, 
bones, muscles, sinews … but you can never reconstitute the human being.

Where does the difference lie?
The whole human being depends on the continued interaction between all its parts—

in fact, the parts are all mutually dependent. So it turns out to be with complex systems. 
They are made up from many interacting, mutually dependent parts. Because of this it is 
often impractical to conduct experiments on them.

So, we need to be able to think about complex issues, partly because we cannot use 
Cartesian methods to “reduce” them, and partly because we cannot conduct controlled 
experiments upon them. The implications of that is simply this: System thinking must be 
rigorous if it is to be both credible and useful. But, is all systems thinking rigorous?

When learning new concepts and ways of thinking, a picture can be worth a thousand 
words. When we look at how people learn new things, the graphical aspect of systems 
thinking helps us visually see how systems work and how we might be able to work 
through them in better ways. The term “systems thinking” was fi rst associated with Jay 
Forrester from MIT in the 1940s to refer to a different way of looking at problems and goals 
not as isolated events, but as parts of interrelated structures.

When we look at business and human endeavors as systems, we need to understand 
the complete picture, the interrelated variables, and the effects they have on each other. 



Introduction to Systems 23

We cannot understand the whole of any system by studying its parts. For example, if you 
want to understand how a car works and you take it apart and study each of its parts (engine, 
tires, a drive shaft, a carburetor, transmission, etc.), you would have no clue as to how a car 
works. To understand an automobile, you must study the relationship of the parts and how 
they work together. The holistic approach for explaining the system working is important.

System thinking is a conceptual framework, a body of knowledge and tools, developed 
over the past many years, to explicitly underline the effects of emergent properties and 
visualize this implicit and explicit effect.

System thinking can be used to understand highly complex systems; it also can help us 
understand day-to-day issues. As an example, many of us would like to lose weight.

What is the nature of the system in which we fi nd ourselves? Let us identify the vari-
ables in this system: unhappiness with weight, amount of food consumed, and degree of 
hunger. What is the relationship between these variables?

From Figure 1.14, one may understand the nature of systems thinking. How could this 
help in an everyday problem solving like dieting by seeing the structure of the underlying 
system.

Another example: Any company which fi nds labor costs are too high and wants to 
reduce them. So, they simply lay off 10% of their work force. Costs might go down right 
away but the workload on the remaining work force increases manyfold. Those workers 
feel stressed and cannot get all the work done. As a result, the company hires outside 
people to help them and reduce the workload.

FIGURE 1.13
Example of a system and its component.

(a)

(b)(c)



24 Modeling and Simulation of Systems Using MATLAB and Simulink

Step 1. The following variables could be identifi ed.
Product manufacturing cost
Lay off workers
Hire outside people
Workload

Step 2. Find relationships between these variables shown in Figure 1.15.
Systems thinking is a wonderful tool for understanding the environment. It provides a 

visual tool for learning. It was not until I saw the picture that I began to understand some 
of the critical elements of thinking systemically. A systems picture can indeed be worth a 
thousand words!

1.13  Large and Complex Applied System Engineering: 

A Generic Modeling

In this century, we live in a large and complex world perceived to be a result of a variety 
of human activity systems from domains such as science, technology, economics, ecology, 

FIGURE 1.14
Relationship diagram for weight reduction.

Change eating habits/
reduce food

Eat more food

Hunger

Desire to
reduce weight

(–)

+

+
(a)

+

–

(b)

FIGURE 1.15
Variable relationship to reduce the product cost.

Lay off workersHire people

Workload

Product cost

(–)
+

+

+

–

+



Introduction to Systems 25

environment, management, psychology, sociology, anthropology, geography, philosophy, 
mathematics, arts, literature, ethics, spirituality, and so on.

The fi eld of systems analysis and design is concerned with unstructured, multidisci-
plinary, or large-scale problems in industry and government that require skills and meth-
ods from more than one specifi c discipline. Identifying, modeling, and solving systems 
problems may require combinations of methods of mathematical, economic, behavioral, 
and engineering analysis. The focus may range from normative to empirical, from design 
to testing, and from analysis to evaluation. Specifi c real-world problems, for example, 
industrial, governmental, technical, information (computer) may require methods of 
acquiring information of the system and its components and environment, introducing 
changes (experimental interventions), and evaluating the effects (Thompson, 1991).

There seems to be a general agreement that information society (or postindustrial soci-
ety) will be fundamentally different environment for organizations than was industrial 
society (Klir and Lowen, 1991). It is expected that the amount of available knowledge, the 
level of complexity, and the degree of turbulence will be signifi cantly greater in the infor-
mation society than they were in the industrial society. In addition, it is also expected that 
even the absolute growth rates of these three factors will be signifi cantly greater than in 
the past. To keep organization compatible with the environment, a substantial portion of 
decision making in information society will be concerned with organizational innova-
tions, that is, radical changes in produced goods or services, as well as in the technolo-
gies, processes, and structures of the organizations themselves. In general, demands on 
organizational innovations will be more frequent, more extensive, and will have to be 
implemented faster than in the past.

All these demands on organizations in information society indicate that organizations 
will be required to function as anticipatory systems and the associated problem of systems 
modeling and decision making is at the heart of systems science. Bahm (1981) has sketched 
fi ve types of systems philosophy:

 1. Atomism (the world is an aggregate of elements without wholes to be understood 
by analysis).

 2. Holism (ultimate reality is a whole without parts, except as illusory manifesta-
tions, apprehended intuitively).

 3. Emerqentism (parts exist together and their relations, connections, and organized 
interaction constitute whole that continue to depend upon them for their existence 
and nature, understood fi rst analytically and then synthetically).

 4. Structuralism (the universe is a whole within which all systems and their processes 
exist as depending parts, understanding can be aided by creative deduction).

 5. Organicism (every existing system has both parts and whole, and is part of a 
larger whole, etc., understanding the nature of whole part polarities is a clue to 
understanding the nature of systems). These fi ve types of systems philosophies 
have emphasized characteristics of existing systems. Philosophies of conceptual 
systems, of relations between conceptual and existing systems, and of methodolo-
gies may also correlate with them.

Many real-life problems are brought forth by present day technology and by societal and 
environmental processes, which are highly complex, “large” in dimension and stochastic 
or fuzzy in nature (Singh and Titlied, 1979; Jamshidi, 1983). One viewpoint as to how large 
is large, has been that a system is considered large in scale if it can be decoupled or parti-
tioned into a number of interconnected subsystems for either computational or practical 



26 Modeling and Simulation of Systems Using MATLAB and Simulink

reasons. Another viewpoint considers large-scale systems to be simply those whose 
dimensions are so large that conventional techniques of modeling, analysis, control, and 
optimization fail to give reasonable solutions with reasonable computational efforts.

Many real problems are considered to be “large scale” by nature and not by choice. Two 
important attributes of large-scale systems are

 1. They often represent complex real-life systems.

 2. Their hierarchical multilevel and decentralized information structures depict 
systems dealing with societal, business, and management organizations, the 
economy, the environment, data networks, electric power, transportation, aero-
space including space structures, water resources, energy, and so on.

What is going on in the dynamics of any enterprise is not merely the manipulation of 
material, energy (physical, human, solar) and information but a more fundamental aspect, 
namely, management of complexity which is measured by variety (the number of pos-
sible states of a system) (Beer, 1985; Satsangi, 1985). The basic axioms will assuredly hold, 
that the variety of the environment greatly exceeds that of the operation that serves or 
exploits it which will in turn greatly exceed the variety of the management that regulates 
or controls it. Hence, variety engineering (manipulation of varieties by design through 
attenuation and amplifi cation) is invariably required to satisfy Ashby’s law of requisite 
variety states that only variety can absorb variety. The essence of viability leads to the 
following principle of organization: managerial, operational, and environmental variet-
ies, diffusing through an institutional system, tend to equate; they should be designed to 
do so with minimum damage to people and to cost. The hierarchical concept is so very 
central in systems science because it is strongly connected to other basic concepts such as 
complexity, synergetics, and autonomy (Auger, 1991).

Indeed, large-scale systems containing a large number of units and elements have a 
spontaneous tendency to subdivide into smaller subsystems, quasi-autonomous, them-
selves able to be divided into still smaller subsystems and so on. The subsystems behav-
ior is mainly governed by intra subsystems interactions, the elements inside the same 
subsystems being often strongly interacting. This is the essence of the large-scale system 
modeling philosophy through sub-sub-system-to-sub-system-to-system modeling con-
struct of the physical system theory (Satsangi and Ellis, 1971). In many examples and 
cases, the subsystems at each level are quasi-autonomous with stable internal processes 
responsible for realizing a given function. Autonomy and hierarchy are very connected 
and a hierarchical structure of the system implies a decomposition into many levels in 
which stable and autonomous units can be found. The subsystems are self-functioning 
with quasiautonomy and also can often be characterized in “upper level” by a few global 
variables. Thus, at each jump in upper level, these subsystems containing a large number 
of degrees of freedom (variety) are represented and described by a small number of global 
variables. As a consequence when integrating the levels, the complexity of the system is 
much reduced. There is a strong link between hierarchy and complexity. The complexity 
of large-scale system is reduced and in a certain way solved by hierarchical organization. 
Interpretive structural modeling, which transforms unclear, poorly articulated mental 
models of a system into visible well-defi ned, hierarchical models, assumes importance in 
this context (Warfi eld, 1974, 1990; Sage, 1977).

Moreover, internal dynamics of the subsystems are governed by intra-sub-systems 
interactions. When the whole system is rebuilt from its isolated sub-systems, inter-
sub-systems interaction must be added. As a consequence, the behavior of the coupled 



Introduction to Systems 27

subsystem is different from the sum of the behaviors of the isolated subsystems. The 
behavior of the whole system is different from the sum of the behaviors of the isolated 
parts, as in the case of Kron’s tearing and reconstruction (Bowden, 1991) and physical 
system theory (Koenig et al., 1966). Two different forms of hierarchy theory have been 
frequently propounded (Salthe, 1991). One, the scalar hierarchy is used in systems science 
and ecology. It describes constraint relations on dynamics between systems of differ-
ent scale. It also describes parts and wholes and processes taking place in such complex 
structures as described above. The other, the specifi cation hierarchy is an older discourse 
dating back to Plato and as a theory of developments, to Aristotle. In the twentieth cen-
tury it was relegated to peripheral importance in biology, but has continued to inform 
social science and psychology. It can be represented as a system of nested classes, the 
outermost class containing the most general phenomena, the inner most the most highly 
specifi ed. These integrative levels can be considered as stages of development as well. 
Each new stage, transcends the one before it and integrates it into a new whole. Incredibly, 
the same statements can be made about a system from these two viewpoints even though 
their meanings are logically different. One often speaks of synergetic effects to represent 
cooperative effects between the parts. Synergetics and hierarchy seem to be strongly con-
nected and inter-sub-system interactions are responsible for these synergetic couplings. 
A basic distinction is made between the lower levels of control and the higher level of 
management (Wilson, 1984; Satsangi, 1985). Thus

 1. A process control system is a designed physical system (containing only inert 
physical elements) based on material fl ow and energy costs.

 2. A management control system is a human activity system (containing autonomous 
human beings).

Metagame theory (Hipel and Fraser, 1980; Satsangi, 1985) is used to analyze and fi nd stable 
solution to the problems that involve confl ict between the strategies of the interested 
parties. This could be a war situation between two countries, management and labor prob-
lems, landlord and tenant disputes, national issues involving various political parties, and 
so on. Confl ict is virtually inevitable in most situations where humans interact, either indi-
vidually or else in group. Confl ict resolution is required by all decision makers.

Numbers just do not tell the whole story anymore in systems such as economic, urban, 
biological, educational, and disaster management, which are basically human-based sys-
tems. The hard and fast is making room for the soft and fuzzy. Zadeh has argued that the 
applications of the techniques and tools of “hard” systems to the study of systems involv-
ing humans are often unsuccessful primarily because the methodologies used demand 
very high levels of precision in measuring the variables and parameters used in describing 
the system. Zadeh stressed that these levels of precision were often neither attainable nor, 
more importantly, required for effective analysis of these systems. To overcome the need 
of undue precision, he introduced the concepts of fuzzy set theory (Zadeh, 1965; Satsangi, 
1985). Accidents like the one at Three Mile Island a few years ago show the weakness of the 
classical approach. There engineers had rigorously measured the risks, set up fault trees, 
calculated every possible combination of human factors. However human error was not 
suffi ciently fi gured in. Just as the human eye can immediately read a message scrawled 
sloppily on a note pad making a dazzling set of associations and interfaces from context 
that the most of sophisticated computer scanner is helpless to emulate, so people who 
understand other people know best how human error at Three Mile Island, Chernobyl, 
Bhopal Gas Leak, and Uttarkashi earthquake can be avoided next time. While a statistician 



28 Modeling and Simulation of Systems Using MATLAB and Simulink

might ask the likelihood based on the occurrences in comparable situations, a fuzzy theo-
rist might gather a variety of opinions and viewpoints and predict something the statistics 
cannot show. A key difference lies in the acknowledgment by fuzzy mathematics that 
society is not a series of random occurrences following the laws of chance. Rather, they 
maintain, it is the sometimes surprising outcome of improvising and purposeful, albeit a 
little fuzzy, people trying to beat the odds.

The development of qualitative models of physical systems is currently attracting much 
interest from the artifi cial intelligence research community. It consists of a set of eclectic 
techniques designed to generate a qualitative description of the behavior of physical 
system from a description of its structure and some initial “disturbance.” The term 
“qualitative” has been used in many ways and generally to mean “nonnumerical,” “symbolic 
models.” Qualitative modeling is used here to mean reasoning about systems character-
ized by continuously changing variables of time by discrete abstractions of the values 
of such variables that allow identifying the important distinctions or landmarks, in the 
behavior to be computed. This requires quantization of the real number line into a fi nite 
set of distinctions for particular generic tasks. Abstract descriptions of state make it pos-
sible to have more concise representations of behavior. However, the generation of the 
behavior from such description tends not to produce a unique solution. This of course, 
is to be expected, as the information required to produce a unique description has been 
eliminated in the intentional abstraction. Therefore, qualitative models produce ambigu-
ous description of behavior. However, such ambiguous behavior can still contain useful 
information for some tasks. For example, if it is required to predict whether the current 
state can lead to a critical or faulty condition, it may be suffi cient to show that none of the 
possible behaviors leads to a critical situation. It is important to show, therefore, that the 
set of possible behaviors includes the actual behavior of the system. In this way, a task can 
be satisfi ed even with incomplete descriptions, whereas in traditional method, all of the 
information needs to be available and it needs to be precisely and uniquely characterized 
before any inference can be made (Leitch, 1989).

Intelligent knowledge-based expert systems, knowledge-based expert systems, or, simply, 
expert systems are a product of artifi cial intelligence (AI). Artifi cial intelligence that branch of 
computer science which deals with development of programs that exhibit intelligent human 
behavior to arrive at decisions in a complex environment. In essence, an expert system can 
be defi ned as a sophisticated computer program that is designed to replicate the expertise 
of humans in diverse fi elds. The expertise to solve a problem depends upon the available 
knowledge (Zadeh, 1983; Satsangi, 1985; Kalra and Batra, 1990; Kalra and Srivastav, 1990).

Analogical reasoning is paradigm for problem solving within the fi eld of AI (Sage, 1990). 
A system which employs analogical reasoning operates by transferring knowledge from 
past problem-solving cases to new problems that are similar to the past cases. The past 
cases known to the system are referred to as analogs. Several approaches to analogical rea-
soning include associative, distributed, and connectionist, or neural network (Sage, 1990; 
Kumar and Satsangi, 1992; Chaturvedi, 2008). A connectionist system is a network of a very 
large number of simple processors, usually called units or “neurons,” which are highly 
interconnected and operate in parallel. Each unit has a numeric activation value, which 
is communicated to other units along connections of varying strengths. As the network 
operates, the activation value of each unit continuously changes in response to the activity 
of the units to which it is connected. This process is called spreading activation and is the 
fundamental mechanism underlying the operation of all connectionist networks. All the 
knowledge held in such a network is stored in the numerical strengths of the connections 
between units. There are two major types of connectionist representations, localist and 



Introduction to Systems 29

distributed. A future challenge for a logical reasoning system is to integrate in some man-
ner the necessary parallel techniques including those discussed above, into a cooperative 
problem-solving system.

Software system engineering is the application of system engineering principles, 
activities, tasks, and procedures to the development of a software in a computer-based 
system. This application is the overall concept that integrates the managerial and techni-
cal activity that controls the cost, schedule, and technical achievement of the developing 
software system throughout its lifecycle (Thayer, 1990).

Applied systems engineering is rather a new dimension in science and engineering. 
According to this new dimension, systems are recognized, classifi ed, and dealt with in 
terms of their structural properties while the nature of the entities is that these properties 
are de-emphasized. Such an alternative point of view transcends the artifi cial boundaries 
between the traditional disciplines of science and engineering and makes it possible to 
develop a genuine cross-disciplinary methodology more adequate for dealing with large 
and complex socio-technological problems inherent in the information society.

To conclude, in a rapidly changing world, the most effi cient planning and management 
strategies are likely to be soft planning approaches, not attempting to determine the future 
completely, but to steer the whole system toward basic mode of desirable behavior and 
allowing the system itself to adjust in its minor aspects, according to its own organization 
and dynamics. Such planning approach should include a continuous monitoring of the 
most important variables with early detection of tendencies of the system to move toward 
undesirable behavior modes. It should also emphasize disperse, diffuse, and loose con-
trols, rather than tight, concentrated ones, and explicitly favor development of the general-
ized intelligent capability of the system to react to new situations, thus increasing rather 
than reducing the future degrees of freedom. This requires not only technical capability, 
but more important an applied system way of thinking, which is more holistic, more inter-
disciplinary and capable of dealing with the behavior and characteristics of incompletely 
known complex systems (Satsangi, 1985, 2006).

1.14 Review Questions

 1. Defi ne system.

 2. What are the salient aspects of systems approach fi rst articulated by Ludwig Von 
Bertalanffy.

 3. Distinguish between feedback control and feedforward control systems.

 4. a. Give a classifi cation of systems.

 b. What is the difference between a set and a system?

 c. What do you understand by “whole is more than sum of its parts?”

 5. Explain 3Rs of science.

 6. What do you mean by the complexity of systems?

 7. Differentiate the linear and nonlinear systems.

 8. Explain the natural systems and manmade systems.

 9. Explain in brief about system thinking.

 10. Differentiate between hard and soft systems.



30 Modeling and Simulation of Systems Using MATLAB and Simulink

1.15 Bibliographical Notes

Basics of systems and systems theory are explained by Forrester (1968), Padulo and Arbib 
(1974), and Roe (2009). Kenneth (1994) defi nes systems in terms of conceptual, concrete, 
and abstract systems either isolated, closed, or open. Walter (1967) defi nes social systems 
in sociology in terms of mechanical, organic, and process models. Klir (1969) well clas-
sifi ed the systems and defi nes systems in terms of abstract, real, and conceptual physi-
cal systems, bounded and unbounded systems, discrete to continuous, pulse to hybrid 
systems, etc. Important distinctions have also been made between hard and soft systems 
in Sterman (2000). Hard systems are associated with areas such as systems engineering, 
operations research, and quantitative systems analysis. Soft systems are commonly associ-
ated with concepts involving methods such as action research and emphasizing participa-
tory designs. Distinction between hard and soft systems is given in Zadeh (1969).

It is always intended to integrate in a formal mode nature and culture in a single 
cosmos of which the inner purity and unity are simultaneously ensured (Pouvreau and 
Drack, 2007).



31

2
Systems Modeling

 

Art is the lie that helps us to see the truth.

Picasso

The sciences do not try to explain, they hardly even try to interpret, they mainly make 
models. By a model is meant a mathematical construct which, with the addition of cer-
tain verbal interpretations, describes observed phenomena. The justifi cation of such a 
mathematical construct is solely and precisely that it is expected to work.

John Von Neumann

Physical models are as different from the world as a geographical map is from the sur-
face of earth.

L. Brillouin

2.1 Introduction

Why is modeling required? Because … modeling may be quite useful:

 1. To fi nd the height of a tower, say the Kutub Minar of Delhi or the Leaning Tower at 
Pisa without actually climbing it

 2. To measure the width of a river without actually crossing it

 3. To gauge the mass of the Earth, not using any balance



32 Modeling and Simulation of Systems Using MATLAB and Simulink

 4. To fi nd the temperature at the surface or at the centre of the sun

 5. To estimate the yield of wheat in India from the standing crop

 6. To quantify the amount of blood inside a living human body

 7. To predict the population of China for the year 2050

 8. To determine the time required by a satellite to complete one orbit around the 
earth, say at the height of about 10,000 km above the ground

 9. To assess the impact of 30% reduction in income tax over the national economy

 10. To ascertain the optimally effi cient gun whose performance depends on 10 para-
meters, each of which can take 10 different values, without actually manufacturing 
1010 guns

 11. To determine the mean time between failures (MTBF) or average life span of an 
electric bulb

 12. To forecast the total amount of insurance claims a company has to pay next year

Similarly, for a given physical, biological, or social problem, we may fi rst develop a math-
ematical model for it, and then solve the model, and interpret its solution with respect to 
the problem statement.

Man has been modeling and simulating ever since his brain developed power to image. 
Children start modeling from birth. We are all simulating—like a child with a doll, an 
architect with a model, and a business man with a business plan, etc.

What is modeling?
Modeling is a process of abstraction of a real system. A model portrays a conceptual 
framework to describe a system and can be viewed as an abstraction (essence) of an actual 
system or a physical replica of a system or a situation. It is a factual representation of real-
ity. The word model is derived from Latin and its meaning is mould or pattern (physical 
model).

The abstracted model may be logical or mathematical. A mathematical model is a math-
ematical description of properties and interactions in the system. The development of a 
mathematical model depends on the system boundary, system components, and their 
interactions. It also depends upon the type of analysis that we want to perform, like steady 
state or transient analysis and the assumptions that we will consider while model devel-
opment. If assumptions are more then the model will be simpler, but the accuracy of the 
response of the model would be less. If there are fewer assumptions, the model will be 
complex and the accuracy will be better. Hence, during model development, it is necessary 
to optimize two things:

 1. Simplicity of the model

 2. Accuracy of the model or faithfulness of model

We know that the accuracy of a model is complementary to its simplicity.
Often, when engineers analyze a system or are supposed to control a system, they use 

a mathematical model. In the analysis, an engineer can build a descriptive model of the 
system as a hypothesis of how the system would work, or try to estimate how an unfore-
seeable event could affect the system. Similarly, in control of a system the engineer can try 
out different control approaches in simulations.

A mathematical model is a mathematical description of properties and interactions in 
the system. Mathematical modeling is the use of mathematical language to describe the 



Systems Modeling 33

behavior of a system, be it biological, economic, electrical, mechanical, thermodynamic, or 
one of many other examples.

A mathematical model usually describes a system by means of variables. The values of 
the variables can be practically anything; real or integer numbers, Boolean values, strings, 
etc. The variables represent some properties of the system, for example, measured system 
outputs often in the form of signals, timing data, counters, and event occurrence (yes/no).

The actual model is the set of functions that describe the relations between the different 
variables. Mathematical modeling problems are often classifi ed into white-box or black-
box models, according to how much prior information is available for the system. A black-
box model is a system of which there is no prior information available, and a white-box 
model is a system where all necessary information is available. Practically, all systems fall 
somewhere in between the lines of white-box and black-box models, so this concept only 
works as an intuitive guide for approach.

Usually it is preferable to use more a priori information as possible to make the model 
more accurate. Therefore white-box models are usually considered easier, because if you 
have used the information correctly, then the model will behave correctly. Often prior 
information comes in the form of knowing the type of functional relationship between 
different variables. For example, if we make a model of how a medicine works in a human 
system, we know that usually the amount of medicine in the blood is an exponentially 
decaying function. But we are still left with several unknown parameters: how rapidly 
does the medicine amount decay, and what is the initial amount of medicine in blood? 
This example is therefore not a completely white-box model. These parameters have to be 
estimated through some means before one can use the model.

In black-box models one tries to estimate both the functional relationship between vari-
ables and the numerical parameters in those functions. Using prior information we could 
end up, for example, with a set of functions that probably could describe the system ade-
quately. If there is no a priori information, we would try to use functions as general as 
possible to cover all different models. An often used approach for black-box models are 
artifi cial neural networks (ANNs), which usually do not need anything except the input 
and output data sets. ANN models are good for complex systems, especially when input–
output patterns known to us are in quantitative form. If the input and output information 
are not in quantitative form, but in qualitative or fuzzy form, then ANN cannot be used. 
For such situations fuzzy models are good.

2.2 Need of System Modeling

Models are used to mimic the behavior of systems under different operating conditions. This 
may also be done with the help of experimentation on the system. But, sometimes it is inap-
propriate or impossible to do experiments on real systems due to the following reasons.

 1. Too expensive: Experimenting with a real system is an extremely costly affair. 
For example, the physical experimentation of a complex system like the satellite 
system is quite expensive and time consuming.

 2. Risky: Risk involved in experimentation is another factor. In some systems there is 
a risk of damaging the system, or a risk of life. For example, training a person for 
operating the nuclear plant in a dangerous situation would be inappropriate and 
life threatening.



34 Modeling and Simulation of Systems Using MATLAB and Simulink

Modeling is an essential requirement in certain situations, such as the following:

 1. Abstract specifications of the essential features of a system: When a system does 
not exist and a designer wants to design a new system like a missile or an 
airplane. The model will help in knowing, prior to the development of the 
system, how that system will work for different environmental conditions and 
inputs.

 2. Modeling forces us to think clearly before making a physical model: One has to be clear 
about the structure and the essentials of the situation.

 3. To guide the thought process: It helps in refi ning ideas or decisions before imple-
menting it in the real world.

 4. It is a tool that improves the understanding about a system, and allows us to dem-
onstrate and interact with what we design, and not just describe it.

 5. To improve system performance: Models will help in changing the system structure 
to improve its performance.

 6. To explore the multiple solutions economically: It also allows us to fi nd many alternate 
solutions for the improvement in system performance.

 7. To create virtual environments for training purpose or entertainment purposes.

2.3 Modeling Methods for Complex Systems

It is possible to acquire an almost white-box model of a fi ghter jet, by modeling it with 
every mechanical part of such a jet embedded into the model. However, the computational 
cost of adding such a huge amount of detail would effectively inhibit the usage of such 
a model. Additionally, the uncertainty would increase due to an overly complex system, 
because each separate part induces some amount of variance into the model. It is therefore 
usually appropriate to make some approximations to reduce the model to a sensible size. 
Engineers often can accept some approximations in order to get a more robust and simple 
model. For example, Newton’s classical mechanics is only an approximated model of the 
real world. Still, Newton’s model is quite suffi cient for most ordinary-life situations, that 
is, as long as particle speeds are well below the speed of light, and as long as we study 
macroparticles only.

Mathematical models of such systems are most accurate and precise, but can handle 
the system complexity only up to certain limit. Simple systems are easy to model math-
ematically. As the system’s complexity increases, mathematical model development 
becomes quite cumbersome. At the same time, it is also diffi cult and time consum-
ing to simulate complex system models. In such situations, ANN models are better 
in comparison to mathematical models. As it is evident from literature that for good 
ANN model development, it is necessary to have accurate and suffi cient training 
data, and this is really diffi cult for real-life problems. Most of the real-life problems 
have qualitative information, which is either diffi cult or impossible to translate into 
quantitative form. Hence, fuzzy modeling is the only option for such circumstances. 
The modeling using fuzzy logic is quite useful for highly complex systems as shown 



Systems Modeling 35

in Figure 2.1. Hence, according to the complexity of systems, the following modeling 
techniques may be used:

 1. Less complex systems—Mathematical modeling techniques.

 2. Medium complex systems—ANN modeling technique.

 3. Highly complex systems—Fuzzy systems modeling technique.

2.4 Classification of Models

Models have been widely accepted as a means for studying complex phenomena for exper-
imental investigations at a lower cost and in less time, than trying changes in actual sys-
tems. Knowledge can be obtained more quickly, and for conditions not observable in real 
life. Models tell us about our ignorance and give better insights into the system. System 
models may be classifi ed as shown in Figure 2.2.

2.4.1 Physical vs. Abstract Model

To most people, the word “model” evokes images of clay cars in wind tunnels, cockpits 
disconnected from their airplanes to be used in pilot training, or miniature supertank-
ers scurrying about in a swimming pool. These are examples of physical models (also 
called iconic models), and are not typical of the kinds of models that are of interest in 
operations research and system analysis. Physical models are most easily understood. 
They are usually physical replicas, often on a reduced scale. Dynamic physical models 
are used as in wind tunnels to show the aerodynamic characteristics of proposed air-
craft designs. Occasionally, however, it has been found useful to build physical models 
to study engineering or management systems; examples include tabletop scale models
of material-handling systems, and in at least one case a full-scale physical model of a 
fast food restaurant inside a warehouse, complete with full-scale, and, presumably hun-
gry humans. But the vast majority of models built for such purposes are abstracted, 

FIGURE 2.1
Different modeling approaches.

Ac
cu

ra
cy

Mathematical models 

ANN models

Fuzzy models

Complexity



36 Modeling and Simulation of Systems Using MATLAB and Simulink

representing a system in terms of logical or quantitative relationships that are then manip-
ulated and changed to see how the model reacts, and thus, how the system would react—
if the abstract model is a valid one. An abstract model is one in which symbols, rather 
than physical devices, constitute the model. The abstract model is more common but less 
recognized. The symbolism used can be a written language or a thought process.

2.4.2 Mathematical vs. Descriptive Model

A mathematical model is a special subdivision of abstract models. The mathematical model 
is written in the language of mathematical symbols. Perhaps the simplest example of an 
abstracted mathematical model is the familiar relation

 
Distance Acceleration Time= ×

 = *d a t  (2.1)

This might provide a valid model in one instance (e.g., a space probe to another planet after 
it has attained its fl ight velocity) but a very poor model for other purposes (e.g., rush-hour 
commuting on congested urban freeways).

FIGURE 2.2
Pictorial representation of the classifi cation of models.

Model

Abstract modelPhysical model

Prototype
(reduced scale)

Static
models

T-domain
model

Ordinary
differential
equations

(ODE)

Nonlinear
model

Linear
model

Partial
differential
equations

(PDE)

Deterministic
model

Fuzzy
logic
based
model

Crisp
logic
based
model

Stochastic
model

S-domain
model

Dynamic
models

Continuous
models Discrete English

paragraph
Logical
models

Real
model

Mathematical
model

Descriptive
model

ANN
model



Systems Modeling 37

2.4.3 Static vs. Dynamic Model

Static models are quite common for architectural works to visualize the fl oor plane. A 
static simulation model is a representation of a system at a particular time, or one that may 
be used to represent a system in which time simply plays no role. On the other hand, a 
dynamic simulation model represents a system as it evolves over time, such as a conveyor 
system in a factory. A dynamic model deals with time-varying interactions.

2.4.4 Steady State vs. Transient Model

A steady state pattern is one that is representative with time and in which the behavior in 
one time period is of the same nature as any other period.

Transient behavior describes those changes where the system response changes with 
time. A system that exhibits growth would show transient behavior, as it is a “one-time” 
phenomena, and cannot be repeated.

2.4.5 Open vs. Feedback Model

The distinction is not as clear as the word suggests. Different degrees of openness can 
exist. The closed model is one that internally generates the values of variables through 
time by the interaction of variables one on another. The closed model can exhibit interest-
ing and informative behavior without receiving an input variable from an external source. 
Information feed back systems are essentially closed systems.

2.4.6 Deterministic vs. Stochastic Models

If a simulation model does not contain any probabilistic (i.e., random) components, it 
is called deterministic; a complicated (and analytically intractable) system of differen-
tial equations describing a chemical reaction might be such a model. In deterministic 
models, the output is “determined” once the set of input quantities and relationships 
in the model have been specifi ed; even though it might take a lot of computer time to 
evaluate what it is. Many systems, however, must be modeled as having at least some 
random input components; and these give rise to stochastic simulation models. Most 
queuing and inventory systems are modeled stochastically. Stochastic simulation mod-
els produce an output that is by itself random, and must therefore be treated as only an 
estimate of the true characteristics of the model. This is one of the main disadvantages 
of simulation.

2.4.7 Continuous vs. Discrete Models

Loosely speaking, we defi ne discrete and continuous simulation models analogously to the 
way discrete and continuous systems were defi ned. It should be mentioned that a discrete 
model is not always used to model a discrete system and vice versa. The decision whether 
to use a discrete or a continuous model for a particular system depends on the specifi c 
objectives of the study. For example, a model of traffi c fl ow on a freeway would be discrete 
if the characteristics and movement of individual cars are important. Alternatively, if the 
cars can be treated “in the aggregate,” the fl ow of traffi c can be described by differential 
equations in a continuous model. The continuous and discrete functions are shown in 
Figure 2.3.



38 Modeling and Simulation of Systems Using MATLAB and Simulink

2.5 Characteristics of Models

Model

Descriptive 

Capability Ambiguity

Manipulation 

Capability

Implementation 

Capability Primary Function

English text Good Very ambiguous None Limited Descriptive explanation 

and directions

Drawings and 

block diagrams

Good Not ambiguous None Good Design, assembly 

and construction

Logical fl ow 

charts and 

decision tables

Fair Not ambiguous None Good Computer 

programming

Curves, tables 

monographs

Fair Not ambiguous Good None Express simple 

relations between 

a few variables

Mathematical Poor Not ambiguous Excellent Good Problem solution 

and optimization

2.6 Modeling

Modeling is the art/process of developing a system model. The purpose of modeling a 
system is to expose its internal working and to present it in a form useful to science and 
engineering studies. In other words, modeling means the process of organizing knowl-
edge about a given system. Various inputs required for model development are shown in 
Figure 2.4a, and the methodology of modeling a system is shown in Figure 2.4b. For the 
same system we may develop different models depending upon the purpose and an ana-
lyst’s viewpoint. Consider an aircraft shown in Figure 2.5, which could be modeled as

 1. A particle

 2. A system of rigid bodies

 3. A system of deformable bodies

and the choice depends on the viewpoint of analysts as follows:

 1. If the analyst is interested in the trajectory of fl ight to fi nd the fuel consumption, 
then the particle model of aircraft is good, simple, and suffi cient.

FIGURE 2.3
(A) Continuous and (B) discrete functions.

Y(
t)

(A)

(B)

Time



Systems Modeling 39

 2. When the analyst is interested in fl ight stability, i.e., aircraft behavior for small 
disturbances, then the aircraft is considered as a rigid body system.

 3. Finally, when performing fl utter analysis, i.e., determining the so-called critical 
speed of fl utter, the deformable body system is a good model.

The very fi rst step in modeling is to identify a system (i.e., collection of components) and 
interaction among components. System boundary affects the system model.

Assumptions made during modeling also affect the system model. More assumptions 
increase the simplicity of the model by reducing complexity but at the same time these also 
reduce the accuracy of the system model.

So there is a trade off between the simplicity, accuracy and computation time. Accuracy 
tells about the faithfulness of the model. The degree of faithfulness implies that up to what 
extent the system is accurate.

FIGURE 2.4
(a) Inputs for model development. (b) Modeling process.

System

Performance
measure Purpose Level of detail

Model

Assessment

Implementation

(a)

Boundaries

Design alternatives

Real-world problem Define goal

Indentify system
boundary

Model development

Simulation

Analysis

Model validation

Adequate
(b)

Not-adequate

Make changes

FIGURE 2.5
Different aircraft models for different analyses.

Trajectory
Stability Flutter analysis



40 Modeling and Simulation of Systems Using MATLAB and Simulink

2.6.1 Fundamental Axiom (Modeling Hypothesis)

Mathematical model of a component characterizes it’s behavior as an independent entity 
of a system, and how it is interconnected with the other components to form a system.

It implies that the various components can be removed either literally or conceptually 
from the remaining components and can be studied in isolation to establish a model of 
their characteristics. This is a tool of science which makes the system theory universal.

Analysts can go as far as they wish in breaking down the system in search of building 
blocks that are suffi ciently simple to model and which identify a structure upon which 
alteration can be made.

2.6.2 Component Postulate (First Postulate)

The pertinent performance (behavior) characteristics of each n terminal component in an 
identifi ed system structure can be specifi ed completely by a set of (n − 1) equations in 
(n − 1) pairs of oriented complementary variables (i.e., across variables xi(t) and through 
variables yi(t)) identifi ed by n arbitrarily chosen terminal graph as shown in Figure 2.6. The 
variables xi and yi may be vectors if necessary. The complementary pair of variables for dif-
ferent systems are shown in Table 2.1.

FIGURE 2.6
(a) n-terminal component and (b) terminal graph of n-terminal component.

1 4
2 .
3
(a)

n
X(t)

1
2

(b)

i

n – 1

Xi
Yi

Xn–1
Yn–1

X1
Y1

TABLE 2.1

Complimentary Pair of Variables for Different Systems

Physical Systems Conceptual Systems Esoteric Systems

Mechanical 

System

Hydraulic 

System

Electrical 

System

Transportation 

System

Economic 

System

Spiritual 

System

Across 

Variables Xi

Velocity (linear, 

angular)

Pressure Voltage Traffi c density Unit price Potential

Through 

Variables Yi

Force, Torque Flow-rate 

of liquid

Current Traffi c fl ow 

rate

Flow-rate 

of goods

Current



Systems Modeling 41

2.6.3 Model Evaluation

An important part of the modeling process is the evaluation of an acquired model. How do we 
know if a mathematical model describes the system well? This is not an easy question to answer. 
Usually the engineer has a set of measurements from the system which is used while cre-
ating the model. If the model was built well, the model will adequately show the relations 
between system variables for the measurements at hand. The question then becomes: How do 
we know that the measured data is a representative set of possible values? Does the model describe 
the properties of the system between the measured data well (interpolation)? Does the model 
describe events outside the measured data well (extrapolation)? A common approach is to 
split the measured data into two parts; training data and verifi cation data. The training data 
is used to train the model, that is, to estimate the model parameters. The verifi cation data is 
used to evaluate model performance. Assuming that the training data and verifi cation data 
are not the same, we can assume that if the model describes the verifi cation data well, then 
the model will describe the real system well.

However, this still leaves the extrapolation question open. How well does this model 
describe events outside the measured data? Consider again Newtonian classical mechan-
ics model. Newton made his measurements without advanced equipment, so he could not 
measure properties of particles traveling at speeds close to the speed of light. Likewise, he 
did not measure the movements of molecules and other small particles, but macroparticles 
only. It is then not surprising that his model does not extrapolate well into these domains, 
even though his model is quite suffi cient for ordinary-life physics.

2.6.4 Generic Description of Two-Terminal Components

The mathematical model of the components identifi ed in a system structure serves as a build-
ing block in the analysis and design of physical systems. These mathematical models must 
be established from empirical tests on the components or calculated from constructional 
features of the components such as their geometric dimensions and material composition.

In passive element the direction change does not cause changes in the direction terminal 
equation, but in active elements terminal equations are changed with direction.

The fundamental two-terminal components may be classifi ed as

A-type elements: dissipater or algebraic components
B-type elements: delay type components
C-type elements: accumulator or capacitive type components
D-type elements: drivers or sources as shown in Table 2.2

2.6.4.1 Dissipater Type Components

These are the components in which power loss takes place and the terminal equation 
may be written in algebraic form explicitly with across variables on one side and through 
variables on another side of the equation.

The terminal equation for A-type components may be written in impedance form as

 Across variable = Impedance * Through variable

 
( ) ( )x t ay t=

 (2.2)



42 Modeling and Simulation of Systems Using MATLAB and Simulink

or in admittance form as

 Through variable = Admittance * Across variable

 
1( ) ( )y t x ta=

 
(2.3)

In the impedance form of a terminal equation the across variable is dependent on the 
through variable, and vice versa in the admittance form.

2.6.4.2 Delay Type Elements

The terminal equation for delay type components can be written as

 

= =∫
0

d ( )1
( ) ( ) or ( )

d

t

t

y t
y t x t x t b

b t
 

(2.4)

Power and energy can be respectively shown for a delay type component as

 

=

=

=

⎡ ⎤= −⎣ ⎦

∫
0

2 2
0

.( ) ( )

d . ( )
d

( )

( ) ( )
2

t

t

P x t y t

y
b y t

t

e P t

b
y t y t

 

(2.5)

The energy or average power for infi nite time is zero for delay type components. Therefore 
these components are called nondissipative type elements.

2.6.4.3 Accumulator Type

The terminal equation for accumulator or storage type components may be written as

 0

1 d ( )
( ) ( ) or ( )

d

t

t

x t
x t y t y t C

C t
= =∫

 

(2.6)

TABLE 2.2

Two-Terminal Components for Different Systems

Components

Systems
Dissipater Type 

x(t) = ay(t)

Delay Type 

d ( )
( )

d

y t
x t b

t
=

Accumulator Type

d ( )
( )

d

x t
y t c

t
= Source or Driver x(t) 

or y(t) Specifi ed

Electrical Resistor Inductor Capacitor Voltage or current 

drivers

Mechanical 

(translatory motion)

Damper Spring Mass Velocity or force

Mechanical (rotary 

motion)

Rotary damper Torsional spring Inertia Angular velocity 

or torque

Hydraulic Pipe resistance Inertial delay 

component

Liquid tank Pressure or fl ow rate



Systems Modeling 43

Similar to the delay type components the energy or average power over infi nite time 
is zero for accumulator type components. Therefore, these components are also called 
nondissipative type elements.

2.6.4.4 Sources or Drivers

The drivers or sources are those, whose across variable or through variable is specifi ed, 
and the different operating conditions have no effect on these variables. The terminal 
equations for the drivers may be written as

x(t) = specifi ed for across drivers
y(t) = specifi ed for through drivers

Ideal across driver: The magnitude is perfectly specifi ed and it will not change whatever be 
the value of the through variable.

Ideal through driver: The magnitude of the through variable is perfectly specifi ed and it 
will not change whatever be the value of the across variable—but, practically it is not 
possible to manufacture any source whose value will be unaffected by the operating 
conditions. The ideal sources are only used for theoretical applications.

2.7 Mathematical Modeling of Physical Systems

The task of mathematical modeling is an important step in the analysis and design of physical 
systems. In this chapter, we will develop mathematical models for the mechanical, electrical, 
hydraulic, and thermal systems. The mathematical models of systems are obtained by applying 
the fundamental physical laws governing the nature of the components making these systems. 
For example, Newton’s laws are used in the mathematical modeling of mechanical systems. 
Similarly, Kirchhoff’s laws are used in the modeling and analysis of electrical systems.

Our mathematical treatment will be limited to linear, time-invariant ordinary differential 
equations whose coeffi cients do not change in time. In real life many systems are nonlinear, but 
they can be linearized around certain operating ranges about their equilibrium conditions.

Real systems are usually quite complex and exact analysis is often impossible. We shall 
make approximations and reduce the system components to idealized versions whose 
behaviors are similar to the real components.

In this chapter we shall look only at the passive components. These components are of two 
types: those storing energy, e.g., the accumulator type or delay type system components, and 
those dissipating energy, e.g., the dissipater type components.

The mathematical model of a system is one which comprises of one or more differential 
equations describing the dynamic behavior of the system. The Laplace transformation is 
applied to the mathematical model and then the model is converted into an algebraic equa-
tion. The properties and behavior of the system can then be represented as a block dia-
gram, with the transfer function of each component describing the relationship between 
its input and output behavior as shown in Figure 2.6a.

We can use state-space model for all types of systems that consist of state variables.

State

State refers to the past, present, and future condition of the system from a mathemati-
cal cell. State could be defi ned as a set of state variables and state equations to model the 
dynamic system. All the state equations are fi rst-order differential equations.



44 Modeling and Simulation of Systems Using MATLAB and Simulink

State variables

It is defi ned as the minimal set of variables [x1(t), x2(t), …, xn(t)] such that the knowledge 
of these variables at any time t = 0 and information on the input excitation subsequently 
applied are suffi cient to determine the state of the system at time t > t0. One is likely to 
confuse state variables with output variables. Output variables can be measured but state 
variables do not always satisfi es this condition.

The variable U(t) is controllable at all time instants t > t0. The input U(t) is taken from the 
input space. The output variable Z(t) is observable at all time instants t > t0, but there is no 
direct control on the output variables. Z(t) is taken from the universe of output Z.

State equation

 
( ) ( ) ( )X t AX t BU t= +�

 (2.7)

Output equation

 
( ) ( ) ( )Z t CX t DU t= +

 (2.8)

Example 2.1

Consider a tank of volume V which is full of a solution of a material A at concentration C. A solu-
tion of the same material at concentration C0 is fl owing into the tank at fl ow rate F0 and a solution 
is fl owing out the top of the tank at fl ow rate F1 as shown in Figure 2.7.

Determine the dynamic response to a step change in the inlet concentration C0.

SOLUTION

The following assumptions are to be considered and some data gathered for modeling the above 
mentioned hydraulic system.

 1. Assumptions:
Well mixed solution
Density of solution is constant
Level is constant in the tank

FIGURE 2.7
Hydraulic system.

F1

V, C

C0, F0



Systems Modeling 45

 2. Data:
F0 = 0.085 m3/min, V = 2.1 m3

Cinit = 0.925 kg/m3 t < = 0
C0 = 1.85 kg/m3 t > 0

The system is initially at steady state i.e.,

 0 init( ) ( ) for 0C t C t C t= = < =

To formulate the model the following fundamental principles are used:

Conservation laws• 
Component terminal equation• 

Conservation laws are the laws for conservation of material, energy, momentum, and electrons, 
which have the general form

 in outRate of accumulation = (rate) (rate)−

Component terminal equations relate quantities of different kinds, e.g., Hooke’s law for a spring: 
F = kx relates the spring force F to the spring’s displacement x, where k is the spring constant. 
Similarly, Ohm’s law for a resistor V = Ri, where V is the voltage drop, i is the current, and R is the 
resistance.

Note these are only approximate relations. For a real spring or resistor the relation holds well for 
a certain range only; outside this range the relation is nonlinear.

Important variables/constants

Input variables: C0, F0

State Variables: C, F1

Constants: V, ρ
Initial value Cint

Rate equation for the fl ow of fl uid is

 Rate of change of mass = flow rate in flow rate out−  

 
0 1

d
( )

d
V F F

t
ρ = ρ − ρ

 

 

d
0 since  is constant.

d
V
t

= ρ
 

 0 1 0F Fρ − ρ =  

 0 1F F F= =  

 
0 0 1

d
( )

d
CV C F CF

t
= −

 



46 Modeling and Simulation of Systems Using MATLAB and Simulink

 
0

d
( )

d
V C F C C

t
= −

 

 
0

d
d
C F F

C C
t V V

= −
 

(2.9)

The general solution of the nonhomogeneous equation (Equation 2.9) is

 
V0( )
F

t
C t C ke

−
= +  

Initially at t = 0

 0 0init init(0)C C k C k C C= + = → = −  

V0 0initTherefore, ( ) ( )  when 0
F

t
C t C C C e t

−
= + − ≥

MATLAB® program

% Computer program for simulating hydraulic system
% Initialization
clear all;
F=0.085; % cubic m/min
V=2.1; % cubic m
C0=1.85; % kg/cubic m
C=0.925; % kg/cubic m
t=0;
dt=0.01;
for n=1:10000
 X1(n,:)=[C t];
 dC=F*(C0−C)/V;
 C=C+dt*dC;
 t=t+dt;
end
plot(X1(:,2),X1(:,1) )
xlabel(‘Time (sec.)’)
ylabel(‘C’)

The system response will be as shown in Figure 2.8.

2.7.1 Modeling of Mechanical Systems

Models of mechanical systems are important in control engineering because a mechanical 
system may be a vehicle, a robotic arm, a missile, or any other system which incorporates 
a mechanical component. Mechanical systems can be divided into two categories: trans-
lational systems and rotational systems. Some systems may be either purely translational 
or purely rotational, whereas others may be hybrid, incorporating both translational and 
rotational components.



Systems Modeling 47

2.7.1.1 Translational Mechanical Systems

The basic building blocks of translational mechanical systems are mass, spring, and dash-
pot (Figure 2.9). The input to a translational mechanical system may be a force F and the 
output the displacement y.

Springs

Springs store energy as shown in Figure 2.9, and are used in most mechanical systems as 
delay element. As shown in Figure 2.10 some springs are hard, some are soft, and some are 
linear. A hard or a soft spring can be linearized for small deviations from its equilibrium 
condition. In the analysis in this section, a spring is assumed to be massless, or of negli-
gible mass, i.e., the forces at both ends of the spring are assumed to be equal in magnitude 
but opposite in direction. The springs in different states such as compression, tension, and 
torsion are shown in Figure 2.9a. For a linear spring, the extension y is proportional to the 
applied force F as given in equation

 
F ky=

 (2.10)

FIGURE 2.8
Dynamic response of tank system.

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1

0.9
0 10 20 30 40 50 60 70 80 90 100

FIGURE 2.9
Springs under different types of forces.

Compression Tension Torsion



48 Modeling and Simulation of Systems Using MATLAB and Simulink

where k is known as the stiffness constant. The spring when stretched stores energy E, 
given by

 

21

2
E ky=

 
(2.11)

This energy is released when the spring contracts back to its original length.
In some applications springs can be in parallel or in series. When n springs are in paral-

lel, then the equivalent stiffness constant keq is equal to the sum of all the individual spring 
stiffness ki:

 eq 1 2
... nk k k k= + + +

 
(2.12)

Similarly, when n springs are in series, then the reciprocal of the equivalent stiffness con-
stant keq is equal to the sum of all the reciprocals of the individual spring stiffness ki:

 eq 1 2

1 1 1 1...
nk k k k

= + + +
 

(2.13)

Dashpot

A dashpot element is a form of damping and can be considered to be represented by a 
piston moving in a viscous medium in a cylinder. As the piston moves the liquid passes 
through the edges of the piston, damping the movement of the piston. The force F which 
moves the piston is proportional to the velocity of the piston movement and is given by

 

d

d

y
F b

t
=

 
(2.14)

A dashpot does not store energy.

Mass

When a force is applied to a mass, the relationship between the force F and the accelera-
tion of the mass is given by Newton’s second law as F = ma. Since acceleration is the rate of 
change of velocity and the velocity is the rate of change of displacement,

 

2

2

d

d

y
F m

t
=

 
(2.15)

FIGURE 2.10
(a) Hard spring, (b) Soft spring, (c) Linear spring.

F

y

0

(a) (b) (c)

F

y

0

F

y

0



Systems Modeling 49

The energy stored in a mass when it is moving is the kinetic energy which is dependent on 
the velocity of the mass and is given by

 

21

2
E mv=

 
(2.16)

This energy is released when the mass stops.
Some examples of translational mechanical system models are given below.

Example 2.2

Figure 2.11 shows a simple mechanical translational system with a mass, a spring, and a dashpot. 
A force F is applied to the system. Derive a mathematical model for the system.

SOLUTION

As shown in Figure 2.11, the net force on the mass is the applied force minus the forces exerted by 
the spring and the dashpot. Applying Newton’s second law, we can write the system equation as

 

2

2

d d
d d
y y

F ky b m
t t

− − =
 

(2.17)

or

 

2

2

d d
d d

y y
F m b ky

t t
= + +

 
(2.18)

Taking the Laplace transform of Equation 2.18, the transfer function of the system may be written as

 
2( ) ( ) ( ) ( )F s ms Y s bsY s kY s= + +

or

 
2

( ) 1
( )

Y s
F s ms bs k

=
+ +  

(2.19)

The transfer function in Equation 2.19 is represented by the block diagram shown in Figure 2.12. 
The step response of this mechanical system may be determined by simulating the following 
MATLAB codes and the response obtained is shown in Figure 2.13.

FIGURE 2.11
Mechanical system with mass, spring, and dashpot.

k

c

y

Fm



50 Modeling and Simulation of Systems Using MATLAB and Simulink

MATLAB codes

% Simulation program for given mechanical system shown in Figure 2.11
% Force is increased in unit step
m=1.0; % kg
c=0.1; %
k=0.1; %
Num = [1];
Den=[m c k];
Step (Num, Den)

Example 2.3

Determine the state model for the mechanical system shown in Figure 2.14.
The state variable vector for the given mechanical system may be displacements and velocities

 
o o

1 2 3 4 1 1 2 2[    ] [    ]X X X X x x x x=  (2.20)

FIGURE 2.13
Results of step input to mechanical system.

18
Step response

16

14

12

10

8

6

4

2

0
0 20 40 60

Time (s)

A
m

pl
itu

de

80 100 120

FIGURE 2.12
Block diagram of a simple mechanical system.

F(s) Y(s)1
ms2 + bs + k



Systems Modeling 51

The force equation for mass M1 and M2 may be written as

 

1 1 1 1 1
2 2 1 1 2

1 1 1 1

d
( )

d
x k D D k

x x x x x
t M M M M

= + − − −
�

� �
 

(2.21)

 

2
2 2 1 2

2 2 2 2 1 1 2 12

2 2 2 1 1
2 2 1 2 1 2

2 2 2 2

d d d( )
( )

d d d

d
( ) ( )

d

x x x x
k x M D k x x D

t t t

x k D D k
x x x x x x

t M M M M

−+ + = − +

= − + + − + −
�

� � �
 

(2.22)

The state-space model for the mechanical system may be obtained after combining the above 
equation as

 

1 1
1 1 1 1

2 21 1 1 1 1

3 3

4 1 1 1 2 1 2 4
2 2 2 1

0 1 0 0 0

1d
( )

0 0 0 1d 0
( ) ( ) 0

X X
k D k D

X XM M M M M f t
X Xt
X k D k k D D X

M M M M

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= + ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦− −⎢ ⎥ ⎣ ⎦⎣ ⎦  

(2.23)

The simulation results of the state model mentioned above are shown in Figure 2.15.

MATLAB codes

% Simulation program for state space model
clear all
t=0; % Initial time
dt=0.01; % step size
tsim=10.0; % Simulation time
n=round( (tsim−t)/dt); % number of iterations
%system parameters
k1=5;
k2=7;
m1=2;
m2=3;

FIGURE 2.14
Mechanical system.

D2

K1

M1

f (t)

x2

x1

M2

K2

D1



52 Modeling and Simulation of Systems Using MATLAB and Simulink

d1=40;
d2=30;

A=[0 1 0 0; −k1/m1 −d1/m1 k1/m1 d1/m1; 0 0 0 1; k1/m2 d1/m2 −(k1+k2)/m2−
(d1+d2)/m2];
B=[0; 1/m1; 0; 0];
% C=[0 1];
% D=[0 0];
X=[0 0 0 0]';
u=5;
for i=1:n;

 dx=A*X+B*u;
 X=X+dx*dt;
 X1(i,:)=[t,X’];
 t=t+dt;

end
subplot(2,2,1)
plot(X1(:,1),X1(:,2),‘b.’)
axis([0 10 0 2])
xlabel(‘time’)
ylabel(‘X1’)
title(‘Response of state variable X1’)

subplot(2,2,2)
plot(X1(:,1),X1(:,3),‘r.’)
axis([0 10 0 1])
xlabel(‘time’)
ylabel(‘X2’)
title(‘Response of state variable X2’)

X 3

2

1.5

1

0.5

0

Response of state variable X3

0 5
Time

10

2

1.5

1

0.5

0
0 5

Time

X 1

Response of state variable X1

10

1

0.5

0

X 4

Response of state variable X4

0 5
Time

10

1

0.5

0

X 2

Response of state variable X2

0 5
Time

10

FIGURE 2.15
Simulation results.



Systems Modeling 53

subplot(2,2,3)
plot(X1(:,1),X1(:,4),‘c.’)
axis([0 10 0 2])
xlabel(‘time’)
ylabel(‘X3’)
title(‘Response of state variable X3’)

subplot(2,2,4)
plot(X1(:,1),X1(:,5),‘g.’)
axis([0 10 0 1])
xlabel(‘time’)
ylabel(‘X4’)
title(‘Response of state variable X4’)

Example 2.4

Figure 2.16 shows a mechanical system with two masses and two springs. Obtain the mathemati-
cal model of the system.

SOLUTION

The free body diagrams for mass M1 and M2 are shown in Figures 2.17 and 2.18.
Applying Newton’s second law to get the force Equation 2.24 for the mass m1,

 

2
1 2 1

2 1 2 1 1 1 2

d d d
( )

d d d
y y y

K y y B k y m
t t t

⎛ ⎞− − − − − =⎜ ⎟⎝ ⎠  
(2.24)

Similarly, the force equation for the mass m2 may be written as

 

2
2 1 2

2 1 2 2 2

d d d
( )

d d d
y y y

F K y y B m
t t t

⎛ ⎞− − − − =⎜ ⎟⎝ ⎠  
(2.25)

FIGURE 2.16
Example mechanical system.

k1

m1 m2 F

y1 y2

k2

c

FIGURE 2.17
Free body diagram for mass M1.

Mass M1

fk1
(t) fk2

(t)

fB(t)fM1
(t)

fm2
(t)

fk2
(t) Mass M2 f (t)

fB(t)
FIGURE 2.18
Free body diagram for mass M2.



54 Modeling and Simulation of Systems Using MATLAB and Simulink

These equations can be rewritten as Equations 2.26 and 2.27.

 
oo o o

1 1 1 2 2 1 1 2 2( ) ( ) 0m y B y y k k y k y+ − + + − =  (2.26)

 
oo o o

2 2 2 1 2 2 2 1( )m y B y y k y k y F+ − + − =  
(2.27)

Equations 2.26 and 2.27 can be written in matrix form as

 

oo o
1 1 1 1 2 2 1

oo o2 2 2 2
2 2

0 0

0

m y B B y k k k y

m B B k k y F
y y

⎡ ⎤ ⎡ ⎤− + −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  

(2.28)

The state-space model may be obtained from Equation 2.28 as

 

1 2 2
oo o

1 1 11 1 1 1

oo o 2 2 2
2 22

2 2 2 2

0
B B k k k

y y ym m m m
F

B B k k y
y ym

m m m m

− + −⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= − − ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  

(2.29)

The MATLAB script for simulating the above developed model is given below and the simulation 
results are shown in Figures 2.19 and 2.20.

MATLAB codes

% Simulation program for the state model given in Equation 2.29
% Initialization

FIGURE 2.19
Displacement vs. time curve.

30

25

20

15

10

5

0
0 20 40 60 80 100

Time (s)

D
isp

la
ce

m
en

ts

120 140 160 180 200



Systems Modeling 55

3

2

1

0

–1

–2

–3
0 20 40 60 80 100

Time (s)

Ve
lo

ci
tie

s

120 140 160 180 200

FIGURE 2.20
Velocities vs. time curves.

clear all;
F=1;
M1=1; %kg
M2=1.5; %kg
B=0.1; %
K1=0.2;
K2=0.15;
Coef_1=[B/M1  −B/M1
   −B/M2  B/M2];
Coef_2=[(K1+K2)/M1  −K1/M1
   −K2/M2    K2/M2];
Y=[0.1; 0.1];
dY=[0; 0];
dt=0.1; % step size
t=0; % Initial time
tsim=200; % Simulation time
n=round(tsim−t)/dt;
for i=1:n

  X1(i,:)=[Y' dY' t];
  ddY=[0;F/M2] − Coef_1*dY − Coef_2*Y;
  dY=dY+dt*ddY;
  Y=Y+dt*dY;
  t=t+dt
end
plot(X1(:,5),X1(:,1:2) )
xlabel(‘Time (sec.)’)
ylabel(‘Displacements’)
figure(2)
plot(X1(:,5),X1(:,3:4) )
xlabel(‘Time (sec.)’)
ylabel(‘Velocities’)



56 Modeling and Simulation of Systems Using MATLAB and Simulink

Example 2.5: Modeling of Train System

In this example, we will consider a toy train consisting of an engine and a car as shown in Figure 
2.21. Assuming that the train travels only in one direction, we want to apply control to the train so 
that it has a smooth start-up and stop, and a constant-speed ride.

The mass of the engine and the car will be represented by M1 and M2, respectively. The two are 
held together by a spring, which has the stiffness coeffi cient of k. F represents the force applied by 
the engine, and the Greek letter μ represents the coeffi cient of rolling friction.

Free body diagram and Newton’s law

Where B1 = μM1g and B2 = μM2 g
From Newton’s law, we know that the sum of the forces acting on a mass equals mass times its 

acceleration as shown in Figure 2.22. In this case, the forces acting on M1 are the spring, the fric-
tion, and the force applied by the engine. The forces acting on M2 are the spring and the friction. 
In the vertical direction, the gravitational force is canceled by the normal force applied by the 
ground, so that there will be no acceleration in the vertical direction. The equations of motion in 
the horizontal direction are the following:

FIGURE 2.21
Train system.

F M1

X1 X2

M2

B2B1

B2B1

M1 M3

x1 x2

k(x1– x2)

–k(x1– x2)
F

k

FIGURE 2.22
Free body diagram.



Systems Modeling 57

 
oo o

1 11 1 2 1( )M X F k X X gM X= − − − μ       

 
oo o

2 22 1 2 2( )M X k X X gM X= − − μ  

State-variable and output equations

This set of system equations can now be manipulated into state-variable form. Knowing 
state variables are X1 and X2 and the input is F, state-variable equations will look like the 
following:

 
1 1

d
d

X V
t

=
 

 
1 1 1 2

1 1 1

d 1
d

k k
V X gV X F

t M M M
−= − μ + +

 

 
2 2

d
d

X V
t

=
 

 
2 1 2 2

2 1

d
d

k k
V X gV X

t M M
= − μ −

 

Let the output of the system be the velocity of the engine. Then the output equation will become

 
= 1y V

 

 1. Transfer function
  To fi nd the transfer function of the system, fi rst, we take the Laplace transforms of the above 

state-variable and output equations.

 1 1( ) ( )sX s V s=  

 
1 1 1 2

1 1 1

1
( ) ( ) ( ) ( ) ( )

k k
sV s X s gV s X s F s

M M M
−= − μ + +

 

 2 2( ) ( )sX s V s=  

 
2 1 2 2

2 1
( ) ( ) ( ) ( )

k k
sV s X s gV s X s

M M
= − μ −

 

 1( ) ( )Y s V s=  

  Using these equations, we derive the transfer function Y(s)/F(s) in terms of constants. When 
fi nding the transfer function, zero initial conditions must be assumed. The transfer function 
should look like the one shown below.

 

2
2 2

3 2 2
1 2 1 2 1 1 2 2 1 2

( ) 1
( ) 2 ( ( ) ) ( )

Y s M S M gs
F s M M S M M gs M k M M g M k s M M k g

+ μ +=
+ μ + + μ + + + μ  



58 Modeling and Simulation of Systems Using MATLAB and Simulink

 2. State space
  Another method to solve the problem is to use the state-space form. Four matrices A, B, C, 

and D characterize the system behavior, and will be used to solve the problem. The state-
space form manipulated from the state-variable and output equations is shown below.

 

⎡ ⎤ ⎡ ⎤⎢ ⎥⎡ ⎤ ⎡ ⎤− − ⎢ ⎥⎢ ⎥−μ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥−μ⎢ ⎥ ⎣ ⎦⎣ ⎦

1 1

1 11 1
1

2 2

2 2

2 2

0 1 0 0
0

0 1
d

( )
0 0 0 1d

0
0 0

x xk k
g

v vM M
M F t

x xt
v k k v

g
M M  

 

1

1

2

2

0 1 0 0 [0] ( )[ ]

x

v
y F t

x

v

⎡ ⎤
⎢ ⎥
⎢ ⎥= +⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

The above state model simulated in MATLAB is given below and the results are shown in 
Figure 2.23.

% Matlab Codes
clear all
clc
k=35; m1=1800; m2=1000;
u=0.05; g=9.81; F=100;
A=[0 1 0 0; −k/m1 −u*g −k/m1 0; 0 0 0 1; k/m2 0 −k/m2 −u*g];
B=[0 1/m1 0 0]';
X=[0 0 0 0]';
t=0;
tsim=3;

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0
0 0.5 1 1.5

Time

St
at

e v
ar

ia
bl

es

2 2.5 3

FIGURE 2.23
Simulation results of train system.



Systems Modeling 59

dt=0.02;
n=round( (tsim−t)/dt);
for i=1:n
 X1(i,:)=[t X'];
 dvdx=A*X+B*F;
 X=X+dt*dvdx ;
 t=t+dt;
end
plot(X1(:,1),X1(:,2:5) )
xlabel(‘x(m)’);ylabel(‘state variables’)

Example 2.6

Consider a mechanical coupler normally used for coupling of two railway coaches as shown in 
Figure 2.24. The equivalent system of railway coupling is shown in Figure 2.25, which consists of 
two masses, a spring, a dashpot, and forces applied to each mass. Derive an expression for the 
mathematical model of the system.

SOLUTION

Draw the free body diagram for mass m1 as shown in Figure 2.26.
Applying Newton’s second law to the mass m1 write down the force

 1 ( ) ( ) ( ) 0k b mF f t f t f t− − − =  

 

2
1 2 1

1 1 2 1 2

d d d
( )

d d d
y y y

F k y y b m
t t t

⎛ ⎞− − − − =⎜ ⎟⎝ ⎠  
(2.30)

FIGURE 2.24
A mechanical coupler.

F1 m1

y1

c

k

m2 F2

y2

FIGURE 2.25
Equivalent diagram of mechanical coupler.



60 Modeling and Simulation of Systems Using MATLAB and Simulink

FF1
(t) Mass m1

fk(t)

fm1
(t)

fb(t)
FIGURE 2.26
Free body diagram for mass m1.

F2(t)Mass m2

fk(t)

fm2
(t)

fb(t)FIGURE 2.27
Free body diagram for mass m2.

and draw the free body diagram for m2 as shown in Figure 2.27, and its equation to the mass m2,

 1 ( ) ( ) ( ) 0k b mF f t f t f t− − − =  

 

2
2 1 2

2 1 2 2 2

d d d
( )

d d d
y y y

F k y y b m
t t t

⎛ ⎞− − − − =⎜ ⎟⎝ ⎠  
(2.31)

we can then write Equations 2.30 and 2.31 as

 
oo o o

1 1 1 2 1 2 1( )m y b y y ky ky F+ − + − =  (2.32)

 
oo o o

2 2 2 1 2 2 2 1 2( )m y b y y k y k y F+ − + − =  (2.33)

Equations 2.32 and 2.33 can be written in matrix form to get the state-space model for the 
given system:

 

oo o
1 1 1 1 1

oo o2 2 2
2 2

0

0

m y b b y k k y F

m b b k k y F
y y

⎡ ⎤ ⎡ ⎤− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  

or

 

1oo o
11 11 1 1 1 1

oo o2 2
2 2

2 2 2 2 2

F b b k k
yy ym m m m m

F b b k k y
y y

m m m m m

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

(2.34)

The MATLAB script for simulating the above system is given below and the results are shown in 
Figure 2.28.



Systems Modeling 61

MATLAB codes

% Simulation program for the state model given in Equation 2.34
% Initialization
clear all;
F1=1;
F2=−1;
M1=1; %kg
M2=1.5; %kg
B=0.1; %
K=0.2;
Coef_1=[B/M1  −B/M1
 −B/M2  B/M2];
Coef_2=[K/M1  −K/M1
 −K/M2 K/M2];
Y=[0.1; 0.1];
dY=[0; 0];
dt=0.1; % step size
t=0; % Initial time
tsim=200; % Simulation time
n=round(tsim−t)/dt;
for i=1:n
 X1(i,:)=[Y' dY' t];
 ddY=[F1/M1;F2/M2] − Coef_1*dY − Coef_2*Y;
 dY=dY+dt*ddY;
 Y=Y+dt*dY;
 t=t+dt
end
figure(1)
plot(X1(:,5),X1(:,1:2))
xlabel(‘Time (sec.)’)
ylabel(‘Displacements’)
figure(2)
plot(X1(:,5),X1(:,3:4))
xlabel(‘Time (sec.)’)
ylabel(‘Velocities’)

FIGURE 2.28
Simulation results of mechanical coupling. (a) Velocity variation with time. (b) Displacement variation 

with time.

5

4

3

2

1

0

–1

–2

–3

–4
0 20 40 60 80

Time (s)(b)
100 120 140 160 180 200

D
isp

la
ce

m
en

ts

1.5

1

0.5

0

–0.5

–1
0 20 40 60 80 100

Time (s)(a)

Ve
lo

ci
tie

s

120 140 160 180 200



62 Modeling and Simulation of Systems Using MATLAB and Simulink

Example 2.7

Figure 2.29 shows a mechanical system with three masses, two springs, and a dashpot. A force 
is applied to mass m3 and a displacement is applied to spring k1. Drive an expression for the 
mathematical model of the system.

SOLUTION

Applying Newton’s second law to the mass m1,

 

2
1

1 1 2 1 2 1 2

d
( ) ( )

d
y

k y y k y y m
t

− − − =
 

(2.35)

to the mass m2,

 

2
2 3 2

2 2 1 3 2 3 2 2

d d d
( ) ( )

d d d
y y y

b k y y k y y m
t t t

⎛ ⎞− − − − − − =⎜ ⎟⎝ ⎠  
(2.36)

and to the mass m3,

 

2
3 2 3

3 3 2 3 2

d d d
( )

d d d
y y y

F b k y y m
t t t

⎛ ⎞− − − − =⎜ ⎟⎝ ⎠  
(2.37)

we can write Equations 2.35 through 2.37 as

 
oo

1 1 1 2 1 2 2 1( )m y k k y k y k y+ + − =  (2.38)

 
oo o o

2 2 2 3 2 1 2 3 2 3 3( ) 0m y by by k y k k y k y+ − − + + − =  (2.39)

 
oo o o

3 3 3 2 3 3 3 2m y by by k y k y F+ − + − =  (2.40)

The above equations can be written in matrix form as

 

oo o
1 1

1 1 2 2 1 1
oo o

2 2 2 2 2 3 3 2

oo o3 3 3 3
3 3

0 0 0 0 0 0

0 0 0 0

0 0 0 0

y y
m k k k y k y

m y b b y k k k k y

m b b k k y F
y y

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ + −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ − + − + − =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦  

(2.41)

Displacement
input

y y1

k2k1

k3

m1 m2 m3 F

y2 y3
b

FIGURE 2.29
Example mechanical system.



Systems Modeling 63

or

 

1 2 2
oo o1

1 1 1 1
11

oo o 2 2 3 3
2 2 2

2 2 2 2 2
oo o 3

3 3 3 3
3

3 3 3 3

( )
0

0 0 0

( )
0 0

0 0

k k k
k y

y y m m ym
b b k k k k

y y y
m m m m m

F y
y yb b k k

m
m m m m

⎡ ⎤ ⎡ ⎤+ −⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥− − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  

(2.42)

The MATLAB codes for simulating the above mentioned mechanical system are given below and 
the simulation results are shown in Figure 2.30.

MATLAB codes

clear all;
F=0.25;
y=−0.5;
M1=0.5; %kg
M2=1.0; %kg
M3=0.5;
B=0.5;  %
K1=0.1;
K2=0.15;
K3=0.05;
Coef_1=[0 0 0;
0 B/M2 −B/M2
 0 −B/M3  B/M3];
Coef_2=[(K1+K2)/M1 −K2/M1 0
   −K2/M2  (K2+K3)/M2 −K3/M2
0 −K3/M3 K3/M3];

12

10

8

6

4

2

D
isp

la
ce

m
en

ts

0

0 20 40 60 80 100 120 140 160 180 200
Time (s)

–2

FIGURE 2.30
The simulation results of MATLAB program.



64 Modeling and Simulation of Systems Using MATLAB and Simulink

Y=[0.1; 0.1; 0.05];
dY=[0; 0;0];
dt=0.1; % step size
t=0; % Initial time
tsim=200; % Simulation time
n=round(tsim−t)/dt;
for i=1:n
 X1(i,:)=[Y' dY' t];
 ddY=[K1*y/M1;0 ;F/M3] − Coef_1*dY − Coef_2*Y;
 dY=dY+dt*ddY;
 Y=Y+dt*dY;
 t=t+dt
end
figure(1)
plot(X1(:,7),X1(:,1:3) )
xlabel(‘Time (sec.)’)
ylabel(‘Displacements’)

2.7.1.2 Rotational Mechanical Systems

The basic building blocks of rotational mechanical systems are the moment of inertia, the 
torsion spring (or rotational spring), and the rotary damper (Figure 2.31). The input to a 
rotational mechanical system may be the torque T and the output the rotational displace-
ment, or angle.

Torsional spring

A rotational spring is similar to a translational spring, but here the spring is twisted. The 
relationship between the applied torque T and the angle θ rotated by the spring is given by

 = ⋅θT k  (2.43)

where θ is known as the rotational stiffness constant. In our modeling we are assuming 
that the mass of the spring is negligible and the spring is linear.

The energy stored in a torsional spring when twisted by an angle θ is given by

 
= θ21

2
E k

 
(2.44)

A rotary damper element creates damping as it rotates. For example, when a disk rotates in 
a fl uid we get a rotary damping effect. The relationship between the applied torque T and 
the angular velocity of the rotary damper is given by

FIGURE 2.31
Rotational mechanical system components.

T

θ
Torsional spring Rotational dashpot

T

b
Moment of inertia

I

T



Systems Modeling 65

 

θ= ω = d

d
T b b

t  
(2.45)

In our modeling the mass of the rotary damper will be neglected, or will be assumed to be 
negligible. A rotary damper does not store energy.

Moment of inertia refers to a rotating body with a mass. When a torque is applied to a body 
with a moment of inertia we get an angular acceleration, and this acceleration rotates the body.

The relationship between the applied torque T, angular acceleration a, and the moment 
of inertia I, is given by

 

ω= = d

d
T Ia I

t  
(2.46)

or

 

θ=
2

2

d

d
T I

t  
(2.47)

The energy stored in a mass rotating with an angular velocity can be written as

 
= ω21

2
E I

 
(2.48)

Some examples of rotational system models are given below.

Example 2.8

A disk of moment of inertia I is rotated (refer Figure 2.32) with an applied torque of T. The disk is 
fi xed at one end through an elastic shaft. Assuming that the shaft can be modeled with a rotational 
dashpot and a rotational spring, derive an equation for the mathematical model of this system.

SOLUTION

The damper torque and the spring torque oppose the applied torque. If θ is the angular displace-
ment from the equilibrium, we can write the torque balancing equation for the given system:

 ( ) ( ) ( ) ( ) 0b k IT t T t T t T t− − − =  

 

2

2

d d
d d

T b k I
t t
θ θ− − θ =

 
(2.49)

or

 

2

2

d d
d d

I b k T
t t
θ θ+ + θ =

 
(2.50)

k

b θ

I

T

FIGURE 2.32
Rotational mechanical system.



66 Modeling and Simulation of Systems Using MATLAB and Simulink

Equation 2.50 may be written in the following form:

 
o

I b k T
οο
θ+ θ+ θ =  (2.51)

or

 

o
oo T b k

I
− θ− θθ =

 

This second-order differential equation may be decomposed into two fi rst-order differential equa-
tions and may be written in state-space form as

 

o o 1
d
d 1 0 0

b k
TI I I

t

− −⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤θ θ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥θ θ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  

(2.52)

 
o
X AX BU= +  

This state model may be simulated using MATLAB codes given below and the results are given in 
Figure 2.33.

MATLAB codes

% Simulation program for the state model given in Equation 2.52
% Initialization
clear all;
T=0.25;

0.4

0.3

0.2

0.1

0
0 5 10 15

Time (s)

A
ng

le

20 25

2.5

2

1.5

0.5

1

0
0 5 10 15

Time (s)

A
ng

ul
ar

 v
el

oc
ity

20 25

FIGURE 2.33
Simulation results of Example 2.5.



Systems Modeling 67

I=0.5;
b=0.5;
k=0.1;
A =[−b/I −k/I
  1 0];
B=[1/I
  0];
X =[0; 0.1;];
dt=0.1; % step size
t=0; % Initial time
tsim=200; % Simulation time
n=round(tsim−t)/dt;
for i=1:n
 X1(i,:)=[X' t];
 dX=A*X+B*T;
 X=X+dt*dX;
 t=t+dt;
end
Subplot(2,1,1) % Divides the graphics window into sub windows
plot(X1(:,3),X1(:,1) )
xlabel(‘Time (sec.)’)
ylabel(‘Angle’)
Subplot(2,1,2) % Divides the graphics window into sub windows
plot(X1(:,3),X1(:,2) )
xlabel(‘Time (sec.)’)
ylabel(‘Angular velocity’)

Example 2.9

Figure 2.34 shows a rotational mechanical system with two moments of inertia and a torque 
applied to each one. Derive a mathematical model for the system.

SOLUTION

For the system shown in Figure 2.34 we can write the following equations for disk 1,

 1 1( ) ( ) ( ) 0k b IT T t T t T t− − − =  

 

2
1 2 1

1 1 2 1 2

d d d
( )

d d d
T k b I

t t t
θ θ θ⎛ ⎞− θ − θ − − =⎜ ⎟⎝ ⎠  

(2.53)

and for disk 2,

 2 2( ) ( ) ( ) 0k b IT T t T t T t− − − =  

 

2
2 1 2

2 2 1 2 2

d d d
( )

d d d
T k b I

t t t
θ θ θ⎛ ⎞− θ − θ − − =⎜ ⎟⎝ ⎠  

(2.54)

k

b θ2θ1

I2

T2T1

I1
FIGURE 2.34
Rotational mechanical system.



68 Modeling and Simulation of Systems Using MATLAB and Simulink

Equations 2.53 and 2.54 can be written as

 
oo o o

1 1 1 2 1 2 1I b b k k Tθ + θ − θ + θ − θ =  (2.55)

and

 
oo o o

2 2 1 2 1 2 2I b b k k Tθ − θ + θ − θ + θ =  (2.56)

Equations 2.55 and 2.56 may be written in the matrix form to get state-space model as in 
Equation 2.57.

 

oo o

1 1 1 1 1

oo o
2 2 2

2 2

0

0

I b b k k T

I b b k k T

⎡ ⎤ ⎡ ⎤θ − θ − θ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − θ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦θ θ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  

or

 

1oo o

1 1 11 1 1 1 1

oo o
2 2

2 2
2 2 2 2 2

T b b k k
I I I I I
T b b k k
I I I I I

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥θ θ θ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − ⎢ ⎥⎢ ⎥ ⎢ ⎥− − θ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦θ θ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

(2.57)

2.7.1.2.1 Rotational Mechanical Systems with Gear Train

Gear-train systems are very important in many mechanical engineering systems. Figure 
2.35 shows a simple gear train, consisting of two gears, each connected to two masses with 
moments of inertia I1 and I2. Suppose that gear 1 has n1 teeth and radius r1, and that gear 2 
has n2 teeth and radius r2. Assume that the gears have no backlash, they are rigid bodies, 
and the moment of inertia of the gears is negligible.

The rotational displacement of the two gears depends on their radii and is given by

 1 1 2 2r rθ = θ  (2.58)

FIGURE 2.35
A two-gear train system.

T

T1

T2
Gear train

n2, r2

n1, r1I1

I2

θ1

θ2



Systems Modeling 69

or

 

1
2 1

2

r
r

θ = θ
 

(2.59)

where θ1 and θ2 are the rotational displacements of gear 1 and gear 2, respectively.
The ratio of the teeth numbers is equal to the ratio of the radii and is given by

 

1 1

2 2

r n
n

r n
= =

 
(2.60)

where n is the gear teeth ratio.
Let a torque T be applied to the system, then torque equation may be written as

 

2
1

1 12

d

d
I T T

t
θ = −

 
(2.61)

and

 

2
2

2 22

d

d
I T

t
θ =

 
(2.62)

Equating the power transmitted by the gear train,

 

1 2
1 2

d d

d d
T T

t t
θ θ=

or

 

θ= =
θ

11

2 2

d /d

d /d

tT
n

T t
 

(2.63)

Substituting Equation 2.63 into Equation 2.61, we obtain

 

2
1

1 22

d

d
I T nT

t
θ = −

 
(2.64)

or

 

2 2
1 2

1 22 2

d d

d d
I T n I

t t
⎛ ⎞θ θ= − ⎜ ⎟
⎝ ⎠  

(2.65)

 

2
12

2 1 1 2 2

d
then, since , we obtain ( )

d
n I n I T

t
θθ = θ + =

 
(2.66)

It is clear from Equation 2.66 that the moment of inertia of the load I2 is refl ected to the 
other side of the gear train as n2I2.



70 Modeling and Simulation of Systems Using MATLAB and Simulink

Example 2.10

Figure 2.36 shows a rotational mechanical system coupled with a gear train. Derive an expression 
for the model of the system.

SOLUTION

Assuming that a torque T is applied to the system, then the system equation may be written as

 

2
1 1

1 1 1 1 12

d d
d d

I b k T T
t t
θ θ+ + θ = −

 
(2.67)

and

 2c T=  (2.68)

Equating the power transmitted by the gear train,

 
21

2 1

d /d
d /d

tT
n

T t
θ= =
θ  

(2.69)

Substituting Equation 2.69 into 2.67, we obtain

 

2
1 1

1 1 1 1 22

d d
d d

I b k T nT
t t
θ θ+ + θ = −

 
(2.70)

or

 

2 2
1 1 2 2

1 1 1 1 2 2 2 22 2

d d d d
d d d d

I b k T n I b k
t t t t

⎛ ⎞θ θ θ θ+ + θ = − + + θ⎜ ⎟⎝ ⎠  
(2.71)

Since θ2 = n . θ1, this gives

 

2
1 12 2 2

1 2 1 2 1 2 12

d d
( ) ( ) ( )

d d
I n I b n b k n k T

t t
θ θ+ + + + + θ =

 
(2.72)

T1

T2
Gear train

n2, r2

n1, r1I1

k1

b1 k2

b2

I2

θ1

θ2

T

FIGURE 2.36
Mechanical system with gear train.



Systems Modeling 71

Example 2.11

A safety bumper is placed at the end of a racetrack to stop out-of-control cars as shown in Figure 
2.37. The bumper is designed in such a way that the force applied is a function of the velocity v 
and the displacement x of the front edge of the bumper according to the equation

F = Kv3(x + 1)3 where K = 35 s-kg/m5 is a constant.
A car with a mass m of 1800 kg hits the bumper at a speed of 60 km/h. Determine and plot the 

velocity of the car as a function of its position for 0 ≤ x ≤ 3 m.

SOLUTION

The declaration of the car once it hits the bumper can be calculated from Newton’s second law 
of motion.

 
3 3( 1)Ma Kv x= − +  

Which can be solved for the acceleration a as a function of v and x:

 

3 3( 1)Kv x
a

m
− +=

 

The velocity as a function of x can be calculated by substituting the acceleration in the equation

 =v dv adx  

which gives

 

2 3( 1)dv Kv x
dx m

− +=
 

The ordinary differential equation may be solved for the interval 0 ≤ x ≤ 3 with the initial condition: 
v = 60 km/h at x = 0.

A numerical solution of the differential equation with MATLAB is given in the following 
program:

global k m
k=35; m=1800; v0=60;
xspan = [0:0.2:3];
v0mps =v0*1000/3600;
[x v] =ode45(‘bumper’,xspan,v0mps)
plot(x,v)
xlabel(‘x(m)’);ylabel(‘velocity(m/s)’)

FIGURE 2.37
Safety bumper at the end of the racing track.



72 Modeling and Simulation of Systems Using MATLAB and Simulink

The function fi le contains the differential equation of bumper as below:

function dvdx=bumper(x,v)
global k m
dvdx=-(k*v^2*(x+1)^3)/m;

When the above MATLAB code is executed the following results have been obtained and the 
results as graphically shown in Figure 2.38:

X V
 0 16.6667
 0.2000 15.3330
 0.4000 13.5478
 0.6000 11.4947
 0.8000   9.4189
 1.0000   7.5234
 1.2000   5.9165
 1.4000   4.6209
 1.6000   3.6066
 1.8000   2.8256
 2.0000   2.2281
 2.2000   1.7706
 2.4000   1.4191
 2.6000   1.1475
 2.8000   0.9358
 3.0000   0.7696

Example 2.12: 3-D Projectile Trajectory

A projectile is fi red with a velocity of 300 m/s at an angle of 65° relative to the ground. The pro-
jectile is aimed directly north. Because of the strong wind blowing to the west, the projectile also 

FIGURE 2.38
Velocity as a function of distance.

18

16

14

12

10

Ve
lo

ci
ty

  (
m

/s
)

8

6

4

2

0
0 0.5 1 1.5

x (m)
2 2.5 3



Systems Modeling 73

moves in this direction at a constant speed of 35 m/s. Determine and plot the trajectory of the 
projectile until it hits the ground. Also simulate the projectile when there is no wind.

SOLUTION

The coordinate system is set up such that the x and y axes point to the east and north directions, 
respectively. Then, the motion of the projectile can be analyzed by considering the vertical direc-
tion z and the two horizontal components x and y. Since the projectile is fi red directly north, the 
initial velocity v0 can be resolved into a horizontal y component and a vertical z component:

 0 0 0 0cos( ) and sin( )y zv v v v= θ = θ  

In addition, due to the wind the projectile has a constant velocity in the negative x direction, 
vx = −30 m/s.

The initial position of the projectile (x0, y0, z0) is at point (3000, 0, 0). In the vertical direction the 
velocity and position of the projectile are given by

 
2

0 0 0
1

and
2

z z zv v gt z z v t gt= − = + −
 

The time it takes for the projectile to reach the highest point (vz = 0) is thmax = 0zv
g .

The total fl ying time is twice this time, ttot = 2thmax, in the horizontal direction the velocity is 
constant (both in the x and y direction), and the position of the projectile is given by

 0 0 0andx yx x v t y y v t= + = +  

The following MATLAB program written in a script fi le solves the problem by following the equa-
tion above.

v0=250; g=9.81; theta=65;
x0=3000;vx=-30;
v0z=v0*sin(theta*pi/180);
v0y=v0*cos(theta*pi/180);
t=2*v0z/g;
tplot=linspace(0,t,100);
z=v0z*tplot-0.5*g*tplot.^2;
y=v0y*tplot;
x=x0+vx*tplot;
xnowind(1:length(y) )=x0
plot3(x,y,z,‘k-’,xnowind,y,z,‘k––’)
grid on
axis([0 6000 0 6000 0 2500])
xlabel(‘x(m)’); ylabel(‘y(m)’); zlabel(‘z(m)’)

The results of the above program are shown in Figure 2.39.

Example 2.13: Determining the Size of a Capacitor

An electrical capacitor has an unknown capacitance. In order to deter-
mine its capacitance it is connected to the circuit shown in Figure at the 
right hand side. The switch is fi rst connected to B and the capacitor is 
charged. Then, the switch is switched to A and the capacitor discharges 
through the resistor. As the capacitor is discharging, the voltage across the 

B

+ A

– R C

V



74 Modeling and Simulation of Systems Using MATLAB and Simulink

capacitor is measured for 10 s in intervals of 1 s. The recorded measurements are given in the table 
below. Plot the voltage as a function of time and determine the capacitance of the capacitor by 
fi tting an exponential curve to the data point.

t(s) 1 2 3 4 5 6 7 8 9 10

V(V) 9.4 7.31 5.51 3.55 2.81 2.04 1.26 0.97 0.74 0.58

SOLUTION

When a capacitor discharges through a resistor, the voltage of the capacitor as a function of time 
is given by

 
( ) /( )

0
t RCV V e −=  

where
V0 is the initial voltage
R the resistance of the resistor
C the capacitance of the capacitor

The exponential function can be written as a linear equation for In(V) and t in the form

 
0

1
In( ) In( )V t V

RC
−= +

 

This equation which has the form y = mx + b can be fi tted to the data points by using the polyfi t 
(x, y, 1) function with t as the independent variable x and In(V) as the dependent variable y. The 
coeffi cients m and b determined by the polyfi t function are then used to determine C and V0 by

 
0and bt

C V e
Rm
−= =

 

FIGURE 2.39
Results of projectile system.

2500

2000

1500

z (
m

)

1000

500

0
6000

4000

2000y (m)
0 0

2000 x (m)
4000

6000



Systems Modeling 75

The following program written in a MATLAB script fi le determines the best fi t exponential function 
to the data points, determines C and V0, and plots the points and the fi tted function.

R = 2000;
t = 1:10;
v = [9.4 7.31 5.15 3.55 2.81 2.04 1.26 0.97 0.74 0.58];
p = polyfit(t,log(v),1);
C = −1/(R*p(1) )
V0 = exp(p(2) )
tplot = 0:0.1:10;
vplot = V0*exp(-tplot./(R*C) );
plot(t,v,‘o’,tplot,vplot)

The program creates also the plot shown in Figure 2.40.

Example 2.14: Flight of Model Rocket

The fl ight of a model rocket can be developed as follows. During the fi rst 0.15 s the rocket is 
propelled up by the rocket engine with a force of 16 N. The rocket then fl ies up while slow-
ing down under the force of gravity. After it reaches its peak, the rocket starts to fall back. 
When its down velocity reaches 20 m/s a parachute opens (assumed to open instantly) and the 
rocket continues to move down at a constant speed of 20 m/s until it hits the ground. Write a 
program that calculates and plots the speed and altitude of the rocket as a function of time during 
the fl ight.

SOLUTION

The rocket is assumed to be a particle that moves along a straight line in the vertical plane. For 
motion with constant acceleration along a straight line, the velocity and position as a function of 
time are given by

14

12

10

8

6

4

2

0
0 1 2 3 4 5 6 7 8 9 10

FIGURE 2.40
Simulation results of capacitor selection problem.



76 Modeling and Simulation of Systems Using MATLAB and Simulink

 
0 0 0

1
( ) and ( )

2
v t v at s t s v t at= + = + +

 

where v and s are the initial velocity and position, respectively. In the computer program the fl ight 
of the rocket is divided into three segments. Each segment is calculated in a while loop. In every 
pass the time increases by an increment.

Segment 1: The fi rst 0.15 s when the rocket engine is on. During this period, the rocket moves up 
with a constant acceleration. The acceleration is determined by drawing a free body and a mass 
acceleration diagrams. From Newton’s second law, the sum of the forces in the vertical direction 
is equal to the mass times the acceleration (equilibrium equation):

 
= − =∑ EF F mg ma

 

Solving the equation for the acceleration gives

 
EF mg

a
m
−=

 

The velocity and the height as a function of time are

 
21

( ) 0 and ( ) 0 0
2

v t at h t at= + = + +
 

where the initial velocity and the initial position are both zero. In the computer program this seg-
ment starts when t = 0, and the looping continues as long as t < 0.15 s. The time, velocity, and 
height at the end of this segment are t1, v1, and h1.

Segment 2: The motion from when the engine stops until the parachute opens. In this segment the 
rocket moves with a constant deceleration g. The speed and height of the rocket as a function of 
time are given by

 
2

1 1 1 1 1 1
1

( ) ( ) and ( ) ( ) ( )
2

v t v g t t h t h v t t g t t= − − = + − − −
 

In this segment the looping continues until the velocity of the rocket is −20 m/s (negative since the 
rocket moves down). The time and height at the end of this segment are t2 and h2.

Segment 3: The motion from when the parachute opens until the rocket hits the ground. In this 
segment the rocket moves with constant velocity (zero acceleration). The height as a function of 
time is given by h(t) = h2 − vchute(t − t2), where vchute is the constant velocity after the parachute 
opens. In this segment the looping continues as long as the height is greater than zero.
A program in a script fi le that carries out the calculation is shown below.

m=0.05; g=9.81; tEngine=0.15; Force=16; vChute=-20; Dt=0.01;
clear t v h
n=1;
t(n)=0; v(n)=0; h(n)=0;
% Segment 1
a1=(Force−m*g)/m;
while t(n)<tEngine &n< 50000
  n=n+1;
  t(n)=t(n−1)+Dt;
  v(n)=a1*t(n);
  h(n)=0.5*a1*t(n)^2;
end



Systems Modeling 77

v1=v(n); h1=h(n); t1=t(n);
% Segment 2
while v(n)>=vChute &n<50000
  n=n+1;
  t(n)=t(n−1)+Dt;
  v(n)=v1−g*(t(n)−t1);
  h(n)=h1+v1*(t(n)−t1)−0.5*g*(t(n)−t1)^2;
end
v2=v(n); h2=h(n); t2=t(n);
% Segment 3
while h(n)>0 & n<50000
  n=n+1;
  t(n)=t(n−1)+Dt;
  v(n)=vChute;
  h(n)=h2+vChute*(t(n)−t2);
end
subplot(1,2,1)
plot(t,h,t2,h2, ‘o’)

subplot(1,2,2)
plot(t,v,t2,v2, ‘o’)

The accuracy of the result depends on the magnitude of the time increment Dt. An increment 
of 0.01 s appears to give good results. The conditional expression in the while commands also 
includes a condition for n (if n is larger than 50,000 the loop stops). This is done as a precaution to 
avoid an infi nite loop in case there is an error in the statements inside the loop. The plots gener-
ated by the program are shown in Figure 2.41.

FIGURE 2.41
Simulation results of parachute system.

120

100

80

60

40

20

0

–20
0 5 10

Time (s)

H
ei

gh
t

15

50

40

30

20

10

0

–10

–30

–20

0 5 10
Time (s)

Ve
lo

ci
ty

15



78 Modeling and Simulation of Systems Using MATLAB and Simulink

2.7.2 Modeling of Electrical Systems

The basic building blocks of electrical systems are the resistor, the inductor, and the 
capacitor (Figure 2.42). The input to an electrical system may be the voltage V and 
current i.

The relationship between the voltage across a resistor and the current through it is given 
by Ohm’s law as mentioned in Equation 2.73.

 =R *v R i  (2.73)

where R is the resistance.
For an inductor, the potential difference across the inductor depends on the rate of 

change of current through the inductor, and is given by

 
=L

d

d

i
v L

t  
(2.74)

where L is the inductance.
Equation 2.74 can also be written as

 
= ∫ L

1
di v t

L  
(2.75)

The energy stored in an inductor is given by

 

21

2
E Li=

 
(2.76)

The potential difference across a capacitor depends on the charge the plates hold, and is 
given by

 
c

q
v

C
=

 
(2.77)

The relationship between the current through the capacitor and the voltage across it is 
given by

 
= c

c

d

d

v
i C

t  
(2.78)

or

 
= ∫c c

1
dv i t

C  
(2.79)

Ri i L i C

FIGURE 2.42
Electrical system components.



Systems Modeling 79

The energy stored in a capacitor depends on the capacitance and the voltage across the 
capacitor and is given by

 

2
c

1

2
E Cv=

 
(2.80)

Electrical circuits are modeled using Kirchhoff’s laws. There are two laws: Kirchhoff’s 
current law and Kirchhoff’s voltage law. To apply these laws effectively, a sign convention 
should be employed.

Kirchhoff’s current law

The sum of the currents at a node in a given network is zero, i.e., the total current fl owing into 
any junction in a circuit is equal to the total current leaving the junction. Figure 2.43 shows the 
sign convention that can be employed when using Kirchhoff’s current law. We can write

i1 + i2 + i3 = 0 for the circuit in Figure 2.43a,
−(i1 + i2 + i3) = 0 for the circuit in Figure 2.43b, and
i1 + i2 − i3 = 0 for the circuit in Figure 2.43c.

Kirchhoff’s voltage law

The sum of voltages around any loop in a circuit is zero, i.e., in a circuit containing a volt-
age source, the algebraic sum of the potential drops across each circuit element is equal to 
the algebraic sum of the applied emfs.

It is important to observe the sign convention when applying Kirchhoff’s voltage law. 
An example circuit is given in Figure 2.44. The voltage equation for the given circuit is 
vR + vL + vC = V.

ii i3

i2

(a)

ii i3

i2

(c)

ii i3

i2

(b)

FIGURE 2.43
Applying Kirchhoff’s current law.

R

vR
vL

vC

V

C

L

+ +

–

–

– +

FIGURE 2.44
Applying Kirchhoff’s voltage law.



80 Modeling and Simulation of Systems Using MATLAB and Simulink

Example 2.15

Determine the state model for the electrical system shown in Figure 2.45.

 

L C R

L R C

L
C

C C

( ) ( ) ( ) ( )

( )

d ( ) 1
( . ( ) ) (1)

d

d ( ) ( ) ( )
(2)

d

i t i t i t i t

V t V V V

i t
V R i t V

t L

V t i t i t
t C C

= = =

= − −

= − −

= =
 

Number of state equations = number of dynamic elements = 2

Here we may choose 
L

C

( )

( )

i t

V t
⎡ ⎤
⎢ ⎥
⎣ ⎦

 as the state variables. Therefore, the state and output equations 

respectively can be written as

 

L L

C C

L
C

C

1 1( ) ( )d
( )

1( ) ( )d 00

( )
( ) 0 1

( )

Ri t i tL L L e t
V t V tt

C

i t
e t

V t

⎡ ⎤− − ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥= + ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤
= ⎡ ⎤ ⎢ ⎥⎣ ⎦

⎣ ⎦  

MATLAB codes

% simulation program for state space model
clear all
t=0;%simulation starting time
dt=0.01;%step size
tsim=10.0;%finish time
n=round( (tsim−t)/dt);%no. of iterations
%system parameters
R=10;
L=15;
C=.05;
A=[−R/L −1/L; 1/C 0];
B=[1/L; 0];
C=[0 1];
D=[0 0];
X=[0 0]';

R

i(t)
L

CV

FIGURE 2.45
Electrical system.



Systems Modeling 81

for i=1:n;
  u=5*exp(−t);%exponential input
% u=4*sin(t);%sinusoidal input
% u=4;%fixed input

  dx=A*X+B*u;
  X=X+dx*dt;
  Y=C*X;
  Y1(i,:)=[t,Y];
  X1(i,:)=[t,X'];
  t=t+dt;
end
subplot(2,1,1)
plot(X1(:,1),X1(:,2:3) )
axis([0 10 −10 10])
xlabel(‘time’)
ylabel(‘state variables’)
title(‘Response of state variables’)

subplot(2,1,2)
plot(Y1(:,1),Y1(:,2) )
axis([0 10 −10 10])
xlabel(‘time’)
ylabel(‘output variable’)
title(‘Response of output variable’)

The simulation results of above mentioned MATLAB program are shown in Figure 2.46.
There is no unique way of selecting the state variable, i.e., we can select another set of state 

variables and therefore we will have different state and output equations. This can be illustrated 

by choosing 1 2
d

( ) and
d

i
X i t X

t
= =  as the state variables in the previous example.

Response of state variables

Time

St
at

e v
ar

ia
bl

es

10

5

0

–5

–100 1 2 3 4 5 6 7 8 9 10

Response of output variable

Time

O
ut

pu
t v

ar
ia

bl
e

10

5

0

–5

–100 1 2 3 4 5 6 7 8 9 10

FIGURE 2.46
Results of state model simulation.



82 Modeling and Simulation of Systems Using MATLAB and Simulink

The Kirchhoff’s voltage law can be used to write the loop equation:

 

C

2

2

d ( ) 1
( ) ( ) ( )d

d

d ( ) d ( ) d ( ) 1
. ( )

d d d

i t
e t Ri t L i t t

t C

e t i t i t
R L i t

t t t C

= + +

= + +

∫

 

(2.81)

Example 2.16

Figure 2.47 shows an electrical circuit consisting of a capacitor, an inductor, and a resistor. 
The inductor and the capacitor are connected in parallel. A voltage Va is applied to the circuit. 
Derive a mathematical model for the system.

SOLUTION

Applying Kirchhoff’s current law, we can write

 1 2 3i i i= +  (2.82)

Now, the potential difference across the inductor and also across the capacitor is vc. Similarly, the 
potential difference across the resistor is Va − vc. Thus,

 
a c

1
V v

i
R
−=

 
(2.83)

 
c

2
d
d
v

i C
t

=
 

(2.84)

 
3 c

1
di v t

L
= ∫  

(2.85)

Substituting Equations 2.83 through 2.85 in Equation 2.82 we get

 
a c c

c
d 1

d
d

V v v
C v t

R t L
− = + ∫  

or

 
c

c c a
d

d
d

R v
v t RC v V

L t
+ + =∫  

Ra bi1 i2

i3

L CVa

+

–FIGURE 2.47
Electrical circuit.



Systems Modeling 83

Example 2.17

Figure 2.48 shows an electrical circuit consisting of two inductors, two resistors, and a capacitor. 
A voltage Va is applied to the circuit. Derive an expression for the mathematical model for the 
circuit.

SOLUTION

The circuit consists of two nodes and two loops. We can apply Kirchhoff’s current law to the 
nodes. For node 1,

 1 2 3 0i i i+ + =  

or

 

a 1
1 2 1

1 1 2

1 1
(0 )d ( )d 0

V v
v t v v t

R L L
− + − + − =∫ ∫

 
(2.86)

Differentiating Equation 2.86 with respect to time, we get

 
− − + − =

o o
a 1 1 2 1

1 1 1 2 2
0

V v v v v
R R L L L  

 

⎛ ⎞= + + −⎜ ⎟⎝ ⎠

o o
a 1 2

1
1 1 1 2 2

1 1V v v
v

R R L L L  
(2.87)

For node 2,

 4 5 6 0i i i+ + =  

or

 

2 2
1 2

2 2

1 d(0 ) 0
( )d 0

d
v v

v v t C
L t R

− −− + + =∫
 

(2.88)

–

+

Va

R1 i1 i3

i2 i5

i4 i61 2
L2

L1 C R2

FIGURE 2.48
Electrical circuit.



84 Modeling and Simulation of Systems Using MATLAB and Simulink

Differentiating Equation 2.88 with respect to time, we obtain

 

− − − =
oo

1 2 2
2

2 2

( )
0

v v v
C v

L R  

which can be written as

 
+ − + =

o
oo

2 1 2
2

2 2 2
0

v v v
C v

R L L  
(2.89)

Equations 2.87 and 2.89 describe the state of the system. These two equations can be represented 
in matrix form as in equation

 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ −⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ + = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

o
oo o

a1 1 11 1 2 2

1oo o 2
2 2

2 2 2

1 1 1 1
0

0 0

0 1 1 1
0 0

Vv v vR L L L
RC v

v v
R L L  

(2.90)

2.7.3 Modeling of Electromechanical Systems

Electromechanical systems such as electric motors and electric pumps are used in most 
industrial and commercial applications. Figure 2.49 shows a simple dc motor circuit. The 
torque produced by the motor is proportional to the applied current and is given by

 = tT k i (2.91)

where
T is the torque produced
kt is the torque constant
i is the motor current

Assuming there is no load connected to the motor, the motor torque can be expressed as 
given in Equation 2.92.

 

ω ω= = t

d d
or

d d
T I I k i

t t  
(2.92)

As the motor armature coil is rotating in a magnetic fi eld there will be a back emf induced 
in the coil in such a way as to oppose the change producing it. This emf is proportional to 
the angular speed of the motor and is given by Equation 2.93.

Va

i
La Ra

dc motor

FIGURE 2.49
Simple dc motor.



Systems Modeling 85

 = ⋅ωb ev k  (2.93)

where
vb is the back emf
ke is the back emf constant
ω is the angular speed of the motor

Using Kirchhoff’s voltage law, we can write the following equation for the motor 
circuit:

 
− = +a b a a

d

d

i
V v L R i

t  
(2.94)

where
Va is the applied voltage
La and Ra are the inductance and the resistance of the armature circuit, respectively

From Equation 2.92,

 

ω=
t

d

d

I
i

K t  
(2.95)

Substituting Equation 2.95 into Equation 2.94, we get

 

ω ω+ + ω =
2

a a
e a2

t t

d d

d d

L I R I
K V

K t K t  
(2.96)

Equation 2.96 is the model for a simple dc motor, describing the change of angular veloc-
ity with applied voltage. In many applications the motor inductance is small and can be 
neglected. The model then becomes

 

ω + ω =e a
t

d

d

RI
K V

K t  

(2.97)

Models of more complex dc motor circuits are given in the following examples.

Example 2.18

Figure 2.50 shows a dc motor circuit with a load connected to the motor shaft. Assume that the 
shaft is rigid, has negligible mass, and has no torsional spring effect or rotational damping associ-
ated with it. Derive an expression for the mathematical model for the system.

SOLUTION

Since the shaft is assumed to be massless, the moments of inertia of the rotor and the load can be 
combined into I

 M LI I I= +  (2.98)

where
IM is the moment of inertia of the motor
IL is the moment of inertia of the load



86 Modeling and Simulation of Systems Using MATLAB and Simulink

Using Kirchhoff’s voltage law, we can write the circuit equation for the motor:

 
a b a a

d
d

i
V v L R i

t
− = +

 
(2.99)

where
Va is the applied voltage
L and R are the inductance and the resistance of the armature circuit, respectively

Substituting Equation 2.93, we obtain

 
a a a e

d
d

i
V L R i k

t
= + + ω

 

or

 

o

a a a e
d
d

i
V L R i k

t
= + + θ

 
(2.100)

We can also write the torque equation as

 
L

d
d

T T b I
t
ω+ − ω =

 
(2.101)

Using Equation 2.91,

 
t L

d
d

I b k i T
t
ω + ω − =

or

 
oo o

t LI b k i Tθ + θ − =  (2.102)

Equations 2.100 and 2.102 describe the model of the circuit. These two equations can be repre-
sented in matrix form as

 

oo o

t L

o
e a a

0

0

I b k T

L k R V
i i

⎡ ⎤ ⎡ ⎤θ − θ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥+ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  

FIGURE 2.50
Direct current motor circuit.

Va

i
La Ra

dc motor
ω

IM
IL

Load

b



Systems Modeling 87

The above equation may be written in state-space form as Equation 2.103

 

too o

L

o
a e a

b k
T I I
V k R

i i
L L

−⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥θ θ⎡ ⎤⎢ ⎥ ⎢ ⎥= − ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦  

(2.103)

2.7.4 Modeling of Fluid Systems

Gases and liquids are collectively referred to as fl uids. Fluid systems are used in many 
industrial as well as commercial applications. For example, liquid level control is a well-
known application of liquid systems. Similarly, gas systems are used in robotics and in 
industrial movement control applications.

2.7.4.1 Hydraulic Systems

The basic elements of hydraulic systems are resistance, capacitance, and inertance (refer 
Figure 2.51). These elements are similar to their electrical equivalents of resistance, capaci-
tance, and inductance. Similarly, electrical current is equivalent to volume fl ow rate, and 
the potential difference in electrical circuits is similar to pressure difference in hydraulic 
systems.

 1. Hydraulic resistance
  Hydraulic resistance occurs whenever there is a pressure difference, such as liquid 

fl owing from a pipe of one diameter to one of a different diameter. If the pressures 
at either side of a hydraulic resistance are P1 and P2, then the hydraulic resistance 
R is defi ned as

 
1 2

d

d

g
P P R

t
− =

 
(2.104)

  where 
d

d

g
t

 = q is the volumetric fl ow rate of the fl uid.

P1
P2

q

(a)

Ah

q1

q2

P1

P2

(b)

AP1 P2

L

(c)

FIGURE 2.51
Hydraulic system elements. (a) Hydraulic resistance. (b) Hydraulic capacitance. (c) Hydraulic inertance.



88 Modeling and Simulation of Systems Using MATLAB and Simulink

 2. Hydraulic capacitance
  Hydraulic capacitance is a measure of the energy storage in a hydraulic system. 

An example of hydraulic capacitance is a tank which stores energy in the form 
of potential energy. Consider the tank shown in Figure 2.51b. If q1 and q2 are the 
infl ow and outfl ow, respectively, and V is the volume of the fl uid inside the tank, 
we can write

 
1 2

d d

d d

V h
q q A

t t
− = =

 
(2.105)

  Now, the pressure difference is given by

 

− = ρ = =
ρ1 2 or
p

P P h g p h
g

 

(2.106)

  Substituting Equation 2.106 in Equation 2.105, we obtain

 

− =
ρ1 2

d

d

pA
q q

g t
 

(2.107)

  Writing Equation 2.107 as

 
1 2

d

d

p
q q C

t
− =

 
(2.108)

  the hydraulic capacitance can be defi ned as

 

=
ρ
A

C
g

 
(2.109)

  Note that Equation 2.108 is similar to the expression for a capacitor and can be 
written as Equation 2.110.

 
1 2

1
( )dp q q t

C
= −∫  

(2.110)

 3. Hydraulic inertance
  Hydraulic inertance is similar to the inductance in electrical systems and is derived 

from the inertia force required to accelerate fl uid in a pipe.
   Let P1 − P2 be the pressure drop that we want to accelerate in a cross-sectional 

area A, where m is the fl uid mass and v is the fl uid velocity. Applying Newton’s 
second law, we can write

 
1 2

d
( )

d

v
m A P P

t
= −

 
(2.111)



Systems Modeling 89

  If the pipe length is L, then the mass is given by m = LρA

   We can now write Equation 2.111 as ρ = −1 2

d
( )

d

v
L A A P P

t

 
− = ρ1 2

d
( )

d

v
P P L

t  
(2.112)

  but the rate of fl ow is given by q = Av, so Equation 2.112 can be written as

 

ρ− =1 2

d
( )

d

qL
P P

A t  
(2.113)

  The inertance I is then defi ned as 
ρ= L

I
A

, and thus the relationship between the 

pressure difference and the flow rate is similar to the relationship between 
the potential difference and the current fl ow in an inductor, i.e.,

 
1 2

d
( )

d

q
P P I

t
− =

 
(2.114)

Example 2.19

Figure 2.52 shows a liquid level system where liquid enters a tank at the rate of qi and leaves at the 
rate of qo through an orifi ce. Derive the mathematical model for the system, showing the relation-
ship between the height h of the liquid and the input fl ow rate qi.

SOLUTION

i o
d

From Equation 2.107, 
d

A p
q q

g t
− =

ρ

 
i o

d
d

A p
q q

g t
= +

ρ  
(2.115)

Recalling that p = hρg, Equation 2.115 becomes

 
i o

d
d
h

q A q
t

= +
 

(2.116)

qi

H R
qo

A, g, ρ
FIGURE 2.52
Liquid level system.



90 Modeling and Simulation of Systems Using MATLAB and Simulink

Since p1 − p2 = Rqo

 
1 2

o
p p h g

q
R R
− ρ= =

 

so that substituting in Equation 2.116 gives

 
i

d
d
h g

q A h
t R

ρ= +
 

(2.117)

Equation 2.117 shows the variation of the height of the water with the infl ow rate. If we take the 
Laplace transform of both sides, we obtain

 
i( ) ( ) ( )

g
q s Ash s h s

R
ρ= +

 
(2.118)

and the transfer function of the system can be written as

 
i

( ) 1
( )

h s
gq s As

R

= ρ+
 

(2.119)

The block diagram is shown in Figure 2.53.

Example 2.20

Figure 2.54 shows a two-tank liquid level system where liquid enters the fi rst tank at the rate of 
qi and then fl ows to the second tank at the rate of q1 through an orifi ce of radius R1. Water then 
leaves the second tank at the rate of qo through an orifi ce of radius R2. Derive the mathematical 
model for the system.

1

As + ρg/R
qi(s) h(s)

FIGURE 2.53
Block diagram of liquid level system.

qi

h1 R1 R2h2
qo

A1, g , ρ A2, g , ρ

FIGURE 2.54
Two tank liquid level system.



Systems Modeling 91

SOLUTION

The solution is similar to the previous example of hydraulic system, but we have to consider both 
tanks.

For tank 1,

1
i 1

d
d

A p
q q

g t
− =

ρ

or

 

1
i 1

d
d

A p
q q

g t
= +

ρ  
(2.120)

But

 ,P h g= ρ

thus Equation 2.120 becomes

 
1

i 1 1
d
d
h

q A q
t

= +
 

(2.121)

Since

 1 2 1 1p p R q− =

or

 

1 2 1 2
1

1 1

p p h g h g
q

R R
− ρ − ρ= =

we have

 

1 1 2
i 1

1

d
d
h h g h g

q A
t R

ρ − ρ= +
 

(2.122)

For tank 2,

 

2
1

d
d

o
A p

q q
g t

− =
ρ  

(2.123)

and with P = hρg
Equation 2.123 becomes

 
2

1 o 2
d
d
h

q q A
t

− =
 

(2.124)



92 Modeling and Simulation of Systems Using MATLAB and Simulink

But 1 2
1

1

p p
q

R
−=  and 2 3

o
2

p p
q

R
−=

so 1 2 2 3 1 2 2
1 o

1 2 1 2

p p p p h g h g h g
q q

R R R R
− − ρ − ρ ρ− = − = −

Substituting in Equation 2.124, we obtain

 

2 1
2 2

1 1 2

d 1 1
0

d
h gh

A gh
t R R R

ρ ⎛ ⎞− + + ρ =⎜ ⎟⎝ ⎠  
(2.125)

Equations 2.122 and 2.125 describe the behavior of the system. These two equations can be 
represented in matrix form as

 

1 1 1 i1 1

2 2 2

1 1 2

0 d
0 0d

g g
A h h qR R

A h g g g ht
R R R

ρ −ρ⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥+ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−ρ ρ ρ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦+⎢ ⎥⎣ ⎦  

or

 

i
1 11 1 1 1

1
2 2

2 1 2 1 2 2

d
d

0

g g
q

h hAR AR
A

h g g g ht
A R A R A R

ρ −ρ⎡ ⎤⎡ ⎤ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥⎢ ⎥ −ρ ρ ρ⎢ ⎥⎣ ⎦ ⎣ ⎦+⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦  

(2.126)

2.7.5 Modeling of Thermal Systems

Thermal systems are encountered in chemical processes like heating, cooling, and air con-
ditioning systems, power plants, etc. Thermal systems have two basic components: ther-
mal resistance and thermal capacitance. Thermal resistance is similar to the resistance in 
electrical circuits. Similarly, thermal capacitance is similar to the capacitance in electrical 
circuits. The across variable, which is measured across an element, is the temperature, 
and the through variable is the heat fl ow rate. In thermal systems there is no concept of 
inductance or inertance. Also, the product of the across variable and the through variable 
is not equal to power. The mathematical modeling of thermal systems is usually complex 
because of the complex distribution of the temperature. Simple approximate models can, 
however, be derived for the systems commonly used in practice.

Thermal resistance R is the resistance offered to the heat fl ow, and is defi ned as

 

2 1T T
R

q
−=

 

(2.127)

where
T1 and T2 are the temperatures
q is the heat fl ow rate

Thermal capacitance is a measure of the energy storage in a thermal system. If q1 is the 
heat fl owing into a body and q2 is the heat fl owing out then the difference q2 − q1 is stored 
by the body, and we can write



Systems Modeling 93

 
2 1

d

d

T
q q mc

t
− =

 
(2.128)

If we let the heat capacity be denoted by C, then

 
2 1

d

d

T
q q C

t
− =

 
(2.129)

where
C = mc
m is the mass
c is the specifi c heat capacity of the body

Example 2.21

Figure 2.55 shows a room heated with an electric heater. The inside of the room is at temperature 
Tr and the walls are assumed to be at temperature Tw. If the outside temperature is To, develop a 
model of the system to show the relationship between the supplied heat q and the room tempera-
ture Tr.

SOLUTION

The heat fl ow from inside the room to the walls is given by

 

r w
rw

r

T T
q

R
−=

 
(2.130)

where Rr is the thermal resistance of the room.
Similarly, the heat fl ow from the walls to the outside is given by

 

w o
wo

w

T T
q

R
−=

 
(2.131)

where Rw is the thermal resistance of the walls.
Heating equation may be written as

 
r

rw 1
d
d
T

q q C
t

− =
 

(2.132)

Room

Wall

Ambient

Heater q
qrw

qwo

Tr

Tw

To

FIGURE 2.55
Simple thermal system.



94 Modeling and Simulation of Systems Using MATLAB and Simulink

where q is the heat fl ow rate from heater:

 

r w r
1

r

d
d

T T T
q C

R t
−− =

 

or

 

r w
1 r

r

o T T
C T q

R
−+ =

 
(2.133)

Heat equation for

 
w

rw wo 2
d
d
T

q q C
t

− =
 

 

r w w o w
2

w

d
dr

T T T T T
C

R R t
− −− =

 

or

 

o
r o

2 w w
r r w w

1 1T T
C T T

R R R R
⎛ ⎞− + + =⎜ ⎟⎝ ⎠  

(2.134)

Equations 2.111 and 2.112 describe the behavior of the system, and they can be written in matrix 
form as

 

o

1 r rr r
oo

2 w
w w

r r w

1 1
0

0 1 1 1

q
C T TR R

T
C T

T R
R R R

⎡ ⎤− ⎡ ⎤⎡ ⎤ ⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦− +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦  

or

 

o

r r1 1 r 1 r

o
o w

w
2 w 2 r 2 r 2 w

1 1

1 1 1

q
T TC C R C R

T T
T

C R C R C R C R

⎡ ⎤ ⎡ ⎤−⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦− +⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  

(2.135)

The MATLAB codes for simulating this system are given below and the system results are shown 
in Figure 2.56.

MATLAB codes

% Simulation program for Thermal System
% Initialization
clear all;
C1=0.5;
C2=1.5;



Systems Modeling 95

Rr=0.5;
Rw=1.8;
Tr=8;
Tw=4;
To=3;
q=5;
A=[1/(C1*Rr)  −1/(C1*Rr)
  −1/(C2*Rr)   (1/(C2*Rr) )+(1/(C2*Rw) )];
B=[1/C1 0
 0 1/(C2*Rw)];
X=[Tr; Tw;];
dt=0.1;     % step size
t=0;        % Initial time
tsim=25;        % Simulation time
n=round(tsim−t)/dt;
for i=1:n
     X1(i,:)=[X' t];
  dX=−A*X+B*[q; To];
  X=X+dt*dX;
  t=t+dt;
end
Subplot(2,1,1)  % Divides the graphics window into sub windows
plot(X1(:,3),X1(:,1) )
xlabel(‘Time (sec.)’)
ylabel(‘Room Temperature degree C’)
Subplot(2,1,2)  % Divides the graphics window into sub windows
plot(X1(:,3),X1(:,2) )
xlabel(‘Time (sec.)’)
ylabel(‘Wall Temperature degree C’)

15

10

5

12

10

8

6

4

0

0 5 10 15 20 25

5 10 15 20 25
Time (s)

Time (s)

Ro
om

 te
m

pe
ra

tu
re

 (°
C)

W
al

l t
em

pe
ra

tu
re

 (°
C)

FIGURE 2.56
Temperature variation for thermal system.



96 Modeling and Simulation of Systems Using MATLAB and Simulink

Example 2.22: Piston–Crank Mechanism

It converts, rotary motion into reciprocating motion using a piston, a connecting rod, and a crank 
(Figure 2.57).

Calculate and plot the position, velocity, and acceleration of the piston for two revolutions of the 
crank. Assume the initial condition zero.

SOLUTION

The initial conditions are zero, i.e., at t = 0, θ = 0, θ
0

 = 0 and θ
00

 =0.
The distance d1 and h can be calculated from Figure 2.58 as

 1 cos and sind r h r= θ = θ

If we know the distance h, then d2 can be calculated as

 
2 2 2 2 2

2 sind c h c r= − = − θ

The position x of piston is then given by x = d1 + d2 = r cos θ + 2 2 2sinc r− θ
The velocity of the piston is the derivate of displacement of the piston

 

0
20 0

2 2 2

sin2
sin

2 ( sin )

r
x r

c r

θ θ= − θ θ +
− θ

120 mm 250 mm

θ

FIGURE 2.57
Piston crank mechanism.

r

d1 d2

c
hθ

x

FIGURE 2.58
Motion of crank and piston.



Systems Modeling 97

The second derivate of displacement of the piston gives the acceleration

 

0 0
2 2 2 2 2 2 200 0

2 2 2

4 cos 2 ( sin ) ( sin2 )
cos

2 ( sin )

r c r r
x r

c r

θ θ − θ + θ θ= − θ θ +
− θ

% Matlab codes to simulate the Piston−Crank mechanism
clear all
theta_dot=500; % rpm
r=0.12; c=0.25; % m
t_rev=2*pi/ theta_dot % Time for one revolution
t=linspace(0,t_rev, 200); % time vector
theta=theta_dot*t ; % calculate theta at each time.
h=r*sin(theta);
d2s=c^2−r^2*sin(theta).^2; %calculate d2 square
d2=sqrt(d2s);
x=r*cos(theta)+d2; % calculate x for each theta
x_dot=−r*theta_dot*sin(theta)−(r^2*theta_dot*sin(2*theta)./(2*d2) );
x_dot_dot=−r*theta_dot^2*cos(theta)−(4*r^2*theta_dot^2*cos(2*theta).* …
d2s+(r^2*sin(2*theta)*theta_dot).^2)./(4*d2s.^(3/2) );
subplot(2,2,1)
plot(t,x) % plot Position vs t
xlabel(‘Time(s)’)
ylabel(‘Position(m)’)
subplot(2,2,2)
plot(t,x_dot) % plot Velocity vs t
xlabel(‘Time(s)’)
ylabel(‘Velocity(m/s)’)
subplot(2,2,3)
plot(t,x_dot_dot) % plot Acceleration vs t
xlabel(‘Time(s)’)
ylabel(‘Acceleration(m/s^2)’)
subplot(2,2,4)
plot(t,h) % plot h vs t
xlabel(‘Time(s)’)
ylabel(‘h(m)’)

When the above written MATLAB code is run, it generates the plots shown in Figure 2.59. 
The fi gure shows that the velocity of the piston is zero at the end points (bottom dead center 
and top dead center) of the travel range where the piston changes the direction of motion. The 
acceleration is maximum when the piston is at the right end.

Example 2.23: Airplane Deceleration with Brake Parachute

An airplane uses a brake parachute and other means of braking as it slows down on the runway 
after landing as shown in Figure 2.60. Its acceleration is given by a = −0.0045 v2 − 3 m/s2. Consider 
an airplane with a velocity of 300 km/h that opens its parachute and starts deceleration at t = 0 s.

Determine

 (a) Velocity as function of time from t = 0 until airplane stops.
 (b) Distance that airplane travels as a function of time.

Also write a MATLAB program to plot the distance traveled and the velocity vs. time for the system 
shown in Figure 2.60.



98 Modeling and Simulation of Systems Using MATLAB and Simulink

% Matlab codes to simulate the airplane braking using parachute
clear all
v=300; % velocity (km/h)
tsim=100  % step size
npoint=10000;
dt=tsim/npoint;
acc=0;d=0;
t=0;
for i=1:npoint
  x1(i,:)=[acc,v, d, t];
  acc=−0.0045*(v*1000/3600)^2−3; %m/s^2
  v=v+dt*acc;
  d=d+dt*v;
  t=t+dt;
  if (v<=0); break; end
end
t1=x1(:,4);
subplot(2,2,1)
plot(t1,x1(:,3) ) % plot Position vs t

0.5

0.4

0.3

0.2

0.1

5

0

–5

100

50

0

–50

–100

0.2

0.1

0

–0.1

–0.2

0 0.01 0.02 0.03

0 0.01 0.02 0.03

0 0.01 0.02 0.03

0 0.01 0.02 0.03
Time (s) Time (s)

Time (s)Time (s)

A
cc

el
er

at
io

n 
(m

/s
2 )

Po
sit

io
n 

(m
)

Ve
lo

ci
ty

 (m
/s

)
h 

(m
)

×104

FIGURE 2.59
Position, velocity, acceleration, and h vs. time.

FIGURE 2.60
Airplane slowdown by brake parachute.

ν

x



Systems Modeling 99

xlabel(‘Time(s)’)
ylabel(‘Distance(m)’)
subplot(2,2,2)
plot(t1,x1(:,2) ) % plot Velocity vs t
xlabel(‘Time(s)’)
ylabel(‘Velocity(m/s)’)
subplot(2,2,3)
plot(t1,x1(:,1) ) % plot Acceleration vs t
xlabel(‘Time(s)’)
ylabel(‘Acceleration(m/s^2)’)
disp(‘time required in stopping the airplane’)

The results of MATLAB program are shown in Figure 2.61 and time for stopping is 39.35 s.

2.8 Review Questions

 1. Defi ne a system model.

 2. What is the need of a system model?

 3. How do system models expedite the design and development of systems.

 4. What are model validation and model verifi cation?

 5. How do we validate and verify a given model?

 6. How can we classify models?

4000
D

ist
an

ce
 (m

)

Ve
lo

ci
ty

 (m
/s

)3000

300

200

100

0

2000

1000

0
0 10 20

Time (s) Time (s)
30 40 0 10 20 30 40

Ac
ce

le
ra

tio
n 

(m
/s

2 )

–40

–30

–20

–10

0

0 10 20 30 40
Time (s)

FIGURE 2.61
Simulation results of airplane problem.



100 Modeling and Simulation of Systems Using MATLAB and Simulink

 7. What are the steps involved in model development?

 8. State the fundamental axiom of the system discipline.

 9. What do you understand by physical systems?

 10. Give examples of complementary terminal variables—through and across vari-
ables in the context of typical physical systems (electrical, magnetic, mechanical 
(transnational/rotational), pneumatic, and thermal systems).

 11. Are derivatives and integrals of through and across variables respectively through and 
across variables or otherwise? Give suitable examples in support of your assertion.

 12. State the component postulate of physical system theory.

 13. a. Why are physical models required in system development.

  b. Mention the objective in using mathematical models.

  c.  Give generic description of the terminal characteristics of the following two-
terminal components: dissipater, delay, storage (or accumulator), and driver 
(or generator).

 14. Figure 2.62 shows a simple mechanical system consisting of a mass, a spring, and 
a damper. Derive a mathematical model for the system, determine the transfer 
function, and draw the block diagram.

 15. Consider the system of two springs of zero mass, a dashpot, and a mass as shown 
in Figure 2.63. Derive a mathematical model for the system.

 16. Three springs of zero mass with the same stiffness constant are connected in 
series. Derive an expression for the equivalent spring stiffness constant.

 17. Repeat the question 16, if the springs are connected in parallel.

 18. Figure 2.64 shows a simple mechanical system. Derive an expression for the math-
ematical model for the system.

k

m F

y

c
FIGURE 2.62
Simple mechanical system for Exercise 14.

k2

k1

c

y

m F

FIGURE 2.63
System of two massless springs for Exercise 15.



Systems Modeling 101

 19. Figure 2.65 shows a rotational mechanical system. Derive an expression for the 
mathematical model for the system.

 20. Two rotational springs are connected in parallel. Derive an expression for the 
equivalent spring stiffness constant.

 21. Figure 2.66 shows a simple system with a gear train. Derive an expression for the 
mathematical model for the system.

 22. A simple electrical circuit is shown in Figure 2.67. Derive an expression for the 
mathematical model for the system.

 23. Figure 2.68 shows an electrical circuit. Use Kirchhoff’s laws to derive the math-
ematical model for the system.

 24. A liquid level system is shown in Figure 2.69 where qi and qo are the infl ow and 
outfl ow rates, respectively. The system has two fl uid resistances, R1 and R2, in 
series. Derive an expression for the mathematical model for the system.

FIGURE 2.64
Simple mechanical system for Exercise 18.

c1

c2

k

y

m F

k

b

T1 T2

I1 I2

θ1 θ2

FIGURE 2.65
Simple mechanical system for Exercise 19.

T1

T2

Gear train

n1, r1

n2, r2

b1

I1

I2

θ1

θ2

T
k

FIGURE 2.66
Simple system with a gear train for 

Exercise 21.



102 Modeling and Simulation of Systems Using MATLAB and Simulink

Va

+

R

L

i

–FIGURE 2.67
Simple electrical circuit for Exercise 22.

–

+

Va

R i1 i3

i2 i5

i4 i61 2L2

L1 C L3

FIGURE 2.68
Electrical circuit for Exercise 23.

A, ρ, g

R1 R2

qo

qi

h

FIGURE 2.69
Liquid level system for Exercise 24.

2.9 Bibliographical Notes

The basic concepts of mathematical modeling have been well introduced in many books. 
Some of the important books worth to be mentioned here are written by Maki (1973), 
Burkhardt (1981), Berr et al. (1987), Murray (1987), Gershenfeld (1998), Ludmilla A. U. 
(2001), and Mark (2007). “Learn by doing” approach for mathematical modeling is given 
by Bender (2000). The mathematical modeling approach is very common for scientists 
and engineers. Some of the science and engineering problems have been modeled and 
explained by Peierls (1980), Lin and Segel (1988) and Hritonenko et al. (2003). Rutherford 
has written a good book to explain system’s modeling from a chemical engineering view-
point and explained the principles and pitfalls to all mathematical modeling of physical 
systems (Aris, 1999). The usefulness of mathematical modeling was nicely demonstrated 
for health services systems by D’Agostino et al. (1984) and for industrial systems by 
Cumberbatch and Fitt (2001).



103

3
Formulation of State Space Model of Systems

Imagination is more important than Knowledge.

Albert Einstein

The purpose of science is not to analyze or describe but to make useful models of the 
world. A model is useful if it allows us to get use out of it.

Edward de Bono

The system of nature, of which man is a part, tends to be self-balancing, self-adjusting, 
self-cleansing. Not so with technology.

E. F. Schumacher

3.1 Physical Systems Theory

The key to physical systems theory lies not in the notions of analogies but in the concept 
of a linear graph. To system analysts and designers, the linear graph can be considerably 
more than simply a collection of oriented line segments. The availability of high-speed 
computers has revolutionized the concept of what is essential in the mathematical model-
ing of components and systems.

If the computer is used for obtaining solutions, then t-domain models are much more 
convenient than the generally accepted (ω-domain or s-domain) models around which 
many of the existing analysis and design procedures, particularly in electrical engineering 
have been built. Since the digital computer inherently works best with a set of normal form 
of differential equations; the state space model has gravitated to the forefront.

As measured by the criteria of the effi cient computer implementation and general appli-
cability to both linear and nonlinear systems, the state space model is quickly emerging 
as the most useful model for analysis, synthesis, control, and optimization of engineering 
systems and certain socioeconomic systems and processes.

3.2 System Components and Interconnections

Consider the system of interacting components shown in Figure 3.1. Conceptually, black 
boxes, i.e., closed regions #Bj, j = 1, 2, … , n may be regarded as representing components, 



104 Modeling and Simulation of Systems Using MATLAB and Simulink

i.e., meaningful units of a physical system or the vari-
ous socially or economically meaningful sector or fun-
damental parts of a socioeconomic system.

These components are considered to have behav-
ioral characteristics of their own, and their actions and 
behavior are transmitted to other components at points 
of contact (A, B, … , K) between them, which thus rep-
resent interfaces. Each component is said to have a 
terminal, after the electrical usage, corresponding to 
each of its interfaces with other components. Terminal 
variables are values (numeric or nonnumeric) of com-
ponent behavioral quantities measured at these terminals. The accuracy and frequency 
with which we record the chosen quantities is referred to as the space–time resolution 
level or simply, resolution level.

The fi rst notion of the linear graph pertinent to system modeling is that a single oriented 
line segment or an edge as shown in Figure 3.2 represents the measurement of two vari-
ables with respect to two distinct terminals on a component. More component terminals 
may be considered by introducing additional edge.

Mapping identifi es a pair of complementary variables. Normally it is possible to asso-
ciate two distinct terminal variables with each pair of component terminals in a physical 
system. The variables X(t) is designated as the across variable. Since, it normally exhibits 
different values at terminals “a” and “b.” The second variables Y(t) is called the through 
variable. Since, it exhibits the same value at terminals “a” and “b.” The arrow on the 
edge in Figure 3.2 also allows sign variation in the variables to be treated in a uniform 
manner. The concept of instantaneous oriented measurements is used as the basis for 
correlating the mathematical model with the physical or socioeconomic system in each 
case. Particular choice of complementary variables (i.e., across and through variables) 
depends on the type of system being modeled and a consistent choice enables the analy-
sis of even mixed systems (electric, mechanical, pneumatic, magnetic, etc.) containing 
components of several types. Table 2.1 gives examples of systems and complementary 
variables.

It is interesting to note that the sign convention provides useful results, as far as power 
and energy are concerned. Specifi cally, these rules ensure that whenever a component 
instantaneously receives (or releasing) energy with respect to the pair of terminals then 
the product X(t) · Y(t) will be positive (or negative).

Each pair of complementary variables is also defi ned operationally, i.e., the variables 
are defi ned in terms of a specifi c set of operations (i.e., instrumentation) for assigning a 
numerical value to variables. So far as the mathematical development of the discipline 
of the physical systems theory is concerned, the pairs of complementary variables X(t) 
and Y(t) characterizing each of the physical and nonphysical processes are regarded as 
mathematically undefi ned. They are conceptually and operationally defi ned as the basis 
for characterizing a given process. All other variables of the system including power and 
energy are mathematically defi ned in terms of these complementary variables. Terminal 
equations describing the component behavior are equations which relate these to sets of 

#1 #2

#3

#4

#5

FIGURE 3.1
Conceptual system of interacting 

components.

2-TC
A A

x(t), y(t)

B B

FIGURE 3.2
Edge representing two measurements on a 2T 

component.



Formulation of State Space Model of Systems 105

complementary terminal variable for the components of a given system, considered at least 
conceptually and in isolation.

The complementary terminal variables are so chosen that at any instant of time, the 
product of Fundamental across variable and Fundamental through variable is equal to 
power delivered to the component terminal pair, provided associated sign convention is 
followed. The power for n-terminal component can be written mathematically as a vector 
product of across and through variables:

 
T T

1 1 2 2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )n n

P t X t Y t Y t X t

x t y t x t y t x t y t

= ⋅ = ⋅

= + + +�
 

(3.1)

where
Across variable vector X(t) = [x1(t), x2(t), … , xn(t)]
Through variable vector Y(t) = [y1(t), y2(t), … , yn(t)]

Energy of n-terminal component may be calculated as the integration of power over a 
time interval t0 ≤ t ≤ t1:

 

1

0

1
( )d

2

t t

t

E P t t
=

=

=∫ ∫  
(3.2)

An exception to the choice of complementary terminal variables is the thermal system, 
because the units consistent with energy are temperature and entropy, where entropy is 
nonmeasurable.

Isomorphism between the component terminal graphs and physical measurements of 
few selected systems are shown in Figure 3.3.

In general, for actually establishing the component model beyond selecting a terminal 
graph, it is required to select one set S1 of (n − 1) terminal variables as independent vari-
able functions of time and the remaining set S2 of (n − 1) terminal variables as dependent 
variable functions of time. The only requirement on the sets S1 and S2 is that each contains 
(n − 1) equations. The mapping shows the time dependent variables in S2 as a function of 
the variables in S1.

3.3 Computation of Parameters of a Component

Consider a three-way hydraulic coupler shown in Figure 3.4. It is now desired to compute 
a11, a12, etc.

To obtain the parameters, instruments and drivers (for excitation) are connected as 
shown in Figure 3.5. The terminal equations for the hydraulic coupler are given by

 

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

1 11 12 1

2 21 22
2

( ) ( )

( )
( )

o

o

P t a a g t

P t a a
g t

 (3.3)



106 Modeling and Simulation of Systems Using MATLAB and Simulink

Pumps 1 and 2 are used to develop pressures P1 and P2, which in turn will cause respec-
tive fl ow rates 1( )

o
g t  and 2( )

o
g t . Close the valve V2 to make 2( )

o
g t  = 0, and substituting in 

Equation 3.3 we obtain

 
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

1 11

1
2 21

( )
( )

( )

oP t a
g t

P t a
 (3.4)

The parameters

= =1 2
11 21

1 1

( ) ( )
and

( ) ( )
o o

P t P t
a a

g t g t

B

B
A A

P1
g1

P2
g2

CC

FIGURE 3.4
Hydraulic coupler and its terminal graph.

V

ATwo terminals
electrical component

Source

Mechanical
component

V (t)

δ(t)

δ(t), f (t)

δ(t)

f (t)

f (t)

V (t), I (t)I (t)

Pressure gauge

Flow meter

Pressure pump 

Hydraulic
component

P (t), g(t)

FIGURE 3.3
Various system components and their measurements.



Formulation of State Space Model of Systems 107

Now open the valve V2 and close valve V1. This will make g1(t) = 0 and, substituting in 
Equation 3.4 we get

 
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

1 12

2
2 22

( )
( )

( )

oP t a
g t

P t a  
(3.5)

This gives

= =1 2
12 22

2 2

( ) ( )
and

( ) ( )
o o

P t P t
a a

g t g t

It may be noticed that by setting one column of “AG” matrix at a time to zero, the ele-
ments of the nonzero column may be computed. Similarly, for an n-terminal component 
too, by setting all columns of the [A] but one to zero in each test, aij of that column may be 
computed.

It may be noticed, in the above test, that

 1. The terminal Equation 3.4 has been chosen in the impedance form similar to V = ZI 
in an electrical system. Here Z is impedance, i.e., parameter by virtue of which the 
component impede the fl ow of current or fl uid.

 2. aiis have been computed by open circuiting all except one—fl ow rates between 
terminal pairs. Thus, these parameters are known as open circuit parameters, and 
the matrix A is known as an open circuit parametric matrix and the equation is 
called an open circuit parametric equation or admittance equation.

The equation may be expressed as

 =1 11 1( ) ( )
o

P t a g t  (3.6)

Pump

PP1

Pressure
   meter PP2

Valve

Flow
meter 2

3-TC

Pressure
meter

Pump
1

A
B

Valve
1

Flow
meter 1

FIGURE 3.5
Schematic diagram for the measurement of open-circuit and short-circuit parameters.



108 Modeling and Simulation of Systems Using MATLAB and Simulink

 =2 21 1( ) ( )
o

P t a g t  (3.7)

In these equations 1( )
o

g t  is the independent variable (i.e., it can be chosen arbitrarily). In 

Equations 3.6 and 3.7, fl ow rate 1( )
o

g t  in the terminal pair AB develops a pressure P1(t) 
between the terminal pair AB itself and a pressure P2(t) between the terminal pair BC. The 
pressure P1(t) across the same terminal pair AB is by virtue of its impedance parameter 
a11 and a21. If the fl ow rate g1(t) is equal to unity, then P1(t) = a11. This parameter a11 is called 
driving point impedance.

Similarly, fl ow rate g1(t) in the terminal pair AB causes a pressure of P2(t) across another 
terminal pair BC, as given by Equation 3.7. If we inject another fl ow rate g1(t) equal to unity 
then a21 = P2(t). This parameter a21 is called transfer impedance.

In general,

aii = open circuit driving point impedance
aij = open circuit transfer impedance

The equation X(t) = AY(t) is called the open circuit parametric equation and coeffi cient 
matrix A is an open circuit parametric matrix.

Short circuit parameters

The hydraulic coupler of Figure 3.4 may be represented mathematically in admittance also 
called short circuit parametric form as:

 
( ) ( )Y t GX t=

 
(3.8)

where 
1

G
A

=

in which the across variables are independent variables and the through variables are 
dependent variables. The component terminal equation in this form, then, becomes

1 11 12 1

2 21 22 2

( ) ( )

( ) ( )

Y t G G X t

Y t G G X t
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 or

 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ = ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

1 11 12 1

21 22 2
2

( ) ( )

( )
( )

o

o

g t G G P t

G G P t
g t  

(3.9)

To compute Gij we perform a short circuit test. First remove pump PP2 and replace it by a 
short circuit. The Equation 3.9 after substituting P2 = 0 becomes:

 [ ]
⎡ ⎤ ⎡ ⎤⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

1 11

1
21

2

( )
( )

( )

o

o

g t G
P t

G
g t

 (3.10)



Formulation of State Space Model of Systems 109

 

⎡ ⎤⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

11 1

21 1
2

( )1

( )
( )

o

o

G g t

G P t g t  

(3.11)

From Equation 3.11 G11 and G21 can be calculated by making pressure P2(t) = 0 (using short 
circuit test). Similarly one can calculate G21 and G22 by making P1(t) = 0.

 [ ]
⎡ ⎤ ⎡ ⎤⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

1 12

2
22

2

( )
( )

( )

o

o

g t G
P t

G
g t

 (3.12)

 

⎡ ⎤⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

12 1

22 2
2

( )1

( )
( )

o

o

G g t

G P t g t  

(3.13)

[G] parameters are thus computed by the short circuit in which one pump (across driver) is 
replaced by a SC element at a time, and hence these are called short circuit parameters.

If we short circuit PP2 i.e. P2(t) = 0 and inject a pressure P1(t) = 1 between the terminals 
AB, then equation gives

G11 = g1(t): Flow rate measured between the terminal pair AB

G12 = g2(t): Flow rate measured between terminal pair BC used by injection of P1(t) = 1 
between AB

Gii—Driving point admittance by the virtue of this component admits or causes a fl ow 
between terminal pairs

Gij—Transfer admittance by the short circuit form of parametric equation for representing 
the component

3.4 Single Port and Multiport Systems

Consider a system containing fundamental two-terminal components like spring, mass, 
dampers or resistance, inductance, and capacitance only. These components have one ter-
minal for input and one terminal for the output as shown in Figure 3.6.

The behavior of the system component can be mathematically written in any one of the 
following forms:

 1. Impedance parameters

 ( ) ( )X t A Y t=  (3.14)

Two-terminal
component

Three-terminal
component

FIGURE 3.6
Single and multiport elements.



110 Modeling and Simulation of Systems Using MATLAB and Simulink

 2. Admittance parameters

 ( ) ( )Y t G X t=  (3.15)

 3. Hybrid parameters

 

1 11 12 1

2 21 22 2

( ) ( )

( ) ( )

X t h h Y t

Y t h h X t
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

(3.16)

 4. ABCD or cascade parameters

 

1 2

1 2

( ) ( )

( ) ( )

X t A B Y t

Y t C D X t
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

(3.17)

Applicability of these terminal equations depends upon the type of analysis, input and 
output parameters of interest, and ease with which these quantities may be measured. 
Some of the linear multiterminal components are described in the following section.

3.4.1 Linear Perfect Couplers

Couplers are components that connect two or more systems which are similar but of vary-
ing parameters. For example ideal gear couples two rotating systems at different speeds; 
ideal transformer couples two electric systems at different voltage levels; and ideal lever 
couples two mechanical systems at different forces; etc.

The ideal or perfect couplers are those coupling devices which do not consume energy. 
The terminal equations for ideal couplers may be written as

 

1 12 1

2 21 2

( ) 0 ( )

( ) 0 ( )T

x t h y t

y t h x t
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦  
(3.18)

For example, the terminal equation of a transformer (ref. Figure 3.7) is given by

 
1 1

2 2

( ) 0 ( )

( ) 0 ( )

v t n i t

i t n v t
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (3.19)

b

ν1

i1

i2

ν2

a

c

FIGURE 3.7
Transformer as coupler.



Formulation of State Space Model of Systems 111

The terminal equation is given below and the terminal graph for ideal lever is illustrated 
in Figure 3.8.

 
1 1 2 1

2 1 2 2

( ) 0 ( )

( ) 0 ( )

d t l l f t

f t l l d t

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (3.20)

There are no losses in ideal couplers and hence, power at input side and output side are 
the same, or in the true sense net power consumed is equal to zero.

P = x1(t) y1(t) + x2(t) y2(t)

or

1

1 2
2

( )
( ) ( )

( )

x t
P y t x t

y t
⎡ ⎤

= ⎡ ⎤ ⎢ ⎥⎣ ⎦
⎣ ⎦

Substituting coupler terminal equation in this,

12 1

1 2
12 2

0 ( )
( ) ( ) 0

0 ( )T

h y t
P y t x t

h x t
⎡ ⎤ ⎡ ⎤

= =⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎣ ⎦
⎣ ⎦ ⎣ ⎦

It is not possible to characterize a perfect coupler in open circuit or short circuit form of 
terminal equations. Since X1 is reduced to zero in a coupler and then X2 is zero.

Gyrator

Gyrator terminal equation is skewed symmetric in X explicit or Y explicit form only.

 
1 12 1

2 12 2

( ) 0 ( )

( ) 0 ( )T

Y t G X t

Y t G X t
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (3.21)

Notice that the coeffi cient matrix has the same form as that for ideal couplers. For ideal 
gyrator also, the net power is zero.

b

d1

f1

f2f1
l2

l1
d2

f2

a

c

FIGURE 3.8
Lever for coupling mechanical systems and its terminal 

graph.



112 Modeling and Simulation of Systems Using MATLAB and Simulink

TABLE 3.1

Two-Terminal Components and Their Terminal Equations

Components

Terminal Equation 

in t-Domain

Terminal Equation 

in s-Domain

Schematic 

Diagrams

1. Electrical system components

v(t)—Voltage across the component, i(t)—current through the component

Resistance v(t) = R ⋅ i(t) V(s) = R ⋅ I(s)

R

Inductance v(t) = R ⋅ di(t)/dt V(s) = Ls ⋅ I(s) − L ⋅ i(0+)
L

Capacitance i(t) = C ⋅ dv(t)/dt I(s) = Cs ⋅ V(s) + v(0+)/s
C

2. Translatory motion mechanical system

v(t)—Linear velocity, f(t)—force acting on the component

Damper f(t) = B ⋅ v(t) F(s) = B ⋅ V(s)

B

Spring df(t)/dt = K ⋅ v(t) sF(s) = K ⋅ V(s) − f(0+)
L

Mass f(t) = M ⋅ dv(t)/dt f(s) = Ms ⋅ V(s) − M ⋅ v(s) M

3. Rotary mechanical system

w(t)—Angular velocity, T(t)—torque acting

Rotational damper T(t) = B ⋅ w(t) T(s) = B ⋅ W(s)

B

Shaft stiffness dT(t)/dt = K ⋅ w(t) sT(s) = K ⋅ W(s) − T(0+)

K

Moment of inertia T(t) = J ⋅ dw(t)/dt T(s) = Js ⋅ W(s) − J ⋅ w(0+)

I

4. Hydraulic system components

P(t)—Pressure difference, g(t)—fl uid fl ow rate

Hydraulic resistance P(t) = R ⋅ g(t) P(s) = R ⋅ G(s)

R

Hydraulic capacitance g(t) = C ⋅ dP(t)/dt G(s) = Cs ⋅ P(s) + sP(0+)

C

5. Thermal system components

T(t)—Temperature difference, Q(t)—heat fl ow rate

Thermal conductance T(t) = Q(t)/G T(s) = Q(s)/G R

Thermal capacitance Q(t) = C ⋅ dT(t)/dt Q(s) = C[sT(s) − T(0+)] C



Formulation of State Space Model of Systems 113

3.4.2 Summary of Two-Terminal and Multiterminal Components (Table 3.1)

3.4.3 Multiterminal Components

Multiterminal 

Components Terminal Equation

  1. Vacuum tube ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

0 0g g

p m p p

i v

v g g i

  2. Transformer ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

2 2

1 1

0

0

v n i

i n v

  3. Transistor ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 11 12 1

2 21 22 2

v h h i

i h h v

  4.  Iron core auto 

transformer 

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 1 1 12 1

2 21 2

d d

0

v R L t n i

i n v

  5. Gear train +⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 1 1 12 1

2 21 2

d d

0

T B J t n w

w n T

  6. Differential gear ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 1 1 1 1 12 1

2 1 1 1 1 23 2

3 13 23 3

d d d d

d d d d

0

T B J t B J t n w

T B J t B J t n w

w n n T

  7. Rigid lever ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 1 1 11 13 1

2 21 2

3 31 3

d d

0 0

0 0

f B M t M M w

v M w

v M T v1

l1
l2 v2

  8. Rack and gear +⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 1 1 12 1

2 21 2

d d

0

T B J t n v

v n T

  9. Take up spool + −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 1 1 1

2 2

d d

0

T B J t r w

v r f
a r

10. Dancer pulley ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 1

2 2

3 3

d/d 1 d/d

1 0 2

( d/d ) 2 d/d

f B M t B M t w

f w

f B M t B M t w

11.  Hydraulic 

reservoir

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 1 12 1

2 12 2 2

d d

d d d d

P C R t w

P R t R t f

(continued)



114 Modeling and Simulation of Systems Using MATLAB and Simulink

(continued)

Multiterminal 

Components Terminal Equation

12.  Electric potentiometer ⎡ ⎤ δ⎡ ⎤ ⎡ ⎤+
= ⎢ ⎥⎢ ⎥ ⎢ ⎥δ δ δ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

2 2
1 11 1

2 21

d d d d 0

m m

f B t M t
V iE R V

f

13.  Pneumatic bellows δ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 1 12 1

2 12 20

f K K

q K i

14. Tachometer ⎡ ⎤⎡ ⎤ ⎡ ⎤− +
= ⎢ ⎥⎢ ⎥ ⎢ ⎥δ+⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

2 2
1 21 1

2 1

d d d d

d d d d

T iK B t M t
V R L t K t

T, w
v

3.5 Techniques of System Analysis

Unless systematic methods of analysis are available to relate the characteristics of the pro-
posed system to characteristics of components, one has no resource other than to build 
the system and try it. When the number and cost of the components are low, as in the 
development of a simple amplifi er, “Build and Try” procedure is frequently the most expe-
dient. However such a design would hardly be acceptable in the design of guided mis-
sile. Mathematical analysis methods are used to evaluate systematically the merits of a 
proposed system. Mathematical analysis techniques only extend the engineers’ ability to 
explore the consequences of systems resulting from their imagination, and digital comput-
ers extend it even further.

In this chapter, we are primarily concerned with a discipline for developing mathemati-
cal models of interacting components of systems. These models are sets of simultaneous 
algebraic and/or differential equations showing the interdependence of sets of variables 
that characterize the observable behavior of the system. These equations are developed 
systematically from an identifi ed system structure, i.e.,

 1. Mathematical models of the components in the form of terminal equations

 2. A mathematical model of their interconnection pattern in the form of interconnec-
tion equations, i.e., f-cutset and f-circuit equations

In this sense the system model refl ects the system structure explicitly as a feature that is 
absolutely essential to sensitivity, reliability, stability, and other simulation studies as well 
as to all design and synthesis objectives. The system structure is very essential to study, 
especially if somebody wants to improve the system performance.

Various modeling techniques are available in the literature to model a given system. The 
selection of a suitable modeling and simulation technique for obtaining component model 



Formulation of State Space Model of Systems 115

system models and their solution is very essential. Some of these techniques along with 
their merits and limitation are briefl y presented below.

3.5.1 Lagrangian Technique

It is one of the oldest techniques of system analysis found in the area of mechanics. 
Lagrange in 1970 formalized what is known today as Lagrange’s equation. In this tech-
nique, an energy function is associated with each component of the system. System energy 
functions are obtained by simply adding the energy of the components of the components. 
To obtain mathematical equations describing the characteristics of the system, it is neces-
sary to take partial derivatives of system energy functions successively with respect to a 
set of variables called generalized coordinates.

3.5.2 Free Body Diagram Method

In this technique a schematic sketch of each rigid body along with a set of reference 
arrows is used to establish a mathematical relationship between through variables 
associated with the components. This technique cannot provide a systematic pro-
cedure for establishing a relation between across variables and through variables 
(forces and displacements both are required for computing the work, power and 
energy).

3.5.3 Linear Graph Theoretic Approach

This is based upon electrical network theory and proved to be the most effective tool. To 
establish mathematical characteristics of components and systems, instrumentation of one 
kind or other is involved , i.e., it is necessary to relate physical observations to real number 
systems.

The force/torque equation for mechanical systems may be written as

 [ ]= =∑ …0; 1, 2, 3, ,f k k n 
(3.22)

 [ ]= =∑ …or 0; 1, 2, 3, ,T k k n  (3.23)

Similarly the current and voltage equations for electrical system may be written from 
Kirchoff’s current law as

 [ ]= =∑ …0; 1, 2, 3, ,i k k n (3.24)

or Kirchoff’s voltage law as

 [ ]= =∑ …0; 1, 2, 3, ,v k k n (3.25)

From the above discussion, it is clear that the algebraic sum of the through variables is 
equal to zero at a particular node.



116 Modeling and Simulation of Systems Using MATLAB and Simulink

3.6 Basics of Linear Graph Theoretic Approach

The basic defi nitions related with graph theoretic approach are given below, which are 
relevant to physical system modeling.

 1. Edge

An oriented line segment together with its distinct end point is called an edge as 
shown in Figure 3.9. Edge and element are generally synonyms.

 2. Vertex

A vertex or node is an end point of an edge. (A and B in Figure 3.9 are vertices.)

 3. Incidence

A vertex and an edge are incident with each other if the vertex is an end point of 
the edge.

 4. Linear graph

An oriented linear graph is defi ned as a set of oriented line segments (or edges) no 
two of which have a point in common that is not a vertex.

 5. Subgraph

A subgraph is any subset of the edges of the graph. A subgraph is in itself a graph.

 6. Isomorphism

Two graphs G and G′ are isomorphic (or concurrent) if there is one to one cor-
respondence between the edges of G and G′ and which preserves the incidence 
relationship as shown in Figure 3.10.

 7. Edge sequence

If the edges of a graph or a subgraph can be ordered such that each edge has a 
vertex in common with the preceding edge (in the ordered sequence) and the 
other vertex in common with the succeeding edge it is called an edge sequence of 
a graph or subgraph. In Figure 3.10 “adebfd” is an edge sequence.

 8. Multiplicity

The number of times an edge appears in the edge sequence 
is the multiplicity of the edge in the given edge sequence. 
In the above example of edge sequence the multiplicity of 
“a” is 1 and the multiplicity of “d” is 2, and so on.

b
c

f

d e

a

4

2

3

1

2

b

e

a
f

c

d

3

4

1

FIGURE 3.10
Isomorphism.

A B

FIGURE 3.9
An edge.



Formulation of State Space Model of Systems 117

 9. Edge train

If each edge of an edge sequence has a multiplicity one, then that edge sequence is 
an edge train. In Figure 3.10 a, d, c is an edge train.

 10. Degree of vertex

The degree of vertex is the number of edges connected at that vertex. The degree 
of each vertex in Figure 3.10 is 3.

 11. Path

If the degree of each internal vertex of an edge train is 2 and the degree of each ter-
minal vertex is 1 the edge train is a path (a, d, c is a path between vertices 1 and 2).

 12. Connected graph

 A graph G is connected if there exists a path between any two vertices of the 
graph.

 13. Complement of subgraph

The complement of a subgraph “S” of a graph “G” is the subgraph remaining in G 
when the edges of “S” are removed.

 14. Separate part

A connected subgraph of a graph is said to be a separate part if it contains no ver-
tices in common with its complement.

 15. Tree

A tree is a connected subgraph of a connected graph, which contains no vertices in 
common with its complement. It has no circuit and contains all vertices.

Properties of tree
 1. A subgraph is a tree if there exists only one path between any pair of vertices 

in it.

 2. Every graph has at least one tree.

 3. Every tree has at least two end vertices. The end vertex is a vertex at which 
only one edge is connected.

 4. If a tree contains v vertices, then it has (v − 1) edges.

 5. The rank of a tree is (v − 1). This is also the rank of the graph.

 16. Circuit or loop

If an edge train is closed and has no terminal vertices, then that edge train is called 
a circuit or loop.

 17. Branch

An element or edge of a tree of a connected graph is called a branch.

 18. Cotree

A cotree is complement of the tree of a connected graph.

 19. Chord or link

An edge of a cotree of a connected graph is called a chord or link.

 20. Terminal graph

It is an oriented line segment that indicates the location of pairs of measuring 
instruments and the polarities of their connection.



118 Modeling and Simulation of Systems Using MATLAB and Simulink

 21. System graph

System graph is the collection of component terminal graphs obtained by uniting 
the vertices of the terminal graphs in one to one correspondence with the union of 
component interfaces (terminals) in the actual system.

 22. Lagrangian tree

Lagrangian tree of a graph is a tree whose branches are rooted at a single node 
(terminal) which is usually the reference node.

 23. Forest

If the graph “G” of a system is in more than one part collection, then the tree of 
that multipart graph “G” is known as a forest.

 24. Coforest

Complement of the forest of a multipart graph is known as a coforest.

 25. Fundamental circuit (f-circuit)

The f-circuit is defi ned as a circuit containing exactly one and only one chord 
of the complement of the formulation tree. This chord is known as defi ning chord 
of the f-circuit.

Let “v” be the number of vertices
“e” be the number of elements
“p” is the number of separate parts in a given graph G

The number of f-circuit in a connected graph “G” = number of cotree chords
If G is a connected graph, it means p = 1, then

number of tree branches = (v − 1) and
number of cotree chords = (e − v + 1)

else the number of branches of a forest = (v − p) and

number of chords of coforest = (e − v + p)

 26. Rank of a graph

The rank of a graph “G” is the number of branches in tree i.e., (v − p)

 27. Nullity of a graph

The nullity of a graph is the number of chords in cotree i.e., (e − v + p)

 28. Cutset

A cutset of a connected graph “G” is defi ned as a set of edges “C” having the fol-
lowing properties:

 1. When the set “C” is deleted the graph is exactly in two parts.

 2. No subset of “C” has the property (1).

 3. Removal of a cutset “C” reduces the rank of “G” by one.

If the vertices of a connected graph are divided into two mutual exclusive groups 
and contain exactly one branch of a given tree, it is called a fundamental cutset.

 29. Fundamental cutset (f-cutset)

If the vertices of a connected graph is divided into two mutually exclusive groups 
and contains exactly one branch of a given tree, it is called a fundamental cutset. 



Formulation of State Space Model of Systems 119

A fundamental cutset contains exactly one and only one branch of the formula-
tion tree and the branch is called defi ning branch of the f-cutset.

The number of f-cutset in a connected graph “G” = number of tree branches = 
(v − 1).

 30. Incidence set
An incidence set is defi ned as the set of all edges incident to any given vertex. 
When the incidence set is removed from a graph, the graph may be left in two or 
more than two parts.

3.7 Formulation of System Model for Conceptual System

Consider a conceptual system shown in Figure 3.11. Write f-cutset equation and f-circuit 
equations to formulate the system equations.

Component #1

It is a two-terminal component as shown in Figure 3.12 along with its terminal graph. Let 
the component terminal equation be written as

 
=1 1 1 1 1( ), ( ), ( ), ( ), 0( )o o

f x t y t x t y t t
 

(3.26)

Component #2

It is a three-terminal component as shown in Figure 3.13 with its two edges terminal graph. 
Terminal equation for this component may be written as

=2 2 2 2 2 3 3 3 3( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), 0( )
o o oo

f x t y t x t y t x t y t x t y t t  (3.27)

=3 2 2 2 2 3 3 3 3( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), 0( )
oo oo

f x t y t x t y t x t y t x t y t t  (3.28)

Component #3

It is a four-terminal component as shown in Figure 3.14. The 
terminal equations may be written as follows:

#1 #2

#3

#4

#5

FIGURE 3.11
Conceptual system of interacting 

components.

#1

B

A
A B

x1(t), y1(t)

FIGURE 3.12
Two-terminal component and its terminal graph.



120 Modeling and Simulation of Systems Using MATLAB and Simulink

 =4 4 4 4 4 5 5 5 5 6 6 6 6( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), 0( )o o o oo o
f x t y t x t y t x t y t x t y t x t y t x t y t t  (3.29)

 =5 4 4 4 4 5 5 5 5 6 6 6 6( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), 0( )oo o o o o
f x t y t x t y t x t y t x t y t x t y t x t y t t  (3.30)

 =6 4 4 4 4 5 5 5 5 6 6 6 6( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), 0( )o o o o oof x t y t x t y t x t y t x t y t x t y t x t y t t  (3.31)

Component #4

It is a three-terminal component (Figure 3.15). It has three edges in terminal graph and 
three-terminal equations:

 =7 7 7 7 7 8 8 8 8( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), 0( )o oo of x t y t x t y t x t y t x t y t t  (3.32)

 =8 7 7 7 7 8 8 8 8( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), 0( )
oo o o

f x t y t x t y t x t y t x t y t t  (3.33)

A J

J

C

A
#2

C

x3(t),
y3(t)

x2(t),
y2(t)

FIGURE 3.13
Three-terminal component and its terminal graph.

B D

5
4 6

H

H

C

D

B #3

C
FIGURE 3.14
Four-terminal component and its terminal graph.

H J

J

K

H #4

K

x8(t),
y8(t)

x7(t),
y7(t)

FIGURE 3.15
Three-terminal component and its terminal 

graph.



Formulation of State Space Model of Systems 121

Component #5

It is a two-terminal component, which may be specifi ed by one edge in the terminal graph 
as shown in Figure 3.16 and one terminal equation as given below:

 =9 9 9 9 9( ), ( ), ( ), ( ), 0( )o o
f x t y t x t y t t  (3.34)

Equations 3.26 through 3.34 represent the complete information about all the fi ve 
components.

3.7.1 Fundamental Axioms

The fundamental axiom is a mathematical model of a component that characterize the 
behavior of that component of a system as an independent entity and does not depend on 
how the system component is interconnected with other components to form a system.

It implies that various components can be removed literally or conceptually from the 
remaining system, and can be studied in isolation to establish the model with their char-
acteristics. This is a tool of science to make a system theory universal: analysts can go as 
far as they wish in breaking a system in such building blocks that are suffi ciently simple 
to model, and can thus identify the structure that requires attention.

3.7.2 Component Postulate

The pertinent performance characteristics of each n-terminal component in an identifi ed 
system structure are completely specifi ed by a set of (n − 1) equations and 2(n − 1) oriented 
complementary variables (across and through) identifi ed by (n − 1) arbitrary chosen edges.

3.7.3 System Postulate

The system graph is formed by uniting component terminal graph in one to one corre-
spondence with actual interconnections (interrelations) of the components in the system 
as shown in Figure 3.17.

These component interactions in a system may be mathematically expressed with two 
interconnection postulates:

 1. f-cutset postulate

 2. f-circuit postulate

D

K

#5

KD

x9(t), y9(t)

FIGURE 3.16
Two-terminal component.



122 Modeling and Simulation of Systems Using MATLAB and Simulink

3.7.3.1 Cutset Postulate

The oriented sum of the through measurements Yi(t) implied by the elements of the given 
f-cutset is zero at any instant of time.

Mathematically, f-cutset equation may be written as

 
=

= = −∑ …
1

( ) 0 for any 1, 2, 3, ,( 1)
e

km k
k

a Y t m v  (3.35)

where
akm = 0 if element k is not an element of the f-cutset m
akm = 1 if element k is an element of the cutset m and its orientation is the same as that of 

its defi ning branch
akm = −1 otherwise

In general, f-cutset equation in matrix form is A. Y(t) = 0.

3.7.3.1.1 F-Cutset Equation for Conceptual System

A system graph of the previously discussed conceptual system may be drawn by combin-
ing all the terminal graphs in one to one correspondence of the components as shown in 
Figure 3.18. It has a tree consisting of edges (branches) 1, 2, 3, 5, 6, 8.

In the system graph

Number of vertices v = 7
Number of edges e = 9
Number of tree branches = v − 1 = 6
Number of chords of the cotree = e − v + 1 = 3

A

B

D

C
H

K#3

#2
#4

#5

#1 J

FIGURE 3.17
System graph of the conceptual system.

A

B

D

C
H

K
4

2 3

5

6

8

7

9

1 J

FIGURE 3.18
Tree of given system graph.



Formulation of State Space Model of Systems 123

In system model formulation, we consider only the f-cutsets, as they are unique and give 
minimum number of cutsets. Corresponding to each tree branch a separate f-cutset is 
identifi ed as shown in Figure 3.19.

 1. Fundamental cutset #1 for defi ning branch #1 is a nodal cutset and the f-cutset 
equation may be written by taking the direction of the defi ning branch as the 
reference direction, which is going into the cutset and the direction of chord #4 
is going out from the cutset. Therefore, y1(t) is positive and y4(t) is negative in the 
f-cutset equation as given by

 1 4( ) ( ) 0y t y t− =  (3.36)

 2. Fundamental cutset #2 consists of a defi ning branch #2 and a chord #4. The f-cutset 
equation may be written for f-cutset #2 by considering the defi ning branch direc-
tion as the reference direction, which is going out of the cutset and the direction of 
chord #4 is also going out from the cutset same as the direction of defi ning branch. 
Hence, both the through variables in f-cutset equation are positive.

 2 4( ) ( ) 0y t y t+ =  (3.37)

 3. Fundamental cutset #3 is defi ned for defi ning branch #3. In the f-cutset equations, 
there are three through variables, because the cutset intersects three edges—one is 
the defi ning branch and the remaining two are chords. The direction of the defi n-
ing branch is always considered positive and looks in the directions of remaining 
chords with respect to that particular defi ning branch. Hence, the cutset equation 
may be written as

 3 7 9( ) ( ) ( ) 0y t y t y t− − =  (3.38)

 4. Fundamental cutset #4 for defi ning branch #5, which cuts branch #5 and chord #7. 
The direction of branch #5 is going out from the cutset and chord direction is also 
out from the cutset. Hence, both the through variables are positive in the f-cutset 
equation.

 5 7( ) ( ) 0y t y t+ =  (3.39)

A
2 3 J

8

f-cutset #6

f-cutset #3
f-cutset #5

f-cutset #4f-cutset #2

f-cutset #1

B

D
9

7H5

6

C

1

4
K

FIGURE 3.19
Different f-cutsets for conceptual system graph.



124 Modeling and Simulation of Systems Using MATLAB and Simulink

 5. Fundamental cutset #5 which is a nodal cutset has defi ning branch #6 and chord 
#9. The direction of defi ning branch is going out from the cutset and the direction 
of chord #9 is also going out from the cutset.

 6 9( ) ( ) 0y t y t+ =  (3.40)

 6. Fundamental cutset #6 is also a nodal cutset for the defi ning branch #8. The f-cut-
set equation is

 
+ + =7 8 9( ) ( ) ( ) 0y t y t y t

 
(3.41)

Equations 3.36 through 3.41 can be written in a matrix form, keeping the tree branches 
in the leading position followed by the chords in the trailing position as

 

1

2

3

5

6

8

4

7

9

( ) 0

1 2 3 5 6 8 4 7 9 ( ) 0

1 0 0 0 0 0 1 0 0 ( ) ( ) 0

0 1 0 0 0 0 1 0 0 ( ) 0

0 0 1 0 0 0 0 1 1 ( ) 0

0 0 0 1 0 0 0 1 0 ( ) 0

0 0 0 0 1 0 0 0 1 ( ) 0

0 0 0 0 0 1 0 1 1 ( ) ( ) 0

( ) 0

b

c

y t

y t

y t y t

y t

y t

y t

y t

y t y t

y t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥− − =
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥⎣ ⎦
⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦

cU A

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

(3.42)

A(v − 1) × eY(t)(v − 1) × 1 = 0

where matrix A = [U Ac]

In the above equation matrix A may be partitioned as identity matrix (U) of size 
(v − 1) × (v − 1) and a submatrix Ac is called the f-cutset coeffi cient matrix and of size (v − 1) × 
(e − v + 1). The f-cutset equation may be written as

 ( ) ( )b c cY t A Y t= −  (3.43)

Through variables are those which obey the relationship property of the above equation, 
i.e., the branch through variables are uniquely specifi ed by the chord through variables. 
Therefore, the chord through variables are independent (primary) variables. The cutset 
equations are the continuity equations in hydraulic system, force equations in mechanical 
systems, and Kirchoff’s current law in electrical systems.

3.7.3.2 Circuit Postulate

The oriented sum of the across measurements Xi(t) implied by the elements of the given 
f-circuit is zero at any instant of time.



Formulation of State Space Model of Systems 125

Mathematically, it may be written as given in Equation 3.44.

 
=

= = −∑ …
1

( ) 0 for any 1, 2, 3, ,( 1)
e

km k
k

b X t m v  (3.44)

where
bkm = 0 if element k is not an element of the f-circuit m
bkm = 1 if element k is an element of the circuit m and its orientation is same as that of its 

defi ning chord
bkm = −1 otherwise

In general, f-circuit equation in matrix form is B. X(t) = 0.

3.7.3.2.1 F-Circuit Equations for Conceptual System

From Figure 3.20 the f-circuit equations for the system graph may be obtained for defi ning 
chords as follows.

 1. Fundamental circuit #1 consists of defi ning chord #4 and tree branches 1, 2. The 
direction of defi ning chord in the f-circuit is considered as reference direction and 
the directions of the tree branches in that particular circuit seen with respect to 
the defi ning chord. Hence, the across variable for defi ning chord x4(t) is positive 
and across variables for tree branches as x2(t) is negative and x1(t) positive. The 
f-circuit equation for f-circuit #1 is

 1 2 4( ) ( ) ( ) 0x t x t x t− + =  (3.45)

 2. Fundamental circuit #2 has defi ning chord #7 and tree branches 3, 5, 8. The direc-
tions of across variables of tree branches 3, 5 and 8 with respect to defi ning chord #7 
are positive and negative, respectively. The f-circuit equation may be written for 
the edges #3, #5, #7, and #8 as

 − + − =3 5 7 8( ) ( ) ( ) ( ) 0x t x t x t x t  (3.46)

A
2 3 J

8

f-cutset #6

f-cutset #3
f-cutset #5

f-cutset #4f-cutset #2

f-cutset #1

B

D
9

7H5

6

C

1

4
K

FIGURE 3.20
Fundamental circuits for given conceptual system graph.



126 Modeling and Simulation of Systems Using MATLAB and Simulink

 3. Finally fundamental circuit #3 has defi ning chord #9 and tree branches #3, #8, #6. 
In this case the direction of the across variable for tree branch #6 is opposite to the 
direction of defi ning chord #9 and all the remaining tree branches have the direc-
tion same as that of the defi ning chord:

 
− − + =3 8 6 9( ) ( ) ( ) ( ) 0x t x t x t x t

 
(3.47)

The above written f-circuit Equations 3.45 through 3.47 may be rearranged in the matrix 
form with tree branches in the leading portion and chords in the trailing portion of the 
matrix.

 

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤− ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥− − ⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

1

2

3

5

6

8

4

7

9

1 2 3 5 6 8 4 7 9

( ) 0

( ) 0

( ) ( ) 0

( ) 01 1 0 0 0 0 1 0 0

( ) 00 0 1 1 0 1 0 1 0

( ) 00 0 1 0 1 1 0 0 1

( ) 0

( ) ( ) 0

( ) 0

b

b

c

x t

x t

x t x t

x t

x t

x t

x tB U
x t x t

x t

 

(3.48)

B(e − v + 1) × e X(t)(e − v + 1) × 1 = 0

where matrix B = [Bb U]
The above equation may be partitioned as

⎡ ⎤
=⎢ ⎥

⎣ ⎦

( )
[ ] 0

( )

b
b

c

X t
B U

X t

Submatrix Bb matrix is called the f-circuit coeffi cient matrix. The size of Bb matrix is (e − v + 1) ×
(v − 1).

The above equation can be written as

 
( ) ( )c b bX t B X t= −

 
(3.49)

It is observed from Equation 3.49 that the chord across variables can be completely speci-
fi ed in terms of branch across variables. Hence, chord across variables are dependent (sec-
ondary) variables and branch across variables are independent (primary) variables. The 
primary variable vector for any given system consists of branch across variables and chord 



Formulation of State Space Model of Systems 127

through variables [Xb Yc] and the secondary variable vector contains branch through vari-
ables and chord across variables [Yb Xc].

It is observed that for the conceptual system under consideration the coeffi cient matrices 
of f-cutset equation and f-circuit equation are negative transposes to each other.

T Torc b b cA B B A= − = −

This relation is not by chance, it is due to the Orthogonal Property of the f-cutset and 
f-circuit matrices.

3.7.3.2.2 Orthogonality of Circuit and Cutset Matrices

Each cutset vector (αi) of a connected graph G is orthogonal to each circuit vector βj of G, 
i.e., their product vanishes. For example, consider the fi rst row αi of f-cutset equation and 
also the fi rst row of f-circuit equation βj.

αi = [1 0 0 0 0 0 −1 0 0] and βj = [1 −1 0 0 0 0 1 0 0]

α β = β α =T T( ) 0 or  ( ) 0i j j ij j

3.7.3.3 Vertex Postulate

The oriented sum of through measurements Yi(t) implied by the elements incident to a 
given vertex is zero at any instant of time.

Mathematically, it may be expressed as

 ( ) 0 for any 1, 2, 3, ,km kC y t m v= =∑ …  (3.50)

where
Ckm = 0 if the element is incident to the vertex m
Ckm = 1 if the element is incident to the vertex m and its orientation is away from m
Ckm = −1 otherwise

Notice that the number of incidence sets is equal to the number of vertices v. But the num-
ber of f-cutset is equal to (v − 1), i.e., equal to the number of branches.

3.8 Formulation of System Model for Physical Systems

The procedure outlined so far for obtaining the system model may be summarized in the 
following steps.

Step #1

Identify the components or the subsystems of the system. For each component identify the 
terminals and terminal variables, i.e., the across and through variables and the appropri-
ate measuring system to measure these quantities.



128 Modeling and Simulation of Systems Using MATLAB and Simulink

Step #2

For each n-terminal component draw its terminal graph and write the terminal equation. 
The number of edges in the terminal graph and the number of terminal equations for 
n-terminal component are equal to (n − 1).

Step #3

Combine the component terminal graph in one to one correspondence with the intercon-
nections of the components in the actual systems to obtain the system graph “G.” Identify 
the formulation tree for the system graph “G” according to the topological restrictions.

Step # 4

Write f-cutset and f-circuit equations. Then substitute terminal equations of components 
to get state model.

Linear perfect coupler

The coupler is a device which couples two similar systems. For example, to couple two 
rotary motion mechanical systems gears are used. Similarly, to couple translatory motion 
mechanical systems levers are used. In electrical and electronics systems transformers and 
transistors are used respectively. For hydraulic systems hydraulic couplers are used, and 
so on.

If there are two different types of systems coupled together, then that coupling device 
is called transducer. For example, techo-generator couples mechanical system to electrical 
system, pressure transducer converts mechanical pressure into electrical quantities, and 
so on. The general representation of a coupler or transducer is shown in Figure 3.21.

These coupling devices always need a little energy for their operations. But for simplifi -
cation of the model we always assume that the coupling device is perfect and linear. A perfect 
or ideal coupler does not consume any energy.

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 11 1

T
2 11 2

0

0

x h y

y h x

2 1 2
11

1 2 1

N w T
h

N w T
= = =

1 1 2 2

1

1 2
2

( ) ( ) ( ) ( ) ( )

( )
( ) ( )

( )

0

P t x t y t x t y t

x t
y t x t

y t

= +

⎡ ⎤
= ⎡ ⎤ ⎢ ⎥⎣ ⎦

⎣ ⎦

=

Hence, there is no energy loss and it is said to be perfect coupler.

Coupler
or

transducer
System

#1

System
#2FIGURE 3.21

Coupling device for systems.



Formulation of State Space Model of Systems 129

Pseudo power or quasi power

When the across variables of a system are multiplied by the through variables of another 
system having the same system graph, the product is known as the pseudo power or quasi 
power of the system. The quasi power of systems can be proved equal to zero even when 
measuring the variables at two different time instants.

Example 3.1

Determine the pseudo power for the mechanical system shown in Figure 3.22 and the electrical 
system shown in Figure 3.23.

Determine 
=

δ + τ = δ + δ + δ + δ + δ∑ � � � � � �5
1 1 2 2 3 3 4 4 5 5

1
( ) ( )k k

k
t i t i i i i i

δ
·

k(t) = derivative of displacement of kth element at time t
ik(t + τ) = current in kth element at time (t + τ)

for both systems.

SOLUTION

The system graphs for mechanical and electrical systems are shown in Figures 3.24 and 3.25, 
respectively. The measurements are taken in electrical system at time “t,” and the measurements 
are taken in mechanical system at time “t + τ.”

Coeffi cient circuit matrix Bf = [Bb U]

b
e

c

⎡ ⎤δ
⎢ ⎥δ =
⎢ ⎥δ⎣ ⎦

�
�

�

1

2

1

3

2

4

5

1 0

0 1

1 1

1 1

0 1

b

⎡ ⎤δ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥δ ⎢ ⎥ ⎡ ⎤δ⎢ ⎥ ⎢ ⎥− ⎢ ⎥= − δδ⎢ ⎥ ⎢ ⎥ ⎢ ⎥δ⎢ ⎥ ⎣ ⎦−⎢ ⎥δ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦δ⎣ ⎦

�

�
�
��

�
�

�

Coeffi cient cutset matrix Cf = [U Ac]

 ( )
b

e
c

i
i t

i
⎡ ⎤

+ τ = ⎢ ⎥
⎣ ⎦

C2

R3
L4

I6V1

FIGURE 3.23
Electrical system.

Mass M1

Mass M2

B4K3

F(t)

FIGURE 3.22
Mechanical system.



130 Modeling and Simulation of Systems Using MATLAB and Simulink

1

2 3

3 4

4 5

5

1 1 0

1 1 1

1 0 0

0 1 0

0 0 1

c

i

i i
i i i
i i
i

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Now

5

1 1 2 2 3 3 4 4 5 5

1

( ) ( )k k
k

t i t i i i i i
=

δ + τ = δ + δ + δ + δ + δ∑ � � � � � �

3

1 2 4

5

1 0 1 1 0

0 1 1 1 1 ( )

1 1 1 0 0( ) ( ) ( )

1 1 0 1 0 ( )

0 1 0 0 1

T

i t

t t i t

i t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − + τ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎢ ⎥ ⎢ ⎥−= δ δ + τ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + τ⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

� �

 

3

1 2 4

5

( )
0 0 0

( ) ( ) ( ) 0
0 0 0

( )

i t

t t i t

i t

+ τ⎡ ⎤
⎡ ⎤ ⎢ ⎥⎡ ⎤= δ δ + τ =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥+ τ⎣ ⎦

� �

Therefore the quasi power is zero. This shows the law of conservation of energy.

Symbolic proof

For system I

[ ]

[ ]

( ) ( )

( ) ( )

Ie Ib
b

c
Ie Ic

U
X t X t

B

A
Y t Y t

U

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

−⎡ ⎤
= ⎢ ⎥

⎣ ⎦

For system II

[ ]

[ ]

( ) ( )

( ) ( )

IIe IIb
b

c
IIe IIc

U
X t X t

B

A
Y t Y t

U

⎡ ⎤
+ τ = + τ⎢ ⎥−⎣ ⎦

−⎡ ⎤
+ τ = + τ⎢ ⎥

⎣ ⎦

4

5

2
3

1

FIGURE 3.24
System graph for mechanical 

system.

2

3

4
5

1

FIGURE 3.25
System graph for electrical 

system.



Formulation of State Space Model of Systems 131

 
( ) ( )I IIQ X t Y t= + τ∑

[ ] [ ]−⎡ ⎤ ⎡ ⎤
= + τ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

T

T
( ) ( )

c
Ib IIc

b

U A
X t Y t

B U

 

[ ] [ ]⎡ ⎤= − − + τ⎣ ⎦
T T( ) ( )Ib c b IIcX t A B Y t

 = 0

3.9 Topological Restrictions

3.9.1 Perfect Coupler

The terminal equations for a perfect coupler may be represented as

 
1 1

2 2

( ) 0 ( )

( ) 0 ( )

x t n y t

y t n x t
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (3.51)

1 2

2 1

x nx

y ny

=

= −

From Equation 3.51, it is quite clear that all through variables or all across variables can-
not be explicitly placed on either side of the equation. Hence, the terminal equation of 
the given component is called the hybrid form, i.e., the across variable of the fi rst edge is 
dependent on the across variable of the other edge and the through variable of the second 
edge is dependent on the through variable of the fi rst. Therefore, all the edges of a coupler 
cannot be placed in a tree or a cotree. It is necessary to place one edge in the tree and the 
other edge in a cotree.

3.9.2 Gyrator

The terminal equation of a gyrator is

 

1 1

2 2

( ) 0 ( )

( ) 0 ( )

x t n y t

x t n y t
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦  
(3.52)

From the above mentioned terminal equation, it is very clear that the across variables or 
the through variables may be placed explicitly on either side of the equation. Hence, all the 
edges of a gyrator terminal graph can be placed in a tree or in a cotree, i.e., there are no 
topological restrictions.



132 Modeling and Simulation of Systems Using MATLAB and Simulink

3.9.3 Short Circuit Element (“A” Type)

Instruments such as ammeter, fl ow meter, torque meter, or any 
through variables measuring device as shown in Figure 3.26 
whose impedance is negligibly small and in ideal situation 
it is zero. Hence, the drop in across variable in these com-
ponents is always zero under all operating conditions. These 
components are considered as short circuit components. They 
are always placed in tree branches because across variable 
is specifi ed (i.e., zero). They can be treated as across drivers 
whose value is always zero.

3.9.4 Open Circuit Element (“B” Type)

Instruments such as voltmeter, velocity meter or speed-
ometer, pressure gauge, or any other across variable mea-
suring device (ref. Figure 3.27) whose impedance is considerably large and in ideal 
situation it is infi nite. Hence, the value of through variable in these components is always 
negligibly small under all operating conditions. These components are considered as 
open circuit components. They are always placed in cotree chords because the through 
variable is specifi ed (i.e., zero). They can be treated as through drivers whose value is 
always zero.

3.9.5 Dissipater Type Elements

The terminal equation of dissipater type elements may be written in algebraic form explic-
itly with across variables on one side or with through variables on one side of the equation. 
Hence there is no topological restriction for these types of elements. They may be placed 
either in tree branches or cotree chords.

3.9.6 Delay Type Elements

The terminal equation of delay type elements may be written as

 
d ( )

( )
d

y t
x t b

t
=

 
(3.53)

In this equation, the across variable is dependent upon the through variable. In other 
words the through variable is a primary variable and the across variable is a secondary 
variable. Hence, these elements are placed in the cotree.

3.9.7 Accumulator Type Elements

The terminal equation of accumulator or storage type elements may be written as in 
Equation 3.54.

 

d ( )
( )

d

x t
y t C

t
=

 
(3.54)

A

Z = 0

ba

FIGURE 3.26
Through variable measuring 

device.

V

Z = ∞

ba

FIGURE 3.27
Across variable measuring device.



Formulation of State Space Model of Systems 133

In this equation, the through variable is dependent upon the across variable. In other 
words the across variable is the primary variable and the through variable is the second-
ary variable. Hence, these elements are placed in the tree.

3.9.8 Across Drivers

The terminal equation for across driver is

 ( ):  specifiedx t  (3.55)

In these elements the across variable is the independent variable (primary variable). Hence, 
these elements are always placed in tree branches.

3.9.9 Through Drivers

The terminal equation for through driver is

 ( ):  specifiedy t  (3.56)

In these elements the through variable is the independent variable (primary variable). 
Hence, these elements are always placed in cotree chords.

Example 3.2

Draw a maximal formulation tree and write f-cutset and f-circuit equations for the given hydraulic 
system shown in Figure 3.28.

Step 1 System identifi cation

The given system contains the following components as shown in Table 3.2.

f

C3

R6R5

Pump

h

C4

Fully
open
valve

(P = 0)

e
dcb

a

FIGURE 3.28
Hydraulic system.



134 Modeling and Simulation of Systems Using MATLAB and Simulink

Step 2 Draw the system graph and formulation tree

The system graph for the given hydraulic system may be obtained 
from the union of terminal graphs of all the components in one to 
one correspondence of these components connected in the sys-
tem as shown in Figure 3.29. Once the system graph is ready, we 
can defi ne the maximally formulated tree according to the topo-
logical restrictions as follows:

 1. Start with across drivers, i.e., pressure pump (P1) and fully 
open valve (P2).

 2. After the selection of across drivers into tree, the next prior-
ity goes to storage type elements (hydraulic tanks). So C3 
can be considered as tree branch, but C4 cannot be taken 
into tree, otherwise it will form a closed loop.

 3. Hence, with the elements P1, P2, and C3 the tree is com-
plete, i.e., all the vertices are connected and there is no 
closed loop, as shown in Figure 3.30.

Step 3 Write the f-cutset equation

 1. Fundamental cutset #1 contains one and only one tree 
branch, i.e., P1 and the rest of the chord, i.e., R5. The f-cutset 
equation for this cutset is

 51( ) ( ) 0
o o
g t g t− =  (3.57)

TABLE 3.2

Components of Hydraulic System along with Their Terminal Equations and Terminal Graphs

Components Diagram Terminal Equation Terminal Graph

1. Pressure pump P1: Specifi ed P1a b

2. Fully open valve Pressure drop in valve 

P = 0: Specifi ed
P2d e

2. Storage tank

C

f

c

= d ( )
( )

d

o P t
g t C

t

C3

C4

c

d h

f

3. Pipe resistance

R
=( ) ( )

o
g t GP t  or =( ) ( )

oP t R g t
R5

R6

b c

c d

a, e, f, h

cb d

P2
P1

R5 R6

C3
C4

FIGURE 3.29
System graph for hydraulic system.

a, e, f, h

cb d

P2

P1

R5 R6

C3
C4

FIGURE 3.30
Formulation tree.



Formulation of State Space Model of Systems 135

 2. Fundamental cutset #2 has P2 as defi ning branch and the rest are chords as C4 and R6. The 
f-cutset equation for cutset #2 is written as

 4 62( ) ( ) ( ) 0
oo o

g t g t g t+ − =  (3.58)

 3. Fundamental cutset #3 has been formed by defi ning branch C3 and chords as R5 and R6. The 
f-cutset equation for cutset #3 is written as

 − + =5 63( ) ( ) ( ) 0
o o o
g t g t g t  (3.59)

Finally, f-cutset equation may be written in the matrix as

 

1

2

3

4

5

6

( )

( )1 2 3 4 5 6 ( )
0

( )1 0 0 0 1 0
0

0 1 0 1 0 1 ( ) 0
( )0 0 1 0 1 1

( )

( )

o

o

b
o

o

c
o

oc

g t

g t
y t

g t

g t
y t

g t
U A

g t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ ⎡ ⎤⎢ ⎥−⎡ ⎤ ⎢ ⎥=⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥−⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

(3.60)

Alternatively, the coeffi cient matrix of f-cutset equation may be obtained from the incidence 
matrix.

 1. Write the incidence matrix for the given system graph as

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

− − −⎢ ⎥⎣ ⎦

edges

1 2 3 4 5 6

1 0 0 0 1 0

nodes 0 0 1 0 1 1

0 1 0 1 0 1

, , , 1 1 1 1 0 0

b

c

d

a e f h

 2. Remove the last row related with reference node “a.” The reduced incidence matrix is

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

edges

1 2 3 4 5 6

1 0 0 0 1 0
nodes

0 0 1 0 1 1

0 1 0 1 0 1

b

c

d



136 Modeling and Simulation of Systems Using MATLAB and Simulink

 3. Perform elementary row operations to get unit matrix in the leading portion of the matrix 
and the trailing portion will be Ac matrix. The unity matrix in the leading portion may be 
obtained by the following operations:

 i. Multiply the fi rst row with −1
 ii. Exchange the last two rows
 iii. Multiply the last row by −1

Finally, the f-cutset coeffi cient matrix is obtained as given below

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

edges

1 2 3 4 5 6

1 0 0 0 1 0
nodes 0 1 0 1 0 1

0 0 1 0 1 1

b

c

d

Step 4 Write f-circuit equation

 1. The f-circuit #1 consists of defi ning chord #C4 and a branch P2. The f-circuit equation may 
be written as

 2 4( ) ( ) 0P t P t− + =  (3.61)

 2. The f-circuit #2 consists of defi ning chord #R5 and rest of the branches such as P1 and C3. 
The f-circuit equation may be written as

 + + =1 3 5( ) ( ) ( ) 0P t P t P t  (3.62)

 3. The f-circuit #3 formed by defi ning chord #R6 and rest of the branches such as C3 and P2. 
The f-circuit equation may be given by

 − + =1 3 6( ) ( ) ( ) 0P t P t P t  (3.63)

Finally, f-circuit equation may be written in the matrix as

 

1

2

3

4

5

6

( )
1 2 3 4 5 6 ( ) ( )

0
( )0 1 0 1 0 0

0
( )1 0 1 0 1 0

0
( ) ( )0 1 1 0 0 1
( )

b

c

b

P t

P t x t

P t

P t

P t x t

P tB U

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤⎢ ⎥−⎡ ⎤ ⎢ ⎥=⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥−⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

 

(3.64)

Alternatively, Bb matrix may be determined from the property of orthogonality, i.e.,

T
b cB A= −



Formulation of State Space Model of Systems 137

Example 3.3

Develop a state model of the subassembly shown in Figure 3.31 as a 
four-terminal (E, D, B, G) component and discuss the solution for an 
arbitrary set of terminal excitation.

The subassembly has external terminals E, D, and B from where it 
can be interfaced with the rest of the system as shown in the terminal 
graph Figure 3.32. It also has internal terminals A, C, and reference 
point G.

 1. Recognition of the system component
 a. Mass
  It is a four-terminal component whose terminal graph is shown 

in Figure 3.33 and the terminal equation is given below:

 

11 12

1 1

2 21 22 23 2

3 3
23

d d
0

d d( ) ( )
d d

( ) ( )
d d

( ) ( )0 0

M M
t tf t v t

f t M M k v t
t t

v t f tk

⎡ ⎤
⎢ ⎥

⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦−⎢ ⎥

⎢ ⎥⎣ ⎦
 

(3.65)

 b. Lever
  The terminal equation for lever as a three-terminal component 

is given below and the terminal graph is shown in Figure 3.34.

 

4 45 4

5 45 5

( ) 0 ( )

( ) 0 ( )

v t k f t

f t k v t

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦  
(3.66)

  where k4 = l4/l5
 c. Spring
  The terminal equation for spring as a three-terminal component

 6 6 6
d

( ) ( )
d

f t k v t
t

=  (3.67)

 The terminal graph for spring is shown in Figure 3.35.

E D

C

4
5

FIGURE 3.34
Terminal graph for lever.

G

1

3

C

2

A B

FIGURE 3.33
Terminal graph for rigid mass.

A
B

D
L5I4

K6

M

CE FIGURE 3.31
Subassembly of a mechanical system.

E B
D

G

9

7
8

FIGURE 3.32
Terminal graph of given 

subassembly.



138 Modeling and Simulation of Systems Using MATLAB and Simulink

 2. Drawing the system graph
  Combine terminal graph of all components in one to one cor-

respondence to get a system graph as shown in Figure 3.36.
 3. Checking the existence and uniqueness of the solution for 

system model

Theorem #1(a)

The necessary condition for existence and uniqueness of the 
solution for the given system is that there exist two trees 
such that the direct sum terminal equations (DSTE) are 
given by

 

ψ = ψ +

= ψ +

d * ** *( ) ( ) ( )
d

* **( ) ( ) ( )

s

p s

C t P t Q Z t
t

Z t M t N Z t  

(3.68)

ψ*(t) = state variable vector
Zs(t) = secondary variable vector
Zp(t) = primary variable vector (across variables of a tree and through variables of a cotree)

⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
1 1

2 2

_

' '

( ) and ( ) ( )
T T

p s p
T T

X Y
Z t Z t Z t

Y X

such that the matrix (λc − P*) should be nonsingular.
The system graph shown in Figure 3.36 is augmented by external drivers connected in 

the same way as the desired terminal graph shown in Figure 3.32.
The augmented system graph for the given subassembly is shown in Figure 3.37 and the 

maximally formulated tree for the graph consists of branches 1, 2, 3, 4, 7′ and cotree 5, 6, 
8′, 9′. Out of three external drivers connected to the subassembly, two (8′ and 9′) are in the 
cotree and one (7′) in the tree. Hence, the external driver 7′ must be an across driver and 
the remaining two external drivers 8′ and 9′ must be through drivers.

A

E

6

B

D3

4

1

2

5
C

G

7́

8́

9́

FIGURE 3.37
Augmented system graph of given subassembly.

C

G

5

2 3

4

1

6

E

A B

D

FIGURE 3.36
System graph for subassembly.

A 6 E

FIGURE 3.35
Terminal graph for spring.



Formulation of State Space Model of Systems 139

For given subassembly the DSTE can be represented by Equation 3.69.

 

[ ]

1

2

11 12 1 1
3

21 22 2 2 23
4

6 6 6
5

6

0 1 0 0 0 0 0
d

0 0 0 1 0 0 0
d

0 0 1 0 0 0 0 0

f

f
M M v v

f
M M v v k

ft
f f k

v

v

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + − ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

(3.69)

ψ = ψ +d * ( )
  * * ( )  ( )

d
s

t
C P t QZ t

t

The primary variable vector may be expressed in terms of secondary variable vector and 
state vector:

 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
i

1
1

2
2

1
3

23 3

2
4

45 4

6
5

45 5

6
6

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

v f
v f

vv k f
vv k f
ff k v

vf  

(3.70)

Zp(t) = MΨ(t) + NZs(t)

Continue from the previous class

β β⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= β β⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

1 11 12

2 21 22

6

0
d *0 [ ][ ( )]
d

0 0 1

s

v

v Q Z t
t

f

⎡ ⎤
⎢ ⎥
⎢ ⎥β β −β⎡ ⎤ ⎢ ⎥⎢ ⎥= β β −β ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1

2

11 12 12 23
3

21 22 22 23
4

6
5

6

0 0 0

0 0 0

0 0 0 0 0

f

f
k

f
k

f
k

v

v

Theorem #1(b)

If a linear time invariant system having a graph with e edges has a complete and unique 
solution for all 2e variables corresponding to the edges of the graph, then there exist two 



140 Modeling and Simulation of Systems Using MATLAB and Simulink

trees T1 and T2 (T1 and T2 may be same) in graph G such that the direction terminal equation 
can be written in the s-domain matrix form as

 
1 2

1 2

11 12

21 22

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

b b b

c c c

X s H s H s Y s f s

Y s H s H s X s f s
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

(3.71)

where 1( )bX s  corresponding to the edges of T1 and 1( )cY s  corresponding to the edges of the 
complement of tree T1, 2( )bY s  corresponding to the edges of T2 and 2( )cX s  corresponding to 
the edges of the complement of tree T2, fb(s) is the initial condition for the branch elements 
and fc(s), initial condition for the chord elements.

Now for the given system we write the f-cutset, the f-circuit, and the constraint equation 
in Equations 3.72 through 3.74, respectively.

f-cutset equation

( ) ( )b c cy t A Y t= −

 

⎡ ⎤
−⎡ ⎤⎢ ⎥ ⎡ ⎤

⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ − − ⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦

1

5

2

6

3

8

4
9

7

'

'

'

1 1 1 1

0 1 0 0

0 0 0 1

0 0 1 0

1 1 0 0

f
f

f
f

f
f

f f
f  

(3.72)

f-circuit equation

( ) ( )c b bx t B X t= −

 

⎡ ⎤
− ⎢ ⎥⎡ ⎤ ⎡ ⎤

⎢ ⎥⎢ ⎥ ⎢ ⎥− − ⎢ ⎥⎢ ⎥ ⎢ ⎥= − ⎢ ⎥⎢ ⎥ ⎢ ⎥− −
⎢ ⎥⎢ ⎥ ⎢ ⎥− − ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥⎣ ⎦

1

5

2
6

3
8

4
9

7

'

'

'

1 0 0 0 1

1 1 0 0 1

1 0 0 1 0

1 0 1 0 0

v
v

v
v

vv
vv
v  

(3.73)

The constraint equation

 

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1

2

1 37
3

2 48
4

6 59
5

6

'

'

'

0 0 1 0 1 1 0 0 1

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0

1 0 0 1 0 0 0 0 0

1 1 0 1 0 0 0 0 0

f

f
v v v

f
v f v

f
f f f

v

v

⎥
⎥

 

(3.74)



Formulation of State Space Model of Systems 141

From the constraint equation we try to eliminate the last matrix that is not required for 
representing the system behavior. In this example we use the following relation for lever 
to eliminate the last matrix from the constraint equation.

f5 = k45f4 and f4 = f8′

Using this relation we get

 

′

′

′

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 45

2

1 7
3

2 8
4

6 9
5

6

0 0 1 0 1 1

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

1 0 0 1 0 0

1 1 0 1 0 0

f k

f
v v

f
v f

f
f f

v

v
 

(3.75)

Now the state space model can be written as given in Equation 3.76.

′

′

′

⎧ ⎫+⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥
⎪⎢ ⎥ ⎢ ⎥β β −β⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪⎢ ⎥ ⎢ ⎥⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= β β −β +⎢ ⎥ ⎢ ⎥⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎪ −

⎢ ⎥ ⎢ ⎥⎪
⎢ ⎥ ⎢ ⎥⎪⎣ ⎦ ⎣ ⎦⎩

45

1 11 12 12 23 1 7

2 21 22 22 23 2 8

6 6 6 9

0 0 1 0 1 1

0 0 1 0 0 0
0 0 0

0 0 0 0 0 1d
0 0 0

0 0 0 0 1 0d
0 0 0 0 0

1 0 0 1 0 0

1 1 0 1 0 0

k

v k v v

v k v f
t

f k f f

⎪
⎪⎪

⎪
⎪
⎪
⎪⎭

  
  

(3.76)

State space modeling

The state variable of a dynamic system may be defi ned as a minimal set of numbers x1(t), 
x2(t), …, xn(t) of which, if values are specifi ed at any time instant t0, together with the knowl-
edge of the input to the system for t0 ≤ τ ≤ t the evolution of state and the output of the 
system for t0 ≤ τ ≤ t are completely defi ned.

System has m – input and p – output, the system is called multi-input multi-output 
(MIMO) system and is shown in Figure 3.38 with its state model. Input to a system can be 
divided into three groups:

 1. Control input which enables infl uence to be exerted on the system output

 2. Disturbance input which can be directly measured but not controlled

 3. Disturbance input which can neither be directly measured nor controlled

System state space
model

Inputs Outputs
... ...

FIGURE 3.38
State space model for MIMO system.



142 Modeling and Simulation of Systems Using MATLAB and Simulink

Consider an example of modeling of automobile motion on the road; these three inputs 
are as follows:

 1. The fuel input to the engine is controlled input.

 2. The road gradient is a disturbance and can be measured directly, but cannot be 
controlled.

 3. The wind gusts are disturbances which cannot be measured or controlled.

Input vector 

1

2

( )

( )
( )

( )m

u t

u t
U t

u t

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

…
, output vector 

1

2

( )

( )
( )

( )p

y t

y t
Y t

y t

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, and

state variable vector 

1

2

( )

( )
( )

( )n

x t

x t
X t

x t

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

.

First-order differential equation in state variable form for a given system may be given as

0

1( )x t  = f1(x1(t), x2(t), … , xn(t), u1(t), u2(t), … , un(t), t)
0

2( )x t  = f2(x1(t), x2(t), … , xn(t), u1(t), u2(t), … , un(t), t)
…

0
( )nx t  = fn(x1(t), x2(t), … , xn(t), u1(t), u2(t), … , un(t), t)

where f(t) = 

1

2

...

n

f

f

f

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 is a function operator.

The system output equations may also be written in the following form:

y1(t) = g1(x1(t), x2(t), … , xn(t), u1(t), u2(t), … , un(t), t)

y2(t) = g2(x1(t), x2(t), … , xn(t), u1(t), u2(t), … , un(t), t)

…

Yp(t) = gp(x1(t), x2(t), … , xn(t), u1(t), u2(t), … , un(t), t)

where g(t) = 

1

2

...

p

g

g

g

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 is a function operator for outputs.



Formulation of State Space Model of Systems 143

This can be represented by canonical form as a function of state variable vector and 
input vector as

 
= ⎡ ⎤⎣ ⎦… …1 1 1 2

d ( )
, ( ), ( ), , ( ), ( ), ( ), , ( ),

d
i

i n m
x t

f t x t x t x t u t u t u t t
t  

(3.77)

Since state variables completely defi ne systems, dynamic behavior output can be expressed as

 
= … …1 1 1 2( ) ( , ( ), ( ), , ( ), ( ), ( ), , ( ), )k k n my t g t x t x t x t u t u t u t t

 
(3.78)

yk(t) – system output variables, where k = 1, 2, … , P.
The combination of state equation 3.77 and output equation 3.78 is called “state space 

model” of the system. These equations are nonlinear if fi and gk are nonlinear functions. 
The state space model is time variant if these functions fi and gk contain explicit function 
of time.

These equations may be written for linear time invariant system as

= + = +
0

( ) ( ) ( ) and ( ) ( ) ( )X t AX t BU t Y t CX t DU t

where coeffi cient A, B, C, and D are constant matrices, and the elements of these matrices 
are time independent.

The above described state model for time variant system may be written as

= + = +
0

( ) ( ) ( ) ( ) ( ) and ( ) ( ) ( ) ( ) ( )X t A t X t B t U t Y t C t X t D t U t

where coeffi cient A(t), B(t), C(t), and D(t) are not constant matrices, but the elements of these 
matrices change with time.

The order of these coeffi cient matrices is given below:

Coeffi cient Matrix Order of Matrix

A n × n
B  n × m
C p × n
D  P × m

Consider the following equations

d ( )
5 ( ) 5 ( )

d

x t
t x t u t

t
= +

 
Nonlinear and time variant equation

d ( )
5 ( ) 5 ( )

d

x t
x t u t

t
= +

 
Nonlinear and time invariant equation

d ( )
5 ( ) 5 ( )

d

x t
x t u t

t
= +

 
Linear and time invariant equation

d ( )
5 ( ) 5 ( )

d

x t
tx t u t

t
= +

 

Linear and time variant equation



144 Modeling and Simulation of Systems Using MATLAB and Simulink

State variable vector contains variables related with the energy storing (or dynamic) 
element. The number of state variables equals to number of branch capacitance and the 
number of chord inductances, i.e., the total number of dynamic elements for nondegen-
erate system.

3.10 Development of State Model of Degenerative System

In any system if we are unable to keep all capacitors in branches and all inductors in 
chords, then the system is called degenerate system.

Example 3.4

Consider an electrical system as shown in Figure 3.39. Draw its system graph and f-tree. Also men-
tion the number of degeneracy in the given electrical system and due to which components.

SOLUTION

Step 1 Identify the components in the system

In an electrical system, it is relatively easy to identify the components and their interactions as 
compared to other systems. The components identifi ed for this system are shown in Table 3.3.

Step 2 Draw the system graph

Combine all the terminal graphs of all the components of the electrical systems in one to one cor-
respondence to get the system graph as shown in Figure 3.40.

Step 3 Draw f-tree

Once the system graph is ready, follow the procedure given below to draw f-tree:

 1. Place all across drivers in tree T1.
 2. Draw T2 as the union of tree T1 and terminal graphs of accumulators in such a way that there 

is no closed loop (i.e., T2 = “T1” U “C-Type components”).
 3. Expand tree T2 to get tree T3 such that T3 = “T2” U “terminal graph of algebraic component” 

and there is no closed loop.
 4. Now consider the terminal graph of delay type elements and draw tree T4 such as T4 = “T3” 

U “terminal graph of delay type component.”
 5. Finally, complete the tree if any node of the graph is not connected using through drivers. 

Hence, f-tree T5 = “T4” U “terminal graph of through drivers.”

C2

Es1

C5

L7

L4

E

Is8

F
G3

R6

C

A

D

+

–

FIGURE 3.39
Electrical system.



Formulation of State Space Model of Systems 145

In this procedure, at any stage if the insertion of any com-
ponent terminal graph forms closed loops, then do not con-
sider that component into the tree. That component will be 
a part of the cotree. The intermediate trees that develop to 
form the fi nal f-tree T4 for the given system are shown in 
Figure 3.41. It is very clear from the above discussion that 
when we consider accumulator type components like C2 
and C5 for tree development, C2 can be placed into the tree 
but C5 forms a closed loop. Hence, C5 cannot be kept into the 
tree. Similarly, for delay type components, L4 and L7 can-
not be placed into the cotree. If we try to keep them into 
the cotree, then all the nodes are not connected and the tree 
cannot be completed. Hence, it is necessary to consider L4 
into the tree.

D F
3

4
1

7

5A

8

E

2
6

C

FIGURE 3.40
System graph for electrical system.

T1

D

C

1

T2

D

2 C

A

1

T3

D

2
C

F3

A

1

T4

D

2

4

C

F

E

3

A

1

FIGURE 3.41
Development of tree for degenerate electrical system.

TABLE 3.3

Different Components in Given Electrical System

Type of Components Components Schematic Diagram Terminal Graph

1. Across drivers Voltage source
– + C DEs1

2. Accumulators Capacitors C2 and C5 A

A D

CC5

C2

3. Algebraic type Resistor G3 Conductor R6

R6A

F D

C

G3

4. Delay type Inductor L4 and L7 E F

E C

L4

L7

5. Through driver Current source
E AIs8



146 Modeling and Simulation of Systems Using MATLAB and Simulink

To get fi nal tree T4 there are two violations of topological restrictions, fi rst for C5 and 
second for L4. Hence, the number of degeneracies is equal to two.

Number of degeneracies =  Number of accumulator components in the cotree 
+ number of components in tree

The number of state equations for degenerate system is always less than the nondegenerate 
system.

The number of state equation for degenerate system 
 =  Total number of dynamic elements − number of degenerate elements

3.10.1 Development of State Model for Degenerate System

 1. Let P be vector of primary variables and S be vector of secondary variables for any 
given system.

These variables may be grouped according to the type of elements as shown in 
Table 3.4.

 2. Write the interconnection (f-cutset and f-circuit) equations for the given system:

  f-cutset equations 
( )

0
( )

b
c

c

Y t
U A

Y t
⎡ ⎤

=⎡ ⎤ ⎢ ⎥⎣ ⎦
⎣ ⎦

  f-circuit equation 
( )

0
( )

b
b

c

X t
B U

X t
⎡ ⎤

=⎡ ⎤ ⎢ ⎥⎣ ⎦
⎣ ⎦

  Combine the f-cutset and f-circuit equations; we get

( )

0 0 ( ) 0

0 0 ( ) 0

( )

b

b c

c b

c

X t

B U Y t

A U Y t

X t

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥
⎣ ⎦

TABLE 3.4

Grouping of Components according to Their Type

Components

Primary 

Variables

Secondary 

Variable Terminal Equation

Drivers P0 S0 P0: Specifi ed

Nondegenerative dynamic elements P1 S1
1

1 1

d

d

P
D S

t
=

Degenerative dynamic elements P2 S2

2
2 2

d

d

S
P D

t
=

Algebraic elements P3 S3 P3 = D3S3



Formulation of State Space Model of Systems 147

 

( ) 0 ( )

( ) 0 ( )

c b b

b c c

X t B X t

Y t A Y t
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

(3.79)

( )

( )

c

b

X t

Y t
⎡ ⎤
⎢ ⎥
⎣ ⎦

—Secondary variable vector “P”

( )

( )

b

c

X t

Y t
⎡ ⎤
⎢ ⎥
⎣ ⎦

—Primary variable vector “S”

Equation 3.79 may be written as S(t) = ΦP(t)

 

0 00 01 02 03 0

1 10 11 12 13 1

2 20 21 22 23 2

3 30 31 32 33 3

( ) ( )

( ) ( )

( ) ( )

( ) ( )

S t P t

S t P t

S t P t

S t P t

φ φ φ φ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥φ φ φ φ⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥φ φ φ φ
⎢ ⎥ ⎢ ⎥ ⎢ ⎥φ φ φ φ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

(3.80)

In Equation 3.80 the values of submatrices Φ22, Φ23, and Φ32 are always zero.

 3. Start with terminal equations of nondegenerative dynamic elements:

1
1 1

d ( )
( )

d

P t
D S t

t
=

Substitute S1 from Equation 3.80:

 ( )= Φ + Φ + Φ + Φ1 10 0 11 1 12 2 13 3D P P P P  (3.81)

 4. Consider the terminal equation for algebraic elements

 P3 = D3S3

 P3 = D3(Φ30P0 + Φ31P1 + Φ32P2 + Φ33P3)

 P3 = D3(Φ30P0 + Φ31P1) + D3Φ33P3

 (U + D3Φ33)P3 = D3(Φ30P0 + Φ31P1)

 
−= + Φ Φ + Φ1

3 3 33 3 30 0 31 1( ) ( )P U D D P P  (3.82)

 5. Let us consider the terminal equation for degenerative dynamic elements

2
2 2

d

d

S
P D

t
=

2 2 20 0 21 1 22 2 23 3

d
( )

d
P D P P P P

t
= φ + φ + φ + φ



148 Modeling and Simulation of Systems Using MATLAB and Simulink

 = φ + φ Φ Φ2 2 20 0 21 1 22 23

d
( ) because ,   are zero

d
P D P P

t
 (3.83)

Substituting Equations 3.82 and 3.83 in Equation 3.81, we get

−⎡ ⎤= φ + φ + φ φ + φ + φ + φ φ + φ  ⎢ ⎥⎣ ⎦
1 1

1 10 0 11 1 12 2 20 0 21 1 13 3 33 30 0 31 1

d ( ) d
( ) ( ) ( )

d d

P t
D P P D P P U D P P

t t

 
1 10 0 1 11 1 1 12 2 20 0 1 12 2 21 1

1 1
1 13 3 33 30 0 1 13 3 33 31 1

d d

d d

( ) ( ) )

D P D P D D P D D P
t t

D U D P D U D P− −

= φ + φ + φ φ + ϕ φ

+ φ + φ φ + φ + φ φ

[

]

−

−

− φ φ = φ + φ + φ φ

+ φ + φ + φ φ + φ φ

1
1 12 2 21 1 1 10 1 13 3 33 30 0

1
1 11 1 13 3 33 31 1 1 12 2 20 0

d
[ ] { ( ) }

d

d
{ ( ) }

d

U D D P D D U D P
t

D D U D P D D P
t

1 1
1 1 12 2 21 1 10 1 13 3 33 30 0

1
1 11 1 13 3 33 31 1 1 12 2 20 0

d
[ ] { ( ) }

d

d
{ ( ) }

d

P U D D D D U D P
t

D D U D P D D P
t

− −

−

= − φ φ φ + φ + φ φ

+ φ + φ + φ φ + φ φ

[

]

Example 3.5

Consider a degenerative electrical system as shown in Figure 3.42. Develop its state space 
model.

 1. Identify the components and draw its system graph as shown in Figure 3.43.
 2. Group the components and write the terminal equations.

a. Drivers: P0—Specifi ed

 
1

7
specified

X

Y
⎡ ⎤

 = ⎢ ⎥
⎣ ⎦

 (3.84)

C5

C3

C4

C

B
L5

A

D C

+

–
R5 Vs1

Is7

FIGURE 3.42
Electrical system.



Formulation of State Space Model of Systems 149

 b. Nondegenerative dynamic elements:

1 1 1
d
d

P D S
t

= 

 

2 2 2

3 3 3

6 6 6

1/ 0 0
d

0 1/ 0
d

0 0 1/

X C Y

X C Y
t

Y L X

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

(3.85)

 c. Degenerative dynamic elements:

 

2 2 2

4 4 4

d
d

d
d

P D S
t

Y C X
t

 = 

= 
 

(3.86)

 d. Algebraic elements:

 

3 3 3

5 5
5

1

P D S

Y X
R

 = 

 =  

(3.87)

 3. Interconnecting equations:

 

1 10 0

7 7

2 2

3 31 1

6 6

4 42 2

5 53 3

1 7 2 3 6 4 5

0 0 0 0 0 1 1

0 0 1 1 0 0 0

0 1 0 0 1 1 0

0 1 0 0 0 1 0

0 0 1 0 0 0 0

1 0 1 1 0 0 0

1 0 0 0 0 0 0

Y XS P
X Y

Y X

Y XS P
X Y

X YS P
X YS P

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥−⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦  

(3.88)

 4. Starting with 2

2 2 2

3 3 3

6 6 6

1/ 0 0
d

0 1/ 0
d

0 0 1/

X C Y

X C Y
t

Y L X

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ =   ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

[ ] [ ]

⎡ ⎤
⎢ ⎥

⎧ ⎫⎢ ⎥ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + + +⎨ ⎬⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭⎢ ⎥

⎢ ⎥⎣ ⎦

2
1

1
3 4 5

23
6

6

1
0 0

0 1 0 0 1 1 0
1

0 0 0 1 0 0 0 1 0

0 0 1 0 0 0 0
1

0 0

C X
X

X Y Y
YC

Y

L
 

(3.89)

B

3

A

C D

1
7

6

2

5

FIGURE 3.43
Tree of given electrical system.



150 Modeling and Simulation of Systems Using MATLAB and Simulink

 5. Eliminating Y4 from Equation 3.89

 
4 4 4

d
d

Y C X
t

= 

[ ] [ ]
2

1
4 3 4 5

7
6

d
1 0 1 1 0 0 0

d

X
X

C X Y Y
Yt

Y

⎡ ⎤⎡ ⎤
⎡ ⎤⎢ ⎥⎢ ⎥= −  + − − + +⎡ ⎤ ⎡ ⎤⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

 

2
1

4 3
7

6

d
1 0 1 1 0

d

X
X

C X
Yt

Y

⎡ ⎤⎡ ⎤
⎡ ⎤⎢ ⎥⎢ ⎥= −  + − −⎡ ⎤ ⎡ ⎤⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦  

(3.90)

 6. Substituting in Equation 3.90 into 2nd row partitioned Equation 3.88

2 ⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = + + − + − −⎡ ⎤ ⎡ ⎤⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

2 2
1 1

3 3 4 4 4 3
7 7

6 6 6

0 1 0 0 1 1
d d

0 1 0 0 0 1 0 0
d d

0 0 1 0 0 0

Y X X
X X

Y X C C C X
Y Yt t

X Y Y

2 2
1 1

3 4 4 3
7 7

6 6

0 1 0 0 1 1 0 1 1 0
d d

0 1 0 0 0 1 0 1 1 0
d d

0 0 1 0 0 0 0 0 0 0

X X
X X

X C C X
Y Yt t

Y Y

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = + + − + − −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎧ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤⎪ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + −  ⎢ ⎥ ⎢ ⎥⎪ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎡ ⎤ ⎡ ⎤ ⎪ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪⎢ ⎥ ⎢ ⎥ = ⎨⎢ ⎥ ⎢ ⎥

⎪ − −⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥ ⎢ ⎥+ − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩

2
1 1

3 4
7 7

2 2
6

3 3

2
6 6

4 3

6

0 1 0 0 1 1 0
d

0 1 0 0 0 1 0
d1/ 0 0 0 0 1 0 0 0 0d

0 1/ 0
d 1 1 00 0 1/ d

1 1 0
d

0 0 0

X
X X

X C
Y YtX C Y

X C
t XY L

C X
t

Y

⎫
⎪
⎪
⎪
⎪
⎬
⎪

⎪ ⎪
⎪ ⎪
⎪ ⎪⎭

⎡ ⎤ ⎡ ⎤− − −⎢ ⎥ ⎢ ⎥
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎡ ⎤

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + + − + − −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

4 4 4

2 2 2
2 2 2 2

1 14 4 4
3 3 3

7 73 3 3
6 6 6

0 0
0 1/ 0 0 1/

d d
0 1/ 0 0 0 0 0

d d
0 0 1/ 0 0

0 0 0 0 0

C C C
C C CC C X X

X XC C C
C X X

Y YC t C C t
L Y Y



Formulation of State Space Model of Systems 151

+ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⇒ +  = 0  +  + −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥0 0 −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

2 2 2 2
1 1

3 3 3
7 7

6 6 6

1 0 0 1/ 0 0 1/ 0
d d

1 0 1/ 0 0 0 0
d d

0 0 1 1/ 0 0 0 0

x x X C C X x
X X

y y X C X y
Y Yt t

Y L Y

where 4 4

2 3
and

C C
x y

C C
= −  = − .

Computing inverse matrix,

−

+ + −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ = − +⎢ ⎥ ⎢ ⎥+ + −⎢ ⎥ ⎢ ⎥+ + −⎣ ⎦ ⎣ ⎦

1

1 0 1 0
1

1 0 1 0
(1 )(1 )

0 0 1 0 0 (1 )(1 )

x x y y

y y x x
x y xy

x y xy

 

1 0
1

1 0
1

0 0 1

y y

x x
x y

x y

+ −⎡ ⎤
⎢ ⎥= − +⎢ ⎥+ + ⎢ ⎥+ +⎣ ⎦

    

⎧ + ⎡ ⎤+⎡ ⎤−⎪ ⎢ ⎥⎢ ⎥
⎪ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥

⎡ ⎤+⎪ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ = − + −⎨ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥+ + ⎣ ⎦⎪ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ − + +⎢ ⎥⎢ ⎥
⎪ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎩

⎫
⎡ ⎤+ − +

⎡ ⎤⎢ ⎥+ + + ⎬⎢ ⎥⎢ ⎥
⎣ ⎦⎢ ⎥

⎣ ⎦

2 3 2
2 2

1
3 3

73 2 2
6 6

6

2

12

7

1 1
0 0 0

d 1 1
0 0 0

d 1
(1 )0 0

0 0

(1 )( ) 0
d

(1 )( ) 0
d

0 0

y y y
C C CX X

Xy x x
X X

Yt x y C C C
Y Y

x y
L

y x y
X

x x y
Yt

⎪
⎪⎪

⎪
⎪
⎪⎭

 

(3.91)

3.10.2 Symbolic Formulation of State Model for Nondegenerative Systems

 1. Write terminal equations for system components explicitly in primary and second-
ary variables. Elements are grouped as source, dynamic, and algebraic elements.

 a. Sources: across and through drivers

1

6

( )

( )

x t

y t
⎡ ⎤
⎢ ⎥
⎣ ⎦

—Specifi ed function of time

 b. Dynamic elements: Branch capacitors and chord inductors

2 2 2

5 5 5

( ) 0 ( )d

( ) 0 ( )d

x t D y t

y t D x tt
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 where 2

2

1
D

C
=  and 5

5

1
D

L
= .



152 Modeling and Simulation of Systems Using MATLAB and Simulink

 c. Algebraic elements: Branch and chord resistors.

3 3 3

4 4 4

( ) 0 ( )

( ) 0 ( )

x t D y t

y t D x t
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 where D3 = R3 and D4 = 
4

1

R
.

 2. Write interconnection equations.

 a. F-cutset equations

1

2

11 12 13
3

21 23 23
4

31 32 33
5

6

( )

( )
0 0 0

( )
0 0 0

( )
0 0 0

( )

( )

y t

y t
u a a a

y t
u a a a

y t
u a a a

y t

y t

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 b. F-circuit equation

1

2

11 12 13
3

21 22 23
4

31 32 33
5

6

( )

( )
0 0 0

( )
0 0 0

( )
0 0 0

( )

( )

x t

x t
b b b u

x t
b b b u

x t
b b b u

x t

x t

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

The second rows of f-cutset and f-circuit equations may be written as

2 21 4 22 5 23 6( ) ( ) ( ) ( ) 0y t a y t a y t a y t+ + + =

21 1 22 2 23 3 5( ) ( ) ( ) ( ) 0b x t b x t b x t x t+ + + =

These equations may be written in matrix form as

 

2 22 2 23 1 21 3

5 22 5 21 6 23 4

( ) 0 ( ) 0 ( ) 0 ( )

( ) 0 ( ) 0 ( ) 0 ( )

y t a x t a x t a x t

x t b y t b y t b y t

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

(3.92)

 3. Start with terminal equation of dynamic elements

 
2 2 2

5 5 5

( ) 0 ( )d

( ) 0 ( )d

x t D y t

y t D x tt
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

(3.93)



Formulation of State Space Model of Systems 153

 4. Substituting Equation 3.92 in Equation 3.93

 

2 2 22 2 23 1 21 3

5 5 22 5 21 6 23 4

( ) 0 0 ( ) 0 ( ) 0 ( )d

( ) 0 0 ( ) 0 ( ) 0 ( )d

x t D a x t a x t a x t

y t D b y t b y t b y tt

⎧ ⎫− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪= + +⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭
 

(3.94)

 5. The fi rst row of f-cutset and the fi rst row of f-circuit equations may be written as

1 11 4 12 5 13 6( ) ( ) ( ) ( ) 0y t a y t a y t a y t+ + + =

11 1 12 2 13 3 4( ) ( ) ( ) ( ) 0b x t b x t b x t x t+ + + =

These equations can be written in the matrix form as

 

1 12 2 13 1 11 3

4 12 5 11 6 13 4

( ) 0 ( ) 0 ( ) 0 ( )

( ) 0 ( ) 0 ( ) 0 ( )

y t a x t a x t a x t

x t b y t b y t b y t

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

(3.95)

 6. Substitute terminal equation for algebraic elements

1 12 2 13 1 11 3 3

4 12 5 11 6 13 4 4

( ) 0 ( ) 0 ( ) 0 0 ( )

( ) 0 ( ) 0 ( ) 0 0 ( )

y t a x t a x t a D y t

x t b y t b y t b D x t

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 7. The third row of f-cutset equation and the fi rst row of f-circuit equation may be 
written as

3 31 4 32 5 33 6( ) ( ) ( ) ( ) 0y t a y t a y t a y t+ + + =

11 1 12 2 13 3 4( ) ( ) ( ) ( ) 0b x t b x t b x t x t+ + + =

  These equations can be written in the matrix form as

3 32 2 33 1 31 3

4 12 5 11 6 13 4

( ) 0 ( ) 0 ( ) 0 ( )

( ) 0 ( ) 0 ( ) 0 ( )

y t a x t a x t a x t

x t b y t b y t b y t

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  Substitute this equation in the terminal equation of algebraic elements:

 

3 3 32 2 33 1 31 3

4 4 12 5 11 6 13 4

( ) 0 0 ( ) 0 ( ) 0 ( )

( ) 0 0 ( ) 0 ( ) 0 ( )

x t D a x t a x t a x t

y t D b y t b y t b y t

⎧ ⎫− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪= + +⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭
 

(3.96)



154 Modeling and Simulation of Systems Using MATLAB and Simulink

3 3 32 2 3 33 1 3 31 3

4 4 12 5 4 11 6 4 13 4

( ) 0 ( ) 0 ( ) 0 ( )

( ) 0 ( ) 0 ( ) 0 ( )

x t D a x t D a x t D a x t

y t D b y t D b y t D b y t

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

3 31 3 3 32 2 3 33 1

4 13 4 4 12 5 4 11 6

( ) 0 ( ) 0 ( )

( ) 0 ( ) 0 ( )

u D a x t D a x t D a x t

D b u y t D b y t D b y t

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

1
3 3 31 3 32 2 3 33 1

4 4 13 4 12 5 4 11 6

( ) 0 ( ) 0 ( )

( ) 0 ( ) 0 ( )

x t u D a D a x t D a x t

y t D b u D b y t D b y t

− ⎧ ⎫− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪= +⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭
 

(3.97)

 8. Substituting Equation 3.97 in Equation 3.95 and then in Equation 3.94

2 2 22 2 2 23 1

5 5 22 5 5 21 6

1
21 3 31 3 32 2 3 33

23 4 13 4 12 5 4 11

( ) 0 0 ( ) 0 0 ( )d

( ) 0 0 ( ) 0 0 ( )d

0 0 ( ) 0

0 0 ( ) 0

x t D a x t D a x t

y t D b y t D b y tt

a u D a D a x t D a

b D b u D b y t D b

−

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
+ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1

6

( )

( )

x t

y t

⎧ ⎫⎤ ⎡ ⎤⎪ ⎪
⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

  Simplifying results in the form

 [ ] [ ]2 1 1

5 6 6

( ) ( ) ( )d

( ) ( ) ( )d

x t x t x t
P Q

y t y t y tt
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (3.98)

 9. Output equation may be written as

 

1

6

2 2 1

5 5 6

3 11 12 11 12

4 13 14 13 14

( ) 0 0 0

( ) 0 0 0

( ) 0 ( ) 0 0 ( )

( ) 0 ( ) 0 0 ( )

( )

( )

x t u

y t u

x t u x t x t

y t u y t y t

x t r r s s

y t r r s s

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

(3.99)

Example 3.6

Obtain the state space model of nondegenerative system as shown in Figure 3.44 and its system 
graph is shown in Figure 3.45.

 1. Terminal equations for different components
a. Sources:

 1

6

1
3cos( ):  Specified

1

X
t

Y
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (3.100)



Formulation of State Space Model of Systems 155

 b. Dynamic elements:

 

2 22

5 5

5

1
0

d
1d

0

X YC
Y Xt

L

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥⎣ ⎦  

(3.101)

c. Algebraic equations:

 3
3 3

4 4
4

0

1
0

R
X Y

Y X
R

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

 

(3.102)

 2. Interconnecting equations
 a. f-circuit equation

 

⎡ ⎤
⎢ ⎥
⎢ ⎥−⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥− =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1

2

3

4

5

6

1 1 1 1 0 0 0

0 1 1 0 1 0 0

0 0 1 0 0 1 0

X

X

X

X

X

X
 

(3.103)

 b. f-cutset equations

 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1

2

3

4

5

6

1 0 0 1 0 0 0

0 1 0 1 1 0 0

0 0 1 1 1 1 0

Y

Y

Y
Y

Y

Y  

(3.104)

Note
Terminal equations have primary variable represented in terms of secondary variables.
Interconnecting equations have secondary variables in terms of primary variables.

FIGURE 3.44
Nondegenerate electrical system.

+
V1

R4 C2

R4 R3 Is6
–

FIGURE 3.45
System graph for electrical 

system.

5

4
A

1

3
6

2B
C

G



156 Modeling and Simulation of Systems Using MATLAB and Simulink

 3. The second row of the f-circuit equation may be written as X5 = X2 − X3 and the 
second row of the f-cutset equation Y2 = −Y4 − Y5.

Rewriting these equations in matrix form in terms of state vector and input

 
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

2 2 1 3

5 5 6 4

0 1 0 0 0 1

1 0 0 0 1 0

Y X X X

X Y Y Y
 

  Substituting the above equation in the terminal equation of dynamic elements 
(Equation 3.101),

 

⎡ ⎤
⎢ ⎥ ⎧ ⎫− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪⎢ ⎥= +⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭
⎢ ⎥⎣ ⎦

2 2 32

5 5 4

5

1
0

0 1 0 1d

1 1 0 1 0d
0

X X XC
Y Y Yt

L
 

 

2 2 32 2

5 5 4

5 5

1 1
0 0

d

1 1d
0 0

X X XC C
Y Y Yt

L L

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 
(3.105)

 4. To eliminate 3

4

X

Y
⎡ ⎤
⎢ ⎥
⎣ ⎦

 use interconnection equations and terminal equations as follows:

 a. The last row of f-cutset equation Y3 = +Y4 + Y5 − Y6

 b. The fi rst row of f-circuit equation X4 = −X1 + X2 + X3

  These equations may be written in matrix form as

 

3 2 1 3

4 5 6 4

0 1 0 1 0 1

1 0 1 0 1 0

Y X X X

X Y Y Y

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

  Substitute this equation in the terminal equation of algebraic elements (Equation 
3.102)

 

⎡ ⎤ ⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪⎢ ⎥= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭⎢ ⎥⎣ ⎦

3
3 2 1 3

4 5 6 4
4

0
0 1 0 1 0 1

1
1 0 1 0 1 00

RX X X X

Y Y Y YR
 

 

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

3 3 3
3 2 1

4 5 6
4 4 4

1 0 0

1 1 1
1 0 0

R R R
X X X

Y Y Y
R R R

 

 

− ⎧ ⎫− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

1
3 3 3

3 2 1

4 5 6
4 4 4

1 0 0

1 1 1
1 0 0

R R R
X X X

Y Y Y
R R R

 (3.106)



Formulation of State Space Model of Systems 157

  Substituting Equation 3.106 in Equation 3.105,

 

−− −⎡ ⎤ ⎡ ⎤ ⎛ ⎧−⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎪⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎨⎜ ⎢ ⎥ ⎢ ⎥−−⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪⎜⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩⎢ ⎥ ⎢ ⎥ ⎝⎣ ⎦ ⎣ ⎦

⎞⎫−⎡ ⎤ ⎡ ⎤ ⎟⎪⎢ ⎥+ ⎢ ⎥⎬⎟⎢ ⎥− ⎢ ⎥⎪⎟⎣ ⎦⎢ ⎥⎣ ⎦ ⎭⎠

1
3 3

2 2 2
2 2

5 5 5
4 4

5 5

3
1

6
4

1 1
0 0 1 0

d
1 1

1 01 1d
0 0

0

1
0

R RX X XC C
t Y Y YR R

L L

R X

YR  

  If system parameters are C2 = 1/3, L5 = 2, R3 = 4, and R4 = 1, the state model will be

 

2 2 1

5 5 6

3 12
3 3

d 5 5
5 5

2 2d
0.1 0.2

5 5

X X X

Y Y Yt

− −⎡ ⎤− −⎡ ⎤ ⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥= + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦  

(3.107)

 5. To determine output equations, all primary variables are considered for output 
variables, i.e., all branch across variables and all chord voltages:

 

2

6

2 2 1

6 5 6

2

6

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0.8 0.8 0.8 0.8

0.2 0.8 0.2 0.8

X

Y

X X X

Y Y Y

X

Y

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

(3.108)

3.10.3 State Model of System with Multiterminal Components

Consider a system containing multiterminal components as shown in Figure 3.46 and its 
system graph in Figure 3.47.

Terminal equations:

 
1

1 1

d ( )
( )

d

v t
C i t

t
 = 

 

 

[ ]4 4

2 2

0 0( ) ( ) 1

0 (( ) ( )p u

v t i t
E t

Rv t i t
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤

 =  + ( )⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−γ − μ +1) −μ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 

 

3 3
d

( ) ( )
d

L i t v t
t

3 = 
 



158 Modeling and Simulation of Systems Using MATLAB and Simulink

 

55 56 5 5

56 66 6 6

7

( ) ( )d

( ) ( )d

( ) 0

L L i t v t

L L i t v tt

i t

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
 = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 =  

Interconnection equations:

 [ ]

4 5

0 1

7 6

1

2 3 2

3

drivers, Transformer

Dynamic elements, Algebraic elements

v i
P P

i i

i
P P v

v

⎡ ⎤ ⎡ ⎤
= − = −⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
= − = −⎢ ⎥

⎢ ⎥⎣ ⎦
 

 

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

4 4

7 7

5 5

6 6

1 1

3 3

2 2

4 7 5 6 1 3 2

0 0 0 0 1 0 0

0 0 0 0 0 1 1

0 0 0 0 0 0 1

0 0 0 0 0 1 1

1 0 0 0 0 0 0

0 1 0 1 0 0 0

0 1 1 1 0 0 0

i v

v i

v i

v i

v i

i v

i v
 

FIGURE 3.47
System graph for given system containing 

multiterminal component.
7

G

2

4

A B 3 C

1

5

6

FIGURE 3.46
System containing multiterminal component.

2-TC3-TC

C

L56

L3

BA

C

G

L66L55



Formulation of State Space Model of Systems 159

Starting from terminal equation of group 2, 1, is dynamic elements

[ ]
5 5 155 56

2
56 66 6 6 3

10 0d

0 1d 1

i v iL L
v

L L t i v v

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎪ ⎪= = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎨ ⎬⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭
 from interconnecting equations

 [ ] [ ]{ }1 1

2
3 3

0 0 0 1d

0 1 0 1d

C v
a i E

L it

⎧ ⎫⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪ ⎪ ⎪ ⎪⎪= + − + −μ⎨ ⎨ ⎬ ⎨ ⎬⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭ ⎩ ⎭⎩ ⎭
 

where  = + μ + 11

1
( 1)a R

P
Eliminating P2, or in fact, i2, with the help of interconnecting equations,

 

1 4 5

3 7 6

1 0 0 0

0 1 0 1

v v i

i i i
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

 =  +  ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

Eliminating i2,

 1 5

2
7 6

0 1 1 1
v i

i
i i

⎡ ⎤ ⎡ ⎤
 = −  + − −⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎣ ⎦ ⎣ ⎦
 

 

⎧ ⎫⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪ ⎪⎪ =  +⎨ ⎨ ⎬⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭⎩ ⎭

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
                              + − − + − −⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

55 56 5 1 4 5

56 66 6 3 7 6

4 5

7 6

0 0 0 1 0 0 0d d

0 1 0 0 1 0 1d d

1
0 1 1 1

1

L L i C v i

L L i L i it t

v i
a

i i
[ ]

⎧ ⎫⎡ ⎤⎪ ⎪+ −μ⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

E
 

 
− −μ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

+ + − + − − +⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦− − − −μ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

4 5 4 5

3 7 3 6 7 6

0 0 0 0d d
0 1 1 1

0 0d d

v i a v i E

L i L i a i i Et t  

 
=

−μ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ − − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−μ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

5 4 4 555 56

56 66 3 36 7 7 6

0

0 0 0d d

0 0d d

i v v i EL L a a a

L L L L a a at ti i i i E
�����������������������  

Given that 7 7
d

0 and 0
d

i i
t

 =  = 

 [ ]− − −μ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
 = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ − − −μ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

5 55 56 5

6 56 66 3 6

d

d

i L L a a i
E

i L L L a a it  



160 Modeling and Simulation of Systems Using MATLAB and Simulink

Example 3.7

Develop a state model for the given mechanical system.

 1. Identify various components in the system as shown in Table 3.5.
The system graph for the mechanical system shown in Figure 3.48 may be drawn by com-
bining all the terminal graphs of each individual terminal graph of system components as 
in Figure 3.49.

 2. Terminal equations for different components of the system.

 For the given mechanical system Y(t) = f(t) and X(t) = ( )
o

tδ , and the subscript represents the 
 element number.

 a. Source: Force driver

 6 : specifiedY t( )  (3.109)

 b. Dynamic elements:

 ⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥⎣ ⎦

1 11

5 5

5

1
0

d
1d

0

X YM
Y Xt

K

 

(3.110)

 c. Algebraic equations:

 2 2
2

1
X Y

B
=  (3.111)

TABLE 3.5

Different Components in Given Mechanical System

Type of Components Components Schematic Diagram Terminal Graph

1. Accumulators Mass M1 Mass
M1

A GM1

2. Algebraic type Dashpot B2 C GB2

3. Coupler Lever A B

C

4. Delay type Spring K5 C GK5

5. Through driver Force driver
B GF6(t)



Formulation of State Space Model of Systems 161

 d. Coupler

3 3

4 4

0

0

X n Y

Y n X
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 3. Interconnecting equations
 a. f-circuit equation

 

1

2

3

4

5

6

1 1 0 1 0 0 0

0 1 0 0 1 0 0

0 1 1 0 0 1 0

X

X

X

X

X

X

⎡ ⎤
⎢ ⎥
⎢ ⎥−⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥− =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

(3.112)

 b. f-cutset equations

 

1

2

3

4

5

6

1 0 0 1 0 0 0

0 1 0 1 1 1 0

0 0 1 0 0 1 0

Y

Y

Y

Y

Y

Y

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥− =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

(3.113)

 4. Combine f-circuit and cutset equations for dynamic elements, i.e., the second row of the 
f-circuit equation

  X5 = X2 and the fi rst row of the f-cutset equation Y1 = −Y4.
  Rewriting these equations in matrix form in terms of state vector and input

 

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 2
4

5 5

0 0 1

1 0 0

Y X
Y

X Y

 

FIGURE 3.48
Mechanical system.

B2M1

l3 l4

F6(t)
K5

C

G

G

A

B

FIGURE 3.49
System graph and f-tree consist-

ing of branches 1, 2, and 3.

65

4

A B

21

3

C

G



162 Modeling and Simulation of Systems Using MATLAB and Simulink

  Substituting the above equation into terminal equation of dynamic elements,

 

⎡ ⎤
⎢ ⎥ ⎧ ⎫−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪⎢ ⎥= +⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭⎢ ⎥⎣ ⎦

1 21
4

5 5

5

1
0

0 0 1d
1 1 0 0d 0

X XM
Y

Y Yt
K

 

 

1 2
1 4

5 5
5 2

0 0 1
d

1
0d

0

X Y
M Y

Y Yt
K B

−⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦  
(3.114)

 5. Substitute terminal equation of lever Y4 = −nY3 and algebraic element =X Y
B

2 2
2

1  in the 
above equation:

 

−⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

1 2
1

5 5
5 2

0 0
d

1
0d

0

n
X Y

M Y
Y Yt

K B  

(3.115)

  From the last row of the f-cutset equation, we may write Y3 = −Y6 and Y2 = Y4 – Y5 – Y6

 

⎡ ⎤⎡ ⎤ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= +−⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

1 1 1
6

5 5
5 2 5 2

5 2

0 0
d

1 1
1d

n
X X M

Y
nY Yt

K B K B
K B

 

(3.116)

3.10.4 State Model for Systems with Time Varying and Nonlinear Components

Such systems contain components that have terminal equations as either linear differen-
tial (algebraic) equations with time varying coeffi cients or nonlinear differential equations, 
whose complete solutions can be found by numerical (iterative) methods.

One reason for this is that complete solutions for such networks are not easily found by 
analytical methods, and so it becomes necessary to use numerical computations. Another 
reason is that it is appropriate to study the stability of such systems through Lia punov’s 
method, which requires that systems be characterized by their state equations.

Although we have concerned ourselves only with simple systems whose components 
have terminal relations that are linear algebraic or differential equations with constant 
coeffi cient, it is reasonable to point out briefl y how our methods might be extended to 
include more complex situations.

The state space equation may be written for time variant and nonlinear system in the 
following form:

 [ ]1 1

d
[ ( )][ ] [ ( )][ ( )]

d
P A t P B t F t

t
= +  

(3.117)

Usually matrices A(t) and B(t) were time invariant and linear.



Formulation of State Space Model of Systems 163

Example 3.8

Consider the simple electrical system as shown in Figure 3.50. In this system, let us assume that 
the components of given electrical system are time dependent and expressed mathematically as

Capacitances

 C2(t) = C2m(t) sin(ωt) 

 C3(t) = C3me−λt 

Resistances

 R4(t) = R4m(t) cos(2ωt) 

 R5(t) = R5me−σt 

To formulate the state equations, we draw the system graph as shown in Figure 3.51, and 
write the terminal equations:

 =1( ) ( )v t E t  (3.118)

 
2 2 2

3 3 3

sin( ) 0 ( ) ( )d

0 ( ) ( )d

m
t

m

C t v t i t

C e v t i tt −λ

ω⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (3.119)

 
4 4 4

5 5 5

cos(2 ) 0 ( ) ( )

0 ( ) ( )

m
t

m

R t i t v t

R e i t v t−σ

ω⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (3.120)

The cutset equations are

  
2 4

3 5

( ) 1 1 ( )

( ) 0 1 ( )

i t i t

i t i t
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (3.121)

and the fundamental circuit equations are

  

4 2

1
5 3

( ) 1 0 ( ) 1
( )

( ) 1 1 ( ) 1

v t v t
v t

v t v t

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

(3.122)

FIGURE 3.50
Electrical system.

V1

A B
C2(t) C3(t)

G

C

R4(t) R5(t)

FIGURE 3.51
System graph for system.

1 4 5

G

B2 3 CA



164 Modeling and Simulation of Systems Using MATLAB and Simulink

Substituting the cutset Equation 3.121 into Equation 3.119, we get

 
2 2 4

3 3 5

sin( ) 0 ( ) 1 1 ( )d

0 ( ) 0 1 ( )d

m
t

m

C t v t i t

C e v t i tt −λ

ω⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  
(3.123)

Now substitute the fundamental circuit equation (Equation 3.122) into Equation 3.120,

 

4 4 2

1
5 5 3

cos(2 ) 0 ( ) 1 0 ( ) 1
( )

0 ( ) 1 1 ( ) 1

m
t

m

R t i t v t
v t

R e i t v t−σ

ω −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

(3.124)

After simplifying Equation 3.124

 

4 24 4
1

5 3

5 5 5

1 1
0

( ) ( )cos(2 ) cos(2 )
( )

( ) ( )1 1 1

m m

t t t
m m m

i t v tR t R t
v t

i t v t
R e R e R e−σ −σ −σ

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤ω ω⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

(3.125)

Substituting Equation 3.125 into Equation 3.123, we obtain

 

−λ

−σ −σ

−σ

⎧ −⎡ ⎤
⎪⎢ ⎥ω⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ω⎪⎢ ⎥= ⎨⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪

⎢ ⎥⎪⎣ ⎦⎩

⎫⎡ ⎤
⎪⎢ ⎥ω ⎪⎢ ⎥+ ⎬

⎢ ⎥ ⎪
⎢ ⎥ ⎪⎣ ⎦ ⎭

2 2 24

3 3 3

5 5

4
1

5

1
0

sin( ) 0 ( ) 1 1 ( )cos(2 )d

0 ( ) 0 1 ( )1 1d

1

cos(2 )
( )

1

m m
t

m
t t

m m

m

t
m

C t v t v tR t
C e v t v tt

R e R e

R t
v t

R e
 
(3.126)

or

 

−σ −σ

−λ

−σ −σ

−σ

−σ

⎡ ⎤⎛ ⎞− −−⎢ ⎥⎜ ⎟ω⎡ ⎤ ⎡ ⎤ ⎡ ⎤ω⎝ ⎠⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥
⎣ ⎦

⎡ ⎤⎛ ⎞
+⎢ ⎥⎜ ⎟ω⎝ ⎠⎢ ⎥+

⎢ ⎥
⎢ ⎥
⎣ ⎦

2 2 24 5 5

3 3 3

5 5

4 5
1

5

1 1 1
sin( ) 0 ( ) ( )d cos(2 )

0 ( ) ( )d 1 1

1 1

cos(2 )
( )

1

t t
m m m m

t
m

t t
m m

t
m m

t
m

C t v t v tR t R e R e
C e v t v tt

R e R e

R t R e
v t

R e

  
 

 
(3.127)



Formulation of State Space Model of Systems 165

Now, we differentiate the left-hand side of Equation 3.127, and obtain

 

2 2 2 2

3 3 3 3

24 5 5 4 5

3

5 5 5

cos( ) 0 ( ) sin( ) 0 ( )d

0 ( ) 0 ( )d

1 1 1 1 1

( )cos(2 ) cos(2 )

( )1 1 1

m m
t t

m m

t t t
m m m m m

t t t
m m m

C t v t C t v t

C e v t C e v tt

v tR t R e R e R t R e
v t

R e R e R e

−λ −λ

−σ −σ −σ

−σ −σ −σ

ω ω ω⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−λ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

− −⎡ ⎤ ⎡− +⎢ ⎥ ⎢⎡ ⎤ω ω⎢ ⎥= +⎢ ⎥− −⎢ ⎥ ⎣ ⎦
⎢ ⎥⎣ ⎦ ⎣

1( )v t

⎤
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

 

(3.128)

Rearrange Equation 3.128, by combining the fi rst term in the left with the fi rst term on the 
right. This yields

 

2 2

3 3

2
24 5 5

3

3
5 5

4 5
1

5

sin( ) 0 ( )d

0 ( )d

1 1 1
cos( )

( )cos(2 )

( )1 1

1 1

cos(2 )

1

m
t

m

m t t
m m m

t
mt t

m m

t
m m

t
m

C t v t

C e v tt

C t
v tR t R e R e
v t

C e
R e R e

R t R e
v

R e

−λ

−σ −σ

−λ
−σ −σ

−σ

−σ

ω⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤⎛ ⎞− −− ω ω + −⎢ ⎥⎜ ⎟ ⎡ ⎤ω⎝ ⎠⎢ ⎥= ⎢ ⎥⎢ ⎥− − ⎣ ⎦λ +⎢ ⎥
⎣ ⎦

⎡ ⎤⎛ ⎞
+⎢ ⎥⎜ ⎟ω⎝ ⎠⎢ ⎥+

⎢ ⎥
⎢ ⎥
⎣ ⎦

( )t

 

(3.129)

Finally, we obtain the state equations by inverting the coeffi cient matrix on the left of 
Equation 3.129, and substituting for v1(t) from Equation 3.118. The result is

2 22 4 5 2 5

3 3

5 3 5 3

4 2 5 2

5 3

1 1 1 1
cot( )

( ) ( )d sin( ) cos(2 ) sin( )

( ) ( )d 1 1

1 1

sin( )cos(2 ) sin( )

1

t t
m m m m m

t t t t
m m m m

t
m m m m

t
m m

t
v t v tC t R t R e C t R e
v t v tt

R C e R C e

R C t t R C t e

R C e

−σ −σ

−λ −σ −λ −σ

−σ

−λ

⎡ ⎤⎛ ⎞− −− ω + −⎢ ⎥⎜ ⎟⎡ ⎤ ⎡ ⎤ω ω ω⎝ ⎠⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎣ ⎦λ +⎢ ⎥
⎣ ⎦

+
ω ω ω

+ ( )

t

E t

−σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

   
  

(3.130)

As explained, the only difference in the procedure from the time invariant case is the 
coeffi cient matrix of the state variables in Equation 3.130. Clearly, time invariant systems 
are merely special cases of time-varying ones; the differentiation involved with constant 
coeffi cient is trivial.



166 Modeling and Simulation of Systems Using MATLAB and Simulink

When nonlinear components are encountered, the situation is much more complicated. 
It is not always clear whether or not there exist a solution for a set of nonlinear equations, 
and even if one does exist, there is seldom any analytical method for fi nding it. Matrix 
methods cannot be used to handle sets of nonlinear equations.

Nevertheless, we can always eliminate the chord across variables and branch through 
variables from a set of nonlinear terminal equations; this can be done by simple substitu-
tion because the cutset and fundamental circuit equations are linear.

Let us assume that the terminal equations of a given nonlinear system are, at worst, 
fi rst-order differential equations. If we can locate all the fi rst-order across drivers in 
the forest, and all the fi rst-order through drivers in the coforest, the situation is con-
siderably simplifi ed. If we assume in addition that the differential terminal relations 
can be written explicitly in the derivatives of the fi rst-order elements, we can proceed 
to eliminate all the branch currents and chord voltages through the cutset and circuit 
equations.

3.11 Solution of State Equations

In this section, we shall study methods for solution of the state equations from which the 
system transient response can then be obtained. Let us fi rst review the classical method of 
solution by considering a fi rst-order scalar differential equation,

 
0

d
; (0)

d

x
ax x x

t
= =  (3.131)

Equation 3.131 has the solution

 0( ) atx t e x=  

 
⎛ ⎞= + + + +⎜ ⎟⎝ ⎠

2 2
0

1 1
1

2! !
i iat a t a t x

i
�  (3.132)

Let us now consider the state equation

 
0

0( ) ( ); (0)x t Ax t x x= =  (3.133)

which represents a homogeneous unforced linear system with constant coeffi cients.
By analogy with the scalar case, we assume a solution of the form

 
2

0 1 2( ) i
ix t a a t a t a t= + + + + +� �  

where ai are vector coeffi cients.
By substituting the assumed solution into Equation 3.133 we get

 

2 2
1 2 3 0 1 22 3 ( )a a t a t A a a t a t+ + + = + + +� �

 



Formulation of State Space Model of Systems 167

The comparison of vector coeffi cients of equal powers of t yields

 

1 0

2
2 1 0

2 0

1 1

2 2!

1

!
i

a Aa

a Aa A a

a A a
i

=

= =

=  

In the assumed solution, equating x(t = 0) = x0, we fi nd that the solution x(t) is thus found 
to be

 
2 2

0

1 1
( )

2! !
i ix t I At A t A t x

i
⎛ ⎞= + + + + +⎜ ⎟⎝ ⎠

� �  

Each of the terms inside the brackets in an n × n matrix. Because of the similarity of the 
entity inside the brackets with a scalar exponential of Equation 3.132, we call it a matrix 
exponential, which may be written as

 2 21 1

2! !
At i ie I At A t A t

i
= + + + + +� �  (3.134)

The solution x(t) can now be written as

 0( ) Atx t e x=
 (3.135)

From Equation 3.135 it is observed that the initial state x0 at t = 0 is driven to a state x(t) at 
time t. This transition in state is carried out by the matrix exponential eAt. Because of this 
property, eAt is known as state transition matrix and is denoted by Φ(t).

Let us now determine the solution of the nonhomogenous state equation (forced 
system).

 0( ) ( ) ( ); (0)x t Ax t Bu t x x= + =  (3.136)

Rewrite this equation in the form

 d
( ) ( )

d

x
Ax t Bu t

t
− =  

Multiplying both sides by e−At, we can write

 d ( ) d
( ) ( )

d d
At Atx t

e Ax t e x t
t t

− −⎡ ⎤ ⎡ ⎤− =⎢ ⎥ ⎣ ⎦⎣ ⎦
 

 = e−At Bu(t)



168 Modeling and Simulation of Systems Using MATLAB and Simulink

Integrating both sides with respect to t between the limits 0 and t, we get

 
0

( ) (0) ( )d

t

At Ae x t x e Bu− − τ− = τ τ∫  

Now premultiplying both sides by eAt, we have

 
0

( )( ) (0) ( )d

t

At A t

t

x t e x e Bu− − −τ= + τ τ∫  
(3.137)

If the initial state is known at t = t0 rather than t = 0, Equation 3.137 becomes

 

− − − −τ= + τ τ∫0

0

( ) ( )
0( ) ( ) ( )d

t

A t t A t

t

x t e x t e Bu
 

(3.138)

In Equation 3.138, the total response can be expressed as the sum of zero input and zero 
state components. For linear systems, the zero input and zero state components obey the 
principle of superposition with respect to each of their respective causes.

Properties of state transition matrix

 1. φ(0) = eA0 = I

 2. [ ] 11( ) ( ) ( )At Att e e t −− −φ = = = φ −

  or

 φ−1(t) = φ(−t) 

  or

 − + − −φ + = =1 2 1 2( )
1 2( ) A t t At Att t e e e  

 = φ(t1) φ(t2) = φ(t2) φ(t1) 

Example 3.9

Obtain the time response of the following system:

 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

1 1

22

1 0 1d
1 1 1d

x x
u

xt x  

where u(t) is a unit step occurring at t = 0 and xT(0) = [1 0]

SOLUTION

We have in this case

 
1 0 1

;
1 1 1

A B
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 



Formulation of State Space Model of Systems 169

The state transition matrix Φ(t) is given by

 2 21 1
2! !

At i ie I At A t A t
i

= + + + + +� �  

Substituting values of A and collecting terms, we get

 

⎡ ⎤+ + +
= ⎢ ⎥+ + + + +⎣ ⎦

φ φ⎡ ⎤
= ⎢ ⎥φ φ⎣ ⎦

�

� �

2

2 2

11 12

21 22

1 0.5 0

1 0.5
At t t

e
t t t t

 

The terms φ11 and φ22 are easily recognized as series expansion of eAt. To recognized φ21, more 
terms of the infi nite series should be evaluated. In fact φ21 is tet.

We have the state transition matrix as

 

0
( )

t

t t

e
t

te e

⎡ ⎤
φ = ⎢ ⎥

⎣ ⎦  

The time response of the system is given by

0

0

( ) ( ) ( ) d

t

x t t x Bu
⎡ ⎤
⎢ ⎥= φ + φ −τ τ
⎢ ⎥⎣ ⎦

∫
Now with u = 1,

(1 )

10
( )

1

e e
Bu

e e e

−τ −τ

−τ −τ −τ −τ

⎡ ⎤ ⎡ ⎤⎡ ⎤
φ −τ = =⎢ ⎥ ⎢ ⎥⎢ ⎥−τ ⎣ ⎦⎣ ⎦ ⎣ ⎦

Therefore

0

0 (1 )

0

d
1

( ) d

d

t

t t

tt

e
e

Bu
te

e

−τ

−

−

−τ −τ

⎡ ⎤
⎢ ⎥τ
⎢ ⎥ ⎡ ⎤−⎢ ⎥φ −τ τ = = ⎢ ⎥
⎢ ⎥ ⎣ ⎦
⎢ ⎥τ
⎢ ⎥⎣ ⎦

∫
∫

∫
Then the solution x(t) is given by

10 1
( )

0

t t

t t t

e e
x t

te e te

⎧ ⎫⎡ ⎤ ⎡ ⎤⎡ ⎤ −⎪ ⎪= +⎨ ⎬⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

 

2 1

2

t

t

e

te

⎡ ⎤−
= ⎢ ⎥

⎣ ⎦



170 Modeling and Simulation of Systems Using MATLAB and Simulink

Computation of state transition matrix

 1. Machine computation:

2 21 1

2! !
At i ie I At A t A t

i
= + + + + +� �

 2. Diagonalization:
  The matrix having elements only on its diagonal is known as diagonal matrix. 

The inverse of a diagonal matrix is obtained by inspection, e.g.,

1

1
0 0

0 0
1

0 0 0 0

0 0
1

0 0

−

⎡ ⎤
⎢ ⎥

α⎢ ⎥α⎡ ⎤
⎢ ⎥⎢ ⎥β = ⎢ ⎥⎢ ⎥ β⎢ ⎥⎢ ⎥γ⎣ ⎦ ⎢ ⎥
⎢ ⎥γ⎣ ⎦

The state model having elements of coeffi cient matrix A only on its diagonal is called 
canonical state model, which is obtained by parallel decomposition of a transfer function. 
However, any general state model can be transformed into a canonical form using the 
process of diagonalization.

Consider the state equation

=d

d

x
AX

t

where A is a nondiagonal matrix

1D P AP−=

where D is a diagonal matrix in which λ1, λ2, λ3, …, λn are diagonals:

⎡ ⎤
⎢ ⎥λ λ λ⎢ ⎥
⎢ ⎥λ λ λ=
⎢ ⎥
⎢ ⎥
⎢ ⎥λ λ λ⎣ ⎦

…

…

…

� � … �

…

1 2

2 2 2
1 2

1 2 *

1 1 1

n

n

n n n
n n n

P

There are n number of roots

1

2

3

0 0 0

0 0 0

0 0 0

0 0 0 0

0 0 0 n

t

t

Dt t

t

e

e
e e

e

λ

λ

λ

λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

…

…

…

…

…



Formulation of State Space Model of Systems 171

So now

1At Dte Pe P−=

where matrix P is known as Vandermonde’s matrix.

Example 3.10

The matrix A is given. Find the state transition matrix.

2 0

0 1
A

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

The characteristic equation is

λ −⎡ ⎤
λ − = ⎢ ⎥λ −⎣ ⎦

2 0

0 1
I A

λ − = λ − λ − =( 1)( 2) 0I A

λ = 1, 2, i.e., λ1 = 1, λ2 = 2

11 1 2 11
and

1 2 1 12 1
P P− −⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥−−⎣ ⎦ ⎣ ⎦

1 2 1 1 0
and

1 1 0 2
P D− −⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

Then

 

1
2

2

2

2 2

2 2

1 1 2 10
1 2 1 10

2 1

1 12

2 2

2 2 2

t
At Dt

t

t t

t t

t t t t

t t t t

e
e Pe P

e

e e

e e

e e e e

e e e e

− ⎡ ⎤ −⎡ ⎤ ⎡ ⎤
= = ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤ −⎡ ⎤
= ⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

⎡ ⎤− − +
⎢ ⎥− − +⎣ ⎦

 3. Laplace Method:

  By the Laplace transform

[ ] 11Ate L SI A −−= −

Example 3.11

Find the state transition matrix for given matrix A:

0 1

0 2
A

⎡ ⎤
= ⎢ ⎥−⎣ ⎦



172 Modeling and Simulation of Systems Using MATLAB and Simulink

1
[ ]

0 2

S
SI A

S

−⎡ ⎤
− = ⎢ ⎥+⎣ ⎦

[ ]− +⎡ ⎤
− = ⎢ ⎥+ ⎣ ⎦

1 2 11
0( 2)

S
SI A

SS S

 

1 1
( 2)

1
0

2

S S S

S

⎡ ⎤
⎢ ⎥+⎢ ⎥=
⎢ ⎥
⎢ ⎥+⎣ ⎦

Taking inverse Laplace transforms

1 1
1L

S
− ⎧ ⎫ =⎨ ⎬

⎩ ⎭

− −⎧ ⎫ =⎨ ⎬+⎩ ⎭
1 21

and
2

tL e
S

1
( 2) 2

A B
S S S S

= +
+ +

1 ( 2) ( )A S B S= + +

1 1
and

2 2
B A= − =

1 1 1 1
( 2) 2 2S S S S

⎛ ⎞= −⎜ ⎟⎝ ⎠+ +

− −⎛ ⎞ = −⎜ ⎟⎝ ⎠+
1 21 1

(1 )
( 2) 2

tL e
S S

[ ]
−

−

−

⎡ ⎤−⎢ ⎥− = =⎢ ⎥
⎢ ⎥⎣ ⎦

2
1

2

1
1 (1 )

2
0

t
At

t

e
SI A e

e

 4. Calay Hamilton Method:

  In Calay Hamilton method

1

2

2 1
1 1 1

2 1
2 2 2

2 1

2 1

( 1)

1

1

1 n

n t

n t

At

n t
m m m

n At
n xn

e

e

e

e

I A A A e

− λ

− λ

− λ

−
+

⎡ ⎤λ λ λ
⎢ ⎥λ λ λ⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥λ λ λ⎢ ⎥
⎢ ⎥⎣ ⎦

… …

… …

� � � � � � �

� � � � � � �

… …

… …



Formulation of State Space Model of Systems 173

Example 3.12

Find the state transition matrix for given coeffi cient matrix A

0 1

0 2
A

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

1
0

0 2
I A

λ −⎡ ⎤
λ − = =⎢ ⎥λ +⎣ ⎦

λ1 = 0, λ2 = −2

0

2

1 0

1 2 0

t

t

At

e

e

I A e

−

⎡ ⎤
⎢ ⎥− =⎢ ⎥
⎢ ⎥
⎣ ⎦

Characteristic equation is

1[−2eAt − Ae−2t] + 1[A + 2I] = 0

or −2eAt − Ae−2t + A + 2I = 0

−= + − 21
( 2 )

2
At te A I Ae

 2

2

0 1 2 0 01 1 1
0 2 0 22 2 2 0 2

t

t

e

e

−

−

⎡ ⎤⎡ ⎤ ⎡ ⎤
= + − ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

2

2

1 0.5(1 )

0

t

t

e

e

−

−

⎡ ⎤−
= ⎢ ⎥

⎣ ⎦

Example 3.13

Solve the state equation 
1 1

2 2

0 1 0d
0 2 6d

x x
u

x xt
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 and also determine the output from the

output equation:

 
1

2
1 0

x
y

x
⎡ ⎤

= ⎡ ⎤ ⎢ ⎥⎣ ⎦
⎣ ⎦

 and initial conditions

1

2

(0) 1

(0) 1

x

x
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

From Example 3.12 the matrix eAt is

2

2

1
1 (1 )

2
0

t
At

t

e
e

e

−

−

⎡ ⎤−⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦



174 Modeling and Simulation of Systems Using MATLAB and Simulink

Solution of state equation is 
τ

−τ= + τ τ∫ ( )

0
( ) (0) ( )dAt A tx t e x e Bu

 [ ]
− − −τ

− − −τ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥= + τ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∫

2 2( )

2 2( )
0

1 11 01 (1 ) 1 (1 )
d2 2

1 60 0

tt t

t t

e e
u

e e

 −

− −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − −
= + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

2 0 2

2 0 2

1.5(1 ) 3( 1.5 ) 1.5

3 3

t t t

t t t

e t e e

e e e

2 2

2 2

3 1.5
( )

3 3

t t

t t

t e e
x t

e e

−

− −

⎡ ⎤− +
= ⎢ ⎥+ +⎣ ⎦

Example 3.14

Find the solution of state equation.

[ ]
1 1

2 2

3 3

1 0 0 1
d

0 1 0 0 ( )
d

0 0 2 0

x x

x x u t
t

x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

and y(t) = 1 0 0⎡ ⎤⎣ ⎦  x(t)

[ ]
1 0 0

0 1 0

0 0 2

S

SI A S

S

−⎡ ⎤
⎢ ⎥− = −⎢ ⎥
⎢ ⎥+⎣ ⎦

[ ]−
− +⎡ ⎤

⎢ ⎥− = − +⎢ ⎥− − + ⎢ ⎥−⎣ ⎦

1

2

( 1)( 2) 0 0
1

0 ( 1)( 2) 0
( 1)( 1)( 2)

0 0 ( 1)

S S

SI A S S
S S S

S

[ ]−

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− = ⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

1

1
0 0

( 1)
1

0 0
( 1)

1
0 0

( 2)

S

SI A
S

S

Taking inverse Laplace transform

1 1

2

0 0

[ ] 0 0

0 0

t

t

t

e

L SI A e

e

− −

−

⎡ ⎤
⎢ ⎥− = ⎢ ⎥
⎢ ⎥
⎣ ⎦



Formulation of State Space Model of Systems 175

i.e., 
2

0 0

0 0

0 0

t

At t

t

e

e e

e−

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎣ ⎦

The solution of state equation is 
τ

−τ= + τ τ∫ ( )

0
( ) (0) ( )dAt A tx t e x e Bu

−τ

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + − τ τ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∫
( )

2 0

( ) 0 ( )d

0

t t
t

t

t

e e

x t e u t

e

( )

2

0

( ) ( ) 0

0

tt t

t

t

e e

x t e u t

e

−τ

−

⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

− −

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤−
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − = −⎡ ⎤⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭
2 2

1

( ) (1 ) ( ), ( ) 1 0 0 0 ( )

0

t t t

t t t

t t

e e e

x t e e u t y t e u t

e e

y(t) = et − (1 − et)u(t)

Euler’s method
Consider the equation

 
d

( , )
d

y
f x y

x
=  (3.139)

given that y(x0) = y0. Its curve of solution through P(x0, y0) is shown dotted in Figure 3.52. 
Now we have to fi nd the ordinate of any other point on this curve.

Let us divide x-axis into n subintervals each of width h so that h is quite small. In the 
interval 0 to x0 we approximate the curve by the tangent at P. Then y1 may be calculated as

P

P1

P2

P3

True value of y

Error

Approximate
value of y

R1
R2

R3

Rn

0 x0 x0 + h x0 + 2h x0 + 3h   ... x0 + 3h 
x

y

FIGURE 3.52
Solution of state model.



176 Modeling and Simulation of Systems Using MATLAB and Simulink

y1 = y0 + PR1 tan θ

 
⎛ ⎞= + = +⎜ ⎟⎝ ⎠0 0 0 0

d
( , )

d p

y
y h y hf x y

x

Let P1Q1 be the curve of solution of Equation 3.139 through P1 and let its tangent at P1 meet 
the ordinate through P2(x0 + 2h, y2), then

 2 1 0 1( , )y y hf x h y= + +  (3.140)

Repeating this process n times we fi nally reach on an approximation, given by

 yn = yn−1 + hf(x0 + (n − 1)h, yn−1)

Note: In Euler’s method, we approximate the curve of solution by the tangent in each 
interval, i.e., by a sequence of short lines. Unless h is small, the error is bound to be quite 
signifi cant. This sequence of lines may also deviate considerably from the curve of solu-
tion. As such, the method is very slow and hence there is a modifi cation of this method 
which is given in the next section.

Example 3.15

Using Euler’s method, fi nd an approximate value of y corresponding to x = 1, given that 
d
d
y

x y
x

 = +  
and y = 1 when x = 0.

We take n = 10 and h = 0.1 which is suffi ciently small. The various calculations are arranged in 
Table 3.6.

Thus the required approximate value of y = 3.18.

Modifi ed Euler’s Method:

In the Euler’s method, the curve of solution in the interval is approximated by the tangent at P 
(Figure 3.52) such that at P1 we have

 1 0 0 0( , )y y hf x y= +  (3.141)

TABLE 3.6

Iterative Solution for First-Order Differential Equation

x y Mean Slope (y′) New Value of y

0.0 1.00 1.00 1.00 + 0.1(1.00) = 1.10

0.1 1.10 1.20 1.10 + 0.1(1.20) = 1.22

0.2 1.22 1.42 1.22 + 0.1(1.42) = 1.36

0.3 1.36 1.66 1.36 + 0.1(1.66) = 1.53

0.4 1.53 1.93 1.53 + 0.1(1.93) = 1.72

0.5 1.72 2.22 1.72 + 0.1(2.22) = 1.94

0.6 1.94 2.54 1.94 + 0.1(2.54) = 2.19

0.7 2.19 2.89 2.19 + 0.1(2.89) = 2.48

0.8 2.48 3.29 2.48 + 0.1(3.29) = 2.81

0.9 2.81 6.71 2.81 + 0.1(3.71) = 3.18

1.0 3.18



Formulation of State Space Model of Systems 177

Then the slope of the curve of solution through P1, i.e., 1 0 1
d

( , )
d
y

P f x h y
x

⎛ ⎞ = +⎜ ⎟⎝ ⎠  is computed and 

the tangent at P1 is drawn. Now we fi nd a better approximation y1
(1) of y(x0 + h) by taking the slope 

of the curve as the mean of the slopes of the tangents at P and P1, i.e.,

 = + + +⎡ ⎤⎣ ⎦
(1)

1 0 0 0 0 1( , ) ( , )
2
h

y y f x y f x h y  (3.142)

As the slope of the tangent at P1 is not known, we take y1 as found in Equation 3.141 by Euler’s 
method and insert it on R.H.S. of Equation 3.142 to obtain the fi rst modifi ed value of y1

(1)

Again Equation 3.142 is used and an even better value y
1
(2) is found as

(2) (1)
0 0 0 01 1( , ) ( , )

2
h

y y f x y f x h y⎡ ⎤= + + +⎣ ⎦

We repeat this step till consecutive values of y agree. This is then taken as the starting point for 
the next interval.

Once y1 is obtained to the desired degree of accuracy, y2 may be calculated by

y2 = y1 + hf(x0 + h, y1)

and a better approximation y2
(1) is obtained from Equation 3.142

( )(1)
1 0 1 0 22 ( , ) 2 ,

2
h

y y f x h y f x h y⎡ ⎤= + + + +⎣ ⎦

Repeat this step until y2 becomes stationary. Then we proceed to calculate y3 as above and so on.

Example 3.16

Using modifi ed Euler’s method fi nd an approximate value of y when x = 0.3, given that 
d
d
y

x y
x

= +  

and y = 1 when x = 0. Taking h = 0.1, the calculations are shown in Table 3.7.
Hence, y(0.3) = 1.4004 approximately.

TABLE 3.7

Iterative Solution for First-Order Differential Equation

x x + y = y′ Mean Slope New Value of y

0.0 0 + 1 — 1.00 + 0.1(1.00) = 1.10

0.1 0.1 + 1.1 ½(1 + 1.2) 1.00 + 0.1(1.1) = 1.11

0.1 0.1 + 1.11 ½(1 + 1.21) 1.00 + 0.1(1.105) = 1.1105

0.1 0.1 + 1.1105 ½(1 + 1.2105) 1.00 + 0.1(1.1052) = 1.1105

0.1 1.2105 — 1.1105 + 0.1(1.2105) = 1.2316

0.2 0.2 + 1.2136 ½(1.12105 + 1.4316) 1.1105 + 0.1(1.3211) = 1.2426

0.2 0.2 + 1.2426 ½(1.2105 + 1.4426) 1.1105 + 0.1(1.3266) = 1.2432

0.2 0.2 + 1.2432 ½(1.2105 + 1.4432) 1.1105 + 0.1(1.3268) = 1.2432

0.2 1.4432 — 1.2432 + 0.1(1.4432) = 1.3875

0.3 0.3 + 1.3875 ½(1.4432 + 1.6875) 1.2432 + 0.1(1.5654) = 1.3997

0.3 0.3 + 1.3997 ½(1.4432 + 1.6997) 1.2432 + 0.1(1.5715) = 1.4003

0.3 0.3 + 1.4003 ½(1.4432 + 1.7003) 1.2432 + 0.1(1.5718) = 1.4004

0.3 0.3 + 1.4004 ½(1.4432 + 1.7004) 1.2432 + 0.1(1.5718) = 1.4004



178 Modeling and Simulation of Systems Using MATLAB and Simulink

Adams–Bashforth method

The Euler’s and Runge–Kutta methods are examples of single step methods because they use 
only the most recent value, xk, to compute the solution point xk+1. Once the solution has been 
progressed over several steps, it is possible to use past values of x(t) to construct a polynomial 
approximation to f(t, x(t) ). This approximation can then be integrated over the interval [tk, tk+1] and 
the result added to xk to produce xk+1. This is the basic idea behind the multistep methods.

To generate a multistep method using Adams–Bashforth method we start by approximating 
f(t, x(t) ) using a Newton backward difference interpolating polynomial of degree m. For m = 3, this 
corresponds to the following cubic polynomial:

1 2 2 3 3( 1) ( 1)( 2)
[ , ( )]

2 6
k k k ks s s s s

f t x t f s f f f− − −+ + +≈ + Δ + Δ + Δ

where 
kt t

s
h
−= .

Example 3.17

Given 
d

( , )
d
y

f x y
x

=  and initial conditions are y0 at x0, we compute

y−1 = y(x0 − h), y−2 = y(x0 − 2h), y−3 = y(x0 − 3h)

by Taylor’s series or Euler’s method or Runge–Kutta method.
Next we calculate

f−1 = f(x0 − h, y−1), f−2 = f(x0 − 2h, y−2), f−3 = f(x0 − 3h, y−3)

Then to fi nd y1, we substitute Newton’s backward interpolation formula

2 3
0 0 0 0

( 1) ( 1)( 2)
( , )

2 6
n n n n n

f x y f n f f f
+ + += + Δ + Δ + Δ

in

 

0

0

1 0 ( , )d
x h

x

y y f x y x
+

= + ∫  
(3.143)

0

0

2 3
1 0 0 0 0 0

( 1) ( 1)( 2)
d

2 6

x h

x

n n n n n
y y f n f f f x

+
+ + +⎛ ⎞= + + Δ + Δ + Δ⎜ ⎟⎝ ⎠∫

Substitute x = x0 + nh and dx = h dn

1

2 3
1 0 0 0 0 0

0

( 1) ( 1)( 2)
d

2 6
n n n n n

y y h f n f f f n
+ + +⎛ ⎞= + + Δ + Δ + Δ⎜ ⎟⎝ ⎠∫

 

2 3
0 0 0 0 0

1 5 3
2 12 8

y h f f f f⎛ ⎞= + + Δ + Δ + Δ +⎜ ⎟⎝ ⎠
�



Formulation of State Space Model of Systems 179

Neglecting fourth and higher order differences and expressing Δf0, Δ2f0, and Δ3f0 in terms of func-
tion values, we get

 1 0 0 1 2 3(55 59 37 9 )
24
h

y y f f f f− −= + − + − +�  (3.144)

This is called Adam–Bashfourth predictor formula. In this method, to fi nd y1, we have to fi nd
f1 = f(xo + h, y1). Then to fi nd a better value of y1, we derive a corrector formula by substituting 

Newton’s backward formula at f1, i.e.,

2 3
1 1 1 1

( 1) ( 1)( 2)
( , )

2 6
n n n n n

f x y f n f f f
+ + += + Δ + Δ + Δ +�

in Equation 3.143

1

0

2 3
1 0 0 0 0 0

( 1) ( 1)( 2)
d

2 6

x

x

n n n n n
y y f n f f f x

+ + +⎛ ⎞= + + Δ + Δ + Δ⎜ ⎟⎝ ⎠∫

Substitute x = x1 + nh and dx = h dn

0

2 3
1 0 0 0 0 0

1

( 1) ( 1)( 2)
d

2 6
n n n n n

y y h f n f f f n
−

+ + +⎛ ⎞= + + Δ + Δ + Δ +⎜ ⎟⎝ ⎠∫ �

2 3
1 0 1 1 1 1

1 1 1
2 12 24

y y h f f f f⎛ ⎞= + − Δ − Δ − Δ −⎜ ⎟⎝ ⎠
�

Neglecting fourth and higher order differences and expressing Δf1, Δ2f1, and Δ3f1 in terms of func-
tion values, we obtain

 ( )1 0 1 0 1 29 19 5
24
h

y y f f f f− −= + + − + +�  (3.145)

which is called Adam–Moulton corrector formula.
Then an improved value of f1 is calculated and again the corrector equation (Equation 3.145) is 

applied to fi nd a still better value y1. This step is repeated till y1 remains unchanged, and then we 
proceed to calculate y2 as above.

Example 3.18

Given dy/dx = x2(1 + y) and y(1) = 1, y(1.1) = 1.233, y(1.2) = 1.548, y(1.3) = 1.979, evaluate by 
Adam–Bashfourth method.

Here f(x, y) = x2(1 + y)

Starting values of the Adam–Bashforth method with h = 0.1 are

 x = 1.0, y−3 = 1.000, f−3 = (1.0)2( (1 + 1.000) = 2.000

 x = 1.1, y−2 = 1.233, f−2 = 2.702



180 Modeling and Simulation of Systems Using MATLAB and Simulink

x = 1.2, y−1 = 1.548, f−1 = 3.669

 x = 1.3, y0 = 1.979, f0 = 5.035

Using predictor,

1 0 0 1 2 3(55 59 37 9 )
24
h

y y f f f f− −= + − + − +�

x = 1.4, y1 = 2.573, f1 = 7.004

Using the corrector,

1 0 1 0 1 2(9 19 5 )
24
h

y y f f f f− −= + + − + +�

 = 2.575

Hence, y(1.4) = 2.575

3.12 Controllability

A system is said to be controllable at time t0, if it is possible by means of an unconstrained 
control vector to transfer the system from any initial state x(t0) to any other state in a fi nite 
interval of time.

−

−

β⎡ ⎤
⎢ ⎥β⎢ ⎥
⎢ ⎥β
⎢ ⎥⎡ ⎤= ⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥β⎣ ⎦

…

�

0

1

2
2 1

1

( )

( )

( )
(0)

( )

n

n

t

t

t
x B AB A B A B

t

where matrix A is of size n × n and B of size n × 1.

If rank of 2 1nB AB A B A B−⎡ ⎤⎣ ⎦…  ≥ n then system is controllable.

Example 3.19

Find the state of the system for which the state equation is given below:

1 1

2
2

1 0 2
( )

0 2 5

2

o

o

x x
u t

x
x

n

⎡ ⎤ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

=



Formulation of State Space Model of Systems 181

From the above equation matrix [B AB] is

2 2

5 10
B AB

−⎡ ⎤
=⎡ ⎤ ⎢ ⎥⎣ ⎦ −⎣ ⎦

Because 
1 0

0 2
A

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

, 
2

5
B

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 and

1 0 2

0 2 5
AB

−⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

2

10

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

Rank of [B AB] = 2 = n.
Hence, the system states are controllable.

3.13 Observability

A system is said to be observable at time t0 if, with the system in state x(t0), it is possible to 
determine this state from the observation of the output over a fi nite time interval.

2
0 1 2 1

1

( ) ( ) ( ) ( ) ( )n

n

C

CA

CAy t t t t t

CA

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= α α α α⎡ ⎤⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…

…

where matrix A is of size n × n and matrix C is of size n × 1.

If rank of 
2 1nC CA CA CA −⎡ ⎤⎣ ⎦…  ≥ n then system is observable.

Example 3.20

Find the state of the system of which state equation is given below:

1 1

2
2

1 1 0
( )

2 1 1

o

o

x x
u t

x
x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

 and 
1

2
1 0

x
y

x
⎡ ⎤

= ⎡ ⎤ ⎢ ⎥⎣ ⎦
⎣ ⎦



182 Modeling and Simulation of Systems Using MATLAB and Simulink

From above equation matrix 
C

CA
⎡ ⎤
⎢ ⎥
⎣ ⎦

 is 
1 0

1 1

C

CA
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

Because 
1 1

2 1
A

⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

, C = [1 0] and 1 1CA = ⎡ ⎤⎣ ⎦

Rank of 
C

CA
⎡ ⎤
⎢ ⎥
⎣ ⎦

 = 2 = n. Hence, the system states are observable.

3.14 Sensitivity

The parameters of a system may have a tendency to vary due to changing environment 
conditions and this variation in parameters affects the desired performance of a system. 
The use of feedback in a system reduces the effect of parameter variations. The term sen-
sitivity in relation to systems gives an assessment of the system performance as affected 
due to parameter variations.

Let the variable in a system which changes its value be A such as the output, and this 
change is considered due to parameter variations of element K such as gain or feedback, 
then the system sensitivity is expressed as

Percentage change in
Sensitivity

Percentage change in

A
K

=

In mathematical terms sensitivity is written as

∂=
∂

/

/
A
K

A A
S

K K

The notation A
KS  denotes sensitivity of variable A with respect to parameter K.

So it is preferable that the sensitivity function A
KS  should be minimum.

The sensitivity function for the overall transfer function M(s) with respect to variation 
in G(s) is written as

 

∂ ∂= =
∂ ∂

( )/ ( ) ( ) ( )
or

( )/ ( ) ( ) ( )
M M
G G

M s M s G s M s
S S

G s G s M s G s  
(3.146)

For the open loop control system which is shown in Figure 3.53, the overall transfer func-
tion is

 
( ) ( )

( ) ( ) or 1
( ) ( )

C s M s
M s G s

R s G s
= = =  (3.147)



Formulation of State Space Model of Systems 183

Differentiating M(s) with respect to G(s)

 

( )
1

( )

M s
G s

∂  = 
∂  

(3.148)

Substituting Equations 3.147 and 3.148 in Equation 3.146 we get

 

( ) ( )
1

( ) ( )
M
G

G s M s
S

M s G s
∂= =
∂  

(3.149)

For the closed loop system shown in Figure 3.54, the overall transfer function is

 

( )
( )

1 ( ) ( )

G s
M s

G s H s
=

+  
(3.150)

Differentiating Equation 3.150 with respect to G(s)

2

( ) [1 ( ) ( )] ( ) ( )

( ) [1 ( ) ( )]

M s G s H s G s H s
G s G s H s

∂ + −=
∂ +

or

 2

1

[1 ( ) ( )]G s H s
=

+  
(3.151)

Substituting Equations 3.150 and 3.151 in Equation 3.146, we get

 ( ) ( )

( ) ( )
M
G

G s M s
S

M s G s
∂=
∂

2

( ) 1

( )/(1 ( ) ( )) [1 ( ) ( )]

G s
G s G s H s G s H s

=
+ +

Open loop transfer
function G(s)

Input
R(s)

Output
C(s)FIGURE 3.53

Open loop system.

Open loop transfer
function G(s)

Feedback transfer
function H(s)

Input
R(s)

Output
C(s)+

–

FIGURE 3.54
Closed loop feedback system.



184 Modeling and Simulation of Systems Using MATLAB and Simulink

 

1

[1 ( ) ( )]
M
GS

G s H s
=

+  
(3.152)

Comparing sensitivity functions shown in Equations (4) and 3.152 it is observed that the 
sensitivity of the overall transfer function with respect to forward path transfer function 
in the case of closed loop system is reduced by a factor [1 + G(s)H(s)] as compared to open 
loop system.

Sensitivity of overall transfer function M(s) with respect to feedback path transfer 
function. H(s) is written as

( ) ( )

( ) ( )
M
H

H s M s
S

M s H s
∂=
∂

For closed loop control system is

( )
( )

1 ( ) ( )

G s
M s

G s H s
=

+

Differentiating the above equation with respect to H(s)

[ ]2

2

( )( )

( ) [1 ( ) ( )]

G sM s
H s G s H s

∂ =
∂ +

Substituting the second and third equations in the fi rst, we get

( ) ( )

1 ( ) ( )
M
H

G s H s
S

G s H s
=

+

Comparing sensitivity function given in Equations 3.149 and 3.152 it is concluded that a 
closed loop control system is more sensitive to variation in feedback path parameters than 
the variations in forward path parameters, therefore, the specifi cations of feedback ele-
ments in a closed loop control system should be more rigid as compared to that of forward 
path elements.

3.15 Liapunov Stability

The general state equation for a nonlinear system can be expressed as

 = ( ( ), ( ), )
o
x f x t u t t  

(3.153)



Formulation of State Space Model of Systems 185

A variety of methods have therefore been devised which yield information about the sta-
bility and domain of stability of Equation 3.153 without restoring to its complete solution.

For an autonomous system the technique of investigating stability by linearizing about 
a singular point gives information only about stability in the small range. It, therefore, 
has very limited practical use. Merely looking for existence of limit cycles (self-oscillation) 
apart from being cumbersome yields limited information. Approximation technique of 
describing function in determining system stability has some merit but the answer may 
not always be depended upon.

Therefore, exact approaches for stability investigation wherever possible must be used. 
Liapunov’s direct method and Popov’s method are two such approaches which provide us 
with qualitative aspects of system behavior.

Basic stability theorems

The direct method of Liapunov is based on the concept of energy and the relation of stored 
energy with system stability. Consider an autonomous physical system described as

= ( ( ))
o
x f x t

and let x(x(t0), t) be a solution. Further, let V(x) be the total energy associated with the sys-
tem. If the derivative dV(x)/dx is negative for all x(x(t0), t) except the equilibrium point, then 
it follows that energy of the system decreases as t increases, and fi nally the system will 
reach the equilibrium point. This holds because energy is nonnegative function of system 
state which reaches a minimum only if the system motion stops.

The Liapunov’s method in its simplest form is given by the following theorem.

Theorem 1: Consider the system

= ( ( ))
o
x f x t , f(0) = 0

Suppose there exists a scalar function V(x) which, for some real number ε > 0, satisfi es the 
following properties for all X in the region ⏐⏐X⏐⏐ ≤ ε:

 1. V(x) > 0; X ≠ 0.

 2. V(0) = 0.

 3. V(x) has continuous derivatives with respect to all components of X.

 4. 
d

0
d

V
t

 ≤  (i.e., dV/dt is negative semi-defi nite scalar function).

Then the system is stable at the origin.

Theorem 2: If the property (4) of Theorem 1 is replaced with dV/dt < 0, x ≠ 0 (i.e., 
dV/dt is negative defi nite scalar function), then the system is asymptotically stable.

It is intuitively obvious that since a continuous V function, V > 0 except at X = 0, satisfi es 
the condition dV/dt < 0, we expect that X will eventually approach the origin. We shall 
avoid the rigorous proof of this theorem.



186 Modeling and Simulation of Systems Using MATLAB and Simulink

Theorem 3: If all the conditions of Theorem 2 hold and in addition,

 → ∞  ( ) as|| ||V X X

Then the system is asymptotically stable in-the-large at the origin.

Liapunov functions

The determination of stability via Liapunov’s direct method centers around the choice of 
a positive defi nite function V(x) called the Liapunov function.

Theorem 4: Consider the system

= ( ( ))
o
x f x t , f(0) = 0

Suppose there exists a scalar function W(x) which, for some real number ε > 0, satisfi es the 
following properties for all X in the region ⏐⏐X⏐⏐ ≤ ε:

 5. W(x) > 0; X ≠ 0.

 6. W(0) = 0.

 7. W(x) has continuous derivatives with respect to all components of X.

 8. 
d

0
d

W
t

 ≥ .

Then the system is unstable at the origin.

3.16 Performance Characteristics of Linear Time Invariant Systems

When the mathematical model of a physical system is solved for various input conditions, 
the result represents the dynamic response of the system. The mathematical model of 
a system is linear if it obeys the principal of superposition and homogeneity. This principal 
implies that if a system model has responses y1(t) and y2(t) to any two inputs x1(t) and x2(t), 
respectively, then the system response to the linear combination of these inputs α1x1(t) + 
α2x2(t) is given by the linear combination of the individual outputs, i.e., α1y1(t) + α2y2(t) 
where α1 and α2 are constants.

Mathematical models of most physical systems are characterized by differential equa-
tions. A mathematical model is linear, if the differential equation describing it has coef-
fi cients, which are either functions only of the independent variable or are constants. If 
the coeffi cients of describing differential equations are functions of time (the independent 
variable), then the mathematical model is linear time-varying. On the other hand, if the 
coeffi cients of the describing differential equations are constants, the model is linear time 
invariant.



Formulation of State Space Model of Systems 187

3.17 Formulation of State Space Model Using Computer Program (SYSMO)

System state model (SYSMO) is a digital computer program for analysis of lumped linear 
time invariant systems without any restriction with regard to the “type” of elements or 
their interconnection (as far as they are “legal”).

3.17.1 Preparation of the Input Data

 1. Replace all the elements of the given network by their equivalent circuits in Table 
3.1 using the SYSMO standard elements given in Table 3.10. The fi ctitious element 
A and B can be placed wherever needed but always such that the element A is in 
series whereas the element B is in parallel with the other one-port elements in the 
network.

 2. Set up an oriented linear graph of the network. If the resulting graph is uncon-
nected join its separate parts by coalescence of vertices in such a way that every 
two parts have just one vertex in common.

 3. Number the edges and vertices of the graph in an ascending way starting at one. 
Orientation of each edge has to be related to the orientation of the corresponding 
network element and to the sign of its nominal value.

The input data for each edge consist of the following information given in Table 3.8.
The nominal and initial values have to be given in a compatible system of physical units.

3.17.2 Algorithm for the Formulation of State Equations

In SYSMO the system of the state and output equations in normal form is not given explic-
itly but is derived algorithmically through the following steps:

 1. The incidence matrix A is set up and its columns are rearranged according to the 
type of the elements which are represented in Table 3.9.

 2. The (n − 1) rows of the incidence matrix A are eliminated by Gauss–Jordan reduc-
tion, modifi ed in such a way that if at the ith step all entries in the ith column 

TABLE 3.8

Element Information for SYSMO

S. No. Type of Elements Description

1. EL Number of the edge

2. ND1 Number of the node incident with the “tail” of the edge

3. ND2 Number of the node incident with the “arrow” of the edge

4. CPL Number of the edge to which the given edge is coupled (nonzero in 

case of dependent sources and mutual inductance only)

5. TYP Type of the element represented by the edge (according to Table 3.1)

6. VAL Nominal value of the element represented by the edge

7. INC Initial value of the variable conserved by the element represented by 

the edge



188 Modeling and Simulation of Systems Using MATLAB and Simulink

below and including the ith row are zero, the ith column is interchanged with 
the nearest column j in A with a nonzero entry in its ith row. Thus the resultant 
matrix is a fundamental cutset matrix [U Q]. Columns of the unit submatrix U cor-
respond to the edges of the normal tree.

 3. The interchange of the matrix columns in Step 2 is checked so that it can be used 
for topological diagnostic of the given network. If when searching for a column 
with a nonzero entry in its ith row

 a. The column i corresponds either to E, A, or V—the network is not topologically 
consistent (it contains a circuit made of across variable sources and/or short 
circuit elements A).

 b. The column j corresponds either to I, B, or J—the network is not topologically 
consistent (it contains a cutset made of through variable sources and/or open 
circuit elements B).

 c. No column j with a nonzero entry in its ith row can be found—the graph of the 
network is not connected [see instruction (2) for the data preparation].

 4. Let us denote the network primary variables (across variables of tree branches and 
through variables of cotree chords) by upper case letters and the secondary vari-
ables (branch through variables and chord across variables) by lower case letters. 
Then according to f-cutset and f-circuit equations

 

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
T

0

0

b b

c c

y Q x

x Q y  
(3.154)

  where Q is the matrix derived in the Step 2. Q is its transpose and the whole 
middle square matrix is the combined matrix.

 5. The rows and columns of the combined matrix are rearranged according to the 
types of the elements so as to get a matrix T which in the partitioned form fully 
describes the topological relations among the network variables in the follow-
ing way:

TABLE 3.9

Priority Level for Different Elements in Incidence Matrix

Type of Elements Description

E Independent across driver

A Short circuit elements (through variable measuring devices)

V Dependent across drivers

C Accumulator type elements

R Dissipater (algebraic elements)

L Delay type elements

I Dependent through drivers

B Open circuit elements (across variable measuring devices)

J Independent through drivers



Formulation of State Space Model of Systems 189

1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

w T T T W

w T T T W

w T T T W

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  where

TT
1 bc cL bL ccW X Y X Y= ⎡ ⎤⎣ ⎦

TT
1 bc cL bL ccw y x y x= ⎡ ⎤⎣ ⎦

  are the vectors of the primary and secondary system dynamic variables

TT
2 bR cR bX cYW X Y X Y= ⎡ ⎤⎣ ⎦  and

 

TT
2 bR cR bA cRw y x y x= ⎡ ⎤⎣ ⎦

  are the vectors of the primary and secondary static variables and WT
3 = 

T

bE cLX Y⎡ ⎤⎣ ⎦  
is the vector of the specifi ed variables. As XbA = YcB = 0, these vectors do not have to 
be considered further.

 6. The terminal equations for memoryless network elements

0

0

bR bR

cR cR

X yR

GY x

⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦
 and

 

bX bA

cY cB

X yr m

a gY x

⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

  can be combined so as to give

 2 2 2  W P w=
 (3.155)

  where the matrix P2 of the memoryless network parameters

T

T

2

0

0

R

G
P

r m

a g

=

  G is a matrix of reciprocal values of chord resistors.

 7. The second row of Equation given in step-5 yields

w2 = T21W1 + T22W2 + T23W3



190 Modeling and Simulation of Systems Using MATLAB and Simulink

  After substituting (2) into the last equation premultiplied by P2 we obtain

 − = +2 22 2 2 22 1 2 23 3( )U P T W P T W P T W  (3.156)

  Equation 3.156 can be solved with respect to the vector of primary variables of 
memoryless elements W2 by Gauss–Jordan reduction that will give the equation

 = +2 1 3W KW KW  (3.157)

 8. The Gauss–Jordan reduction in Step 7 simultaneously carries out the diagnos-
tic of algebraic consistency and determinacy of the given network. If the matrix 
(U − P2T22) is not of its full rank the program has to be terminated at this point.

 9. The terminal equations of the memory elements are given as

=
0 d

0 d

bC bcb

CCC cc

y XC

C tY x

  and

= d

d

bL bLbb bC

cb CCCL CL

X yL L

L L tx Y

  The subscripts b and c refer to the branches and chords of the normal tree, respec-
tively. These two matrix equations combined together

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

d

d

bC bC
b

CL CLCC bc

cb bbbL bL

CC
CC CC

y x
C

x yL L

L L tX Y
C

Y X

  can be simply written as

 
11 11

1
12 12

d

d

w W
P

w Wt
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (3.158)

  where the vectors

W11 = 
T

bC cLX Y⎡ ⎤⎣ ⎦  and w11 = 
T

bC cLY X⎡ ⎤⎣ ⎦

W12 = 
T

bL cCX Y⎡ ⎤⎣ ⎦  and w12 = 
T

bL cCY X⎡ ⎤⎣ ⎦

  are just parts of the vectors W and w from.



Formulation of State Space Model of Systems 191

 10. Substitution of Equation 4 into the fi rst equation of (1)

w1 = T11W1 + T12W2 + T13W3

  yields

w1 = (T11 + T12K1)W1 + (T13 + T12K3)W3

  or simply

 
= +1 1 3w MW NW

 
(3.159)

  Partitioning Equation 3.159 in the same way as the vectors W and w have been 
partitioned in Equation 3.158 and interchanging the vectors W2 and w2 in the last 
equation yield

11 1112 11

22 2112 12

0

0

w WU M M

M M UW w

⎡ ⎤ ⎡ ⎤−⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

  After substitution of (5) into this equation we obtain a system of preliminary state 
equations

11 1112 11

3
22 2112 12

0d

0 d

w WU M M
NW

M M Ut W w

⎡ ⎤ ⎡ ⎤−⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 11. The preliminary state equations

SX = AX + BU

  and output equations

y = RX + CX + DU

  would be in the fi nal form if S were an identity matrix. Since this is generally not 
so, a procedure suggested by reducing the partitioned matrix [S A B] to row ech-
elon form. Three possibilities are now recognized:

 a. S becomes an identity matrix. In this case S is of full rank and the fi nal state 
equations are obtained.

 b. S and A contain at least one zero row. Unless the same row of B is also zero the 
network has no solution because an “illegal” interconnection of independent 
sources is indicated.

 c. S but not A contains at least one zero row. It indicates that the order of com-
plexity of the network is smaller than the number of memory elements. In this 
case the last row expresses the equation



192 Modeling and Simulation of Systems Using MATLAB and Simulink

0 = anXT + bnUT

  implying a dependence among variables. One may be chosen for elimination and 
the relation above used to remove a column from A and C matrices. Differentiating 
the expression gives

0 = an
TX + bn

TU

  which is used to remove the corresponding element from X and hence a col-
umn from R and S. Derivatives of input signals may thus arise during state vari-
able elimination. When these relations have been exhausted, a smaller matrix 

S A B⎡ ⎤⎣ ⎦  is again reduced to row echelon form and the process repeated until 
an identity matrix is obtained for S or all state variables disappear.

Alternatively

SX1 = A1X1 + B1U

S = LU = LDU +

where 

1 0

1

1 1

L
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 = nonsingular

and 

1

2

U

0 0

r

u

u
U

u

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = singular

1 0

1

1

1

0 0

D

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = singular

Let X1 = U−1 + X

SU−1 + X = A1U−1 + X + B1U

or L−1SU−1 + X = L−1A1U−1 + X + L−1B1U

or DX = PX + QU where P = L−1A1U−1 + and Q = L−1B1

−

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

1 111 12 1

2 221 22 2

0 d

0 0 d

r

n r

x xI P P Q
U

x xP P Qt



Formulation of State Space Model of Systems 193

The Table 3.10 shows the standard elements used in system model.
Assuming P22 is nonsingular

X2 = −P
22
−1P21X1 − P

22
−1Q2U

or

X1 = AX1 + BU

where A = [P11 − P12P22
−1P21] and B = [Q1 − P12P22

−1Q2].

Example 3.21

The schematic diagram of a fi eld controlled dc motor is shown in Figure 3.55 and its terminal graph 
in Figure 3.56. Develop its state model for two inputs such as load torque and fi eld excitation.

The detailed equivalent circuit for the system shown in Figure 3.55 is given in Figure 3.57. The 
fi rst part of equivalent circuit shows the fi eld circuit of generator, which is consisting of dc supply, 
fi eld resistance, and fi eld inductance. The second part of the system contains generator armature 
components such as armature resistance, armature inductance, and generated emf in the arma-
ture. The third part represents the armature equivalent circuit of motor, which has armature resis-
tance, armature inductance, and back emf induced in the armature. Finally, the last part shows the 
mechanical load containing damper, inertia, and load torque as through driver.

From the equivalent circuit the multipart system graph may be drawn as shown in Figure 3.58.
Different type of elements in the given system

TABLE 3.10

SYSMO Standard Elements

Elements/Terminal Equation EL ND1 ND2 CPL TYP VAL INC

Independent across driver 

X(t) = specifi ed

i P q — E e —

Independent through driver 

Y(t) = specifi ed

i P q — J j —

Across dependent across driver 

Xi(t) = r Xj(t)
i P q j V r —

Through dependent across driver 

Xi(t) = m Yj(t)
i p q j V m —

Across dependent through driver 

Yi(t) = a Xj(t)
i p q j I a —

Through dependent through driver 

Yi(t) = g Yj(t)
i p q j I g —

Dissipator X(t) = R Y(t) i p q — R R —

Impedance of zero value/short circuit 

element/Through variable 

measuring device X(t) = 0

i p q — A 0 —

Impedance of infi nite value/Open 

circuit element/Across variable 

measuring device Y(t) = 0

i p q — B inf —

Capacitor Y(t) = c dX(t)/dt i p q — C c Xc(0+)

Inductance X(t) = L dY(t)/dt i p q — L l Yl(0+)

Mutual inductance i p q j M ml Xc(0+)



194 Modeling and Simulation of Systems Using MATLAB and Simulink

E1 31 32 33 34 35

FIGURE 3.56
Terminal graph for dc motor–generator set.

A

B

FC G M

G

E

D

C

E1

+

–

FIGURE 3.55
Schematic diagram for dc motor–generator set.

A

B

E1 L11

I4 i5

V2 = Kgi4

R8R7 L12΄ L12˝ R9

V3 = KmN13 T14 = Kmi5

1/B10

J6

G

E

B13

T15

D

+ +

– –

++

–

 C

FIGURE 3.57
Equivalent circuit for given dc motor–generator set.

7

11

8

2

D
5

3 15 14 6 10 13

E

G

12’ 12”C 9

1

B

4

FIGURE 3.58
Multipart system graph.



Formulation of State Space Model of Systems 195

S. No. Elements
Element 

Type
Element 
Numbers

1. Independent across drivers E 1
2. Dependent across drivers X 2, 3
3. Short circuit elements SC 4, 5
4. Accumulators C 6
5. Dissipater elements R 7, 8, 9, 10
6. Delay type elements L 11, 12′, 12″
7. Open circuit elements OC 13
8. Dependent through drivers Y 14
9. Independent through drivers J 15

From the equivalent circuit of dc motor–generator set it is very clear that the two delay elements 6 
and 8 are in series and can be combined together as L12 = L12′ + L12″. After combining these delay 
elements, the multipart graph may be rooted at a common node to obtain a connected graph as 
shown in Figure 3.59. Covalence of nodes B, D, and G is one, because cutset equations remains 
unchanged and no property of system graph is violated.

For this connected graph of Figure 3.59, draw the f-tree consisting of edges related to E-type 
element, short circuit elements (SC), dependent across drivers (X), accumulators (C), and resistors 
(R) to complete it.

Hence, f-tree has elements (branches)—1, 2, 3, 4, 5, 6, 7, 8, 9 and
Cotree elements (chords)—10, 11, 12, 13, 14, 15
In this system, total number of dynamic element = number of “C” type elements + number of 

“L” type elements

= 1 + 2 = 3

Hence the total number of state equations equals to 3 (i.e., the total number of dynamic ele-
ments in nondegenerate system).

Step 1 Write the incidence matrix as given in Table 3.11.

Step 2 Rearrange the incidence matrix according to the topological restrictions. In this case, we 
will get the same matrix as shown in Table 3.11, because we have already taken the elements as 
per the topological restrictions.

II
7

III
11

IV

1

I

IX 14

15

13

X
E

106

3

4 5

2

V 8 VI 12 VII 9 VIII

FIGURE 3.59
Connected graph for given dc motor–generator set.



196 Modeling and Simulation of Systems Using MATLAB and Simulink

TABLE 3.11

Incidence Matrix for Given System Graph

E X SC C R L Y OC J

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I −1 −1 0 −1 −1 −1 0 0 0 −1 0 0 −1 −1 −1

II 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

III 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0

IV 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0

V 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

VI 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0

VII 0 0 0 0 0 0 0 0 1 0 0 −1 0 0 0

VIII 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0

IX 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0

X 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1

TABLE 3.12

Reduced Incidence Matrix for Given System Graph

E SC X C R L Y OC J

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

II 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

III 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0

IV 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0

V 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

VI 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0

VII 0 0 0 0 0 0 0 0 1 0 0 −1 0 0 0

VIII 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0

IX 0 1 −1 0 1 0 0 0 0 0 0 0 0 0 0

X 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1

Step 3 Delete a row related with the reference node (i.e., node I) to get a reduced incidence 
matrix as shown in Table 3.12.

Step 4 Obtain the unity matrix in the leading portion of the reduced incidence matrix using 
Gauss–Jordan elimination method as shown in Table 3.13. The trailing portion of the table con-
tains f-cutset coeffi cient matrix (Q or Ac).

Step 5 Grouping of elements
Secondary variables of

 1. Dynamic elements (“C” type and “L” type) w1 = [i6 V11 v12]

 2. Dissipaters (“R” type) 102 7 8 9[  ]
o

w i i i= θ

 3. Drivers (across and through drivers) 13 14 153 1 2 3 4 5[   ]
o o o

w i i i i i= θ θ θ



Formulation of State Space Model of Systems 197

TABLE 3.13

Coeffi cient Matrix of f-Cutset Equation

E SC X C R L Y OC J

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

II + III 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

V + VI 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

VII + VIII 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0

IV 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0

VII + VIII + 

IX

0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0

X 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1

(−1) * III 0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0

(−1) * VI 0 0 0 0 0 0 0 1 0 0 0 −1 0 0 0

VII 0 0 0 0 0 0 0 0 1 0 0 −1 0 0 0

Step 7 Rearranged the combined constraint equation

Step 6 Write a combined constraint equation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 1 1 1

0 0 0 0 0 0 0 0 0

o

o

o

o

i

i

i

i

i

T

i

i

i

v

v

⎡ ⎤
⎢ ⎥ −
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ − − − −
⎢ ⎥
⎢ ⎥
⎢ ⎥ =⎢ ⎥
⎢ ⎥
θ⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥θ⎢ ⎥
⎢ ⎥θ⎢ ⎥
⎢ ⎥
θ⎢ ⎥⎣ ⎦

1

2

3

4

5

6

7

8

9

0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 1 0 0 0 0 0 0 0 0

0 1 1 0 1 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

o

v

v

v

v

v

v

v

v

T

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ θ
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

10

11

12

13

14

15

i

i

T

T

T

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦



198 Modeling and Simulation of Systems Using MATLAB and Simulink

Consider w2 row of the above equation

 

7

6
8

11
9

12

10

0 1 0

0 0 1

0 0 1

1 0 0

o

o

i

i
ii
i

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ θ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦θ⎣ ⎦  

(3.160)

Step 8 Write the terminal equation for memoryless elements

 

77 7

88 8

99 9

10 10 10

0 0 0

0 0 0

0 0 0

0 0 0 o

iv R
iv R
iv R

T B

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ θ⎣ ⎦  

(3.161)

Substitute Equation 3.160 in Equation 3.161.

 

7 7
6

8 8
11

9 9
12

10 10

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 1 0 0

ov R

v R
i

v R
i

T B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤θ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

(3.162)

Step 9 Consider w1 row of the matrix equation

⎡ ⎤
⎢ ⎥ − − − −
⎢ ⎥

− −⎢ ⎥
⎢ ⎥ − − − −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥θ
⎢ ⎥
⎢ ⎥

=⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥θ⎢ ⎥
⎢ ⎥θ⎢ ⎥
⎢ ⎥
θ⎢ ⎥⎣ ⎦

6

11

1 12

7

8

2 9

10

1

2

3

4
3

5

13

14

15

6 11 12 7 8 9 10 1 2 3 4 5 13 14 15

6 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1
11 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0
12 0 0 0 0 1 1 0 0 1 1 0 1 0 0 0

7 0 1

8
9

10
1
2

3

4

5

13

14

15

o

o

o

o

T

v
w v

i

i
w i

i

i

i

i
w

i

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢ −
⎢ −⎢
⎢
⎢
⎢
⎢
⎢

⎣

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎡ ⎤⎤ θ⎢ ⎥⎥ ⎢ ⎥⎥ ⎢ ⎥⎥ ⎢ ⎥⎥ ⎢ ⎥⎥ ⎢ ⎥⎥ ⎢ ⎥⎥ ⎢ ⎥⎥ ⎢ ⎥⎥ ⎢ ⎥⎥ ⎢ ⎥⎥ ⎢ ⎥⎥ ⎢ ⎥⎥ ⎢ ⎥⎥ ⎢ ⎥⎥ ⎢ ⎥⎥ ⎢ ⎥⎥ ⎢ ⎥⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎦ ⎢ ⎥⎣ ⎦

6

11

12

7

8

9

10

1

2

3

4

5

13

14

15

o

i

i

v

v

v

T

v

v

v

v

v

T

T

T



Formulation of State Space Model of Systems 199

     

1

2

7 3
6

8 4
11

9 5
12

10 13

14

15

0 0 0 1 0 0 0 0 0 1 1 1

1 0 0 0 1 0 0 1 0 0 0 0

0 1 1 0 0 1 1 0 1 0 0 0

v

v

v v
T

v v
v

v v
v

T T

T

T

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= − + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

(3.163)

Substitute Equation 3.162 in Equation 3.163, we will get

7
6 6

8
11 11

9
12 12

10

0 0 0 0 1 0
0 0 0 1

0 0 0 0 0 1
1 0 0 0

0 0 0 0 0 1
0 1 1 0

0 0 0 1 0 0

oR
T

R
v i

R
v i

B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− θ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 

1

2

3

4

5

13

14

15

0 0 0 0 0 1 1 1

1 0 0 1 0 0 0 0

0 1 1 0 1 0 0 0

v

v

v

v

v

T

T

T

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

− − −⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

(3.164)

Step 10 Write the terminal equation for memory elements

 

66 6

11 11 11

12 12 12

0 0
d

0 0
d

0 0

o
T J

v L i
t

v L i

⎡ ⎤θ⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

(3.165)

Substitute Equation 3.165 in Equation 3.164.

7
66 6

8
11 11 11

9
12 12 12

10

0 0 0 0 1 0
0 0 0 0 0 1

0 0 0 0 0 1d
0 0 1 0 0 0

0 0 0 0 0 1d
0 0 0 1 1 0

0 0 0 1 0 0

o oR
J

R
L i i

Rt
L i i

B

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤θ − θ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦



200 Modeling and Simulation of Systems Using MATLAB and Simulink

 

1

2

3

4

5

13

14

15

0 0 0 0 0 1 1 1

1 0 0 1 0 0 0 0

0 1 1 0 1 0 0 0

v

v

v

v

v

T

T

T

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

− − −⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

(3.166)

In Equation 3.166 voltages v4 = v5 = 0 and T13 = 0

7
66 6

8
11 11 11

9
12 12 12

10

0 0 0 0 1 0
0 0 0 0 0 1

0 0 0 0 0 1d
0 0 1 0 0 0

0 0 0 0 0 1d
0 0 0 1 1 0

0 0 0 1 0 0

o oR
J

R
L i i

Rt
L i i

B

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤θ − θ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 

1

2

3

14

15

0 0 0 1 1

1 0 0 0 0

0 1 1 0 0

v

v

v

T

T

⎡ ⎤
⎢ ⎥− −⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ ⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

Now substitute the terminal equations of dependent drivers

13 6 63 2 11 4 14 5 12, , ,
o o o

m g g mv k v k i k i T kmi k iθ = θ = − θ = = = =

7
66 6

8
11 11 11

9
12 12 12

10

0 0 0 0 1 0
0 0 0 0 0 1

0 0 0 0 0 1d
0 0 1 0 0 0

0 0 0 0 0 1d
0 0 0 1 1 0

0 0 0 1 0 0

o oR
J

R
L i i

Rt
L i i

B

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤θ − θ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 

1

11

6

12

15

0 0 0 1 1

1 0 0 0 0

0 1 1 0 0

g

o

m

v

k i

km

k i

T

⎡ ⎤
⎢ ⎥

− −⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ − θ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥

⎢ ⎥⎣ ⎦



Formulation of State Space Model of Systems 201

Combine the similar terms to get the fi nal state space model as

⎡ ⎤− −⎡ ⎤⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥θ θ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎡ ⎤−⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − +⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

10

6 6
6 66

17
11 11

1511
1112 12

8 9

12 12 12

10 0

d 10 0 0d
( ) 0 0

m
o o

gm

B k
J J J

vR
i i

Tt L Li i
kk R R

L L L

Example 3.22

Develop the state space model for the given mechanical system shown in Figure 3.60 using 
MATLAB® Program SYSMO.

Output of SYSMO Program

WELCOME TO SYSMO
A PACKAGE FOR STATE SPACE EQUATIONS FORMULATION

The package formulates the state space equations once the interconnections within the system, 
the nature of each component, and its terminal equations are provided.

The formulation is applicable to linear, lumped parameter, bilateral, and time invariant systems. 
It is applicable to electrical, mechanical, pneumatic, hydraulic, or a combination of two or more 
of the above types of system.

IMPORTANT:

 i. If the system is unconnected, connect each separation at one node only.

 ii. For each controlled source, create an element [an “Impedance”, either of zero value or of 
infi nite value] the value of whose variable controls the dependent source.

 iii. Number the nodes and elements in an unambiguous manner.

1
2

3 4 3

2

B

K

Mass
M

4

1

FIGURE 3.60
Mechanical system with its system graph.



202 Modeling and Simulation of Systems Using MATLAB and Simulink

Press any key to continue.….
The following type of elements are recognized

 i. Independent across driver: Type 1
 ii. Dependent across driver: Type 2
 iii. Impedance of zero value: Type 3
 iv. Capacitor type: Type 4
 v. Resistance type: Type 5
 vi. Inductance type: Type 6
 vii. Impedance of infi nite value: Type 7
 viii. Dependent through driver: Type 8
 ix. Independent through driver: Type 9

The maximum allowable number of elements is 25.

What is the total number of nodes? 4

What is the total number of elements? 4

Please give the element data in the following order:

element no.; positivenode; negativenode; coupling; type;

Start giving the individual element data please

Element no.? 1

The positive node? 1

The negative node? 4

The element no. to which it is coupled [if uncoupled then print “0”]? 0

The element type? 5

Value of the element? 1

Please give the value of the initial conditions? 0

Next Please?

Element no.? 2

The positive node? 1

The negative node? 2

The element no. to which it is coupled [if uncoupled then print “0”]? 0

The element type? 6

Value of the element? 1

Please give the value of the initial conditions? 0

Next Please?

Element no.? 3

The positive node? 2

The negative node? 3

The element no. to which it is coupled [if uncoupled then print “0”]? 0

The element type? 4

Value of the element? 1

Please give the value of the initial conditions? 0

Next Please?

Element no.? 4



Formulation of State Space Model of Systems 203

The positive node? 3

The negative node? 4

The element no. to which it is coupled [if uncoupled then print “0”]? 0

The element type? 9
If the source is step/sinusoidal/cosinusoidal then

write 1/2/3–> 1

give the value of the step function source-1

n, the total no. of nodes

no_of_nodes =

4

g, the total number of elements

g =

4

The incidence matrix is

incidence =

1  1  0  0
0  -1 1  0
0  0  -1 1
-1 0  0  -1

Press any key to continue.….

Please wait.…

The rearranged incidence matrix is

incidence =

0  1  1  0
1  0  -1 0
-1 0  0  1
0  -1 0  -1

Press any key to continue.….

Please wait.…

Incidence matrix reduced to f-cutset matrix

incidence =

1 0 0 -1
0 1 0  1
0 0 1 -1

Press any key to continue.….

The Q Matrix is

qa = 

1

-1

1

The negative transpose of Q matrix is



204 Modeling and Simulation of Systems Using MATLAB and Simulink

qt =

-1 1 -1

Press any key to continue.….

The combined constraint equations matrix is

combined =

0  0 0  1
0  0 0  -1
0  0 0  1
-1 1 -1 0

Press any key to continue.….

Please wait…

W, the rearranged combined constraint equation matrix is

w =

0  0  0 1
0  0  0 1
0  0  0 -1
-1 -1 1 0

Press any key to continue.….

The number of nondegenerate elements,

xw11 =

1

The number of degenerate elements,

xw12 =

1

The number of memoryless elements,

xw2 =

1

The T.E. matrix, P2 of the memoryless elements is

tememless =

1

Press any key to continue.….

The various coeffi cient matrices of the middle

constraint eqn. are as follows

The t21 matrix is

t21 =

0 0

the t22 matrix is

t22 =

0



Formulation of State Space Model of Systems 205

and the t23 matrix is

t23 =

-1

Press any key to continue.….

Premultiplying the entire equation by P2, the

T.E. of algebraic elements,

we get

The p2t21 matrix is

p2t21 =

0 0

The p2t22 matrix

p2t22 =

0

The p2t23 matrix

p2t23 =

-1

Press any key to continue.….

After multiplying the middle equation by the inverse of the

matrix of terminal equations of the memoryless elements, the equation

reduces to W2 = K1 * W1 + K3 * W3 where

the k1 matrix is

k1 =

0 0

and the k3 matrix is

k3 =

-1

Press any key to continue.….

p1 : the terminal equations matrix of dynamic elements

p1 =

1 0
0 1

Press any key to continue.….

the various coeffi cient matrices of fi rst constraint eqn. are:

t12 matrix

t12 =

0
0



206 Modeling and Simulation of Systems Using MATLAB and Simulink

t11 matrix

t11 =

0 0
0 0

t13 matrix

t13 =

1
1

Press any key to continue.….

After manipulation the top constraint equation takes the form

w1 = M1 * W1 + M3 * W3

where M1 is

m1 =

0 0
0 0

and M3 is

m3 =

 1
 1

Press any key to continue.….

The preliminary state equation is of the form

S2 * dX/dt = s3 *X + m3 * U

where S2 matrix is

s2 =

1 0
0 0

Press any key to continue.….

and s3 matrix is

s3 =

0 0

0 -1

and m3 matrix is

m3 =

1
1

Press any key to continue.….

welcome

welcome



Formulation of State Space Model of Systems 207

welcome2

welcome3

welcome4

The state space model is

dx/dt = s3 * x + m3 *u + m4 du/dt

dx/dt = s3 * x + m3 *u + m4 du/dt

s3 =

0

Press any key to continue.….

and

m3 =

1

and

u =

1

&

m4 =

1

and du/dt

derivative = 0

Model development is fi nished

MATLAB codes

% program for simulation

x=[0;0]
s3=0
m3=[-1,-1]
u=1
m4=-1
dt=.01
tsim=10
t=0
n=round( (tsim-t/dt)
for I=1 :n
 x1(I, :)=[t,x’]
 c=s3*x
 e=m3*u
 dx=(c+e)*dt
 x=x+dx
 t=t+dt
end
plot(x1(0,1),x1(:,2:3) )



208 Modeling and Simulation of Systems Using MATLAB and Simulink

3.18 Review Questions

 1. Mention the fundamental variables for electrical, mechanical, hydraulic, and eco-
nomic systems.

 2. Are derivatives and integrals of through and across variables respectively through 
and across variables or otherwise? Give suitable examples in support of your 
answer.

 3. State the component postulate of physical system theory.

 4. State the interconnection postulates in the form of cutset and circuit postulates.

 5. Write fundamental cutset and fundamental circuit equations in the matrix form 
with the branch chord partitioning as implied by the selected formulation tree of 
the system graph.

 6. What is a maximally selected formulation tree?

 7. Derive the principle of conservation of energy in a closed physical system on the 
basis of the fundamental cutset and circuit equations.

 8. Consider two different physical systems with the same topology (i.e., intercon-
nection pattern or system graph). Let XI(t) and YI(t) represent the across variable 
vector and the through variable vector of the fi rst physical system while XII(t) and 
YII(t) represent the respective column vectors for the second physical system at 
time (t + t1). Prove that Quassi Power is

T T
1 1( ) ( ) 0 and ( ) ( ) 0I II I IIX t Y t t Y t X t t+ = + =

 9. State the terminal characteristics together with topological restrictions, if any, for 
the following multilateral/multiport components:

Perfect couplers,

Gyrators,

Electromechanical transducers (2-port dc generator, 2-port dc motor).

 10. Draw the equivalent circuits for the multiterminal components in question 9 in 
terms of appropriate two-terminal components and dependent drivers (connected 
sources).

 11. The defi nition of a system depends not only on the physical entity involved but 
also on the purpose of the investigation. Comment with particular reference to the 
system and its environment.

 12. State the determinateness theorem for linear system in any one form giving a set of 
necessary conditions on the system structure under which a complete and unique 
solution exists.

 13. Apply the theorem in question 12 to the system shown in Figure 3.61 to establish 
whether or not necessary conditions are satisfi ed for the existence of a complete 
and unique solution for this system. R = 3 Ω, L = 1 H, C = 0.5 pF.

 14. Consider the hydraulic system in Figure 3.62 consisting of a three-terminal reser-
voir with the terminal graph in Figure 3.63 and the corresponding terminal char-
acteristics as given by equation

dP(t)/dt = AG(t) where P(t) = [P2(t)P3(t)]T, G(t) = [g2(t)g3(t)]T



Formulation of State Space Model of Systems 209

A = [1/C2r23*d/dt

R23*d/dtr23*d/dt]

and r23 = R3/2

a.  State the determinateness theorem in any one of its three 
alternative forms and apply it to the system in Figure 3.62 
to determine whether necessary conditions for the existence 
and uniqueness of the solution of this system are satisfi ed or 
not.

b.  Obtain the formulation tree(s) and the interconnection 
constraint equations for the system in Figure 3.62.

 15. Draw the system graph and identify the tree for the given mechanical system 
shown in Figure 3.64.

 16. Defi ne precisely and explain with the help of a simple example in each case the 
following topological terms used in system theory:

1. Terminal graph   7. Tree of the graph 13. Isomorphism

2. System graph   8. Circuit 14. Edge-sequence

3. Edge   9. Forest 15. Degree of vertex

4. Path 10. Coforest 16. Multiplicity

5. Branch 11. f-cutset

6. Chord 12. f-circuit

R

L

C

1 V

FIGURE 3.61
Series RLC circuit.

FIGURE 3.62
Hydraulic system.

32

FIGURE 3.63
Terminal graph of three-

terminal tank.



210 Modeling and Simulation of Systems Using MATLAB and Simulink

 17. The terminal graphs for a four-terminal component are 
given in Figure 3.65. Give all other possible terminal graphs 
for this component.

 18. Consider the mass and spring components and their linear 
graphs shown in Figure 3.66. Let a spring balance be the force 
meter and a calibrated scale be the displacement meter.

 a. Show how the meters would be placed on the compo-
nents to measure their terminal variables as indicated 
by their linear graphs. Draw two diagrams for each com-
ponent, one with a displacement driver and one with a force driver. Assume 
that all meters read zero before measurement starts.

 b. For the mass components, assume that the calibrated scale reads −2 before 
measurement starts. Assuming linear operation write the terminal equations 
for the component.

 c. For the spring component, assume that both force meter and displacement 
meter read +2 before measurement starts. Sketch the terminal equation of the 
component.

 19. Identify the two-terminal components, and draw the system graphs of the hydrau-
lic, mechanical, and electrical systems shown in Figures 3.67 through 3.69, respec-
tively. Also determine the rank and nullity for each graph.

 20. Find out the number of possible trees of the network shown in Figure 3.70. Evaluate 
the determinant of A*AT, where A is the reduced incidence matrix. Is this equal to 
the number of trees of the graph?

 21. a.  For the system graphs of the system shown in Figure 3.70 choose a formulation 
tree for each and write the fundamental circuit and cutset equations.

FIGURE 3.64
Mechanical system.

FIGURE 3.65
Terminal graph for four-

terminal component.

a

b

a

b
Mass Spring

c

d

c

d

FIGURE 3.66
Mass and spring components of mechanical system.



Formulation of State Space Model of Systems 211

 b.  How many independent circuit and cutset equations can be written for the 
graphs of the systems in Figure 3.70?

  Let the cutset and circuit equations in part (a) be represented symbolically by 
the equations

⎡ ⎤
=⎡ ⎤ ⎢ ⎥⎣ ⎦

⎣ ⎦
1 0

b

c

X
B U

X
 and 

⎡ ⎤
=⎡ ⎤ ⎢ ⎥⎣ ⎦

⎣ ⎦
1 0

b

c

Y
U A

Y

  Show that in all cases B1 = −A1
T.

FIGURE 3.67
Hydraulic system.

L3 R3

V1 R2

FIGURE 3.69
Electrical system.

FIGURE 3.68
Mechanical system.

K2

K1
B

F(t)

Mass M1

Mass M2



212 Modeling and Simulation of Systems Using MATLAB and Simulink

 22. Prove that for a graph

 1. αβT = αTβ = 0

 2. A1 + B1
T = 0 or B1 + A1

T = 0

 23.  Choose a formulation forest (set of trees) and write the fundamental circuit and 
cutset equations for the graph in Figure 3.71.

 24. Let the graph G of a system be connected and contain “e” elements and “v” 
vertices.

 a. What is the maximum number of across variables that can be arbitrarily 
specifi ed? 

 b. What is the maximum number of through drivers that can be arbitrarily 
specifi ed?

 c. Is there any restriction as to where in the system the specifi ed through and 
across drivers can be located? Explain.

 d. Why, out of all the possible circuit and cutset equations that can be written, is 
it convenient to use the fundamental circuit and cutset equations?

 25. a. How one can maximally select a formulation tree.

 b. What are the properties of a tree?

 26. State and explain the following with the help of suitable examples:

 a. Fundamental axiom

 b. Component postulate

 c. Interconnection postulates

 29. a.  Identify the two-terminal components of the mechanical system shown in 
Figure 3.72 and write their terminal equations.

 b.  What are the properties of an f-tree. Draw an f-tree for the mechanical system 
shown in Figure 3.72.

 30. Apply SYSMO algorithm to derive interconnection constraint equations for the 
system shown in Figure 3.72 in the following form:

 w = TW

L3

R2 L4V1

FIGURE 3.70
Electrical system.

FIGURE 3.71
Unconnected multipart system graph.



Formulation of State Space Model of Systems 213

 where
 w = secondary variable vector,
 W = primary variable vector (corresponding to a 

 maximally selected formulation tree)
 T = combined matrix

 31. Continue question 30 to formulate a state model for the 
system shown in Figure 3.72 by using SYSMO MATLAB 
program.

 32. State topological restrictions of the multiterminal/
multiport components used in electrical systems.

 33. How are input data prepared for SYSMO formulation?

 34. What is the order of types of elements in which the col-
umns of the incidence matrix are arranged in SYSMO 
formulation?

 35. What is the topological diagnostic available in SYSMO 
formulation while applying the Gauss–Jordan reduction to the reduced inci-
dence matrix?

 36. How are interconnection constraint equations written in a combined form in 
SYSMO formulation?

 38. How are rows and columns of the combined matrix in question 36 rearranged 
according to the types of elements in SYSMO formulation?

 39. Formulate a state model for the system shown in Figure 3.73 using SYSMO 
algorithm.

 42. Formulate the state model of an automobile suspension system shown in Figures 
3.74 and 3.75. Consider the input is a change in displacement x(t) as it goes ahead. 
Find the output y(t) for the given input.

 43. Develop the state model for the mechanical system shown in Figures 3.76 
and 3.77.

Mass M1

Mass M2

B

Displacement
driver

K2

K1

FIGURE 3.72
Mechanical system.

FIGURE 3.73
Electrical system.

Mass M1

B K1

x1

y1 (Automobile body displacement)

FIGURE 3.74
Schematic diagram of automobile suspension 

system.



214 Modeling and Simulation of Systems Using MATLAB and Simulink

Control arm Car frame

Steering link

Spring and dashpot

FIGURE 3.75
Automobile suspension systems.

Torque
driver

Bearing

Flywheel

Gears

Load

FIGURE 3.77
Mechanical system (rotating system).

FIGURE 3.76
Mechanical system (translatory motion).



Formulation of State Space Model of Systems 215

Q. Multiple Choice Questions (Bold is correct answer)

 1. If there are b elements and n nodes in a system graph, the number of f-circuits is 
given

 a. b b. b − n

 c. n − 1 d. (b − n + 1)

 2. Which is incorrect to defi ne “tree”?

 a. It is a set of branches which together connects all nodes

 b. The set of branches should not form a loop

 c. There cannot be more than one tree for a graph

 d. The branches of tree are called twigs

 3. In a system

 a. The number of tree branches is equal to the number of links

 b. The number of tree branches cannot be equal to the number of links

 c. The number of tree branches has no relation with the number of link branches

 d. None of these

 4. A cutset has

 a. Only one tree branch b. Always more than one tree branch

 c. Only one tree link d. None of these

 5.  Let the coeffi cient matrices of a state model are 
0 1

1 2
A

⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

, 
0

1
B

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
, 

1

1
C

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 

and 
0

0
D

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
, which of the following is correct for the given system:

 a. Neither state controllable nor observable

 b. State controllable but not observable

 c. Not state controllable but observable

 d. Both state controllable and observable

  6. The value of A in 
o
X  = Ax for system + + =2 3 0

oo o
y y y  is

 a. 
1 0

2 1
A

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 b. 
0 1

1 2
A

⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

 c. 
0 1

2 1

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

A  d. 
⎡ ⎤
⎢ ⎥
⎣ ⎦

0 1

3 2
A =

− −

 7. The size of coeffi cient matrices A and B in the state space model are:

 a. both square b. A rectangular and B square

 c. A square and B rectangular d. both rectangular

 8.  In a mechanical system with rotating mass, the time constant of the system can be 
decreased by

 a. Increasing the inertia of the system b. Output rate feedback

 c. Increasing input to the system d. Reducing friction



216 Modeling and Simulation of Systems Using MATLAB and Simulink

 9. In the following, pick out the linear systems

 i. 
2

1 22

d ( ) d ( )
( ) ( )

d d

y t y t
a a y t u t

t t
+ + =

 ii. 1 2

d ( )
( ) ( )

d

y t
y a y t a u t

t
+ =

 iii. 
2

2

2

d ( ) d ( )
2 ( ) 10 ( )

d d

y t y t
t t y t u t

t t
+ + =

 a. (i) and (ii) b. (i) only

 c. (i) and (iii) d. (ii) and (iii)

 10. In the following, pick out the nonlinear systems

 i. 
3 2

3 2

3 2

d ( ) d ( ) d ( )
20sin( )

d d d

y t y t y t
t t y t

t t t
+ + + = ω

 ii. 
2

2

d ( ) d ( )1
( ) 4

d d

y t y t
y t

t t t
+ + =

 iii. 

2
2

2

d ( ) d ( )
( ) 10

d d

y t y t
y t

t t
⎛ ⎞

+ + =⎜ ⎟
⎝ ⎠

 a. (i) and (iii) b. (ii) and (iii)

 c. (i) and (ii) d. none

 11.  In a linear system an input of 5 sin(ωt) produces an output of 15 cos(ωt), the output 
corresponding to 20 sin(ωt) will be equal to

 a. (15/4) sin(ωt) b. 60 sin(ωt)

 c. 60 cos(wt) d. (15/4) cos(ωt)

 12. In the following, pick out the time invariant systems:

 i. 
d ( )

5 ( ) ( )
d

y t
y t u t

t
+ =

 ii. 
2

2

d ( ) d ( )
2 ( ) 10 ( )

d d

y t y t
t y t u t

t t
+ + =

 iii. 2

2

d ( ) d ( )
5 8 ( ) ( )

d d

y t y t
y t v t

t t
+ + =

 a. (i) and (ii) b. (i) only
 c. (i) and (iii) d. (ii) and (iii)

 13. A mass–damper spring system is given by

  
2

2

d ( ) d ( )
0.6 ( ) ( )

d d

x t x t
x t f t

t t
+ + = , where f (t) is the external force acting on the system and 

   x is the displacement of mass. The steady state displacement corresponding to a force 
of 6 Newton is given by

 a. 10 m b. 0.36 m c. 6 m d. none of these

 14.  The system equation for a mechanical system is 
ω + ω =d ( )

5 ( ) 5
d

t
t

t
, where ω is 

angular velocity. The solution for ω is given by

 a. 5(1 − e−t/5) b. 5e−t/5 c. 5(1 + e−t/5) d. 5(1 − et/5)



Formulation of State Space Model of Systems 217

 15.  The mechanical time constant of a motor is 50 s. If the friction coeffi cient is 0.02 
Nm/rad/s, the value of moment of inertia of the motor is equal to

 a. 50 kg-m2 b. 
1

50
 kg-m2 c. 1 kg-m2 d. 0.1 kg-m2

 16. A mass–spring–damper system is:

– +

 a. First-order system b. Second-order system

 c. Third-order system d. none

Q. Fill in the Blanks:

 1. If the number of vertices in a system is 8, and then the rank of the system is 
___________

 2.  If branch k is associated with node h and oriented away from node h, and then Aa 
is ___________

 3. The relation between A and B is ___________

  Answers: 1. 7 2. −1 3. A . BT

3.19 Bibliographical Notes

The basic concepts of systems had been described by Zadeh (1963), Kailath (1980), and 
Lathi (1965, 1987). Revolutionary and remarkable discoveries in modern science such as the 
theory of relativity (with four-dimensional space–time construct), quantum theory [with 
superposition of n (even infi nite) number of probable states], and string theory (currently 
the leading and only candidate for a theory of everything, the holy grail of physics) pose 
formidable challenges to graph theoretic modeling approach. The latest version of string 
theory (M-theory) predicts there are 11 dimensions (Kaku, 2008; Satsangi, 2009).



This page intentionally left blank 



219

4
Model Order Reduction

4.1 Introduction

Large-scale systems are all around and exist in diverse fi elds such as complex chemical 
processes, biomedical systems, social economic systems, transportation systems, ecologi-
cal systems, electrical systems, mechanical systems, and aeronautical and astronautics 
systems. All these large and complex systems are diffi cult to model with conventional 
techniques. Hence, these systems can be decoupled or partitioned into suitable numbers of 
interconnected subsystems to reduce their complexity for modeling purposes.

In many practical situations, a fairly complex and high-order model is obtained from 
theoretical considerations. This complexity often makes it diffi cult to obtain a good under-
standing of the behavior of the system. These high-order models are generally represented 
in the state space form or the transfer function form in the time domain or the frequency 
domain, respectively.

The exact analysis of most higher-order systems is both tedious as well as costly, and 
poses a great challenge to both the system analyst and the control engineer. The prelimi-
nary design and optimization of such complex systems can often be accomplished with 
greater ease if a low-order model is derived, which provides a good approximation to 
the system.

A great deal of work has been done in the past to get better low-order models for high-
order systems as evident from the comprehensive bibliography prepared by Genesio and 
Milaness (1976).

One of the most desirable features of such models will be simplicity while preserving the 
features of interest. Since the models may be developed with various aims and objectives 
in mind or with various view points, it is possible to have more than one model for a given 
system, each one satisfying some predefi ned objectives. Different people develop different 
models for the same system; sometimes the same person may develop different models 
for the same system, if his understanding or view point changes with time. Simplicity of 
the model is a crucial aspect, especially in online controls. Simpler models generally give 
a better feel of the original system.

Another important feature of a model is its order, which again gives a measure of its 
complexity. The fact is that a large selection of the fi rst course on automatic control theory 
deals with second-order models of original systems.

The term reduced-order model is normally used for state space models; whereas, the 
term simplifi ed model is used for frequency domain transfer function models. Reducing 
the order of a state model is equivalent to the search for a coarser representation of the sys-
tem, which, therefore, yields a lower-dimensional state space, for the same class of inputs. 



220 Modeling and Simulation of Systems Using MATLAB and Simulink

The problem of concern would be that the underlying techniques must yield a controllable 
and an observable reduced model.

On the other hand, decreasing the order of a transfer function does not ensure that 
the resulting transfer function is always physically realizable. For this purpose, the 
term simplifi cation is used to designate the building of approximate transfer function 
dominants of lower orders than those of the original system subjected to a functional 
criterion.

The order reduction of a linear time-invariant system is applied in almost all fi elds of 
engineering. The use of reduced-order models for test simulations of complex systems is 
a lot easier than utilizing full-order models. This is due to the fact that the lower-order 
transfer function can be analyzed more easily. Therefore, order reduction algorithms are 
standard techniques in the system interdependent analysis, approximation, and simula-
tion of models arising from interconnect and system interdependent.

There are several procedures that seek to automate the model reduction process. Suppose 
a high-order, linear, time-invariant model, G, is given, then the Prototype H∞ model reduc-
tion problem is to fi nd a low-order approximation, Ĝ, of G such that ⏐⏐G − Ĝ⏐⏐∞ is small. 
Consider the more diffi cult problem of selecting Ĝ such that the problem of selecting W1 
and W2 such that ⏐⏐W2(G – Ĝ)W1⏐⏐∞, is small; the weighting functions, W1 and W2, are used 
to frequency-shape the model reduction error. For example, one might select the weights 
so that the modeling error is small in the unity gain range of frequency.

Among the various classes of model reduction techniques, explicit moment-matching 
algorithms (Pillage, Rohrer, 1990; Ratzlaff, Pillage, 1994) and Krylov-subspace-based 
methods (Feldmann et al., 1995; Kerns et al., 1997; Odabasioglu et al., 1998) have been 
most commonly employed for generating the reduced-order models of the interconnects. 
The computational complexity of these model order reduction techniques is primarily 
due to the matrix–vector products. However, these methods do not provide a provable 
error bound for the reduced system. Extensions of explicit moment-matching techniques 
have been proposed recently, to reduce the linear time-varying (LTV) as well as nonlinear 
dynamic systems (Roychowdhury, 1999; Peng and Pileggi, 2003).

4.2  Difference between Model Simplification 

and Model Order Reduction

The term reduced-order model is frequently used for time domain (state space) models; 
whereas, model simplifi cation is related to the frequency domain. The reason for differ-
entiating is due to the problem of realization. Reducing the order of a state space model 
is equivalent to the search for a coarser representation of the process, which, therefore, 
yields a lower-dimensional state space, for the same class of inputs. The problem of con-
cern would be that the underlying technique must yield a controllable and an observable 
reduced-order model.

On the other hand, decreasing the order of a transfer function does not ensure that 
the resulting transfer function is realizable. For this purpose, the term simplifi cation 
is used to designate the building of an approximate transfer function whose denomi-
nators are of lower orders than those of the original system subjected to a functional 
criterion.



Model Order Reduction 221

4.3 Need for Model Order Reduction

Every physical system can be translated into a mathematical model. These mathematical 
models give a comprehensive description of a system in the form of higher-order differ-
ential equations. It is useful and sometimes necessary to fi nd a lower-order model that 
adequately refl ects the dominant characteristics of the system under consideration. Some 
of the reasons for model order reduction are as follows:

 1. Quick and easy understanding of the system

  A higher-order model of a system possesses diffi culties in its analysis, synthesis, 
or identifi cation. An obvious method of dealing with such a type of system is to 
approximate it to a lower-order model that refl ects the characteristics of the original 
system such as the time constant, the damping ratio, and the natural frequency.

 2. Reduced computational burden

  When the order of the system model is higher, the numerical techniques need 
to compute the system response at the cost of computation time and memory 
required by digital computers.

 3. Reduced hardware complexity

  Most controllers are designed on the basis of linear low-order models, which are 
more reliable, less costly, and easy to implement and maintain due to less hard-
ware complexity.

 4. Making feasible designs

  Reduced-order models may be effectively used in control applications like

 i. Model reference adaptive control schemes

 ii. Hierarchical control schemes

 iii. Suboptimal control

 iv. Decentralized controllers

 5. Generalization

  The results studied for a simple low-order model can be easily generalized to other 
comparable systems.

 6. To improve the methodology of computer-aided control system design.

4.4 Principle of Model Order Reduction

Both, the ordinary differential equation (ODE) systems, which arise from the spatial dis-
cretization of fi rst-order, time-dependent partial differential equations (PDEs), and the 
differential algebraic equation (DAE) systems, which describe the dynamics of electrical 
circuits at time t, can be described by

 
+ + =d

( , ) ( , ) ( ) 0
d

q x t j x t Bu t
t  

(4.1)



222 Modeling and Simulation of Systems Using MATLAB and Simulink

with the difference that for “real” DAEs the partial derivative, qx, is singular. In the case of 
circuit equations for example, the vector-valued functions, q(x, t) and j, represent the contri-
butions of reactive elements (such as capacitors and inductors) and of nonreactive elements 
(such as resistors), respectively, and all time-dependent sources are stored within u(t). In 
case of linear or linearized models, Equation 4.1 simplifi es to

 

. + =

=

( )Cx Gx Bu t

y Lx
 (4.2)

where
x(t) ∈ Rn is the state vector
u(t) ∈ Rm is the input excitation vector
y(t) ∈ Rp is the output measurement vector
G ∈ Rnxn and C ∈ Rnxn are the symmetric and sparse system matrices

and for DAEs, C is singular, B ∈ Rnxm and L ∈ Rpxn are the user-defi ned input and output 
distribution arrays, n is the dimension of the system and m and p are the numbers of inputs 
and outputs. The idea of model order reduction is to replace Equation 4.2 by a system of the 
same form but with a much smaller dimension, r << n:

 

+ =

=

.
( )r r r

r r

C z G z B u t

y L z
 (4.3)

which can be solved by a suitable DAE or ODE solver and will approximate the input/out-
put characteristics of Equation 4.2. A transition from Equation 4.2 to Equation 4.3 is formal 
and is done in two steps.

Step I
The transformation of the state vector, x, to the vector of generalized coordinates, z, and the 
truncation of a number of those generalized coordinates, which leads to some (hopefully) 
small error, J:

 x Vz e= +  (4.4)

The time-independent V ∈ Rnxr is called the transformation or projection matrix, as 
Equation 4.4 can be seen as the projection of the state vector onto some low-dimensional 
subspace defi ned by V. Note that the spatial and physical meaning of x is lost during such 
a projection.

Step II
In the second step, Equation 4.2 is multiplied from the left-hand side with another matrix, 
WT ∈ Rrxn, so that Cr = WTCVr, Gr = WTGVr, Br = WTB, and Lr = EV. Note that the number of 
inputs and outputs in the reduced system (Equation 4.3) is the same as in Equation 4.2.

The above principle of projection can also be applied directly to the second-order ODE 
systems [19], which may arise from the spatial discretization of the second-order, time-
dependent PDEs (e.g., the equation of motion, which is often solved in MEMS simulation). 
Furthermore, it can be applied to the nonlinear system (Equation 4.1). This, however, is 
much more complicated and does not necessarily result in the reduction of computa-
tional time.



Model Order Reduction 223

4.5 Methods of Model Order Reduction

The main objective of model order reduction is that the reduced-order approximation 
should reproduce the signifi cant characteristics of the original system as closely as possible.

The model order reduction techniques can broadly be classifi ed as

 1. Time domain simplifi cation techniques

 a. Dominant eigenvalue approach

 b. Aggregation method

 c. Subspace projection methods

 d. Optimal order reduction

 e. Balance realization method

 f. Singular perturbation method

 g. Hankel matrix approach

 h. Hankel–Norm model reduction

 2. Frequency domain simplifi cation techniques

 a. Continued fraction expansion (CFE) and truncation

 b. Pade approximation techniques

 c. Moment-matching method

 d. Matching frequency response

 e. Simplifi cation using canonical form

 f. Reduction using orthogonal polynomials

 g. Reduction based on Routh stability criterion

 h. Stability equation method

 i. Reduction based on integral least square techniques

 j. Polynomial differentiation method

 k. Polynomial truncation method

 l. Factor division method

4.5.1 Time Domain Simplification Techniques

In time domain reduction techniques, the original and reduced systems are expressed in 
the state space form. The order of matrices, Ar, Br, and Cr, are less than A, B, and C, and the 
output, Yr, will be a close approximation to Y for specifi ed inputs. The time domain tech-
niques belong to either of the following categories.

4.5.1.1 Dominant Eigenvalue Approach

This category attempts to retain the dominant eigenvalues of the original system and then 
obtain the remaining parameters of the low-order model in such a way that its response, 
to a certain specifi ed input, should approximate closely to that of a high-order system. The 
methods proposed by Davison (1966), Marshall (1966), Mitra (1967), and Aoki (1968) belong 
to this category. It has been shown that these (Hicken, 1978; Sinha, 1980) may be regarded 
as special cases of the aggregation method proposed by Aoki.



224 Modeling and Simulation of Systems Using MATLAB and Simulink

Davison’s method consists of diagonalizing the system matrix and ignoring the large 
eigenvalues. In this case, the input is taken as a step function and all the eigenvalues are 
assumed to be distinct. This restriction, however, was removed by Chidambara (1967) and 
Davison (1968). Aoki (1968) took a more general approach based on aggregation. Gruca (1978) 
introduced delay in the output vector of the aggregated model to minimize the quality index 
function of the output vector. This led to improvement in the quality of the simplifi ed aggre-
gated model of the system without increasing the order of the state differential equation. 
However, the numerical diffi culties and the absence of guidelines for selecting the weight-
ing matrices in the performance index of this method were well observed by the researches. 
Inooka (1977) proposed a method based on combining the methods of aggregation and 
integral square criterion. An important variation of the dominant eigenvalues’ concept was 
proposed by Gopal (1988) wherein the high-order system is replaced by three models, suc-
cessfully representing the initial intermediate and fi nal stages of the transient response.

The location of eigenvalues plays an important role on system stability. To understand 
the concept of system stability, we consider an example of a right circular cone. There may 
be three possible situations (equilibrium states) for a right circular cone to stand as shown 
in Figure 4.1, which is mentioned below.

 1. The cone may stand forever on its circular base. If the cone is disturbed in this state, 
it would eventually return to its original state when the disturbance is removed. 
Hence, the cone is said to be in a stable state.

 2. If the cone is standing on its apex, then the slightest disturbance will cause the 
cone to move farther and farther from its original equilibrium state. The cone in 
this case is said to be in an unstable state.

 3. In the last situation, the cone is lying on its side. If the cone is disturbed in this 
state, it will neither go back to its original state nor continue to move. This is called 
the neutral equilibrium state.

Consider a state space model of a system:

 

1
1 1

11 12 1 11 12 11 2 2

21 22 2 21 22 2

1 2 1 2

. .

.

.

.

n m

n m

n n nn n n nm

n n n

x
x u

A A A B B Bx x u
A A A B B B

A A A B B B

x x u

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

… …

… …
� � �

� � … � � � … �
� � �… …

 

FIGURE 4.1
System stability. (a) Stable cone. (b) Unstable cone. (c) Cone in neutral equilibrium state.

(a)

Force F

(b)

Force F

(c)

Force F



Model Order Reduction 225

 = +
.

X AX BU  (4.5)

The characteristic equation is

 
λ − = 0I A

 
(4.6)

The roots of this characteristic equation are λi, where i = 1, 2, 3, … , n.
When the roots are in the left half of the jω-plane, then the system is stable, and when the 

roots are in the right half of the jω-plane, then the system is unstable, as shown in Figure 4.2.
When the roots are on the jω-axis, then the system is oscillatory. The locations of 

these roots decide the responses of the system. Figure 4.3 shows the locations of the 
characteristic roots and the step responses of a second-order system. In the transfer 

FIGURE 4.2
Characteristic roots’ locations and system stability. 

Unstable
region σ > 0

Marginal
stable region

σ = 0

Stable region
σ < 0

jω

σ

FIGURE 4.3
Effects of locations of poles on system responses. (a) Roots are real and near to imaginary plane (on left side). 

(b) Roots are real and far from imaginary plane (on left side). (c) Roots are complex and near to imaginary plane 

(on left side). (d) Roots are complex and near to imaginary plane (on right side).

x x

ω

(a)

σ

(b)

x x

ω

σ

(c)
x

x
ω

σ

(d)
x

x
ω

σ



226 Modeling and Simulation of Systems Using MATLAB and Simulink

function model, zeros play an important role on the response, but not on the stability 
of the system. The poles or eigenvalues of the system model have a great impact on 
the transient responses of the system. Since most system models are of a higher order, 
it would be useful to reduce their order by retaining the dominant eigenvalues and 
eliminating the insignifi cant eigenvalues. If the poles are on the right-hand side of 
the imaginary plane, the system becomes unstable, and if the eigenvalues are on the 
left-hand side of the imaginary plane, the system is stable. When the real value of the 
eigenvalues is zero, then the system response is oscillating.

From the above discussion, it is evident that as the eigenvalues go away from the imagi-
nary (jω-) plane, the oscillations decay fast. If we go far away from the real axis, the fre-
quency will be more. At the imaginary axis there is no decay, and hence the oscillations are 
of constant amplitude. If the distance D is 5–10 times greater, the fast-decaying transients 
can be ignored, and these eigenvalues are called insignifi cant or nondominant eigenvalues, 
as shown in Figure 4.4.

The important property of the characteristics and the eigenvalue is that they are invariant 
under a nonsingular transformation, such as the phase variable canonical form of transfor-
mation. In other words, when matrix A is transformed by a nonsingular transformation

 x Py=  (4.7)

 
−= 1A P AP  (4.8)

So, the characteristic equation and the eigenvalues of A are identical to those of A:

 

1 1

1( )

sI A sI A

sP P P AP

P sI A P

− −

−

− = −

= −

= −
 

(4.9)

FIGURE 4.4
Difference between dominant eigenvalues and nondominant eigenvalues.

Real axis

Stable region

N
on-dom

inant eigenvalues

D
om

inant eigenvalues

Unstable region

D

Imaginary
axis



Model Order Reduction 227

Since the determinant of a product of matrices is equal to the product of a determinant of 
matrices:

 
1P sI A P−= −

 

 
sI A= −

 

Dominant eigenvalue method

Let M be a modal matrix that is nonsingular:

 
x My=

 

Substitute this x into Equation 4.5:

 
0

My AMy Bu= +
 

 
0 1 1y M AMy M Bu− −= +

 

 
= Λ + η

0
y y u

 (4.10)

 

0
1 1 1 1

0 2 2 2
2

0

0

y y
u

y
y

⎡ ⎤ Λ η⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ Λ η⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦  

where
y1 is the dominant eigenvalue
y2 is the nondominant eigenvalue

 2 2 22
y y u
• = Λ + η

 

For long-term dynamics, 
0

2
0y = . Substitute this by the above equation:

 

1
2 22y u

Du

• −= − Λ η

=
 

 

0 11

21 22

1 0 11 1

2 21 22 2

M M
M

M M

x M M y

x M M y

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

 

1 0 1 11 2

1 1
1 0 1 0 11 2

x M y M y

y M x M M y
• − −

= +

= −
 



228 Modeling and Simulation of Systems Using MATLAB and Simulink

The second row of the above matrix equation:

 2 21 1 22 2x M y M y= +
 

 
1 1

2 21 0 1 0 11 2 22 2{ }x M M x M M y M y− −= − +
 

 
1 1

2 21 0 1 22 21 0 11 2{ }x M M x M M M M y− −= + −
 

 

0

1 11 1 12 2 1

1 1
11 1 12 21 0 1 12 22 21 0 11 1

1 1
11 12 21 0 1 12 22 12 21 0 11 1

{ }

{ } { }

x A x A x B u

A x A M M x A M M M M Du B u

A A M M x A M A M M M D B u

− −

− −

= + +

= + + − +

= + + − +
 

 = +
0

1 1 1 1x F x G u  

where

 
1

1 11 12 21 0{ }F A A M M−= +  

 
1

1 12 22 12 21 0 11 1{ }G A M D A M M M D B−= − +  

4.5.1.1.1 Limitations of Eigenvalue Approach

The above-mentioned eigenvalue approaches, although useful in many applications, suffer 
from the following problems:

 1. The computations of eigenvalues and eigenvectors may be quite formidable for a 
high-order system.

 2. In the case when the eigenvalues of a system are close together or when the eigen-
values are not easily identifi ed, this method obviously fails.

 3. There may be considerable differences between the responses of high-order 
systems and low-order systems to certain inputs.

4.5.1.2 Aggregation Method

The concept of aggregation is well known to economists but less known to control engi-
neers. The popular aggregation method is proposed by Aoki (1968). He has shown the 
usefulness of an aggregation matrix for designing suboptimal controllers. The key to the 
success of formulating the problem is the existence of an aggregation matrix, which relates 
the system states and the reduced-order model states. There exists a large class of aggre-
gation matrices—the choice depends on how one selects the modes in aggregated model 
and model state. Then, although the formulation of the suboptimal control design problem 
is straightforward, to set up a suitable aggregated model for the solution is by no means 
simple, owing to the wide range of choices (Sandell et al., 1978; Siret et al., 1979). The main 



Model Order Reduction 229

advantage of this method is that some internal structural properties of the original system 
are preserved in the reduced-order model, which is useful not only in the analysis of sys-
tem but also in deriving state–feedback suboptimal control.

Let the state space equation be

 = +
0

X AX BU  

Assume

 
( ) ( )Z t CX t=

 

where
Z is the reduced state vector of r × 1
X is the state vector of n × 1
C is the constant vector of size r × n, r ≤ n

 
#( ) ( )X t C Z t=

 

where C# is the left pseudo inverse of C

 

#

# T T

# T T 1

[ ]

[ [ ] ]

C C I

C CC IC

C C CC −

=

=

=  

Pre-multiply by C in the state equation:

 = +
0

CX CAX CBu  

 
= +

0
#CX CAC X CBu

 

Reduced-order state equation:

 
= +

0
( ) ( ) ( )z t Fz t Gu t

 

 
#F CAC=  

 G CB=  

 
( ) ( ) ( )e t Z t CX t= +

 

 
= +

0 00
( ) ( ) ( )e t Z t CX t

 



230 Modeling and Simulation of Systems Using MATLAB and Simulink

 

= + − +

= − + − + −

= − + − + −

0
( ) ( ) ( ) { ( ) ( )}

{ ( ) ( )} { ( ) ( )} { ( ) ( )}

{ ( ) ( )} { } ( ) { } ( )}

e t FZ t Gu t C AX t Bu t

FZ t FCX t FCX t CAX t Gu t CBu t

F Z t CX t FC CA X t G CB u t
 

 
#( )FC CA CC CA= =

 

 
= −

00
( ) { ( ) ( )e t F Z t C X t

 

Case I (Perfect aggregation)

=
0

If (0) 0e  and = ≥
0
(0) 0, 0e t

Case II (Aggregation is perfect in asymptotic sense)

If ≠
0
(0) 0e  and 

→
=

0

0

( ) 0
t
e t

But F is asymptotically stable.

Case III

If FC ≠ CA
But G = CB.

 
= + −

0
( ) ( ) ( ) ( )e t Fe t FC CA X t

 

 

−τ= + − τ∫0
( )

0

( ) (0) ( ) ( )d

t

FT F te t e e e FC CA X t

 

Example 4.1

 
.
X AX BU= +

 

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− − −⎣ ⎦

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

0 1 0

0 0 1

20 32 13

3/2

3/2

9/2

A

B



Model Order Reduction 231

Dominant eigenvalue approach

 
0I Aλ − =

 

1 0

0 1 0

20 32 13

1, 2, 10

λ −⎡ ⎤
⎢ ⎥λ − =⎢ ⎥
⎢ ⎥λ +⎣ ⎦

λ = − − −

 

1 2 3
2 2 2
1 2 3

1 1 1

1 1 1

10 2 1

100 4 1

M

M

⎡ ⎤
⎢ ⎥= λ λ λ⎢ ⎥
⎢ ⎥λ λ λ⎣ ⎦

⎡ ⎤
⎢ ⎥= − − −⎢ ⎥
⎢ ⎥⎣ ⎦

 

1

72

2 3 1

1/ 72 90 99 9

60 96 8

M

M−

=

⎡ ⎤
⎢ ⎥= − − −⎢ ⎥
⎢ ⎥⎣ ⎦

 
1 1

.

.

X MY

MY AMY Bu

Y M AMY M Bu− −

=

= +

= +

 

1

10 0 0

0 2 0

0 0 1

M AM−

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

1

2

3

2 2

3
3

10 0 0 0

0 2 0 1.5

0 0 1 0.5

2 0 1.5

0 1 0.5

Y

Y Y u

Y

Y Y
u

Y
Y

⎡ ⎤
⎢ ⎥ ⎡− ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎢ ⎥
⎣ ⎦

⎡ ⎤ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

.

.

.

.

.



232 Modeling and Simulation of Systems Using MATLAB and Simulink

Aggregation method
We assume, the aggregation matrix

 

T T 1

0.2 1 0

0 0 1

( ) ( )

( )

2.3 0

0 1

1.0

0.5

C

Z t CX t

F CAC CC

G CB

−

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

=

=

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

4.5.1.2.1 Limitations of Aggregation Approach

The above-mentioned aggregation approaches suffer from the following problems:

 1. They are iterative processes and the accuracy of the results of the lower-order 
model depends on initial values of the aggregation matrix.

 2. The computation time depends on the size of the aggregation matrix and calcula-
tion of the error gradient.

 3. The aggregation matrix is always rectangular. Hence, the inverse of the aggrega-
tion matrix is not possible. Its pseudo inverse is required to be determined.

4.5.1.3 Subspace Projection Method

An alternative approach to the model order reduction is based on the construction of the 
best invariant subspace in the state space such that the projection error is minimal. The 
development of such an approach is attributed to Mitra (1969), and further elaboration is 
due to Sinha (1975) and Siret (1975). This approach is still further developed by Parkinson 
(1986). The subspace projection method consists of two stages, as depicted in Figure 4.5 
(Mitra, 1969).

FIGURE 4.5
Stages for model order reduction using subprojection method.

Approximate
reduction

Strict reduction

Controllable
system model

(A, B, C)

Uncontrolled
system model

(Au, Bu, Cu)

Reduced-order
model

(Ar, Br, Cr)



Model Order Reduction 233

4.5.1.4 Optimal Order Reduction

This group of methods is based on obtaining a model of a specifi ed order such that its 
impulse or step response (or alternatively its frequency response) matches that of the origi-
nal system in an optimum manner, with no restriction on the location of the eigenvalues. 
Such techniques aim at minimizing a selected performance criterion, which in general 
is a function of the error between the response of the original high-order system and 
its reduced-order model. The parameters of the reduced-order model are then obtained 
either from the necessary conditions of optimality or by means of numerical algorithms. 
Anderson (1967) proposed a geometric approach based on orthogonal projection, to obtain 
a lower-order model minimizing the integral square error in the time domain. Sinha and 
Pille (1971) proposed the utilization of the matrix pseudo inverse for least squares fi t with 
the samples of the response. Other criteria for optimization have also been studied by 
Sinha and Bereznai (1971), and Bandler et al. (1973). Sinha and Bereznai (1971) have sug-
gested the use of the pattern search method of Hooke and Jeeves (1961), whereas Bandler 
et al. (1973) have proposed gradient methods, which require less computation time but now 
the gradient of the objective has to be evaluated. Since the dominant part of the expression 
for the gradient consists of the partial derivatives of the response of the model with respect 
to its parameters, the additional work required is not excessive. Moreover, this expression 
is the same for any high-order system and any error criterion. The development of optimal 
order reduction is attributed to Wilson and Mishra (1979), who studied the approximation 
for step and impulse responses. Methods for obtaining optimum low-order models in the 
frequency domain have been proposed by Langholz and Bistritz (1978).

4.5.1.5 Hankel Matrix Approach

It is well known that given the Markov parameters of a system, a minimum realization in 
the form of the matrices, A, B, and C, can be obtained. A simple procedure is suggested 
by Rozsa and Sinha (1974) in which one starts with a block Hankel matrix consisting of 
Markov parameters. Following Ho and Kalman (1965), the block Hankel matrix, Sij, is 
defi ned as

 

0 1 1

1 2 0

1 2

j

ij

j i i j

J J J

J J J
S

J J J

−

− + −

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…

…

… … … …

…

where Ji = CAiB, for i = 0, 1, 2, …, are called the Markov parameters of the system.
This procedure can be generalized to include the time moments in the block Hankel 

matrix, which is defi ned as

 

1 1

1 2

1 2

( )

k k j

k K k j
ij

k i k i i j

J J J

J J J
H k

J J J

− − + −

− + − + − +

− + − − + + −

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…

…

… … … …

…

where J−i = Ti−1 for i ≥ 1.



234 Modeling and Simulation of Systems Using MATLAB and Simulink

And, therefore, the term “generalized Markov parameters” will be used to include Ti. 
Ti are related to the time moments of the impulse response matrix through a multiplicative 
constant.

To determine a low-order approximation to the system, one should obtain the matri-
ces, Ar, Br, and Cr, so that a number of the generalized Markov parameters of the two 
systems are identical. The Hankel matrix, Sij, is transformed into the Hermite normal 
form, H, as given in Rozsa and Sinha (1974). In particular, it must be noted that by match-
ing the time moments we shall be equating the steady state responses to inputs in the 
form of power series (steps, ramps, parabolic functions, etc.). On the other hand, match-
ing Markov parameters will improve the approximation in the transient portion of the 
response.

4.5.1.6 Hankel–Norm Model Order Reduction

In this case, the problem of model order reduction is to fi nd a transfer matrix, Gr(s), of 
degree r < n such that the Hankel norm of the error matrix, E(s) = G(s) − Gr(s), becomes 
||E(s)|| = ||G(S) − Gr(s)||, which will be minimized (Glover, 1984).

4.5.2 Model Order Reduction in Frequency Domain

The frequency domain model order reduction methods can be divided into three 
subgroups.

 1. Classical reduction method (CRM): The classical reduction method is based on 
classical theories of mathematical approximation, such as the CFE and truncation, 
Pade approximation, and time moment matching. The problems of these methods 
are instability, non-minimum-phase behavior, and low accuracy.

 2. Stability preservation method (SPM): The stability preservation method 
includes Routh Hurwitz approximation, dominant pole retention, reduction 
based on differentiation, Mihailov criterion, and factor division. The SPM suf-
fers from a serious drawback of lack of fl exibility when the reduced model 
does not produce a good enough approximation.

 3. Stability criterion method (SCM): The stability criterion method is a mixed method 
in which the denominator of the reduced order model is derived by the SPM, 
while numerator parameters are obtained by the CRM. This improves the degree 
of accuracy in the low-frequency range.

4.5.2.1 Pade Approximation Method

The Pade approximation method has a number of advantages, such as computational 
simplicity, fi tting of the initial time moments, and the steady state value of the outputs 
of the system and the model being the same for an input of the form, αiti. An important 
drawback of the methods using the Pade approximation is that the low-order model 
obtained may sometimes turn out to be unstable even though the original system 
is stable.



Model Order Reduction 235

4.5.2.2 Continued Fraction Expansion

The CFE method was fi rst proposed by Chen and Shieh (1968). They showed that if the 
CFE of a transfer function was truncated, it led to a low-order model with a step response 
matching closely that of the original system. The main attraction of this approach was 
its computational simplicity, as compared with methods described in the earlier catego-
ries. Various improvements and extensions of this approach have been presented by 
Chen and Shieh. Chen has extended the CFE techniques to model the reduction and the 
design of multivariable control systems. In the formulation of reduced-order models by 
using the CFE techniques, the formulation of laborious computer-oriented algorithms 
for expansion into various Cauer’s forms and their inversion has been derived. Shieh 
has given a good approximation in the transient, the steady state, and the overall region 
of the response curve, respectively. Shieh and Goldman have shown that a mixture of 
Cauer’s fi rst and second forms gives an approximation for both the transient and the 
steady state responses.

In this method, the CFE of the transfer function is truncated to get a low-order model, 
with a step response matching closely that of the original system. The main attraction of 
this approach is its computational simplicity as compared to other methods.

Consider the nth-order system described by a transfer function:

 

21 22 2, 1

2
12 13 1, 1

( )
1

m
m

n
n

a a s a s
G s

a s a s a s
+

+

+ + +=
+ + + +

�
�

It is desired to fi nd a lower-order transfer function for this system. The power series expan-
sion of e−st about s = 0 results in

 0

( ) ( ) dstG s g t e t
∞

−= ∫

4.5.2.3 Moment-Matching Method

Another approach to model order reduction is based on matching certain time moments 
of the impulse response of the original system with those of the reduced-order model. 
The moment-matching techniques are based on equating a few lower-order moments of 
the model to those of the original system and no consideration is given to the remaining 
higher-order moments. This would preserve the low-frequency responses of the system, 
G(s), while the transient response would not be so accurate. The simplifi cation of higher-
order systems using moments was fi rst suggested by Paynter (1956). The method of match-
ing time moments proposed by Gibilaro and Lees (1969), and Zakian (1973) is another 
interesting approach to the problem. It was shown later by Shamash (1974) that these meth-
ods are equivalent and can be classifi ed as Pade approximations. Although, initially, these 
methods were developed for the SISO systems only, it is possible to extend them to the 
MIMO systems by matching the time or the generalized Markov parameters through par-
tial realization (Hickin and Sinha, 1976). An important drawback of the methods using 
the Pade approximation is that the low-order models obtained may sometimes turn out to 
be unstable even if the original system is stable.



236 Modeling and Simulation of Systems Using MATLAB and Simulink

4.5.2.4 Balanced Realization-Based Reduction Method

The balanced realization model order reduction method is one of the important meth-
ods. Moore proposed a fully analytical method of model order reduction based on 
the balanced realization method, which drew the attention of many researchers. In 
this approach, the realization term “balanced” is chosen for the system such that the 
inputs to the state coupling and the state output coupling are weighted equally, so that 
those state components that are weakly coupled to both the input and the output are 
discarded.

Moore proposed that the natural fi rst step in model reduction is to apply the mechanism 
of minimal realization using an internally balanced model (i.e., in which the controllabil-
ity and observability grammians are diagonal and equal). The key computational problem 
is the calculation of balancing transformation and the matrices of the balanced realization. 
The input–output behavior of the system is not changed too much if the least controllable 
and/or the least observable part is deleted. This method is based on the simultaneous diag-
onalization of the controllability and observability grammians. A balancing transform 
(Tbal) is then used to convert the original system (A, B, C, D) to an equivalent “internally 
balanced” system (Abal, Bbal, Cbal, Dbal). A low-order balanced truncated (BT) model is then 
obtained by eliminating the least controllable and/or the least observable part of the trans-
formed system. Moore pointed out that the resulting BT model is also internally balanced 
and retains the dominant second-order modes (the square root of the eigenvalues of the 
product of the grammians of the original system).

A state space realization, {A, B, C, D}, of G(s) = C(sI − A)−1B + D is said to be the minimal 
realization of G(s) if “A” has the smallest possible dimension, that is, if no pole zero can-
cellation in G(s) is going to occur. The state space realization is also minimal if {A, B} is 
controllable and {C, A} is observable.

A system, G = {A, B, C, D}, can be decomposed into four parts, each characterized by the 
controllability and observability properties of the system, by means of a suitable coordi-
nate transformation (say, Xnew = T−1Xold, to diagonalize the states). This decomposition is 
shown in Figure 4.6.

In Figure 4.6, c denotes controllability, o denotes observability, c– denotes uncontrollabil-
ity, and o– denotes unobservability of the system. Since only the controllable and observable 
part of the system, Gco, contributes to the system dynamics, it is called the minimal real-
ized model of the original system, G. The other decomposed parts that do not contribute to 
the system dynamics may be deleted from the transfer function, which does not affect the 
input–output behavior of the system.

Similarly, it may be concluded that those subsystems that 
are loosely connected to the input and the output may be 
deleted from the transfer function, and the resulting sub-
system will approximate the input–output behavior of the 
original system. This concept of controllability and observ-
ability leads to model reduction. One of the analytical tools to 
remove the weakly controllable and/or observable part from 
the original system is Moore’s balanced realization theory.

Controllability and observability grammians

For a continuous time system, G = {A, B, C, D}, the following 
two continuous time Lyapunov equations will be satisfi ed:

FIGURE 4.6
Controllability and observability 

decomposition of a system.

Gcou y

Gco

Gco

Gco



Model Order Reduction 237

 

∞
τ τ ′+ + = = τ′ ′ ′∫

0

0, dA AAP PA BB P e BB e

 

∞
′τ τ′ ′ ′+ + = = τ∫

0

0, dA AA Q QA C C Q e C Ce

Balanced realized models

Let P and Q be the controllability and observability grammians of the nth-order stable 
minimal system, G = {A, B, C, D}, which has a transfer function given by

 
1( ) ( )G s C sI A B D−= − +

For the system, G, it is to be noted that the grammians are not balanced, that is, P is not 
equal to Q.

Let Tbal be the similarity transformation for balancing the system. Then the transformed 
system becomes

 

− −⎡ ⎤⎡ ⎤
= = ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

1 1
bal bal bal bal bal

bal
bal bal bal

A B T AT T B
G

C D CT D

Let the balanced grammians be ( )= = =∑ ∑ ∑bal bal 1 2,P Q

 
− −= ∈′1 1

bal bal bal( ) nxnP T P T R

 
′= ∈bal bal bal

nxnQ T QT R

Then, ( )+= σ σ σ σ σ =∑ ∑ ∑… …1 2 1 1 2diag( , , , , , , ) diag ,m m n

where

 +σ ≥ σ σ ≥ σ ≥ σ… …1 2 1, , , ,m m n

 
( )⎡ ⎤σ = √ λ⎣ ⎦i i PQ

are the Hankel singular values of the second-order modes of the system.
The full-order balanced realized model of the system is the combination of a strong and 

a weak subsystem, which is given by

 

11 12 1
bal bal

21 22 2bal
bal bal

1 2

A A B r
A B

A A BG n r
C D

C C D

⎡ ⎤
⎡ ⎤ ⎢ ⎥= = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

�

�



238 Modeling and Simulation of Systems Using MATLAB and Simulink

The BT model of G of the order r is

 

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

�11 1

_ bt
1

r

A B r
G

C D

The BT model does not preserve the DC gain of the original system.
To preserve the DC gain, the balanced residualized model or the balanced SPA (BSPA) 

model for a minimal system is given by

 

− −

− −

⎡ ⎤− −φ + − −φ +
⎢ ⎥− −φ + − −φ +⎣ ⎦

1 1
11 12 22 21 1 12 22 2

_ dc 1 1
1 2 22 21 2 22 2

( ) ( )

( ) ( )
r

A A I A A B A I A B
G

C C I A A D C I A B

where

=∑ 0  for a continuous system

=∑ 1  for a discrete system

I is an identity matrix

Properties of balanced realized models

Stability properties of subsystems:

 1. Assume that ∑ ∑1 2and  have no diagonal entries in common, then both subsys-
tems, {Ai, Bi, Ci, Di} = 1, 2, are asymptotically stable.

 2. The reciprocal system, { } −= 1
bal bal bal bal bal{ , , , } of , , , , given by ,A B C D A B C D A A  is 

11 1
bal bal bal,  , andB B C C D D −− −= = =  also stable and balanced.

4.5.2.5 Balanced Truncation

The main idea in balanced truncation is to transform the original stable LTI system into a 
representation of the same size, but with the property that those states of the transformed 
system that are uncontrollable are also unobservable and vice versa. In this form, the sys-
tem is said to be “balanced.” Once this is done, one simply discards those states of the 
transformed system that are the least controllable (and hence the least observable), which 
gives rise to the term “truncation.” Thus, after truncation, one has an LTI model with (typi-
cally) far fewer states than the original model.

The method of balanced truncation for model reduction of linear systems was proposed 
by Moore (1981) in the context of the realization theory, and is now a well-developed 
method of model reduction that appears in standard textbooks (Dullerud and Paganini, 
2000). For linear systems, the approach requires only matrix computations, and has been 
very successfully used in control design. A priori error bounds in the induced two-norm 
are known for the error between the original and the reduced system (Glover, 1984; 
Enns, 1984).

The method of balanced truncation has been extensively developed for nonlinear sys-
tems by Scherpen (1993, 1996), and Scherpen and van der Schaft (1994), based on energy 
functions. A closed-loop approach is also presented in Pavel and Fairman (1997), and bal-
ancing methods for bilinear systems have also been developed (Al-Baiyat and Bettayeb, 
1993; Al-Baiyat et al., 1994; Gray and Mesko, 1998). Computational approaches for these 



Model Order Reduction 239

methods have been investigated, and compared with the Karhunen–Loe’ve method in 
Newman and Krishnaprasad (1998a,b).

Another important feature of a balanced realization is that the state coordinate basis 
is selected such that the controllability and observability grammians are both equal to 
some diagonal matrix, ∑, normally with the diagonal entries of ∑ in the descending 
order. The state space representation is then called a balanced realization. The magni-
tudes of the diagonal entries refl ect the contributions of different entries of the state 
vector to system responses. The state vector entries that contribute the least are associ-
ated with the smallest σi. Thus, we can use truncation to eliminate the unimportant state 
variables from the realization. The following two Lyapunov equations give the relation 
to the system matrices, A, B, and C, for a balanced realization:

 

+ + =

+ + =

∑ ∑
∑ ∑

T T

T T

0

0

A A BB

A A C C  

(4.11)

Hence, ∑ = diag [σi] and σ1 > σ2 > … > σn. The σi are termed the Hankel singular values of 
the original system.

Let P and Q be, respectively, the controllability and observability grammians associ-
ated with an arbitrary minimal realization, {A, B, C}, of a stable transfer function, respec-
tively. Since P and Q are symmetric, there exist orthogonal transformations, Uc and Uo, 
such that

 c c TP U S U=

 o o TQ U S U=

where Sc and So are diagonal matrices. The matrix

 
1/2 T 1/2
O O C CH S U U S=

is constructed and a singular value decomposition is obtained from it:

 = T
HH HH U S V

Using these matrices, the balancing transformation is given by

 
1/2 1/2 1/2
O O H HT U S U S−=

The balanced realization is

 

1 1A B T AT T B
C D TC D

− −⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

Through simple manipulations, it can be confi rmed that

 
T 1 1( )T

HT QT T P T S− −= =



240 Modeling and Simulation of Systems Using MATLAB and Simulink

Consider a stable system, G ∈ RH∞, and suppose that

 

A B
G

C D

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

is a balanced realization. Denoting the balanced grammians by ∑, we have

 

+ + =

+ + =

∑ ∑
∑ ∑

** 0

** 0

A A BB

A A C C
 

(4.12)

Now, partition the balanced grammian as

 

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

∑∑
∑

1

2

0

0

and also partition the system accordingly:

 

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

11 12 1

21 22 2
________________ ____________

1 2

A A B

A A BG

C C D

Then Equation 4.12 can be written in terms of their partitioned matrices as

 

+ + =

+ + =

∑ ∑
∑ ∑

11 1 1 11 1 1

1 11 11 1 1 1

* * 0

* * 0

A A B B

A A C C  

(4.13)

 

+ + =

+ + =

∑ ∑
∑ ∑

21 1 2 12 2 1

2 21 12 1 2 1

* * 0

* * 0

A A B B

A A C C
 

(4.14)

 

+ + =

+ + =

∑ ∑
∑ ∑

22 2 2 22 2 2

2 22 22 2 2 2

* * 0

* * 0

A A B B

A A C C
 

(4.15)

By virtue of the method adopted to construct ∑, the most energetic modes of the system 

are in ∑1
 and the less energetic ones are in ∑2

. Thus, the system with ∑1
 is chosen as 

its balanced grammian would be a good approximation of the original system. Thus, the 

procedure to obtain a reduced-order model would be as follows:

 1. Obtain the balanced realization of the system.

 2.  Choose an appropriate order, r, of the reduced-order model. Partition the system 
matrices accordingly.



Model Order Reduction 241

Thus, the reduced-order model is obtained as 
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

11 1

1

r
A B

G
C D

.

Properties of truncated systems:

Lemma 4.1: Suppose X is the solution of the Lyapunov equation:

 
+ + =* 0A X XA Q

 
(4.16)

Then,

 1. Re(λi(A) ) < 0 if X > 0 and Q > 0.

 2. A is stable if X > 0 and Q > 0.

 3. A is stable if X > 0, Q > 0, and (Q, A) is detectable.

Proof Let λ be an eigenvalue of A and v ≠ 0 be a corresponding eigenvector, then Av = λv. 
Pre-multiply (3) by v* and postmultiply it by v to get

 
λ + =* *2Re( ( )) 0v Xv v Qv

Now, if X > 0 and v*Xv > 0, it is clear that Re(λ) < 0 if Q > 0 and Re(λ) < 0 if Q > 0. Hence, 
(1) and (2) hold. To see (3), we assume Re(λ) > 0. Then, we must have v*Qv = 0, that is, Qv = 0. 
This implies that λ is an unstable and unobservable mode, which contradicts the assump-
tion that (Q, A) is detectable.

Lemma 4.2: Consider the Sylvester equation:

 AX XB C+ =  (4.17)

where A ∈ Fnxn, B ∈ Fmxm, and C ∈ Fnxm are given matrices. There exists a unique solution, 
X ∈ Fnxm, if and only if λi(A) + λj(B) ≠ 0; i = 1, 2, … , n, j = 1, 2, … , m.

Proof Equation 4.17 can be written as a linear matrix equation by using the Kronecker 
product:

 
T( )vec( ) vec( )B A X C⊕ =

Now that equation has a unique solution if and only if BT ⊕ A is nonsingular. Since the 
eigenvalues of BT ⊕ A have the form: λi(A) + λj(BT) = λi(A) + λj(B), the conclusion follows.

Theorem 4.1: Assume that ∑1
 and ∑

2
 have no diagonal entries in common. Then both 

subsystems (Aii, Bi, Ci), i = 1, 2, are asymptotically stable.

Proof It is suffi cient to show that A11 is asymptotically stable. The proof for the stability 
of A22 is similar.



242 Modeling and Simulation of Systems Using MATLAB and Simulink

Since ∑ is a balanced realization, by the properties of SVD, ∑1
 can be assumed to be 

positive defi nite without a loss of generality. Then, it is obvious that λi(A11) ≤ 0 by the 
lemma.

 1. Assume that A11 is not asymptotically stable; then there exists an eigenvalue at jω 
for some ω. Let V be a basis matrix for ker(A11 − jωI). Then,

 

−
− ω =11( ) 0A J I V

which gives

 

−

+ ω =11
* *( ) 0V A J I

Adding and subtracting jω∑
1, equations (A and B) can be rewritten as

 
− ω + + ω + =∑ ∑11 1 1 11 1 1

**( ) ( ) 0A j I A j I B B

 
− ω + + ω + =∑ ∑1 11 11 1 1

* *( ) ( ) 0A j I A j I C
 (4.18)

 Now, fi rst multiply Equation 4.18 from the right by ∑1V and from the left by V*∑1 to 
obtain

 =∑1 1
* 0B V

Then multiply Equation 4.18 from the right by ∑1V to get

 
−
− ω =∑2

11 1
*( ) 0A J I V

It follows that the columns of ∑2

1
V are in ker 

−
− ω11

*( )A J I . Therefore, there exists a matrix, 

∑1
, such that

 

−

= ∑∑
22

11
V V

Since ∑
2

1 is the restriction of ∑2

1 to the space spanned by V, it follows that it is possible to 

choose V such that ∑2

1 is diagonal. It is then also possible to choose ∑1 diagonal, such that 

the diagonal entries of ∑1 are a subset of the diagonal entries of ∑1
.

Further,

 

−− −
=∑ ∑

22

21 211 1( ) ( )A V A V

This is a Sylvester equation in A21V. Because ∑2

1 and ∑2

2 have no diagonal entries in com-
mon, it follows from Lemma 2 that

 21 0A V
−

=



Model Order Reduction 243

is the unique solution. Now, it can be easily seen that

 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ω⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

11 12

21 22 0 0

A A V V
j

A A

which means that the A
_
 matrix of the original system has an eigenvalue at jω. This con-

tradicts the fact that the original system is asymptotically stable. Therefore, A
_

11 must be 
asymptotically stable.

Reduction of unstable systems by balanced truncation

Unstable systems cannot be directly reduced using balanced truncation. The original sys-
tem is transformed through Schur transformations into

 

1 1

2
2

1

2

.

. 0

cx A A x B
U

A x B
x

x
y C C DU

x

− −

+ +

− +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤
= +⎡ ⎤ ⎢ ⎥⎣ ⎦

⎣ ⎦

where
A− has all its eigenvalues stable
A+ has all its eigenvalues unstable

This system is then converted to two systems, S1 and S2, with

 

2 2 2

1 1
2

1 1
2

.
[ ] [ ]

.
[ ] [ ]

[ ] [ ]

c

S x A x B U

U
x A x B A

x

U
S y C x D C

x

+ +

− −

− +

⇒ = +

⎡ ⎤
= + ⎢ ⎥

⎣ ⎦

⎡ ⎤
⇒ = + ⎢ ⎥

⎣ ⎦

Now, using the above described methods, a reduced-order model can be obtained for the 
stable system, S1. Let the reduced system obtained for S1 be represented as ′

1S :

 

2

2

1
2

2

.
[ ]

[ ]

r rU rx

r rU rx

U
S z A z B B

x

U
y C z D D

x

⎡ ⎤
⇒ = +′ ⎡ ⎤ ⎢ ⎥⎣ ⎦

⎣ ⎦

⎡ ⎤
= + ⎡ ⎤ ⎢ ⎥⎣ ⎦

⎣ ⎦



244 Modeling and Simulation of Systems Using MATLAB and Simulink

The reduced-order model for the original system can then be formulated as

 

[ ]

+ +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤
= +⎡ ⎤ ⎢ ⎥⎣ ⎦

⎣ ⎦

2

2

2
2

2

.

. 0

r rx rU

r rx rU

z A B z B
U

A x B
x

z
y C D D U

x

Thus, even unstable systems can be reduced using balanced truncation.

4.5.2.6 Frequency-Weighted Balanced Model Reduction

Given the original full-order model, G ∈ RH∞, the input weighting matrix, Wi ∈ RH∞, and 
the output weighting matrix, Wo ∈ RH∞, our objective is to fi nd a lower-order model, Gr, 
such that

 ∞−o( )r iW G G W

is made as small as possible. Assume that G, Wi, and Wo have the following state space 
realizations:

 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

i i o o

o
i i o o

, ,
0

i

A B A B A B
G W W

C C D C D

with A ∈ Rnxn. Note that there is no loss of generality in assuming D = G(∞) = 0, since, 
 otherwise, it can be eliminated by replacing Gr with D + Gr.

Now the state space realization for the weighted transfer matrix is given by

 

⎡ ⎤
⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥
⎣ ⎦

0 0

o

0 0

0
ˆ ˆ0 0

ˆ0 0 0
0 0

i i

i
i i

A BC BD

B C A A B
W GW

A B C
D C C

Let P
_
 and Q

_
  be the solutions of the following Lyapunov equations:

 

+ + =

+ + =

* *ˆ ˆ ˆ ˆ 0

* *ˆ ˆ ˆ ˆ 0

AP PA BB

QA A Q C C

Then the input weighted grammian, P̂, and the output weighted grammian, Q̂, are 
defi ned by

 

ˆ : 0
0

: 0
0

n
n

n
n

I
P I P

I
Q I Q

⎡ ⎤
⎡ ⎤ ⎢ ⎥⎣ ⎦

⎣ ⎦

⎡ ⎤
⎡ ⎤ ⎢ ⎥⎣ ⎦

⎣ ⎦



Model Order Reduction 245

It can be shown easily that P̂  and Q̂ can satisfy the following lower-order equations:

 

12 12

12 22 12 22

*ˆ ˆ ˆ ˆ
0

* *ˆ ˆ ˆ ˆ0 0

i i i i

i i i i

P P P PA BC A BC BD BD

A A B BP P P P

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 

12 12 0 0

0 0 0 0
12 22 12 22 0 0

** * * * *ˆ ˆ ˆ ˆ0 0
0

* * * *ˆ ˆ ˆ ˆ

Q Q Q QA A C D C D

B C A B C AQ Q Q Q C C

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

The computation can be further reduced if Wi = I or Wo = I. In the case of Wi = I, P can be 
obtained from

 + + =* *ˆ ˆ 0PA AP BB

while in the case of Wo = I, Q can be obtained from

 + + =* * *ˆ ˆ 0QA A Q C C

Now, let T be a nonsingular matrix such that

 

− −
⎡ ⎤
⎢ ⎥= =
⎢ ⎥⎣ ⎦

∑
∑

11 1

2

* *( )TPT T QT

(i.e., balanced) with

 + + + +

= σ σ σ

= σ σ σ

∑
∑ 1 1

1 1 1 2 2

2 1 1 2 2

diag( , , ... , )

diag( , , ... , )

s s r sr

r s r r s r n sn

I I I

I I I

and partition the system accordingly as

 

11 12 11

21 22 21

1 2

0
0

A A B
TAT TB

A A B
T C

C C

−

−

⎡ ⎤
⎢ ⎥⎡ ⎤

= ⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

Then the reduced-order model, Gr, is obtained as

 

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

11 1

1 0
r

A B
G

C



246 Modeling and Simulation of Systems Using MATLAB and Simulink

Empirical balanced truncation

The empirical grammians give a quantitative method for deciding upon the importance of 
particular subspaces of the state space, with respect to the inputs and outputs of the sys-
tem. We propose to use these for model reduction of nonlinear systems in the same way as 
for linear systems, fi nd a linear change of coordinates such that the empirical grammians 
are balanced, and perform a Galerkin projection onto the states corresponding to the larg-
est eigenvalues.

Since, for linear systems, the empirical grammians are exactly the usual grammians, the 
method is exactly the balanced truncation method when it is applied to a linear system. 
When applied to a nonlinear system, it requires only matrix computations, and results in 
a new nonlinear model.

The empirical balanced truncation gives a reduced-order model, which takes into 
account the input–output behavior and is directly computable from data. For linear sys-
tems, the Hankel singular values are unaffected by coordinate changes, even though the 
grammians matrices themselves are not coordinate invariant. For nonlinear systems, this 
property no longer holds.

Steady state matching

The algorithm discussed above has a basic disadvantage. Though the responses of the 
reduced system get closer and closer to the original system, there is no certainty that they 
would match at steady state. This is because of the upper bound on the approximation 
error that is dependent on the ignored Hankel singular values.

This steady state error occurs because the ignored states, even if not contributing much to 
the dynamics of the system, do contribute to its steady state. Hence, they should be consid-
ered while deriving the reduced-order model without the steady state error. This steady state 
error can be eliminated by modifying the reduced-order 
model using the concept of singular perturbations.

An example is given by the linear-parameter- varying 
(LPV) control design (Wu et al., 1996), in which the 
required optimization for control synthesis involves 
solving a linear matrix inequality feasibility problem 
where the number of variables grows as the square of 
the state-dimension of the system. A signifi cant reduc-
tion in the overall computational effort required is 
achieved by constructing a reduced-order model via 
simulation of the full-order model, and then using this 
reduced-order model for control synthesis.

Example 4.2: Mechanical Links

Mechanical systems not only are high-order systems and 
hard to control, but it is diffi cult to develop intuition as to their 
behavior. One of the advantages of the procedure developed 
here is that it can be viewed as a selection of appropriate 
mode shapes on which to project the nonlinear dynamics. 
These mode shapes are often physically meaningful, and in 
this section we give examples for a simple, mildly nonlinear 
mechanical system.

The system is shown in Figure 4.7. It consists of fi ve uni-
form rigid rods in two dimensions, connected via torsional 

FIGURE 4.7
Mechanical system.

2l

θ1

θ2

θ3

θ4

θ5



Model Order Reduction 247

springs and dampers. The lowest rod is pinned to the ground with a torsional spring, so that the 
system has a stable equilibrium in the upright vertical position. There is no gravity. The system 
has a single input, a torque about the lowest pin joint, and a single output, the horizontal dis-
placement of the end of the last rod from the vertical symmetry axis.

The potential energy, V, of this system is

 

2 21

2

1 1
( ) ( )

2 2

n
i i i

i

V k k −

=

= +θ θ − θ∑

and the kinetic energy, T, is

 

• • •

= =

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= θ + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑
2 2 22

1 1

1 1
2 3 2

n ni i i

i i

ml
T m x y

where xi and yi are the Cartesian coordinates of the center of mass of the ith rod, given by

 

1

1

1

1

sin if 1

sin 2 sin if 2, ,

cos if 1

cos 2 cos if 2, ,

i

i
i i p

p

i

i
i i p

p

l i

x
l l i n

l i

y
l l i n

−

=

−

=

⎧ ⎫θ =
⎪ ⎪

= ⎨ ⎬− θ − θ =⎪ ⎪
⎩ ⎭

⎧ ⎫θ =
⎪ ⎪

= ⎨ ⎬θ + θ =⎪ ⎪
⎩ ⎭

∑

∑

…

…

The Lagrangian L = T − V, and the equations of motion are then

 

d
d

. iii

L L
F

t
∂ ∂− =

∂θ∂ θ

where F is the force term containing dissipative forces and the external force term, w:

 
1

if 1

( ) if 2, ,

.
i

i
i i

b w iF
b i n−

⎧ ⎫⎪ ⎪− θ + == ⎨ ⎬
− θ − θ =⎪ ⎪⎩ ⎭…

The measurement equation is

 1

, : 2 sin
.

( )
n

i

i

z h l
=

= θ θ = − θ∑

The constants are given by b = 0.5, k = 3, m = 1, l = 1, and n = 5.

Linearized model

We fi rst analyze the linearization of the system about its stable equilibrium. Figure 4.8 shows the 
confi guration parts of the fi rst four of the ten mode shapes and the corresponding singular values of 
the balanced realization. The singular values have been normalized so that they sum up to one.



248 Modeling and Simulation of Systems Using MATLAB and Simulink

Empirical balancing

The application of the empirical model reduction procedure to the nonlinear Lagrangian model of 
this system leads to a set of corresponding modes. In this case, Figure 4.9 shows these modes; we 
can see that the fi rst two mode shapes have split into three.

Since this system is mechanical, the dynamics have a Lagrangian structure. In the absence of 
forcing and dissipation, Lagrangian systems conserve energy as well as quantities associated with 
the symmetries of the system. The dynamics of a mechanical system also satisfy a variational 
principle, and the evolution maps are simplistic transformations. All of these properties can be 
viewed as fundamental to a model of a mechanical system. The importance of this is evidenced in 
Figure 4.8, where each mode shape appears twice; this is a consequence of the underlying corre-
spondence between confi guration variables and their generalized moment. These repeated struc-
tures are captured by the linearized method, and the method in this chapter should be improved 
to take account of this repeated structure. One way to achieve this would be by combining the 
techniques and constructing the empirical grammians on the confi guration space rather than 
the phase space. In this way, the underlying geometric structure is preserved by the reduction, 
and the resulting reduced-order system is itself a Lagrangian system. Similarly, taking account of 
symmetry (Glavaski et al., 1998; Rowley and Marsden, 2000) and the other special structure pres-
ent in the original system can be of great use, leading to reduced computational requirements and 
producing more accurate reduced-order models.

FIGURE 4.8
Balanced modes of linearization, with the singular value of each mode. (From Lall, S. et al., Int. J. Robust Nonlinear 
Control, 12, 519, 2002. With permission.)

0.493 0.485 0.010 0.009

FIGURE 4.9
Empirical balanced modes of the nonlinear model, for ci = 0.4. (From Lall, S. et al., Int. J. Robust Nonlinear Control, 
12, 519, 2002. With permission.)

0.523 0.387 0.069 0.011



Model Order Reduction 249

Note that the method of balanced truncation is not optimal, in that, in general, it does not achieve 
the minimal possible error in any known norm even for linear systems. However, it is a well-used 
method in control, which is both intuitively motivated by the realization theory and known to per-
form well in engineering practice. The intended use of the methods in this chapter is to deliberately 
construct approximate reduced-order models motivated by the ideas of balanced truncation.

4.5.2.7 Time Moment Matching

This method is based on matching the time moments of the impulse response of the 
original model with those of the impulse response of the reduced-order model. The num-
ber of matched time moments determines in turn the order of the simplifi ed/reduced 
model.

Consider the nth-order system described by the following transfer function:

 

+ + + += <
+ + + +

�
�

2
0 1 2

2
0 1 2

( )
m

m
n

n

a a s a s a s
G s m n

b b s b s b s  
(4.19)

Dividing the numerator and the denominator of Equation 4.19 with b0, we get

 

+

+

+ + + +=
+ + + +

�
�

2
21 22 23 2,( 1)

2
12 13 1,( 1)

( )
1

m
m

n
n

a a s a s a s
G s

a s a s b s
 

(4.20)

It is desired to fi nd a lower-order transfer function for this system. The power series expan-
sion of e−st about s = 0 results in

 

0

2

0

2 2

0 0 0

2
0 1 2

0

( ) ( ) d

( ){1 ( ) )d

( )d ( ) d ( )d

st

i
i

i

G s g t e t

g t st st t

g t t s g t t t s t g t t

c c s c s

c s

∞
−

∞

∞ ∞ ∞

∞

=

=

= − + +

= − + +

= + + +

= ∑

∫

∫

∫ ∫ ∫

�

�

�

 
(4.21)

where c0 is the area under the given function, g(t), and is known as the zeroth moment of 
the transient response. If g(t) is normalized, then c1 = 1, and c1 represents the center of grav-
ity, while 2c2 is the moment of inertia of the response about t = 0.

It can be shown that

 

∞∞
− −

==

= = = ∞∑∑ 1

00

( ) abouti i
i

ii

G S M s CA B s

where Mi (i = 1, 2, 3…) are called the Markov parameters of the system, j.



250 Modeling and Simulation of Systems Using MATLAB and Simulink

 

∞ ∞
− +

= =

= = − =∑ ∑ ( 1)

0 0

( ) about 0i i
i

i i

G s c s CA B s
 

From this we may get

 
= − + − +…2 3

21 31 41 51( )G s a a s a s a s
 

(4.22)

where a21 is the zeros term coeffi cient of the numerator and the remaining coeffi cients are 
obtained from the Routh array, by using the following recursion:

 − + − += −, 1,1 1, 1 1 1k v k v k va a a a
 (4.23)

for k = 3, 4, … , 1n + 1 and v = 1, 2, … , n. Note that once a Routh array is formed based on 
the above Table 4.1, the jth moment can be obtained by dividing aj+1,1, by j for j = 0, 1, 2… . 
The expansion coeffi cient, cj, is then obtained by cj = (−1)jaj+2.

From Equations 4.7, 4.12, and 4.13, the following equation is obtained:

 

− − +

+ −

+ +

+ + − + −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −=
⎢ ⎥ ⎢ ⎥

− − − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦

… … …

…

… …

… …

… … … … … … … … …

… … …

0 12

1 0 13

2 1 14

1 2 0 1 1

1 1 1 0

2 1 0

1 2 1 0

0 0 0 0 0 0 0 0 0

0

0 0 0 0

0 0 0 0

..

0 0

m m m ,n

m m m

m m m m

m n m n m n

c a

c c a

c c a

c c c c a

c c c c c

c c c c c

c c c c c

+

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

…

… …

21

22

23

2 1

0

0

0 0

,m

a

a

a

a

It is an (n + m + 1)-dimensional vector relation, which can be rewritten as

 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

… … … … … …
1 11 1 2

2 21 22

ˆ ˆ ˆ| 0

ˆ | 0 0

c C a a

c C C
 

(4.24)

where C11, C12, and C22 are (m + 1) × n, n × n, and n × (m + 1) matrices, respectively, and 
ĉi, âi = 1, 2 are vectors of the (m + 1)th and the nth dimension defi ned by Equation 4.23. 
Partitioning the set of two equations and solving for â1 and â2, one gets

 
− −= = − = −1 1

1 21 2 2 1 11 1 1 11 21 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ,a C c a c C a c C C c
 

(4.25)

TABLE 4.1

Routh Array

a11 a12 a13 a14 …
a21 a22 a23 …
a31 a32 …
a41



Model Order Reduction 251

Once the moments, cj, j = 0, 1, 2, are determined, the coeffi cient matrix, C, of Equation 4.24 
is defi ned, and â1 and â2 are obtained from Equation 4.25, the submatrix, C21, is normally 
nonsingular and its singularity means that the given set of moments can be matched by a 
simpler model.

Example 4.3

Consider a third-order asymptotically stable system with the following transfer function:

 

2

3 2

2

2 3

13 40
( )

13 32 20

2 0.65 0.05
1 1.6 0.65 0.05

s s
G s

s s s

s s
s s s

+ +=
+ + +

+ +=
+ + +

Determine the second-order system using the moment-matching method.

SOLUTION

First, a Routh array is constructed:
1 1.6 0.65 0.05
2 0.65 0.05 
2.55 1.25 0.1 
2.83 1.5575  
2.9705   

The elements in the Routh array may be calculated from ak,v = ak−1,1a1,v+1 − ak−1,v+1

a31 = 2 × 1.6 − 0.65 =2.55
a32 = 2 × 0.65 − 0.05 = 1.25
a33 = 2 × 0.05 − 0 = 0.1
a41 = 2.55 × 1.6 − 1.25 = 2.83
a42 = 2.55 × 0.65 − 0.1 = 1.5575
a51 = 2.83 × 1.6 − 1.5575 = 2.9705

which indicates that the fi rst few expansion coeffi cients, cj, for j = 0, 1, 2 are
c0 = 2, c1 = −2.55, c2 = 2.83, c3 = −2.9705, etc.

The denominator and numerator coeffi cients of the reduced-order model are obtained from 
Equation 4.25, that is

 

1
1 0 11

1 12 2
2 1 3

1

ˆ ˆ

2.55 2 2.83 1.5144

2.83 2.55 2.9705 0.5171

c c c
a C c

c c c

−
−

−

− − −⎡ ⎤ ⎡ ⎤
= = ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

1
0 121

2 1 11 1
1 0 13

1

0 0
ˆ ˆ ˆ

0

2 0 0 1.5144 2

2.55 2 0 0.5171 0.48

c a
a c C a

c c a

−
−

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= − = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦



252 Modeling and Simulation of Systems Using MATLAB and Simulink

Hence, the second-order reduced model is

 

21 22
2 2

12 13

2 0.48
( )

1 1 1.5144 0.5171
a a s s

R s
a s a s s s

+ += =
+ + + +

The step responses for the original model, G(s), and the reduced-order model, R(s), are shown in 
Figure 4.10, and both responses are stable.

%Matlab script for getting step responses of G(s) and R(s)
clear all
num1=[1 13 40]; den1=[1 13 32 20]; % TF of original system
num2=[0.48 2]; den2 =[0.5171 1.5144 1]; % TF of reduced order model
step(num1, den1) % step response of original system
hold
step(num2, den2) % step response of reduced order system

4.5.2.8 Continued Fraction Expansion

Consider the transfer function given below:

 

−+ + + +=
+ + + +

�
�

2 1
0 1 2

2
0 1 2

( )
n

n
n

n

b b s b s b s
G s

a a s a s a s  
(4.26)

The order of the denominator is n. It is often convenient to let an = 1, and this may be done 
without a loss of generality, because a general control system is a low-pass fi lter in nature 
and, therefore, in simplifi cation, we take care of the steady state fi rst, and then the transient 
part. Hence, we start the CFE from the constant term or arrange the polynomial in the 
ascending powers of s, and, thus, may rewrite the transfer function as

FIGURE 4.10
Comparison of responses of reduced-order model and original system model.

Time (s)

Step response

R(s)

G(s)

A
m

pl
itu

de

0 1 2

2

1.8

3 4 5 6

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0



Model Order Reduction 253

 

−

+

+ + + +=
+ + + +

�
�

2 1
21 22 23 2,

2
11 12 13 1,( 1)

( )
n

n
n

n

A A s A s A s
G s

A A s A s a s
 

(4.27)

The CFE of Equation 4.27, has been used to write the Routh 
array, as given in Table 4.2,
where

 

− − +
− +

−
= − 2,1 1, 1

, 2, 1

1,1

j j k
j k j k

j

A A
A A

A
 

(4.28)

J = 3, 4…
K = 1, 2…

In the Routh array, the fi rst two rows are formed by the denominator and numerator 
coeffi cients of G(s), and the elements of the third, the fourth, and subsequent rows can be 
evaluated by the Routh algorithm(s) (Chen and Shieh, 1969):

 

= =
+ +

+ +
+ +

…

11
1

2121
2

3131
3

41

1 1
( )

.

.

G s A s s
hA s sA hA s sA h

A

 

(4.29)

The simplifi ed models with the denominator of the reduced order, r, may be derived using 
the fi rst 2r values of quotients, hi, and will be of the general form as

 

2 1
21 22 23 2,

2
11 12 13 1,( 1)

* * **
( )

* * * *

r
r

r
r

A A s A s A s
R s

A A s A s a s

−

+

+ + + +=
+ + + +

�

�
 

(4.30)

For the second-order model considering that four scalar quotients, hi = 1, 2, …, 4, are given, 
the continued fraction inversion of Equation 4.28 is

 

+ += =
+ + + ++

+
+

2 3 4 2 4

2
1 2 3 4 1 2 1 4 3 4

1

2

3

1 ( )
( )

( )

...

h h h h h s
R s s h h h h h h h h h h s sh s

h s
h

 

(4.31)

Example 4.3

Consider the following transfer function:

 

2

2 3

360 171 10
( )

720 702 71
s s

G s
s s s

+ +=
+ + +

Reduce the model order using the CFE method.

TABLE 4.2

Routh Array

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 —

A41 A42 A43 —

A51 A52 — —



254 Modeling and Simulation of Systems Using MATLAB and Simulink

SOLUTION

The Routh array may be written as given in Table 4.3,
from which a continued fraction is written immediately as

 

1
1

2 1 1
1

3 5 1
4

6

s

s
s

=
+

+
+

+
+

Truncating the CFE up to four quotients, one obtains a second-order model as

 
2 2

15 6
( )

30 27
s

R s
s s

+=
+ +

The unit step responses of the original system and the reduced-order model are shown in Figure 4.11.
The approach of Chen and Shieh to the CFE is based on the following principle: The low perfor-

mance terms can be discarded and the high performance terms should be retained.
They pointed out that the fi rst quotient in the expansion dominates the characteristics of 

the steady state for step function disturbances. The second and the subsequent quotients in 
the expansion make up the parts of the transient response. A simplifi ed model is obtained by 
keeping the fi rst few signifi cant quotients and discarding the others. As a result, the simplifi ed 
model gives a satisfactory approximation in the steady state region but not in the transient 
portion.

Expanding a rational transfer function into a continued fraction and inverting a continued frac-
tion to a transfer function are two fundamentally important operations in system synthesis, system 
analysis, and model order reduction. Theoretically, the two iterations are trivial, one involves 
many divisions and the other is related to many multiplications. Practically speaking, however, 
when the order is high, the heavy labor of driving multiplications and divisions is unavoidable. 
Facing the tedious work, we naturally think of an algorithmic approach to the problem in order 
that we can use the digital computer to free us from drudgery.

TABLE 4.3

Routh Array for Given System

720 702 71 1

= =1

720
2

360
h 360 171 10

= =2

360
1

360
h 360 51 1

= =3

360
3

120
h 120 9

= =4

120
5

24
h 24 1

= =5

24
6

4
h 4

= =6

4
4

1
h 1



Model Order Reduction 255

Continued fraction inversion of Cauer’s fi rst form

Parathasarthy and Harpreet (1975) gave an elegant method for inverting the continued fraction 
given in Cauer’s fi rst form:

 

1 2
21 22 2 1 2,

1 2
12 13 1 1 1

( )
n n

n n
n n n

n n

A s A s A s A
G s

s A s A s A s A

− −
−

− −
+

+ + + +=
+ + + + +

�
�  

(4.32)

The corresponding fi rst form of the CFE is

 

1

2

3

2

1
( ) 1

1
1

1

n

G s
H s

H
H s

H

=
+

+
+

+�
 

(4.33)

where H1, H2, … are known as partial coeffi cients. Without a loss of generality, the coeffi cient 
of Sn in Equation 4.32 can be taken as unity, and the numerator is at least one degree less than 
the denominator. The problem is to evaluate the coeffi cients A21 to A2n, and A12 to A1,n+1 from a 
knowledge of H1 to H2n, and construct the transfer function (4.33).

The Routh array is formed as in Table 4.4.
It is to be noted that A11 = 1. And the end elements of the odd rows will be constant and equal 

to A2n+1,1 (the last element of the array), and those of the even rows will be zeros. The partial coef-
fi cients are related to the elements of the fi rst column by

 

1,1

,1

1
, 1, 2, ,2 ; #0p

p
p p

A
p n H

A H
+ = = …

 
(4.34)

FIGURE 4.11
Comparison of responses of original system and reduced model.

Time (s)

Step response

R(s)

G(s)

A
m

pl
itu

de

0 1 2

2

1.8

3 4 5 6

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0



256 Modeling and Simulation of Systems Using MATLAB and Simulink

And the other elements of the Routh table are connected by the following recursive relation:

 

2,1 1, 1
2, 1

1,1

j j k
j k jk

j

A A
A A

A
− − +

− +
−

= +
 

(4.35)

where
j = 2n, 2n − 1, … , 3
k = 1, 2, … , (n − 1)

Thus, the steps for the proposed algorithm are

Step 1: Starting from the fi rst element of the Routh table (A11 = 1) and from the knowledge of partial 
coeffi cients, write down the fi rst column of the Routh table.

Step 2: Evaluate recursively the remaining elements of the table.

Step 3: Copy the fi rst rows of the Routh table, which give the coeffi cients of the denominator and 
numerator polynomials of the transfer function.

Example 4.4

Let us consider

 

1
( ) 1

2 1 1
1 8 12

3 13
12
2/3

G s
s

s

s

=
+

+ +
+

+

Reduce the model order using the CFE method.

SOLUTION

The partial coeffi cients are
H1 = 2, H2 = 1, H3 = 1/2, H4 = 8/3, H5 = 3/2, and H6 = 2/3.

TABLE 4.4

Routh Array

1 A12 A13 … A1n A1,n+1

A21 A22 A23 … A2n 0

A31 A32 A33 … A3n

A41 A42 A43 … 0

:

:

:

A2n−1,1 A2n−1,2

A2n,1 0

A2n+1,1



Model Order Reduction 257

The entries of the fi rst column are

 A11 = 1, A21 = 1/2 A31 = 1/2 A41 = 1 A51 = 3/8 A61 = 2/3

For j = 6, k = 1  A42 = 5/4   
 j = 5, k = 1   A32 = 1  
 j = 4, k = 1, 2   A22 = 2 A23 = 13/8 
 j = 3, k = 1, 2   A12 = 9/2  A13 = 17/4

By inspection

 A62 = A43 = A24 = 0
and A71 = A52 = A33 = A14 = 3/8

The Routh table is given in Table 4.5.
The corresponding transfer function is

 

2

3 2

(1/2) 2 (13/8)
( )

(9/2) (17/4) (3/8)
s s

G s
s s s

+ +=
+ + +

An improved algorithm for continued fraction inversion (Kumar and Singh, 1978)

Given the continued fraction, G1(s), in Cauer’s second form and G2(s) in Cauer’s fi rst form, that is

 

1

1
2

3

2

1
( ) 1

1
1

1
n

G s
H H

s H

H
s

=
+

+
+

+�

 

2

1

2

3

2

1
( ) 1

1
1

1

n

G s
H s

H
H s

H

=
+

+
+

+�

The problem is to determine the corresponding rational forms:

 

2 1
0 1 2 1

1 2
0 1 2

( )
n

n
n

n

a a s a s a s
G s

b b s b s b s

−
−+ + + +=

+ + + +
�
�

 

1 2
1 2 1 0

2 2
2 1 0

( )
n

n
n

n

a s a s a s a
G s

b s b s b s b

−
− + + + +=

+ + + +
�
�

TABLE 4.5

Routh Table

1 9/2 17/4 3/8
H1 = 2 1/2 2 13/8 0

H2 = 1 1/2 1 3/8
H3 = 1/2 1 5/4 0

H4 = 8/3, 3/8 3/8
H5 = 3/2, 1/4 0

H6 = 2/3, 3/8



258 Modeling and Simulation of Systems Using MATLAB and Simulink

A formula is proposed of the form:

 , 2, 1 1,j k j k j j kA A H A+ − += +  (4.36)

where
j = 2n, 2n − 1, … , 1
k = 1, 2, … , n

In view of the fact that

 

,1

1,1

j
j

j

A
H

A +
=

the use of Equation 4.36 requires the following initial conditions:

Aj,k = 1 for j + 2k = 2n + 3
Aj,k = 0 for j + 2k > 2n + 3
Aj,0 = 0

Using Equation 4.36 we construct the Routh table given in Table 4.6.
Using the fi rst two rows of the above table:

 

− − −

− −

= = = = = =′ ′ ′

= = = = = =′ ′ ′

0 1 21 1 2 22 1 0 2

0 11 1 1 12 1 1 1

, , ,

, , ,

n n n n

n n n n

a a A a a A a a A

b b A b b A b b A

…

…

Example 4.5

Consider the system transfer function given below:

 

1
1

( ) 1
2 1 1

1 1
8 12

3 13
22
3

G s

s

s

s

=
+

+
+

+
+

 

(4.37)

TABLE 4.6

Routh Table

A11 A12 A13 … A1n−1 A1n 1

A21 A22 A23 … A2n−1 A2n 0

A31 A32 A33 … A3n−1 1

A41 A42 A43 … A4n−1 0

:

:

:

A2n−1,1 1

A2n,1 0

1



Model Order Reduction 259

2
1

( ) 1
2 1

1 1
8 12

3 13
22
3

G s
s

s

s

=
+

+
+

+
+

Reduce the model order using improved continued fraction 
inversion.

SOLUTION

Both G1(s) and G2(s) have the same set of partial coeffi cients:
H1 = 2, H2 = 1, H3 = 1/2, H4 = 8/3, H5 = 3/2, and H6 = 2/3.
Using G1(s) we can calculate the elements of the table, given in Table 4.7.
The desired rational forms of the transfer functions are

 

2

1 2 3

4/3 (16/3) (13/3)
( )

8/3 12 (34/3)
s s

G s
s s s

+ +=
+ + +

 

2

2 3 2

(4/3) (16/3) 13/3
( )

(8/3) 12 (34/3) 1
s s

G s
s s s

+ +=
+ + +

This method of model order reduction is computationally better.

4.5.2.9 Model Order Reduction Based on the Routh Stability Criterion

The Routh algorithm is a computational method that develops a sequence of computed 
numbers from two generating rows of numbers. This method is used to check the stability 
of a system. The array is usually written in the following form, from the coeffi cients of a 
given polynomial:

 

1 2 2
0 0 1 1

0 1 2 3 4

0 1 2 3

0 1 2 3

0 1 2

0 1 2

( )

Generating rows — — —

— — — —

Computed rows — — — —

— — — — —

n n n nP s a s b S a s b s

a a a a a

b b b b

c c c c

d d d

e e e

− − −= + + + +…

etc.
The third and each subsequent row are evaluated from the proceeding two rows by 

means of a systematic form of calculation, namely

 

− −= =0 1 0 1 0 2 0 2
0 1

0 0

,
b a a b b a a b

c c
b b

 

−= 0 3 0 3
3

0

b a a b
c

b

TABLE 4.7

Routh Table

8/3 12 34/3 1

4/3 16/3 13/3 0

4/3 8/3
8/3 10/3 1

1 1 0

2/3 0



260 Modeling and Simulation of Systems Using MATLAB and Simulink

 

− −= =0 1 0 1 0 2 0 2
0 1

0 0

,
c b b c c b b c

d d
c c

There is a possibility that certain elements in the array may vanish; unless the fi rst 
column number, c0, d0, etc., vanishes, the computation proceeds without diffi culty. The 
array becomes roughly triangular and terminates with a row having only one element. 
The numbers a0, a1, … , b0, b1, … , etc., in the generating rows are normally coeffi cients taken 
either alternately from one polynomial or taken from two polynomials, the source of which 
depends upon the specifi c applications.

The Routh criterion is an effi cient test that tells how many roots of a polynomial lie in the 
right half of the s-plane, and also gives information about the roots symmetrically located 
about the origin. The number of sign changes in the fi rst column of the Routh array 
determines the number of roots lying in the right of the s-plane.

Let the higher-order transfer function be

 

− − −

− − −
+ + + +=
+ + + +

�
�

1 2 3
11 21 12 22

1 2 3
11 21 12 22

( )
m m m m

n n n n

b s b s b s b s
G s

b s a s a s a s

The reduced-order transfer function is constructed directly from the elements in the 
Routh stability arrays of the high-order numerator and denominator, as shown in Tables 
4.8 and 4.9.

TABLE 4.8

Numerator Stability Array

b11 b12 b13 b14 — — —

b21 b22 b23 b24 — — —

b31 b32 b33 — — — —

b41 b42 b43 — — — —

:

:

:

bm,1

bm+1,1

TABLE 4.9

Denominator Stability Array

a11 a12 a13 a14 — — —

a21 a22 a23 a24 — — —

a31 a32 a33 — — — —

a41 a42 a43 — — — —

:

:

:

an−2,1 an−2,2

an−1,1 an−1,2

an,1

an+1,1



Model Order Reduction 261

The fi rst two rows of each table consist of odd coeffi cients (e.g., fi rst, fi fth, etc.). The tables 
are computed in the conventional way by computing coeffi cients of successive rows by the 
algorithms:

 

− −
− +

−
= − 2,1 1, *1

2, 2

1,1

  i i j
ij i j

i

c c
c c

c

for i ≥ 3 and l ≤ (n − l + 3)/2.
Suppose that the fi rst two rows of each table are made available, then the transfer func-

tion of the system of order n can easily be reconstructed. Let us take this a little further 
down the table; consider now the second and third rows of each table. A transfer function 
may be constructed in a similar way with these coeffi cients with the system order reduced 
to (n − 1). It should be noted that the effect of all coeffi cients of the previous two rows has 
been taken into consideration while computing the coeffi cients of the third rows. This 
applies equally well to all other rows computed from the previous two rows.

The transfer function thus constructed with the second and third rows of each table is 
given by

 

− − − −

− − − − −
+ + + +=
+ + + +

�
�

1 2 3 4
21 31 22 32

1 1 2 3 4
21 31 22 32

( )
m m m m

n n n n n

b s b s b s b s
G s

a s a s a s a s

Example 4.6

Consider an eighth-order system:

 

7 6 5 4 3 2

8 7 6 5 4 3 2

35 1086 13285 82402 278376 511812 482964 194480
( )

33 437 3017 11870 27470 37492 28880 9600
s s s s s s s

G s
s s s s s s s s

+ + + + + + +=
+ + + + + + + +

Reduce the system order using the Routh stability criterion from the eighth-order to the fi fth- and 
second-orders.

SOLUTION

The reduced-order transfer function can be immediately derived of any order k that is less than or 
equal to n from stability Tables 4.10 and 4.11.

TABLE 4.10

Numerator Stability Array

S7 35 13,285 278,376 482,964 (coeffi cients of odd terms)

S6 1,086 82,402 511,812 194,480 (coeffi cients of even terms)

S5 10,629 261,881 476,696 —

S4 55,645 463,108 194,480

S3 173,419 439,547

S2 322,069 194,480

S1 334,828

S0 194,480



262 Modeling and Simulation of Systems Using MATLAB and Simulink

For example, the second-order model:

 
2 2

334828 194880
( )

20123 18116 9600
s

R s
s s

+=
+ +

and the fi fth-order model:

 

4 3 2

5 5 4 3 2

55645 173419 463108 439547 194480
( )

1963 6817 23973 31694 27963 9600
s s s s

R s
s s s s s

+ + + +=
+ + + + +

These models are simulated in MATLAB® and the results have been compared, as shown in 
Figure 4.12.

TABLE 4.11

Denominator Stability Array

S8 1 437 11,870 37,492 9,600 (coeffi cients 

of even terms)

S7 33 3,017 27,470 28,880 (coeffi cients 

of odd terms)

S6 346 11,037 36,617 9,600

S5 1,963 23,973 27,963

S4 6,817 31,694 9,600

S3 14,847 25,199

S2 20,124 9,600

S1 181,162

S0 9,600

FIGURE 4.12
Model response comparison.

Time (s)

Step response

Original system
Second-order model
Fifth-order model

A
m

pl
itu

de

0 5 10 15

5

10

15

20

25

0



Model Order Reduction 263

%Matlab program for comparison of responses
clear all
Num_sys=[35 1086 13285 82402 278376 511812 482964 194480];
Den_sys=[1 33 437 3017 11870 27470 37492 28880 9600];
step(Num_sys, Den_sys)
hold
Num_2=[334828 194880];
Den_2=[20123 18116 9600];
step(Num_2, Den_2)
Num_5=[55645 173419 463108 439547 194480];
Den_5=[1963 6817 23973 31694 27963 9600];
step(Num_5, Den_5)
legend(“Original System,” “Second order Model,” “Fifth order model”)

4.5.2.10 Differentiation Method for Model Order Reduction

The differentiation method for model order reduction was introduced by Gutman 
et al. (1982). This method is based on differentiation of polynomials. The reciprocals 
of the numerator and denominator polynomials of the higher-order transfer functions 
are differentiated successively many times to yield the coeffi cients of the reduced-
order transfer function. The reduced polynomials are reciprocated back and normal-
ized. The straightforward differentiation is discarded because it has a drawback that 
zeros with large moduli tend to be better approximated than those with small moduli 
(Prasad et al., 1995).

Example 4.7

Consider 
2

2 3

40 13
( ) .

20 32 13
s s

G s
s s s

+ +=
+ + +

The reciprocal of G(s) is given by

 

1 1
( )G s G

s s
⎛ ⎞= ⎜ ⎟⎝ ⎠

 

2

3 2

40 13 1
( )

20 32 13 1
s s

G s
s s s

+ +=
+ + +

After differentiation, the second-order model is

 
2 2

80 13
( )

60 64 13
s

R s
s s

+=
+ +

Its reciprocal is given by

 
2 2

80 13
( )

60 64 13
s

R s
s s

+=
+ +

Applying the steady state correction:

 
2 2 2

3/2(80 13 ) 9.23 1.5
( )

60 64 13 4.62 4.92
s s

R s
s s s s
+ += =

+ + + +

The comparison of original system responses and second-order reduced model responses has 
been shown in Figure 4.13.



264 Modeling and Simulation of Systems Using MATLAB and Simulink

Example 4.8

Consider the following transfer function:

 
2

( ) 10
( ) ( 10)( 2 2)

C s
R s s s s

=
+ + +

s = −10, −1 + j.1, −1 − j.1

 
2

( ) 10
( ) 10( /10 1)( 2 2)

C s
R s s s s

=
+ + +

If 1
10
s
	 , then 

2

( ) 1
.

( ) ( 2 2)
C s
R s s s

=
+ +

The higher-order system can be represented as

 

2
1 2

2
1 2

1
( )

1

m
m

n
n

a s a s a s
M s K

b s b s b s
+ + + +=
+ + + +

�
�

The lower-order system can be represented as

 

2
1 2

2
1 2

1
( )

1

q
q

p
p

c s c s c s
L s K

d s d s d s
+ + + +

=
+ + + +

�
�

where n ≥ p ≥ q.

FIGURE 4.13
Comparison of results of original system and reduced-order model.

Time (s)

Step response

Original system
Reduced-order model

A
m

pl
itu

de

0 1 2

2

1.8

3 4 5 6

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0



Model Order Reduction 265

Approximation criterion

 

2

2

( )
1 for 0

( )

M j

L j

ω
= < ω < ∞

ω

The last condition implies that the amplitude characteristics of the two systems in the frequency 
domain, (s = jω), are similar. It is hoped that this will lead to the same time responses for the two 
systems.

Steps involved in the approximation:

 1. Choose the appropriate order of the numerator polynomial, q, and the denominator poly-
nomial, p, of L(s).

 2. Determine the coeffi cient ci where i = 1, 2, … , q, and dj where j = 1, 2, … , p, so that the 
condition in approximation criterion is approached:

 

2 2
1 2 1 2

2 2
1 2 1 2

2
1 2

2
1 2

...1 1( )
( ) 1 1

1
1

( )( )
( )

m p
m p

n q
n q

u
u
v

v

a s a s a s d s d s d sM s
L s b s b s b s c s c s c s

m s m s m s
K

l s l s l s

+ + + + + + + +
=

+ + + + + + + +

+ + + +=
+ + + +

�
� �

�
�

where u = m + p and v = n + q.

 

2

2

( ) ( ) ( )
( ) ( )( ) s j

M j M s M s
L s L sL j = ω

ω −=
−ω

The numerator and the denominator of 
( ) ( )
( ) ( )

M s M s
L s L s

−
−  are even polynomials of s, that is, these con-

tain only even powers of s:

 

2 2 4 2
2 4 2

2 2 4 2
2 4 2

( ) 1
1( )

u
u

v
v s j

M j e s e s e s
f s f s f sL j = ω

ω + + + +=
+ + + +ω

�
�

Divide the numerator by the denominator on the right-hand side:

 

2 4 2
2 4 2

2 4 2
2 4 2

2 4 2 2
2 2 4 4 2 2 2

2 4 2
2 4 2

1
1 0

1

( ) ( ) ( )
0

1

u
u

v
v s j

u v
u u v

v
v

e s e s e s
f s f s f s

e f s e f s e f s f s
f s f s f s

= ω

+ + + += − =
+ + + +

− + − + + − − − =
+ + + +

�
�

� �
�

For the approximation criterion:

 2 2 4 4 2 2, , u ue f e f e f= = =…



266 Modeling and Simulation of Systems Using MATLAB and Simulink

Beyond the 2uth term, all others are error terms:

 

2 2
1 2 1 2

2 2
1 2 1 2

2 4 2
2 4 2

2 4 2
2 4 2

( ) ( ) (1 )(1 ( 1) )
( ) ( ) (1 )(1 ( 1) )

1
1

u u u
u u

u v v
v v

u
u

v
v

M s M s m s m s m s m s m s m s
L s L s l s l s l s l s l s l s

e s e s e s
f s f s f s

− + + + + − + + + −=
− + + + + − + + + −

+ + + +=
+ + + +

� �
� �

�
�

 

2
2 2 1

2
4 4 3 1 2

2
6 6 1 5 2 4 3

2

2 2

2 2 2

e m m

e m m m m

e m m m m m m

= −

= − +

= − + −

 

1
2

2 2

0

( 1) 2 ( 1)
x

i x
x i x i x

i

e m m m
−

−
=

= − + −∑

where x = 1, 2, …, u and m2 = 1.
Similarly, we can write

 

1
2

2 2

0

( 1) 2 ( 1)
y

i y
y i y i y

i

f l l l
−

−
=

= − + −∑

where y = 1, 2, …, v and l0 = 1.

Example 4.9

Let the open-loop transfer function be

 
2

8
( )

( 6 1)
G s

s s s
=

+ +

The closed-loop transfer function is

 

3 2

3 2
3 2 1

( )
( )

( ) 1

8
6 12 1

1
1

C s G
M s

R s GH

s s s

l s l s l s

= =
+

=
+ + +

=
+ + +

 

3

2

1

where
 1/8

6/8
12/8

l
l
l

=
=
=  



Model Order Reduction 267

Now, for a reduced-order model:

 

2 2
2 1 2 1

1 1 2 2

1 1
( )

1 1

,

u s
d s d s m s m s

m d m d

= =
+ + + +

= =

According to the approximation criterion, we can write

 

4 2
4 2

6 4 2
6 4 2

( ) ( ) 1
( ) ( ) 1

M s M s e s e s
L s L s f s f s f s

− + +=
− + + + +�

Comparing the coeffi cients of powers of s from both sides, we get

 
2 2

2 2 2 1 2 12 2e f d d l l= → − = −

 

2
2

2 1

2 2
4 4 2 1 3 2

2
2
2

6 122 2 0.758 8

2

612 12 0.18758 8 8

( ) ( )

( )( ) ( )

d d

e f d l l l

d

− = − = −

= ⇒ = − +

= − + =

From the above equations, we get
d2 = 0.433 and d1 = 1.271

Hence, the reduced-order model will be

 
2

1
( )

0.433 1.271 1
L s

s s
=

+ +

If we take the fi rst-order reduced model:

 

1
( )

1
L s

ds
=

+

 

2 2
2 2 1 2 1

1

2 0.75

0.866

e f d l l

d

= ⇒ − = − =

=

 

1
Hence, ( )

0.866 1
L s

s
=

+

The Simulink® model is shown in Figure 4.14, which is simulated in MATLAB, and the results are 
shown in Figure 4.15.

MATLAB program

step(1, [.125 .75 1.5 1])
Pause
hold
step(1, [.433 1.271 1])
step(1, [.866 1])



268 Modeling and Simulation of Systems Using MATLAB and Simulink

Example 4.10

Let the closed-loop transfer function be

 

7

7 3 7 2 7

7

3 2
3 2 1

1.5 10
( )

(1/1.5 10 ) (3408.3/1.5 10 ) (120400/1.5 10 ) 1

1.5 10
1

K
M s

K s K s K s

K
l s l s l s

×=
× + × + × +

×=
+ + +

FIGURE 4.14
Simulink model to fi nd the effect of model order reduction on system response.

den(s)

Third-order Fcn

Second-order Fcn 1

First-order Fcn 2

Step Scope

1

den(s)
1

.866s + 1
1

FIGURE 4.15
System responses for different model orders.

Time (s)

Step response

Third order
Second order
First order

A
m

pl
itu

de

0 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7
0



Model Order Reduction 269

 
3 7

1
Here,

1.5 10
l

K
=

×

 
3 7

3408.3
1.5 10

l
K

=
×

 
3 7

120400
1.5 10

l
K

=
×

Now, for a reduced-order model:

 
2 2

2 1 2 1

1 1
( )

1 1
u s

d s d s m s m s
= =

+ + + +

 1 1 2 2,m d m d= =

According to the approximation criterion, we can write

 

4 2
4 2

6 4 2
6 4 2

( ) ( ) 1
( ) ( ) 1

M s M s e s e s
L s L s f s f s f s

− + +=
− + + + +�

Comparing the coeffi cients of powers of s from both sides, we get

 
2 2

2 2 2 1 2 12 2e f d d l l= → − = −

 

2
2

2 1 7 7

3408.3 120400
2 2

1.5 10 1.5 10
d d

K K
⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠× ×  

(4.38)

 
2 2

4 4 2 1 3 22 2e f d l l l= → = +

 

2
2

2 7 7 7

120400 1 3408.3
2

1.5 10 1.5 10 1.5 10
d

K K K
⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠× × ×  

(4.39)

We can solve Equations 4.38 and 4.39 for different values of K (e.g., K = 7.5 and 14.5).
From the response plots shown in Figures 4.16 through 4.18, we can say that for small values of K 

the second-order approximation is quite good. As we increase the value of K, the error increases.

Example 4.11

Consider the closed-loop transfer function:

 

2

3 2

3 2
3 2 1

1
( )

(0.5 1)(1 )

1
(0.5 ( 0.5) ( 1) 1

1
( )

1

M s
s s Ts

Ts T s T s

M s
l s l s l s

=
+ + +

=
+ + + + +

=
+ + +

3

2

1

where
0.5
0.5
1

l T
l T
l T

=
= +
= +



270 Modeling and Simulation of Systems Using MATLAB and Simulink

FIGURE 4.17
System responses for second- and third-order models, for K = 7.5.

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0 0.1 0.2 0.3

Time (s)

A
m

pl
itu

de

System responses for K = 7.5

Step response

Third order
Second order

0.4 0.5 0.6

FIGURE 4.16
Systems responses for second- and third-order models, for K = 3.75.

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0 0.1 0.2 0.3

Time (s)

System responses for K = 3.75

Step response

Third order
Second order

A
m

pl
itu

de

0.4 0.5 0.6



Model Order Reduction 271

Now, for a reduced-order model:

 

= =
+ + + +

= =

2 2
2 1 2 1

1 1 2 2

1 1
( )

1 1

,

u s
d s d s m s m s

m d m d

According to the approximation criterion, we can write

 

4 2
4 2

6 4 2
6 4 2

( ) ( ) 1
( ) ( ) 1

M s M s e s e s
L s L s f s f s f s

− + +=
− + + + +�

Comparing the coeffi cients of powers of s from both sides, we get

 
2 2

2 2 2 1 2 12 2e f d d l l= → − = −

 
2 2

2 12 2(0.5 ) (1 )d d T T− = + − +  (4.40)

 
2 2

4 4 2 1 3 22 2e f d l l l= → = +

 
2 2

2 2(1 )(0.5 ) (0.5 )d T T T= − + + +  (4.41)

FIGURE 4.18
System responses for second- and third-order models, for K = 12.

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0 0.1 0.2 0.3

Time (s)

A
m

pl
itu

de

Third order Second order

0.4

System responses for K = 12

0.5 0.6



272 Modeling and Simulation of Systems Using MATLAB and Simulink

We can solve Equations 4.40 and 4.41 for different values of T:

 
2

2 10.5, (1 )d d T= = +

From the response plots shown in Figures 4.19 through 4.21, we can say that for small values 
of T, the second-order approximation is quite good. As we increase the value of T, the error 
increases.

FIGURE 4.19
System responses for second- and third-order models, for T = 0.01.

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0 1 2 3

Time (s)

A
m

pl
itu

de

Step response

Third order
Second order

4 5 6

FIGURE 4.20
System responses for second- and third-order models, for T = 0.1.

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0 1 2 3

Time (s)

A
m

pl
itu

de

Step response

Third order
Second order

4 5 6



Model Order Reduction 273

FIGURE 4.21
System responses for second- and third-order models, for T = 1.0.

Step response
1

0.9

0.8

0.7

0.6

0.5

A
m

pl
itu

de

0.4

0.3

0.2

0.1

00 1 2 3
Time (s)

4 5 6

Third order
Second order

4.6 Applications of Reduced-Order Models

Reduced-order models and reduction techniques have been widely used for the analysis 
and the synthesis of high-order systems. Reduced-order models are useful due to the fol-
lowing reasons:

 1. Predicting transient response sensitivities of high-order systems using low-order 
models

 2. Predicting dynamic errors of high-order systems using low-order equivalents

 3. Control system design

 4. Adaptive control using low-order models

 5. Designing reduced-order estimator

 6. Suboptimal control derived by simplifi ed models

 7. Providing guidelines for online interactive modeling

4.7 Review Questions

 1. State the approximation criterion for reducing a model’s order from given a high-
order, M(s), to a low-order, L(s), using the dominant eigenvalue approach.

 2. Consider that the open-loop transfer function of a unity feedback system is

 
=

+ +2

8
( )

( 6 12)
G S

s s s



274 Modeling and Simulation of Systems Using MATLAB and Simulink

 Determine the fi rst- and second-order models for the given third-order model. Also 
compare the computer simulation responses in MATLAB of these systems and check 
how the response of the model deviates when the order of the model is reduced.

 3. Explain mathematically the dominant eigenvalue approach for model order reduc-
tion of a linear time-invariant dynamic system. Obtain a second-order reduced 
model for

 

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 1

2 2

3 3

( ) 10 0 0 ( ) 0
d

( ) 0 2 0 ( ) 1.5 ( )
d

( ) 0 0 1 ( ) 0.5

X t X t

X t X t U t
t

X t X t

  and

 

⎡ ⎤
⎢ ⎥= ⎡ ⎤⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

1

2

3

( )

( ) 0.2 0.4 0.6 ( )

( )

X t

Y t X t

X t

  using (1) the dominant eigenvalue approach and (2) the aggregation method.

 4. Develop the state space model for the electrical and electromechanical systems 
shown in Figures 4.22 and 4.23. Also reduce the model order using a suitable 
technique.

 5. Take the open-loop transfer function for a closed-loop unity feedback system as

 

+=
+ + +

(1 )
( )

( 1)( 2)( 6)
sT

G s
s s s s

  Determine the second-order model for the system and simulate it to fi nd the effect 
of model order reduction on the response of this system.

FIGURE 4.22
Electrical system.

Vin
Vo

+

–

FIGURE 4.23
Electromechanical system.

Input Va

dc motor

Load



Model Order Reduction 275

 6. Obtain an approximate fi rst-order model for the given system.

 i. Take the open-loop transfer function 
+=

+ + + +2 3 2

(1 )
( )

( 4)( 2 6)
sT

G s
s s s s

 for a unity

  feedback system. Determine approximate third-, second-, and fi rst-order mod-
els and compare their unit step responses.

 ii. The open-loop transfer function and feedback transfer functions are given as

 
=

+ + +2

1
( )

( 1.25)( 2.5 10)
H s

s s s s

  Obtain the second-order system model and compare the results for K = 35, 40, and 50.

4.8 Bibliographical Notes

An interesting survey work in the fi eld of model reduction has been reported by Towill 
(1963), Gutman et al. (1982), and Genesio and Milaness (1976). Whatever be the approach 
used for model order reduction, the main objective is that the reduced-order approxima-
tion should reproduce the signifi cant characteristics of the original system. There are many 
papers/books published in the area of model order reduction, but some of the interesting 
papers are published by Feldmann and Freund (1995), Kerns and Yang (1998), Phillips 
et al. (2003), and Tan and He (2007).



This page intentionally left blank 



277

5
Analogous of Linear Systems

5.1 Introduction

In the analysis of linear systems, the mathematical procedure for obtaining the solutions to a 
given set of equations does not depend upon what physical system the equations represent. 
Hence, if the response of one physical system to a given excitation is determined, the responses 
of all other systems that can be described by the same set of equations are known for the same 
excitation function. Systems which are governed by the same types of equations are called 
analogous systems. When we deal with systems other than electrical, there are distinct advan-
tages if we can reduce the systems under consideration to their analogous electrical circuits.

 1. Once the circuit diagram of the analogous electrical system is determined, it is 
possible to visualize and even predict system behaviors by inspection.

 2. Electrical circuit theory techniques can be applied in actual analysis of the system.

 3. The solution of the set of differential equations describing a particular physical 
system can be directly applied to analogous systems of their type.

 4. The ease of changing the parameters of electrical components, of connecting and 
disconnecting them in a circuit, and measuring the voltages and currents all prove 
invaluable in model construction and testing.

 5. Since electrical or electronic systems can be built up easily, it is easier to build such 
a system rather than build up a mechanical or hydraulic system for experimental 
studies.

The two electrical analogies for mechanical systems are

 1. Force–voltage analogy

 2. Force–current analogy

Electric duality is a special type of analogy. The duality is shown in Figure 5.1.

5.1.1 D’Alembert’s Principle

D’Alembert’s principle is a slightly modifi ed form of Newton’s second law of motion and 
can be stated as follows:

For any body, the algebraic sum of the externally applied forces and the forces resisting 
motion in any given direction is zero.



278 Modeling and Simulation of Systems Using MATLAB and Simulink

It applies for all instants of time. A positive reference direction must be chosen. Forces 
acting in the reference direction are then considered as positive and those against the ref-
erence direction as negative. D’Alembert’s principle is useful in writing the equations of 
motion for a mechanical system as Kirchoff’s laws are in writing the circuit equations for 
an electric network.

D’Alembert’s principle modifi ed for a rotational system can be stated as follows:

For any body, the algebraic sum of the externally applied torques and the torques resisting 
rotation about any axis is zero.

5.2 Force–Voltage (f–v) Analogy

The behavior of the mechanical systems can be completely predicted by what we know 
about the simple electrical circuits. If the force in the mechanical system is set to be 
analogous to voltage in the electrical system, we designate this type of analogy to force–
voltage analogy. The analogous quantities of mechanical system and electrical system 
for f–v analogy are shown in Table 5.1.

5.2.1 Rule for Drawing f–v Analogous Electrical Circuits

Each junction in the mechanical system corresponds to a closed loop, which consists of 
electrical excitation sources and passive elements analogous to the mechanical driving 

FIGURE 5.1
Dual networks.

V

C R

I L

(a) Series R-L-C network

V

(b) Parallel G-C-L network

C G L

TABLE 5.1

Analogous Quantities for f–v Analogy

Translational Motion 

Mechanical System

Rotary Motion 

Mechanical System Electrical System

Force, f Torque, T Voltage, V
Velocity, u Angular velocity, ω Current, I

Displacement, x Angular displacement, Θ Charge, q

Mass, M Moment of inertia, J Inductance, L
Damping coeffi cient, D Viscous friction coeffi cient, B Resistance, R
Compliance, K Spring constant, K Reciprocal of capacitance,

 

1

C



Analogous of Linear Systems 279

sources and passive elements connected to the junction. All points on a rigid mass are 
considered as the same junction.

5.3 Force–Current (f–i) Analogy

From the point of view of physical interpretation, it is a natural analogy, because forces 
acting through mechanical elements are made to be analogous to voltage across the cor-
responding electrical elements and velocities across mechanical elements are made to be 
analogous to currents through the corresponding electrical elements. A direct consequence 
is that a junction in the mechanical system goes over to the analogous electrical circuits as 
a loop. The analogous quantities for f–i analogy are given in Table 5.2.

5.3.1 Rule for Drawing f–i Analogous Electrical Circuits

Each junction in the mechanical system corresponds to a node, which joins electrical excita-
tion sources and passive elements analogous to the mechanical driving sources and passive 
elements connected to the junction. All points on a rigid mass are considered as the same 
junction and one terminal of the capacitance analogous to a mass is always connected to 
the ground.

The reason that one terminal of the capacitance analogous to a mass is always connected 
to the ground is that the velocity of a mass is always referred to the earth.

Example 5.1

Find the equations that describe the motion of the mechanical system of Figure 5.2 using

 1. D’Alembert’s principle
 2. f–v analogy
 3. f–i analogy

TABLE 5.2

Analogous Quantities for f–i Analogy

Translatory Motion 

Mechanical System

Rotary Motion 

Mechanical System Electrical System

Force, f Torque, T Current, I
Velocity, u Angular velocity, ω Voltage, V

Linear displacement, x Angular displacement, Θ Magnetic fl ux, Φ
Mass, M Moment of inertia, J Capacitance, C
Damping coeffi cient, D Viscous friction coeffi cient, B Reciprocal of resistance,

 

1

R

Compliance, K Spring constant, K Reciprocal of inductance,
 
1

L



280 Modeling and Simulation of Systems Using MATLAB and Simulink

SOLUTION

 1. Using d’Alembert’s principle
 It is clear that the system in Figure 5.2 is a two-coordinate 

system, that is, two variables, x1 and x2 are needed to 
describe the system completely.

  For mass M1

 
1

1 1 2 1 1 2
d

( )
d
u

M D D u D u f
t

+ + − =
 

(5.1)

  where u1 = x1 and u2 = x2

  For mass M2

 

2
1 1 2 1 2 2 2

0

d 1
d (0) 0

d

t
u

D u M D u u t x
t K

⎡ ⎤
⎢ ⎥− + + + + =
⎢ ⎥⎣ ⎦
∫

 

(5.2)

 2. Using f–v analogy
  Corresponding to the two coordinates x1 and x2, the mechanical system has two junctions. 

Hence, we will have two loops in the f–v analogous electrical system. The analogous elec-
trical circuit is shown in Figure 5.3.

   The equations can now be written using KVL as follows:

 

1
1 1 2 1 1 2

2
1 1 2 1 2 2 2

0

d
( )

d

d 1
d (0) 0

d

t

i
L R R i R i v

t

i
R i L R i i t q

t C

+ + − =

⎡ ⎤
⎢ ⎥− + + + + =
⎢ ⎥⎣ ⎦
∫

 

(5.3)

 3. Using f–i analogy
  Corresponding to the two coordinates x1 and x2, the mechanical system has two junctions. 

Hence, we will have two independent nodes in the f–i analogous electrical system. The 
analogous electrical circuit is shown in Figure 5.4.

FIGURE 5.3
f–v analogy. R2

R1 i2
i1

L1 L2

v C

FIGURE 5.2
Mechanical system.

D2 M2

M1

K

D1

x2

x1

f



Analogous of Linear Systems 281

   By applying KCL, the nodal equations can be easily written as

 

1
1 1 2 1 1 2

2
1 1 2 1 2 2 2

0

d
( )

d

d 1
d (0) 0

d

t

v
C G G v Gv i

t

v
Gv C Gv v t

t L

+ + − =

⎡ ⎤
⎢ ⎥− + + + + φ =
⎢ ⎥⎣ ⎦
∫

 

(5.4)

Example 5.2: Mechanical Coupling Devices

Common mechanical coupling devices such as gears, friction wheels, and levers, also have elec-
trical analogs. Let us fi rst consider the pair of nonslipping friction wheels shown in Figure 5.5.

At the point of contact, P1, on wheel 1 and P2 on wheel 2 must have the same linear velocity 
because they move together, and experience equal and opposite forces(action and reaction). Since 
this is a rotational system, it is convenient to use angular velocities and torques. The following rela-
tions between magnitudes hold:

 

1 1

2 2

1 2

2 1

r
r

r
r

τ =
τ

ω =
ω  

(5.5)

These relations are similar that exist among the voltages and currents in the primary and secondary 
windings of an ideal transformer. If r1:r2 is considered as the turns ratio N1:N2 of an ideal trans-
former, the torque will then be analogous to voltage and angular velocity to current. This forms the 
basis of f–v analogy shown in Figure 5.6.

FIGURE 5.4
f–i analogy.

I C1 C2 L

2
G

1

G1

FIGURE 5.5
Friction wheel.

r1

P1 P2

r2



282 Modeling and Simulation of Systems Using MATLAB and Simulink

If r2:r1 is considered as the turns ratio N1:N2, we have the analogous ideal transformer based on 
the f–i analogy in Figure 5.7.

The reversal of current directions and voltage polarities in the secondaries of these two fi gures 
is to show the reversal of the directions of both torque and angular velocity due to coupling; 
it is equivalent to putting dots on opposite ends of the primary and secondary windings of the 
transformer. In general, it is easy to determine the relative directions of motion of the coupled 
mechanical elements by inspection of mechanical system without elaborating notations in the 
electrical circuits.

The simple lever is another type of mechanical coupling device that is analogous to the trans-
former. Consider the lever in Figure 5.8 which rests on a rigid fulcrum P. The lever is assumed 
to be massless but rigid, and its left end is connected to the ground through some mechanical 

FIGURE 5.7
f–i analogy.

v1 [ω1]

i1 [τ1] i2 [τ2]

N1:N2
[r2:r1]

v2 [ω2]

FIGURE 5.8
Translatory motion mechanical system.

f2 r2 r1

u2

P

f1

u1

FIGURE 5.6
f–v analogy.

v1 [τ1]

i1 [ω1] i2 [ω2]

N1 : N2
[r1 : r2]

v2 [τ2]



Analogous of Linear Systems 283

elements which resists motion. If a force f1 applied to the right end makes it move with a velocity u1, 
the following relations hold:

 

1 1

2 2

1 2

2 1

u r
u r

f r
f r

=

=
 

(5.6)

These equations are also similar to that of an ideal transformer. We fi nd that the velocities of the 
ends of the simple lever correspond to the torques on the gears, and the forces on the lever cor-
respond to the angular velocities of the gears. Therefore, although the electrical analog of a simple 
lever is also an ideal transformer, the f–v analog for a lever will correspond to the f–i analog of a 
pair of meshed gears, and vice versa, as shown in Figures 5.9 and 5.10.

Example 5.3

Find the f–i analogous electrical circuit of the mechanical system shown in Figure 5.11. Assume 
that the bar is rigid but massless and that the junctions are restricted to have vertical motion only.

SOLUTION

Since this system has a lever-type coupling, the existence of an ideal transformer in the electrical 
analog is apparent. However, we do not have a simple lever here because the bar does not rest 
or pivot on a fi xed fulcrum. The primary circuit in the electrical analog can be drawn without 

FIGURE 5.9
f–v analogy.

N1:N2
[r2:r1]

v2 [ f2]

i2 [u2]

v1 [ f1]

i1 [u1]

FIGURE 5.10
f–i analogy.

N1:N2
[r2:r1]

v2 [u2]

i2 [ f2]

v1 [u1]

i1 [ f1]



284 Modeling and Simulation of Systems Using MATLAB and Simulink

diffi culty. By the rule of f–i analogy, we know that the primary circuit has one independent node 
with a current source (f) and three elements (a capacitance M1, a resistance 1/D1, and an induc-
tance K1) connected to it, as shown in Figure 5.12.

To draw the secondary circuit, we apply the principle of superposition. First, consider junction 3 
as fi xed. We then have

 

1 1 2

2 2

1 2

2 1 2

1 1 2

2 2

u r r
u r

f r
f r r

N r r
N r

+=

=
+

+=
 

(5.7)

Next considering junction 2 as fi xed, we have

 

1 1

3 2

1 2

3 1

1 1

3 2

u r
u r

f r
f r

N r
N r

=

=

=
 

(5.8)

FIGURE 5.12
f–i analogy.

M1

M1

r1: r2

(r1 + r2): r2

M1

K1

K1

K1

f1

FIGURE 5.11
Mechanical system.

D3

1 2 3

K3
D2

K2 D1
K1

M3U3 M2U2

r2 r1 f1

M1
U1



Analogous of Linear Systems 285

Example 5.4

A certain cushioned package is to be dropped from a height h = 10 ft. The package can be repre-
sented by the schematic diagram, as shown in Figure 5.13. Determine the motion of the mass M. 
Assume that the package falls onto the ground with no rebound.

M = 2 lb-s2/ft
K = 5 × 10−4 ft/lb
D = 40 lb-s/ft

SOLUTION

The f–v analogous electrical circuit for this mechanical system can be easily drawn as in Figure 5.14. 
Note that the only externally applied force on the system is the static weight Mg of the mass M. 
We write the equation of motion in terms of velocity u as follows:

 0

d 2
2 d (0)

d

t
u

M Du u t x Mg
t K

⎡ ⎤
⎢ ⎥+ + + =
⎢ ⎥⎣ ⎦
∫

 

(5.9)

This equation can be solved for u, and displacement and acceleration can then be derived from it. 
Alternatively we can write the equation of motion in terms of displacement x:

 

2

2

d d 2
2

d d
x x

M D x Mg
t t K

+ + =
 

(5.10)

FIGURE 5.13
Schematic diagram of cushioned 

package system.

M

K

K x u

D

D

FIGURE 5.14
f–v analogy of given cushioned package system.

Mg

K D

D

Mu

K

Mg

K/2 2D

Mu



286 Modeling and Simulation of Systems Using MATLAB and Simulink

The initial conditions at t = 0 (the instant at which the package fi rst touches the ground) are

 
(0) 0, (0) (0) 2x x u gh= = =′

 

Taking Laplace transform of the equation of motion, taking due account to the initial conditions, 
yields

 

⎛ ⎞+ + = +⎜ ⎟⎝ ⎠

= +
+ + + +

2

2 2

2
2 ( ) 2

2
or ( )

2( / ) (2/ ) 2( / ) (2/ )

Mg
Ms Ds X s M gh

K s

gh g
X s

s D M s MK s D M s MK  

(5.11)

Putting the numerical values, we have

 
2 2 2 2

25.4 1 40
( ) 0.016

( 40 ) 40 ( 20) 40
s

X s
s s s s

+⎡ ⎤= + −⎢ ⎥+ + + +⎣ ⎦  
(5.12)

Taking the inverse Laplace transform of the above equation, we get the displacement x(t):

 

1

20 20

20 0

( ) ( )

25.4 1
sin40 0.016 1 cos 40 sin40

40 2

0.016 0.627 sin(40 1.46 ) ft

[ ]

t t

t

x t L X s

e t e t t

e t

−

− −

−

=

⎡ ⎤⎛ ⎞= + − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

= + −  

Both velocity and acceleration functions can be obtained from x(t) by differentiation.
State model may be written from Equation 5.10:

 

1 1
d
d 0 0

Dv v
UM M M

f ft K

− −⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  

MATLAB® Program

clear all;
k = 2.1; %spring constant
d = 0.1;
m = 50.5;
x = [0; 0];
dt = 0.01;
t = 0;
tsim = 100;
n = round( (tsim-t)/dt);
A = [−d/m −1/m
 k 0];
B = [−1/m
 0];
u = 1;
for i = 1:n
 if t < = .01; u = 1; else u = 0; end;
 x1(i,:) = [t x’];



Analogous of Linear Systems 287

 dx = A*x + B*u;
 x = x + dt*dx;
 t = t + dt;
end
hold on
plot (x1(:,1), x1(:,2), ‘k’)

xlabel (‘Time(sec.)’)
ylabel(‘State Variables’)
title(‘Cushioned package Simulation’)

Results

 1. Effect of damping coeffi cient (B) on system response has been studied when changed from 
0.1 to 2.1 for K = 2.1 and M = 50.5 kg and the results are shown in Figure 5.15.

 2. Effect of spring constant (K = 0.1−2.1) has been studied on cushioned package when 
droped from certain height with B = 1.1 and M = 50.5 and the simulation results are shown 
in Figure 5.16.

 3. Lastly, the effect of change in mass (M) from 10.5 to 100.5 kg with B = 1.1 and K = 2.1 has 
also been studied and it is found that the velocity overshoot is more with less weight com-
pared to higher weights, as shown in Figure 5.17.

Example 5.5

Truck–trailer system

Draw the mechanical network for the truck–trailer system shown in Figure 5.18. Draw the analo-
gous electrical system in which force is analogous to current. Also draw force–voltage analogy.

SOLUTION

The systematic mechanical system is shown in Figure 5.19.
Let us draw the equivalent mechanical network as shown in Figure 5.20.

FIGURE 5.15
Cushioned package response for different values of B.

Cushioned package simulation

Time (s)
0–4

–3

–2

–1

1

2

3

4
×10–4

10 20 30 40 50 60 70 80 90 100

St
at

e v
ar

ia
bl

es

0

B = 2.1
B = 1.1
B = 0.1



288 Modeling and Simulation of Systems Using MATLAB and Simulink

Based on the f–i analogy referring to Table 5.2, the analogous electrical system is drawn as in 
Figure 5.21.

Similarly, based on the f–v analogy referring to Table 5.1, the analogous electrical system is 
drawn as in Figure 5.22.

FIGURE 5.17
Cushioned package response for different values of mass (M).

Cushioned package simulation

M = 10.5
M = 50.5
M = 100.5

Time (s)
0

–2

–1.5

–1

–0.5

0

0.5

1

1.5
×10–3

10 20 30 40 50 60 70 80 90 100

St
at

e v
ar

ia
bl

es

FIGURE 5.16
Cushioned package response for different values of spring constant K.

Cushioned package simulation

K = 0.1
K = 1.1
K = 2.1

Time (s)
0

–4

–3

–2

–1

0

1

2

3

4
×10–4

10 20 30 40 50 60 70 80 90 100

St
at

e v
ar

ia
bl

es



Analogous of Linear Systems 289

FIGURE 5.18
Truck–trailer system.

K

Trailer

FIGURE 5.19
Systematic mechanical system.

D1

K1

M2M1f (t)

FIGURE 5.20
Equivalent mechanical network.

D1

D2
D3 K3

K2 K1
M2M1f (t)

FIGURE 5.21
f–i analogy of truck–trailer system.

1/R1

1/R3 1/L31/R2
1(t)

1/L2 1/C1

C2
C1



290 Modeling and Simulation of Systems Using MATLAB and Simulink

Example 5.6: Modeling of Log Chipper

The log chipper cuts logs into smaller chips to make paper pulp. The engine accelerates the mas-
sive chipper head to high speed. Then logs are forced against the spinning blades. The high inertia 
of the head forces the fl uid clutch and provides smooth engagement and disengagement of the 
engine from the drive shaft.

Derive a lumped model that will represent the rotational behavior of the system• 
Draw system graph• 
Derive a set of system equations• 
Simulate the above developed model using MATLAB• 
Draw its • f–i and f–v analogy

SOLUTION

The schematic diagram of log chipping system is shown in Figure 5.23. It consists of an engine, 
which supplies power to log chipping head through a fl uid clutch. The fl uid clutch engages and 
disengages the engine shaft with chipper head. The chipper head is supported from both the ends 
with bearings. The load applied to log chipper head by application of wooden log, and it depends 
upon the size of log and the pressure applied on it.

The lumped mechanical network for log chipping system is shown in Figure 5.24.

Step 1 Variable identifi cation

To model the given system, it is necessary to identify the key variables of the system. The list of 
key variables is mentioned below.

List of key variables

J1 inertia of chipper head
J2 inertia of the rotating part of engine and attached shaft and clutch disk

FIGURE 5.22
f–v analogy of truck–trailer system.

R1

R3
1/C3R2

V(t)
1/C2 1/L1

L2L1

FIGURE 5.23
Schematic diagram for log chipping system.

Chipper
head

Wooden
log

Bearing Fluid
clutch

Engine



Analogous of Linear Systems 291

K shaft stiffness between 1 and 2
T engine torque (specifi ed)
B1 damper for both bearing friction
B2 damper for clutch
TL load torque due to log of chipper head
Te engine torque

The system graph may be drawn, as shown in Figure 5.25.

Step 2 Topological constraints

 1. Across drivers (X)
 a. Independent
 b. Short circuit elements
 c. Dependent
 2. Accumulator (C) type elements
 3. Dissipater (R) type elements
 4. Delay (L) type elements
 5. Through drivers
 a. Dependent
 b. Open circuit elements
 c. Independent

The tree may also be drawn based on the topological restrictions and it is consisting of ele-
ments—J1, J2, and B2. The rest of the elements belong to the complement of the tree (co-tree), 
which are—B1, K, TL, and Te, as shown in Figure 5.26.

FIGURE 5.24
Lumped model of given log chipping machine.

TL

J1
1 2

3

G

K B2 J2

Te

B1

FIGURE 5.25
System graph.

K
1 2

G

3
B2

B1
J1

J2 Te

TL



292 Modeling and Simulation of Systems Using MATLAB and Simulink

 Step 3 Incidence matrix

ND El J1 J2 B2 B1 K TL Te

1 1 0 0 1 1 1 0

A = 2 0 0 1 0 −1 0 0

3 0 1 −1 0 0 0 1
G −1 −1 0 −1 0 −1 −1

Observations: 1. Column wise sum equals to zero.
  2. Size must be # node × # elements.

 Step 4 Reduced incidence matrix

ND El J1 J2 B2 B1 K TL Te

1 1 0  0 1  1 1 0

Ar = 2 0 0  1 0 −1 0 0

3 0 1 −1 0  0 0 1

 Delete the row related to reference node in the incidence matrix.

 Step 5 Gauss–Jorden elimination

ND El J1 J2 B2 B1 K TL Te

R1 1 0 0 1  1 1 0

Ar = R2 + R3 0 1 0 0 −1 0 1

R2 0 0 1 0 −1 0 0

 Step 6 Combined constraint equation

 F-cut-set equation yb = −Ac
*Yc and f-circuit equation xc = −Bb

*Xb

J1 J2 B2 B1 K TL Te

TJ1 0 0 0 −1 −1 −1 0 wJ1

TJ2 0 0 0 0 1 0 −1 wJ2

TB2 0 0 0 0 1 0 0 wB2

wB1 = 1 0 0 0 0 0 0 TB1

wk 1 −1 −1 0 0 0 0 Tk

wTL 1 0 0 0 0 0 0 TTL

wTe 0 1 0 0 0 0 0 TTe

FIGURE 5.26
Formulation tree for given system graph.

K B2

J2B1
J1

TL Te

1 2

G

3



Analogous of Linear Systems 293

 Rearranged combined constraint equation

J1 J2 B2 B1 K TL Te

TJ1 0 0 −1 −1 0 −1 0 wJ1

TJ2 0 0 1 0 0 0 −1 wJ2

wk 1 −1 0 0 −1 0 0 Tk

wB1 = 1 0 0 0 0 0 0 TB1

TB2 0 0 1 0 0 0 0 wB2

wTL 1 0 0 0 0 0 0 TTL

wTe 0 1 0 0 0 0 0 TTe

  

(5.13)

Write middle row of matrix equation

 

1
1

2
2

1 0 0

0 0 1

J
B

J
B

k

T
T

ω⎡ ⎤
ω⎡ ⎤ ⎡ ⎤ ⎢ ⎥= ω⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦  

(5.14)

Step 7  Write terminal equation for memory-less elements

 

1 1 1

2 2 2

0

0 1/
B B

B B

T B

B T

ω⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ω⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

(5.15)

Substitute Equation 5.14 in Equation 5.15.

 

1
1 1

2
2 2

0 1 0 0

0 1/ 0 0 1

J
B

J
B

k

T B

B
T

ω⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥= ω⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ω⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦  

(5.16)

Write top row of matrix Equation 5.13.

 

1 1
1

2 2
2

0 0 1 1 0 1 0

0 0 1 0 0 0 1

1 1 0 0 1 0 0

J J
B TL

J J
B Te

K K

T
T T

T
T

T

− ω − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ω + + −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ω⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ω − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

(5.17)

Substitute Equation 5.16 of algebraic elements into Equation 5.17.

   

− ω − ω −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ω + ω + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ω − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 1 1
1

2 2 2
2

0 0 1 1 0 1 0
0 1 0 0

0 0 1 0 0 0 1
0 1/ 0 0 1

1 1 0 0 1 0 0

J J J
TL

J J J
Te

K K K

T
B T

T
B T

T T
 

(5.18)

After simplifying Equation 5.18, we get

 

− ω −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ω + − ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ω −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 1 1

2 2

2

0 0 1 0

0 0 0 0 1

0 0 1/ 0 0

J J
TL

J J
Te

K K

T B
T

T
T

B T
 

(5.19)



294 Modeling and Simulation of Systems Using MATLAB and Simulink

Step 8 Write terminal equation for memory elements

 

ω⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ω⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ω⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 1 1

2 2 2

0 0
d

0 0
d

0 0 1/

J J

J J

K K

T J

T J
t

K T
 

(5.20)

Substitute terminal Equation 5.20 in Equation 5.19.

 

ω − ω −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ω = ω + − ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 1 1 1

2 2 2

2

0 0 0 0 1 0
d

0 0 0 0 0 0 1
d

0 0 1/ 0 0 1/ 0 0

J J
TL

J J
Te

K K

J B
T

J
Tt

K T B T
 

(5.21)

Step 9 Final state space equation

 

ω − ω −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ω = ω + − ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 1 1 1 1

2 2 2

2

/ 0 0 1/ 0
d

0 0 0 0 1/
d

0 0 / 0 0

J J
TL

J J
Te

K K

B J J
T

J
Tt

T K B T
 

(5.22)

Simulation Program

%Simulation of Log Chipper Machine
clear all
clc
B1 = 0.2;
B2 = 0.1;
J1 = .2;
J2 = 3;
K = 5;
TL = −3;
Te = 4;
a = [−B1/J1 0 0; 0 0 0; 0 0 −K/B2];
b = [−1/J1 0; 0 −1/J2; 0 0];
v = [TL; Te];
x = [0;0;0];
dt = 0.01;
t = 0; tsim = 15; n = (tsim-t)/dt;
for i = 1:n
 dx = a*x + b*v;
 x = x + dt*dx;
 x1(i,:) = [t, x′]
 t = t + dt;
end
plot(x1(:,1),x1(:,2) )
xlabel(‘Time, sec.’)
ylabel(‘state variable’)
title(‘plot of x’)

The simulation result for the speed of log chipper head given load is shown in Figure 5.27.

Simulink® Model
The Simulink model for the same system is shown in Figure 5.28 and the result is also shown 

in Figure 5.29.



Analogous of Linear Systems 295

To draw its electrical analogous systems, the mechanical network is helpful as shown in Figure 5.30.
Based on f–v analogous quantities mentioned in Table 5.1, the f–v analogy may be drawn as 

shown in Figure 5.31.
Based on f–i analogous quantities mentioned in Table 5.2, the f–i analogy may be drawn as 

shown in Figure 5.32.

FIGURE 5.27
Speed of log chipper head.

15

10

5

00 5 10
Time (s)

St
at

e v
ar

ia
bl

e

Plot of x

15

FIGURE 5.28
Simulink model for log chipping system.

Step

4

Constant
State-space Scope

x́ = Ax + Bu
y = Cx + Du

FIGURE 5.29
Simulation results of Simulink model.

15

5

10

0
0 1 2 3 4 5 6 7 8 9 10

Time (s)

St
at

e v
ar

ia
bl

e



296 Modeling and Simulation of Systems Using MATLAB and Simulink

Example 5.7

Consider a speedometer cable of an automobile shown in Figure 5.33, in which rotation of wheel 
turns the cable within an oil sheath. The cable turns a cup, which in turn drags a second cup by 
viscous friction of oil fi lm between cups. A spring restrains rotation of second cup. An indicator 
needle, attached to the second cup, indicates the speed of an automobile.

Data
Cable

Length = 1 m
Diameter = 2 mm
Inside diameter of sheath = 2.5 mm
Density of cable material = 6000 kg/m3

Shear modulus G = 7 × 1010

FIGURE 5.31
f–v analogy of given log chipping 

system.

1

L1

V1(t)
V2(t)R1

R2

L2

+
–

+
–

I/C

2

G

3

FIGURE 5.30
Mechanical network of log chipping system.

J1 TL

B2

B11/
J2 Te

K

1

2

G

3

FIGURE 5.32
f–i analogy for given log chipping system.

C1
I1(t)

I/L

2

G

31

I/R1

I/R2

C2 I2(t)



Analogous of Linear Systems 297

Viscosity of oil = 0.1 N-s/m2

Thickness of oil fi lm between cups = 0.1 mm.
Rotating cup made by aluminum

Thickness = 0.3 mm
Length = 0.7 cm
Inside diameter = 2 cm

Lumped model of speedometer cable is shown in Figure 5.34.

Parameter Calculation

Spring constants• 

K = 0.44 N-m/rad
Ks = 8.8 × 10−3 N-m/rad

Inertia• 

Jc = 6.11 × 10−4 kg-m2; Js = 2.49 × 10−4 kg-m2

J = 2.36 × 10−9 kg m2

Dampers• 

B = 6.28 × 10−7 N-m-s/rad
Bc = 4.4 × 10−5 N-m-s/rad

The lumped model of given system may be redrawn to get a mechanical network, as shown in 
Figure 5.35, which will help in drawing electrical analogous systems. The f–v and f–i analogies for 
a given mechanical system are drawn in Figures 5.36 and 5.37, respectively.

FIGURE 5.33
Speedometer cable of an automobile.

Automobile wheel
Cable

Pointer

Speedometer scale

Coil spring

3 4

K, J, B

2
1

FIGURE 5.34
Lumped model of speedometer cable.

K

B B B

K Bc Js

Jc + J/2 Ks

J/2J/2

ω(t)



298 Modeling and Simulation of Systems Using MATLAB and Simulink

FIGURE 5.35
Mechanical network for speedometer cable.

B B B
Ks

BcKK

J/2 J/2 JS

Jc + J/2

ω(t)

FIGURE 5.36
f–i analogy of speedometer cable.

1/L

1/R
I(t) 1/R

1/R 1/Ls

Cc + C/2 CS
C/2 C/2

1/L 1/Rc

FIGURE 5.37
f–v analogy of speedometer cable.

L L

R
V(t) +

– R
R

2/C

1/(Cc + C/2)

1/CS
Ls

2/C

Rc

5.4 Review Questions

 1. The mechanical system shown in Figure 5.38.

 a. Draw its f–v and f–i analogy of given system.

 b. Write their system equations.

 c. Write MATLAB executable codes to simulate the given mechanical system.

 d. Analyze the results obtained.

 2. Draw f–i analogy of a given spring balance shown in Figures 5.39 and 5.40.

 3. Draw f–v analogy for the systems shown in Figures 5.41 through 5.43.



Analogous of Linear Systems 299

FIGURE 5.38
Mechanical system.

M3 M2 M1

D1

K1

K0

FIGURE 5.39
Spring balance.

D

M x u

K

u(t)

FIGURE 5.40
Mechanical system.

K2 K1

D1

D2

f

FIGURE 5.41
Mechanical system-I.

K1

K2

K3

K2

D1

M1

M2

M3

f = F sin ωt



300 Modeling and Simulation of Systems Using MATLAB and Simulink

FIGURE 5.42
Mechanical system-II.

M3

M2

K2

K1K1

M1

D1 D1

FIGURE 5.43
Lever-based system.

M3

r1 r2
M2

K2

K1

f

D1



301

6
Interpretive Structural Modeling

6.1 Introduction

An individual often encounters complexity while dealing with systems. This complexity 
exists because of a large number of elements involved and the large number of interactions 
among them. These elements and interactions may be of any form, they may be the ele-
ments of a large organization or components of a large technical system. Another form of 
elements interactions may exist only in the mind of the individual.

A common characteristic of complex systems is that each has a structure associated with 
it. This structure may be obvious, as in the case of managerial organization of a coopera-
tion or less obvious as in the case of the value structure of a decision maker. An individual 
or a group can make better decisions concerning systems when the structure of the system 
is well defi ned. Hence, it is desirable that some method be developed that aids in identify-
ing the structure within the system.

Interpretive structural modeling (ISM) is one of such method. ISM refers to the system-
atic applications of graph theory notions such that there results a directed graph represen-
tation of complex patterns of a particular contextual relationship among a set of elements. 
It transforms unclear poorly articulated mental models of systems into visible and well-
defi ned models.

The ISM process transforms unclear, poorly articulated mental models of systems into 
visible, well-defi ned models useful for many purposes. The underlying theory for ISM 
will be presented and discussed by nets, relations, and digraphs. ISM has its basis in math-
ematics, particularly in graph theory, set theory, mathematical logic, and matrix theory.

6.2 Graph Theory

Many elements in a large-scale system interact with each other. It is, therefore, desirable for 
us to have methods for identifying these interactions among elements. Interaction matri-
ces and graphs are very useful ways of doing this. To develop an interaction matrix (often 
called self-interaction matrix or SIM), we must consider all elements and determine if a 
pair interacts or does not interact with respect to some contextual relation. If the infl uence 
between the two elements does not occur by means of a third element, then it is called a 
direct interaction or a fi rst-order interaction. For indirect or higher order interactions, the 
interaction graph is the best way of displaying them.



302 Modeling and Simulation of Systems Using MATLAB and Simulink

Interaction matrix is fi lled with 0 and 1 only; therefore, 
it is called binary interaction matrix. Binary 1 is used to 
indicate direct interaction while 0 is used to indicate no 
direct interaction. SIM can always be written in trian-
gular form. For n elements, there are n (n − 1)/2 entries 
to be made in SIM. If all entries in an interaction matrix 
are 1 then every element is connected to rest of the ele-
ments in the system and it is represented by nondirected 
lines in an interaction graph. For example, SIM of typi-
cal systems shown in Tables 6.1 and 6.2 are represented 
by  nondirected line in an interaction graph, as shown in 
Figures 6.1 and 6.2.

If every line segment in a graph has a direction, then 
the graph is called an oriented or directed graph. It can 
be represented by a full matrix (Tables 6.3 and 6.4) of size 
n × n, where n is the number of elements in the system, 
as shown in Figure 6.3. Mathematically, it can be written as 
eij = 0, if there is no relation (interaction) from element i to 
 element j.

eij = 1, if there is a relation (interaction) from element i 
to element j.

Sometimes, we use numbers like 1, 2, 3, 4, and 5 to repre-
sent the interaction between elements rather than binary 
numbers. This shows the strength of interactions such as

 1. No interaction

 2. Very poor interaction

 3. Poor interaction

 4. Moderate interaction

 5. Strong interaction

Example 6.1

A simple single loop feedback system for an antenna servo-
mechanism might appear as shown in Figure 6.4a. A fl ow graph 
for this system could also be represented, as shown in Figure 
6.4b. In this fl ow graph, arrows show the direction of signals 
and power fl ow. Flow graph of this system is also the digraph in 
ISM, because ISM uses contextual relationship such as change 
in element a will lead to change in element b.

The SIM for the above system could be written as

 Ai = 

1 2 3 4 5 6

1 0 1 0 0 0 0

2 0 0 1 0 0 0

3 0 0 0 1 0 0

4 1 0 0 0 0 1

5 1 0 0 0 0 0

6 0 0 0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

A2

A1

A3

FIGURE 6.1
Nondirected interaction graph.

A2

A1

A3

A4

FIGURE 6.2
Nondirected interaction graph.

TABLE 6.1

SIM

A3 A2 A1

A1 0 1

A2 1

A3

TABLE 6.2

SIM

A4 A3 A2 A1

A1 1 0 1

A2 0 1

A3 1

A4

TABLE 6.3

SIM

A3 A2 A1

A1 0 0 0

A2 0 0 1

A3 0 1 0

TABLE 6.4

SIM

A4 A3 A2 A1

A1 1 0 0 0

A2 0 1 0 1

A3 0 0 0 0

A4 0 1 0 0



Interpretive Structural Modeling 303

SIM often written as and called structured self-interaction matrix (SSIM).

N A A N V 1
N N N V 2
N N V 3
V N 4
N 5
6

where
0 or N—no interaction, that is, element i is not related with element j and vice versa (eij = 0 

and eji = 0)
A—element j is related with element i (i.e., eji = 1) and element i is not related with element j 

(i.e., eij = 0)
V—element i is related with element j but element j is not related with element i (eji = 0 and 

eij = 1)
X—element i is related with element j and element j is also related with element i (eji = 1 and eij = 1)

If all the diagonal entries of SIM are made 1 (i.e., eii = 1) then it becomes reachability matrix. The 
reachability matrix shows that either element i is reachable from element j or not. The number 
of lines in the path from element i to element j is called the length of the path. In Figure 6.4b 
element 4 is reachable from element 2 by the length of path 2. For completeness, we defi ne 
every point reachable from itself by a path length 0. Hence, we add identity matrix in Ai to get 
reachability matrix. The reachability matrix for the above system is equal to (Ai + I).

+
–

15 3 4 62Amplifier

(a)

(b)

Motor Gear train and
antenna

5 1 2 3 4 6

FIGURE 6.4
(a) Block diagram for simple antenna and servomechanism. (b) Flow graph for simple antenna and 

servomechanism.

A2 A2

A1

A3

A4

A1

A3

FIGURE 6.3
Directed interaction graph for SIM shown in Tables 6.3 and 6.4.



304 Modeling and Simulation of Systems Using MATLAB and Simulink

 (Ai + I) = 

1 2 3 4 5 6

1 1 1 0 0 0 0

2 0 1 1 0 0 0

3 0 0 1 1 0 0

4 1 0 0 1 0 1

5 1 0 0 0 1 0

6 0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

If we multiply (Ai + I) with itself and if the value of any element is greater than 1 make it 1, we will get

 

(Ai + I)2 = 

1 2 3 4 5 6

1 1 1 0 0 0 0

2 0 1 1 1 0 0

3 1 0 1 1 0 0

4 1 1 1 1 0 1

5 1 1 0 0 1 0

6 0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

If we continue this multiplication by itself, a stage is reached when successive powers of (A + I) 
produce identical matrices:

 

(Ai + I)3 = 

1 2 3 4 5 6

1 1 1 1 1 0 0

2 1 1 1 1 0 1

3 1 1 1 1 0 1

4 1 1 1 1 0 1

5 1 1 1 0 1 0

6 0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

 

(Ai + I)4 = 

1 2 3 4 5 6

1 1 1 1 1 0 1

2 1 1 1 1 0 1

3 1 1 1 1 0 1

4 1 1 1 1 0 1

5 1 1 1 0 1 0

6 0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

 

(Ai + I)5 = 

1 2 3 4 5 6

1 1 1 1 1 0 1

2 1 1 1 1 0 1

3 1 1 1 1 0 1

4 1 1 1 1 0 1

5 1 1 1 0 1 1

6 0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  



Interpretive Structural Modeling 305

 

(Ai + I)6 =

 

1 2 3 4 5 6

1 1 1 1 1 0 1

2 1 1 1 1 0 1

3 1 1 1 1 0 1

4 1 1 1 1 0 1

5 1 1 1 0 1 1

6 0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

It is clear that (Ai + I)5 = (Ai + I)6 = (Ai + I)7…
This shows that in this system digraph has maximum length of path is 5. Element 6 is reachable 

from element 5 by length of path equal to 5. In general, it could be written as

(Ai + I)r−2 ≠ (Ai + I)r−1 = (Ai + I)r = p

where
r ≤ (n − 1)
n is number of elements

The longest possible path for n elements is (n − 1), and higher power of (Ai + I) would merely indi-
cate reachability through paths of length (n − 1) or less. Matrix p is a transitive closure of Ai.

The transitive relation can be defi ned in this manner: if there is a path from ei to ej and path from 
ej to ek then there is also a path from ei to ek. Mathematically, it is written as

If ei → ej and ej → ek then ei → ek

The original digraph need not be transitive in order to have a transitive reachability relation. 
This is possible because the reachability relation is a transformation of the original relation. The 
reachability matrix, in which all entries are 1, is called the universal matrix and implies that every 
element is reachable from every other element. When a digraph or a subset of a digraph has a 
universal reachability matrix, that digraph or subset of digraph is said to be strongly connected.

6.2.1 Net

A net is a collection of connected elements or points with a given interaction (relation). 
A simple net is shown in Figure 6.5 consisting of only element and two nodes.

First point P1 = f(rk) and second point P2 = s(rk) for r ∈ Set of relation R and P1, P2 ∈ Set of 
points (elements) P. R and P both are fi nite sets. It shows that P1 is related with P2 and P2 is 
not related with P1, that is,

P1rkP2 and P2r
_

kP1

6.2.2 Loop

A link rk is called a loop if the fi rst point and second point of a line are same.
Mathematically this may be written as

 f(rk) = s(rk) 

It is shown in Figure 6.6a.

6.2.3 Cycle

It is defi ned as a closed sequence of lines without any 
parallel lines, as shown in Figure 6.6b.

P1 P2rk

FIGURE 6.5
A simple net.



306 Modeling and Simulation of Systems Using MATLAB and Simulink

6.2.4 Parallel Lines

Two lines are said to be parallel if they have the same fi rst and second points, that is,
First point P1 =  f(r1) = f(r2) and second point P2 = s(r1) = s(r2).
To write an interaction matrix, we may consider all possible interactions between ele-

ments, but in the ISM process, we use only one contextual relation to develop a model. 
Contextual relations may be very general or very specifi c.

6.2.5 Properties of Relations

 1. Refl exive: A relation is said to be refl exive if every point Pi is on a loop.

 PiRPi for all Pi ∈ P 

 2. Irrefl exive: A relation is irrefl exive if no point Pi is on a loop.

 PiR
–

Pi for all Pi ∈ P 

 3. Symmetric: A relation is symmetric if point i is related with point j and point j is 
also related with point i.

 PiRPj and PjRPi for all Pi and Pj ∈ P 

 4. Asymmetric: A relation is asymmetric if point i is related with point j and point j is 
not related with point i.

 PiRPj and PjR
–

Pi for all Pi and Pj ∈ P 

 5. Transitive: A relation is called transitive if point i is related with j and point j is 
related with k then point i is related with k.

 If PiRPj and PjRPk then PiRPk 

 6. Intransitive: A relation is intransitive if point i is related with j and point j is related 
with k then point i is not related with k.

 If PiRPj and PjRPk then PiR
–

Pk 

(a)

P1 P2r2

r1

(b)

P1 P2r2

r1

(c)

FIGURE 6.6
Components of a simple net. (a) Loop. (b) Cycle. (c) Parallel lines.



Interpretive Structural Modeling 307

 7. Complete: A relation is complete if for every point Pi, Pj either point i is related with 
point j or point j is related with point i.

 PiRPj or PjRPi 

6.3 Interpretive Structural Modeling

This is a tool to use in value system design, system synthesis, and system analysis. Each 
stage of this methodology may be viewed as transforming a model from one format to 
another. This transformation has been referred to as a model exchange isomorphism 
(MEI). The MEIs are considered as candidate paradigms for ISM, as shown in Figure 6.7. 
A necessary step in this activity is to establish the preconditioning guidelines for ISM.

The following algorithm presents a convenient format for the preconditioning guide-
lines for ISM:

Theme Purpose or goal or objective

Prospective Viewed from what role position

Mode Usually descriptive or prescriptive

Primitives Element set (P)

Set of relations (R)

SSIM constructed by recording participant responses as a 
group in a sequenced questioning session, refl ecting judgment 
as to the existence of a specifi c relation R between any two ele-
ments i and j of element set S and the associated directions of 
the relation. This transformation of a model from one form (say 
mental model) to another form (say data set or SSIM) may be 
referred to as a MEI. Successive MEIs will transform perceived 
mental model to data set (SSIM)–to reachability matrix–to–
canonical form–to–structural model (digraph)–to–ISM (Sage, 
1977; Satsangi, 2009). Different MEIs are shown in Figure 6.7.

1. MEI-1

At this stage modeler identifi es the system elements and the 
relations among them. For determining the relation between 
the elements, we compare the elements on a pair wise basis 
with respect to the relation being modeled. Hence, two sets 
are identifi ed at this stage:

a. Element set P which is fi nite and nonempty

b. Relational set R which is also fi nite

Hence we obtain the data or information about the system 
in this MEI.

Mental (conceptual) model

Data or information 

Reachability matrix 

Canonical form

Structural model

ISM

MEI-1

MEI-1

MEI-2

MEI-3

MEI-4

FIGURE 6.7
Model exchange isomor-

phism (MEI).



308 Modeling and Simulation of Systems Using MATLAB and Simulink

 2. MEI-2

  The second MEI uses the above set of data or information to create the reachability 
matrix. The entries in the reachability matrix are 0s and 1s depending on whether 
elements are related or not related.

 3. MEI-3

  The third MEI induces partitions on the set of element and rearranges the reach-
ability matrix into canonical form. In this canonical form, properties of the struc-
tural model may be identifi ed.

 4. MEI-4

  At this stage the minimum edge diagram is drawn from the canonical form of 
matrix information. This is the fi rst step in drawing structural model.

 5. MEI-5

  The fi fth MEI is the process of replacing each numbered element with the descrip-
tion of that element which is adequate for interpretation. This is also the fi nal MEI 
for getting ISM.

Example 6.2

For the directed graph shown in Figure 6.8, write down the system subordinate (relational) matrix. 
Also write the reachability matrix from this and determine the maximum path length in the graph 
using reachability matrix.

SOLUTION

The SIM for the given directed graph is

 

Ai = 

1 2 3 4 5 6 7

1 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0

3 1 0 0 0 0 0 0

4 0 1 0 0 0 0 0

5 0 0 0 0 0 1 0

6 0 0 1 0 1 0 0

7 0 0 1 0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦  

4

2

1

3

765
FIGURE 6.8
Directed graph for Example 6.1.



Interpretive Structural Modeling 309

 Identity Matrix

 

I = 

1 2 3 4 5 6 7

1 1 0 0 0 0 0 0

2 0 1 0 0 0 0 0

3 0 0 1 0 0 0 0

4 0 0 0 1 0 0 0

5 0 0 0 0 1 0 0

6 0 0 0 0 0 1 0

7 0 0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦  

 

Reachability Matrix (Ai + I) =

 

1 2 3 4 5 6 7

1 1 0 0 0 0 0 0

2 1 1 0 0 0 0 0

3 1 0 1 0 0 0 0

4 0 1 0 1 0 0 0

5 0 0 0 0 1 1 0

6 0 0 1 0 1 1 0

7 0 0 1 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦  

 

(Ai + I)2 =

 

1 2 3 4 5 6 7

1 1 0 0 0 0 0 0

2 1 1 0 0 0 0 0

3 1 0 1 0 0 0 0

4 1 1 0 1 0 0 0

5 0 0 1 0 1 1 0

6 1 0 1 0 1 1 0

7 1 0 1 0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦  

 

(Ai + I)3 = 

1 2 3 4 5 6 7

1 1 0 0 0 0 0 0

2 1 1 0 0 0 0 0

3 1 0 1 0 0 0 0

4 1 1 0 1 0 0 0

5 1 0 1 0 1 1 0

6 1 0 1 0 1 1 0

7 1 0 1 0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦  



310 Modeling and Simulation of Systems Using MATLAB and Simulink

 

(Ai + I)4 = 

1 2 3 4 5 6 7

1 1 0 0 0 0 0 0

2 1 1 0 0 0 0 0

3 1 0 1 0 0 0 0

4 1 1 0 1 0 0 0

5 1 0 1 0 1 1 0

6 1 0 1 0 1 1 0

7 1 0 1 0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦  

Since (Ai + I)3 and (Ai + I)4 matrices are same, it is clear that (Ai + I)3 = (Ai + I)4…
Therefore, the maximum path length is 3 for the given digraph.

Example 6.3

For the directed graph shown in Figure 6.9, write down the system SSIM.

SOLUTION

 
SSIM for given directed graph

 

Ai = 

1 2 3 4 5

1 0 0 0 0 0

2 1 0 0 1 0

3 0 1 0 1 0

4 0 0 0 0 0

5 1 0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦  

Identity matrix I =  

1 2 3 4 5

1 1 0 0 0 0

2 0 1 0 0 0

3 0 0 1 0 0

4 0 0 0 1 0

5 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

  Reachability matrix Ai + I =  

1 2 3 4 5

1 1 0 0 0 0

2 1 1 0 1 0

3 0 1 1 1 0

4 0 0 0 1 0

5 1 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1

5

4

3

2

FIGURE 6.9
Directed graph for Example 6.2.



Interpretive Structural Modeling 311

 

(Ai + I)2 = 

1 2 3 4 5
1 1 0 0 0 0

2 1 1 0 1 0

3 1 1 1 1 0

4 0 0 0 1 0

5 1 0 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦  

 

(Ai + I)3 =

 

1 2 3 4 5

1 1 0 0 0 0

2 1 1 0 1 0

3 1 1 1 1 0

4 0 0 0 1 0

5 1 0 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦  

Since (Ai + I)2 and (Ai + I)3 matrices are same, it is clear that (Ai + I)2 = (Ai + I)3 = (Ai + I)4…
Therefore, the maximum path length is 2 for the given digraph.

Example 6.4

What will be the associated intent structure of a system whose SIM is given below:

 

Ai =

 

1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0

3 1 0 0 0 0 0 0 0

4 1 1 0 0 1 1 0 1

5 1 1 0 0 0 0 0 0

6 1 1 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0

8 1 0 0 0 0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

SOLUTION

Step 1 Reachability matrix can be obtained by adding identity matrix in SIM as written below:

 

Ai + I = 

1 2 3 4 5 6 7 8

1 1 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0

3 1 0 1 0 0 0 0 0

4 1 1 0 1 1 1 0 1

5 1 1 0 0 1 0 0 0

6 1 1 0 0 0 1 0 0

7 0 0 0 0 0 0 1 0

8 1 0 0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  



312 Modeling and Simulation of Systems Using MATLAB and Simulink

Step  2 Lower triangular matrix is obtained by rearranging the row and column of reachability 
matrix based on number of entries in a particular row. Row related with less number of nonzeros 
entries is kept fi rst and then more number of nonzeros entries and at the bottom (i.e., the row 
contains maximum number of nonzero entries will be the last row).

 

L = 

1 7 2 3 8 5 6 4

1 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0

3 1 0 0 0 0 0 0 0

8 1 0 0 0 0 0 0 0

5 1 0 1 0 0 0 0 0

6 1 0 1 0 0 0 0 0

4 1 0 1 0 1 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

Step 3 Minimum edge adjacency matrix is obtained from lower triangular matrix after deleting 
the entries as mentioned in Table 6.5. The following steps have been followed:

 1. The diagonal entries of an adjacency matrix for a digraph are defi ned to be 0. eii = 0.
 2. Search row-wise for eij = 1; as each eij entry of 1 is identifi ed, the corresponding ith column 

is searched for all entries of eki = 1, where k > i, the corresponding ekj are constraint to be 0 
(i.e., ekj = 0).

M = 

1 7 2 3 8 5 6 4

1 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0

3 1 0 0 0 0 0 0 0

8 1 0 0 0 0 0 0 0

5 0 0 1 0 0 0 0 0

6 0 0 1 0 0 0 0 0

4 0 0 0 0 1 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

TABLE 6.5

Delete the Entries in Lower Triangular 
Matrix to get Minimum Edge Adjacency 
Matrix

Elements (i) Elements (j) k
Entries to Be 

Made Deleted

2 1 5 (5, 1)

6 (6, 1)

4 (4, 1)

5 2 4 (4, 2)



Interpretive Structural Modeling 313

Step 4 Minimum edge digraph

Using minimum edge adjacency matrix, minimum edge digraph may 
be drawn as shown in Figure 6.10. Containing following levels:

Level Element
1 1, 7
2 2, 3
3 5, 6, 8
4 4

Example 6.5

Consider two system graphs shown in Figure 6.11, where elements 2 
and 6 are common to both graphs. Determine the system structure 
after combining two system models given and obtain subordination 
(self-interaction) matrix for the fi nal desired graph.

1

2

5

4

7

8 6

3

FIGURE 6.10
Minimum edge digraph for 

ISM.

10

8

1
2

9
6

12

11

1

3 6

52

4

FIGURE 6.11
System directed graphs for Example 6.4.

SOLUTION

 Combined system graph shown in Figure 6.12 is obtained by combining given system graph 
(shown in 6.11) as element 2 and 6 are common to both graphs.

Reachability matrix

Ai = 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣ ⎦

1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 0 0 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0 0 0 0

3 1 0 0 0 0 0 0 0 0 0 0 0

4 0 1 0 0 0 0 0 0 0 0 0 0

5 0 1 0 0 0 0 0 0 0 0 0 0

6 0 0 1 0 0 0 0 0 1 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0

8 1 0 0 0 0 0 0 0 0 0 0 0

9 1 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 1 0 0 0 0

11 0 1 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥ FIGURE 6.12

Combined system graph.

10

4
1

3

9

12

6

52

118



314 Modeling and Simulation of Systems Using MATLAB and Simulink

The SIM is written from reachability matrix Ai as shown in Table 6.6.

Example 6.6

Write SIMs for the following undirected graphs shown in Figures 6.13 
through 6.15.

SOLUTION

Self-interaction metrics are written as shown in Tables 6.8, 6.10, and 
6.12. The entries made in these matrices are 0 or 1 (0 for indirect inter-
action and 1 for direct interaction). The corresponding SSIMs are given 
in Tables 6.7, 6.9, and 6.11.

Example 6.7

A directed SIM is given in Table 6.13.

 1. What is the nondirected (nonoriented) SIM.
 2.  What is the nondirected graph corresponding to this interaction 

matrix.

SOLUTION

 1. Nonoriented graph for directed SIM given in Table 6.13 is shown 
in Figure 6.16.

 2. Nondirected SIM and corresponding SSIM is given in Table 6.14 
and 6.15 respectively.

Example 6.8

For the element set from the animal world the SSIM constructed using 
a contextual relation is given in Table 6.12.

1

2

3

FIGURE 6.14
Undirected graph.

1

2 3

FIGURE 6.13
Undirected graph.

1

4 2

3

5

FIGURE 6.15
Undirected graph.

TABLE 6.6

SIM

0 0 0 A A 0 0 0 0 A A 1

0 A 0 0 0 0 0 A A 0 2

0 0 0 0 0 0 A 0 0 3

0 0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 5

0 0 0 V 0 0 6

0 0 0 0 0 7

0 0 A 0 8

A 0 0 9

0 0 10

0 11

12



Interpretive Structural Modeling 315

TABLE 6.7

SSIM

1 1 1

0 2

3

TABLE 6.8

SIM

1 2 3

1 0 1 1

2 1 0 0

3 1 1 1

TABLE 6.9

SSIM

0 1 1

1 2

3

TABLE 6.10

SIM

1 2 3

1 0 1 0

2 1 0 1

3 0 1 0

TABLE 6.11

SSIM

1 1 0 1 1

0 1 1 2

0 0 3

0 4

5

TABLE 6.12

SIM

1 2 3 4 5

1 0 1 0 1 1

2 1 0 1 1 0

3 0 1 0 0 0

4 1 1 0 0 0

5 1 0 0 0 0

TABLE 6.13

SIM

A1 A2 A3 A4 A5 A6

A1 0 1 0 0 0 0

A2 0 0 1 0 0 0

A3 0 1 0 0 0 0

A4 0 0 1 0 1 0

A5 0 0 1 1 0 0

A6 0 0 0 0 1 0

1 2 3 4 5 6
FIGURE 6.16
Nonoriented ISM.

TABLE 6.14

Nondirected SIM

1 2 3 4 5 6

1 0 1 0 0 0 0

2 1 0 1 0 0 0

3 0 1 0 1 1 0

4 0 0 1 0 1 0

5 0 0 1 1 0 1

6 0 0 0 0 1 0

TABLE 6.15

SSIM

0 0 0 0 1 1

0 0 0 1 2

0 1 1 3

0 1 4

1 5

6



316 Modeling and Simulation of Systems Using MATLAB and Simulink

SOLUTION

Step 1 Write reachability matrix for SSIM mentioned in Table 6.16 is

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 0 0 1 0 0 1 0 1 0 0 0 0 0

2 0 1 0 0 1 0 1 0 1 0 0 0 0 0

3 0 0 1 0 0 0 0 0 1 0 0 0 0 1

4 0 0 0 1 0 0 1 0 1 0 0 0 0 0

5 0 0 0 0 1 0 1 0 1 0 0 0 0 0

6 0 0 0 1 0 1 1 0 1 0 0 0 0 0

7 0 0 0 0 0 0 1 0 1 0 0 0 0 0

8 0 0 0 0 0 0 0 1 1 0 0 0 0 1

9 0 0 0 0 0 0 0 0 1 0 0 0 0 0

10 0 0 1 0 0 0 0 0 1 1 0 0 0 1

11 0 0 0 0 0 0 0 1 1 0 1 0 0 1

12 0 0 1 0 0

13

14

iA =

0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 0 1 1 0 0 0 1 1

0 0 0 0 0 0 0 0 1 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Step 2 Prepare lower triangular matrix from reachability matrix based on number of non-zeros 
entries in different rows. The rows of reachability matrix is re-arranged based on number of non-
zero entries as given below:

Row number of reachability matrix Number of nonzero entries
9 1
7, 14 2
3, 4, 5, 8 3
1, 2, 6, 10, 11, 12, 13 4

TABLE 6.16

SSIM

0 0 0 0 0 V 0 V 0 0 V 0 0 1

0 0 0 0 0 V 0 V 0 V 0 0 2

V 0 A 0 A V 0 0 0 0 0 3

0 0 0 0 0 V 0 V A 0 4

0 0 0 0 0 V 0 V 0 5

0 0 0 0 0 V 0 V 6

0 0 0 0 0 V 0 7

V A 0 A 0 V 8

A A A A A 9

V 0 0 0 10

V 0 0 11

V 0 12

V 13

14

Note:  (1) Penguin, (2) Albatross, (3) Ungulate, (4) Nonfl ying Birds, (5) Flying Birds, (6) Ostrich, (7) Bird, 

(8) Carnivore, (9) Animal, (10) Zebra, (11) Cheetah, (12) Giraffe, (13) Tiger, (14) Mammal.



Interpretive Structural Modeling 317

=

9 7 14 3 4 5 8 1 2 6 10 11 12 13

9 1 0 0 0 0 0 0 0 0 0 0 0 0 0

7 1 1 0 0 0 0 0 0 0 0 0 0 0 0

14 1 0 1 0 0 0 0 0 0 0 0 0 0 0

3 1 0 1 1 0 0 0 0 0 0 0 0 0 0

4 1 1 0 0 1 0 0 0 0 0 0 0 0 0

5 1 1 0 0 0 1 0 0 0 0 0 0 0 0

8 1 0 1 0 0 0 1 0 0 0 0 0 0 0

1 1 1 0 0 1 0 0 1 0 0 0 0 0 0

2 1 1 0 0 0 1 0 0 1 0 0 0 0 0

6 1 1 0 0 1 0 0 0 0 1 0 0 0 0

10 1 0 1 1 0 0 0 0 0 0 1 0 0 0

11 1 0 1 0 0 0

12

13

L

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1 0 0 0 0 1 0 0

1 0 1 1 0 0 0 0 0 0 0 0 1 0

1 0 1 0 0 0 1 0 0 0 0 0 0 1

Step 3 Obtain minimum edge adjacency matrix from lower triangular matrix after deleting the 
entries shown in Table 6.12.

9 7 14 3 4 5 8 1 2 6 10 11 12 13

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 1 0 0 0 0 0 0 0 0 0 0 0 0 0

14 1 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 1 0 0 0 0 0 0 0 0 0 0 0

4 0 1 0 0 0 0 0 0 0 0 0 0 0 0

5 0 1 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 1 0 0 0 0 0 0 0 0

6 0 0 0 0 1 0 0 0 0 0 0 0 0 0

10 0 0 0 1 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0

12

13

M =

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Step 4 Draw minimum edge diagraph from edge adjacency matrix as shown in Figure 6.17.
Step 5 Draw interpretive structural model from minimum edge diagram as shown in Figure 6.18.

Example 6.9

Given the SSIM in Table 6.18 obtain an ISM using the lower triangularization method?



318 Modeling and Simulation of Systems Using MATLAB and Simulink

Animal

Mammal

Carnivore Ungulate

ZebraGiraffeTigerCheetahAlbatrossOstrichsPenguin

Nonflying bird Flying birds

Bird

FIGURE 6.18
Interpretive structural model.

TABLE 6.17

Entries to Be Deleted from Minimum 
Edge Adjacency Matrix

Elements (i)
Elements 

(j) k
Entries to Be 

Made Deleted

  7 9 4 (4, 9)

5 (5, 9)

1 (1, 9)

2 (2, 9)

6 (6, 9)

14 9 3 (3, 9)

8 (8, 9)

10 (10, 9)

11 (11, 9)

12 (12, 9)

13 (13, 9)

  3 14 10 (10, 14)

12 (12, 14)

  4 7 1 (1, 7)

6 (6, 7)

  5 7 2 (2, 7)

  8 14 11 (11, 14)

13 (13, 14)

9

7

4 5

1 6 2 11 13 12 10

3

14

8

FIGURE 6.17
Minimum edge adjacency graph.

The minimum edge diagraph is drawn from minimum edge adjacency matrix obtained 
after removing the entries as shown in Table 6.17.



Interpretive Structural Modeling 319

SOLUTION

Reachability matrix (Table 6.19)
Lower triangular matrix (Table 6.20)
Minimum edge adjacency matrix (Tables 6.21 and 6.22)
Minimum edge digraph (Figure 6.19)

Example 6.10

Develop ISM for paternalistic family for the relation “obey.” The elements of the system could 
be father, mother, son, family dog, fi rst daughter, second daughter, third daughter, and family 
parakeet.

TABLE 6.18

SSIM

A 0 A A A A 1

A 0 0 0 A 2

V 0 V V 3

0 0 0 4

A 0 5

0 6

7

TABLE 6.19

Reachability Matrix

1 2 3 4 5 6 7

1 1 0 0 0 0 0 0

2 1 1 0 0 0 0 0

3 1 1 1 1 1 0 1

4 1 0 0 1 0 0 0

5 1 0 0 0 1 0 0

6 0 0 0 0 0 1 0

7 1 1 0 0 1 0 1

TABLE 6.20

Lower Triangular Matrix

1 6 2 4 5 7 3

1 1 0 0 0 0 0 0

6 0 1 0 0 0 0 0

2 1 0 1 0 0 0 0

4 1 0 0 1 0 0 0

5 1 0 0 0 1 0 0

7 1 0 1 0 1 1 0

3 1 0 1 1 1 1 1

TABLE 6.21

Minimum Edge Adjacency Matrix

1 6 2 4 5 7 3

1 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0

4 1 0 0 0 0 0 0

5 1 0 0 0 0 0 0

7 0 0 1 0 1 0 0

3 0 0 0 1 0 1 0

TABLE 6.22

Entries to Be Deleted from Minimum 
Edge Adjacency Matrix

Elements 

(i)
Elements 

(j) k
Entries to Be 

Made Deleted

2 1 7 (7, 1)

3 (3, 1)

7 2 3 (3, 2)

7 5 3 (3, 5)

1 6

2

7 3

45

FIGURE 6.19
Minimum edge adjacency graph. 



320 Modeling and Simulation of Systems Using MATLAB and Simulink

SOLUTION

Theme: To perform a simple interpretive structural modeling exercise as a learning experience.
Prospective: Student of modeling methodologies
Mode: Descriptive
Primitives:
R: will obey
S: Member of hypothetical paternalistic family
Elements in S:

 1. Father
 2. Mother
 3. Son
 4. Family dog
 5. First daughter
 6. Second daughter
 7. Family parakeet
 8. Third daughter

For developing ISM and fi nding contextual relationship between elements, a survey is conducted 
for a particular family. The participant responses refl ect judgment as to the existence of a relation 
between any two elements and the associated direction of the relation. It could be written in the 
following manner:

 1.  If the relation holds for element i to element j and not in both directions, the modeler writes 
by V as symbolic of the direction from upper element to lower element.

 2.  If the relation holds for element j to element i and not in both directions, the modeler writes 
by A as symbolic of the direction from lower element to upper element.

 3.  If the relation is perceived by the modeler as valid in both directions, the modeler repre-
sents it by X.

 4.  If the relation between the elements does not appear as a valid relationship in both direc-
tions, we could write 0 to it.

Set of relations R consists of (V, A, X, 0).
The survey results could be written in the SSIM form showing the relation between the elements 

(Table 6.23).
The next step is to transform the SSIM form to the reachability matrix form. The reachability 

matrix for given system in 1s and 0s depending on whether elements are related or not is given 
in Table 6.24.

After obtaining the reachability matrix, it is desirable to determine the associated intent struc-
ture. The next step is to determine the lower triangular matrix by a sorting procedure, which 

TABLE 6.23

SSIM

A 0 A A A A A 1

A 0 A A A 0 2

0 0 0 0 A 3

V 0 V V 4

0 0 0 5

0 0 6

0 7

8



Interpretive Structural Modeling 321

TABLE 6.25

Lower Triangular Matrix

1 7 2 3 5 6 8 4

1 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 7

1 0 1 0 0 0 0 0 2

1 0 0 1 0 0 0 0 3

1 0 1 0 1 0 0 0 5

1 0 1 0 0 1 0 0 6

1 0 1 0 0 0 1 0 8

1 0 1 1 1 1 1 1 4

identifi es the highest level elements and inserts them as the fi rst elements in a new reachability 
matrix, then iteratively identifi es the next highest level set and transforms it until the elements are 
rearranged into lower triangular format.

To accomplish the lower triangularization, each row is searched in sequence, from row 1 to row 
8, to identify any rows containing only one entry of 1, such as row 1 and row 7. Then search again 
for identifying any rows containing two entries of 1, such as rows 2 and 3, and continue this process. 
The last step in the process is to condense all cycles to a single representative element. The cycles are 
identifi ed by entries of 1 to the right of the main diagonal. The rows are searched in sequence from 
row 1 to N for entries 1 to the right of the main diagonal. This identifi es elements in cycle set of the row 
being searched. The corresponding rows and columns associated with all but the initial element of the 
cycle set are deleted from the matrix. This process is continued until each cycle has been identifi ed 
and condensed to a single representative element. All entries to the right of the main diagonal in the 
triangular reachability matrix are then 0.

The lower triangular matrix obtained is shown in Table 6.25.
The next step is to transform the lower triangular reachability matrix into a minimum–edge adja-

cency matrix, which will represent the fi rst approximation of the structure under development. 
The following steps have been followed:

The diagonal entries of an adjacency matrix for a digraph are defi ned to be 0 to get Table 6.26. 
The minimum edge adjacency matrix is shown in Table 6.28 is obtained by deleting the entries 

shown in Table 6.27.
The minimum edge digraph could be drawn as shown in Figure 6.20.

Figure 6.21 shows the interpretive structural from the information contained in a minimum edge 
digraph or matrix.

TABLE 6.24

SSIM

1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 1

1 1 0 0 0 0 0 0 2

1 0 1 0 0 0 0 0 3

1 1 1 1 1 1 0 1 4

1 1 0 0 1 0 0 0 5

1 1 0 0 0 1 0 0 6

0 0 0 0 0 0 1 0 7

1 1 0 0 0 0 0 1 8



322 Modeling and Simulation of Systems Using MATLAB and Simulink

71

3 2

5 6 8

4

Level-1

Level-2

Level-3

Level-4
FIGURE 6.20
Minimum edge digraph.

TABLE 6.26

Adjacency Matrix after Making 
Diagonal Entries to Zero

1 7 2 3 5 6 8 4

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 7

1 0 0 0 0 0 0 0 2

1 0 0 0 0 0 0 0 3

1 0 1 0 0 0 0 0 5

1 0 1 0 0 0 0 0 6

1 0 1 0 0 0 0 0 8

1 0 1 1 1 1 1 0 4

TABLE 6.27

Entries to Be Deleted from Minimum Edge 
Adjacency Matrix

Elements

Row 

No. (i) j k
Entries to Be 

Made Deleted

2 3 1 5 (5, 1)

6 (6, 1)

7 (7, 1)

8 (8, 1)

5 5 3 8 (8, 3)

TABLE 6.28

Minimum Edge Adjacency Matrix

1 7 2 3 5 6 8 4

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 7

1 0 0 0 0 0 0 0 2

1 0 0 0 0 0 0 0 3

0 0 1 0 0 0 0 0 5

0 0 1 0 0 0 0 0 6

0 0 1 0 0 0 0 0 8

0 0 0 1 1 1 1 0 4



Interpretive Structural Modeling 323

6.4 Review Questions

 1. Explain the term “interpretive structural 
modeling.”

 2. Defi ne the following terms used in interpretive 
structural modeling:

  (a) net, (b) cycle, (c) parallel, (d) loop, and (e) 
digraph.

 3. For the directed graph shown in Figure 6.22, write 
down the system subordination matrix. Also write 
the reachability matrix from this and determine the maximum path length in the 
graph using reachability matrix.

 4. Outline stepwise procedure for obtaining an interpretive structure model (ISM).

 5. Explain briefl y the procedure for removing transitivity and identifying and con-
densing cycles in a reachability matrix.

 6. For the directed graph shown in Figure 6.22, write down the system SSIM.

 7. What will be the associated intent structure of a system whose SIM is given in 
Table 6.29.

 8. Develop ISM for SSIM given in Table 6.30.

 9. Write self-interaction matrices for the following undirected graphs shown in 
Figure 6.23.

 10. Explain binary and nonbinary interaction matrices in interpretive structural 
modeling.

 11. a. What is the nondirected (nonoriented) SIM?

 b. What is the nondirected graph corresponding to this interaction matrix.

Father

MotherSon

Second
daughter

Third
daughter

Family
Parakeet

First
daughter

Dog

FIGURE 6.21
Interpretive structural model.

P1 P2

P3

P4

FIGURE 6.22
Digraph for Q.6.



324 Modeling and Simulation of Systems Using MATLAB and Simulink

 12. Given the SSIM in Tables 6.29 and 6.30 obtain an ISM using the lower triangular-
ization method.

 13. Short answer questions
 a. What do you mean by

   i. Refl exive relation

  ii. Symmetric relation

 iii. Transitive

 iv. Complete relation

 b. Defi ne reachability matrix in ISM.

 c. What is strongly connectedness in a digraph.

  e. Mention different MEI in ISM?

  f.  Give the matrix representation of the given digraph (Figure 6.22).

  g.  What is the maximum path length of the above developed matrix.

 h. Find reachability matrix for the above system.

TABLE 6.29

SSIM

A 0 A A A A 1

A 0 0 0 A 2

V 0 V V 3

0 0 0 4

A 0 5

0 6

7

TABLE 6.30

SSIM

N N N N N N N 1

A V A A N V 2

V N N N A 3

N V N N 4

N N A 5

N N 6

V 7

8

1 2 3 4

FIGURE 6.23
System diagraph.



Interpretive Structural Modeling 325

  i.  What type of response do you expect for the following systems:

  i. dy/dt + y(t) = U(t)

 ii. s2y(t) + sy(t) + y(t) = u(t)

 j. A system SSIM is presumed to be

A A A A 1

A A A 2

A A 3

A 4

5

 i.  If element 2 is also subordinate to element 4, what are the changes neces-
sary in SSIM.

 ii. Also mention the changes to make SSIM transitive.

 iii. What is the minimum edge diagram for a given SSIM.

 k. Write reachability matrix for the given system in Q. 12.

6.5 Bibliographical Notes

Recently, the interactive management techniques (Warfi led, 2006), particularly the neu-
tral process of Nominal Group Technique (NGT) and interpretive structural model (ISM) 
have been employed by many researchers (Satsangi, 2008, 2009; Dayal and Satsangi, 2008; 

TABLE 6.31

SSIM

0 0 0 0 0 V 0 V 0 0 V 0 0 1

0 0 0 0 0 V 0 V 0 V 0 0 2

V 0 A 0 A V 0 0 0 0 0 3

0 0 0 0 0 V 0 V A 0 4

0 0 0 0 0 V 0 V 0 5

0 0 0 0 0 V 0 V 6

0 0 0 0 0 V 0 7

V A 0 A 0 V 8

A A A A A 9

V 0 0 0 10

V 0 0 11

V 0 12

V 13

14

Note:  (1) Penguin, (2) Albatross, (3) Ungulate, (4) Nonfl ying Birds, 

(5) Flying Birds, (6) Ostrich, (7) Bird, (8) Carnivore, (9) Animal, 

(10) Zebra, (11) Cheetah, (12) Giraffe, (13) Tiger, (14) Mammal.



326 Modeling and Simulation of Systems Using MATLAB and Simulink

Dayal and Srivastava, 2008) to transform unclear, poorly articulated mental model of a 
system from the fi ctional literary/movie fi eld, into visible well-defi ned hierarchical model, 
which assumes particular importance in managing highly complex situations. ISM and 
NGT as parts of interactive management have been used intensively in the fi eld of com-
merce, management, engineering, and law but in the fi eld of literature there are only a few 
applications.



327

7
System Dynamics Techniques

7.1 Introduction

The concept of how to organize scientifi c research is undergoing a change. Initially research 
was a one-man activity. But, if resources are to match adequately team research is essen-
tial. Engineering has developed the recognition of the importance of System Engineering in 
order to achieve the optimum goal.

System engineering is a formal awareness of the interaction between the parts of the sys-
tem. The interconnection, the compatibility, the effect of one upon the other, the objectives 
of the whole, the relationship of the system to the users, and the economic feasibility must 
receive even more attention than the parts, if the fi nal result is to be successful.

In management as in engineering, we can expect that the interconnection and interac-
tion between the components of the system will often be more important than the separate 
components themselves.

7.2 System Dynamics of Managerial and Socioeconomic System

The nature of managerial and socioeconomic systems and their associated problems are 
examined in terms of their counterintuitive behavior, nonlinearity, and system dynamics. 
The need for obtaining the intermediate feedback about the effi cacy policies before being 
implemented in the real life is highlighted, which can be fulfi lled effectively by using sys-
tem dynamics (SD) as a simulation methodology.

The managerial and socioeconomic systems and their associate problems are complex 
in nature compared to engineering and physical systems. According to the hierarchy of 
system given by Boulding (1956) the social system lies next to transcendental system in 
complexity, that is, they have complexity of highest order among all worldly systems, and 
the level of knowledge about their functioning is comparatively limited. This complexity 
is a result of many factors including a large number of components and interactions, non-
linearty in interaction, dynamics, growth, causality, endogenization of factors, and their 
counterintuitive nature.

7.2.1 Counterintuitive Nature of System Dynamics

The problem is not shortage of data but rather our inability to perceive the consequences of 
the information we already possess. The SD approach starts with the concepts and infor-
mation on which people are already acting. These are usually suffi cient. The available 



328 Modeling and Simulation of Systems Using MATLAB and Simulink

perception is then assembled in a computer model that can show the consequence of 
the well-known and properly perceived parts of the system. Generally the consequences 
are unexpected.

7.2.2 Nonlinearity

In most of the cases, there exists a high degree of nonlinearity, which is diffi cult to handle 
by either traditional or quantitative approaches in management science.

7.2.3 Dynamics

The behavior of managerial and social systems exhibits high order dynamics.

7.2.4 Causality

The dynamic behavior of these systems is to a great extent governed by their structure, 
which is composed of various cause–effect relationships. A methodology that can help in 
identifying the right casual structure and behavior will thus help a great deal in policy 
evaluation and design.

7.2.5 Endogenous Behavior

The managerial and social systems are governed predominantly by endogenous relation-
ships rather than the external infl uences.

7.3 Traditional Management

The practice of management has been treated traditionally as an art, which is primarily 
being governed by the mental data base, whereas the major weakness is the absence of 
unifying, underlying structure of fundamental principle.

7.3.1 Strength of the Human Mind

 1. It can gather a lot of information on multiple fronts, both tangible and intangible, and 
parallel. No amount of quantitative data can be substituted for this information.

 2. While working with a system, it can easily be fi rst-order relationship, that is, “what 
is affecting what” in a paired manner.

7.3.2 Limitation of the Human Mind

 1. The human mind has cognitive limitations. Cognitively, in a normal sense, it can 
handle up to three independent dimensions (or seven possible combinations of 
these) at a time. If the number of dimensions goes beyond three, it becomes cogni-
tively overloaded and the conceptualization becomes weak and incomplete.

 2. Though human mind is strong in establishing fi rst-order relationships, it is weak 
in generating higher order consequences.



System Dynamics Techniques 329

7.4 Sources of Information

The sources of information used in different approaches to 
manage the socioeconomic and socio-technical problems 
are multiple and can be broadly categorized into three 
types: mental, written/spoken, and numerical, as shown 
in Figure 7.1.

7.4.1 Mental Database

The mental database present within every human being is 
information rich and is the primary source of information 
used in the conduct of human affairs. It is generated and 
enriched over time with their experience in dealing with 
different problem situations, persons, and systems.

The mental database contains all information on conceptual and behavioral informa-
tion and technical fronts. The conceptual and behavioral information available with 
mental database cannot be substituted with any other form of information available 
more formally. It is effective to put this information into words and numbers.

It can be easily and directly put into practice. The processing time is negligible.

Limitation

 1. The level of information varies from individual to individual.

 2. The perspective of individual governs the content of information.

 3. The information available may be highly biased by the background and knowledge 
of the individual.

 4. New information is collected and assimilated in the light of existing information.

 5. Amount of information available is very high; clarity in its use and selec-
tion for a purpose is dependent upon the level of development and clarity of 
individual.

 6. It is diffi cult to be freely exchanged.

 7. Always there is a perceived gap, as shown in Figure 7.2.

Information content

Mental database

Written/spoken
database

Numerical
database

FIGURE 7.1
Source of information.

FIGURE 7.2
Categories of information in mental database and gaps 

between them.

Observed data

Expectation
about behavior

Actual behavior

Gap in mental generation 
of consequence

Perceived gap

Mental models



330 Modeling and Simulation of Systems Using MATLAB and Simulink

7.4.2 Written/Spoken Database

The written database in terms of different reports, memos, letters, notes, etc., is being very 
commonly used. The written database is both system-specifi c and general.

The general information is available with books, periodicals, magazines, news papers, 
fi lms, etc. Most of the existing literature has emphasized on the product approach rather 
than the process approach.

Variation of this is the spoken data base which is in the form of stored audio information, 
say audio cassettes, CDs, and DVDs of discussions, lecturers, seminars, presentations, etc.

Strength

 1. These are more formal and clear than the mental database.

 2. These are more communicable.

 3. It prevents the loss of knowledge with time.

 4. These can be authenticated, and thus govern the managerial action on a formal 
basis to avoid ambiguity.

Limitations

 1. These have a lot of redundancy being mostly expressed in words.

 2. All the information about the system is diffi cult to be expressed in written/spoken 
form.

 3. As information content increases, storage and retrieval becomes a big problem.

 4. Diffi cult to use for instantaneous decision.

 5. Lack of precision in expressing system relationships.

7.4.3 Numerical Database

It is comparatively narrower and is available in the form of brochures, reports, etc.

Strength

 1. It is more precise.

 2. It can be mathematically manipulated and used for sophisticated analysis.

 3. It can easily support systems modeling and simulation exercises.

 4. It gives a feeling of tangibility and clarity about systems functioning.

 5. Its redundancy level is low.

 6. It can be easily computerized and thus makes use of computer technology pos-
sible for managerial support.

 7. It can be easily stored, retrieved, and communicated.

Limitation

 1. The information content is comparatively low.

 2. Accuracy of the data becomes very important or else it can mislead the decisions 
very easily.

 3. It does not reveal the cause-and-effect directions among variables.



System Dynamics Techniques 331

7.5 Strength of System Dynamics

 1. System dynamics (SD) methodology is able to cater a modeling framework 
that is casual, captures nonlinearity, and dynamics and generates endogenous 
behavior.

 2. It uses the strength of human mind and mental models and overcomes their weak-
nesses by making a division of labor between the manager and the technology.

 3. It uses multiple sources of information, that is, mental, written, and numerical in 
different phases of modeling.

There are mainly six problem-solving steps through which the SD methodology operates:

 1. Problem identifi cation and defi nition

 2. System conceptualization

 3. Model formulation

 4. Simulation and validation of model

 5. Policy analysis and improvement

 6. Policy implementation

Industrial dynamics is the investigation of the information-feedback characters of the 
industrial system and the use of the models for the design of improved organizational 
form and guiding policy. It provides a single framework for integrating the functional 
areas of management marketing, production, accounting, and research and development.

An industrial dynamics approach to enterprise design progresses through several steps:

Identify a problem.• 

Isolate the factors that appear to interact.• 

Trace the cause-and-effect of information-feedback loops that link decisions to • 
action to resulting information changes and to new decisions.

Formulate acceptable formal decision policies that describe how decisions result • 
from the available information streams.

Construct a mathematical model of the decision policies, information sources, and • 
interaction of the system components.

Generate the behavior of the system as described by the model. Digital computer • 
is used to execute lengthy calculations.

Compare results against all pertinent available knowledge about the actual • 
system.

Revise the model if required.• 

Information feedback control theory

System of information feedback controls is fundamental to all life and human endeavor, 
from the slow pace of biological evolution to the launching of the latest space satellite.

For example, consider a thermostat which receives information and decides to start 
the furnace; this raises the temperature, and when the temperature reaches to a desired 
value, the furnace is stopped. The regenerative process is continuous, and new results 



332 Modeling and Simulation of Systems Using MATLAB and Simulink

lead to new decision, which keep the system in continuous motion. Information feedback 
system, whether they are mechanical, biological, or social owe their behavior to three 
characteristics:

Structure• 
 The structure of the system tells how the parts are related to one other.

Delays• 
  Delay always exists in the availability of information, in making decisions based on 

the information, and in taking action on the decisions.

Amplifi cations• 
   Amplifi cation usually exists throughout such system. Amplifi cation is manifested 

when an action is more forceful than might at fi rst seem to be implied by the information 
inputs to the governing decisions.

Decision-making processes

As in military decision, it is seen that there is an orderly basis, (more or less) in present 
managerial decision making. Decisions are not entirely “free will” but are strongly con-
ditioned by the environment. In engineering exercises, the environmental effects play the 
important role.

7.6 Experimental Approach to System Analysis

The foundation for industrial dynamics is the experimental approach to understanding 
system behavior.

If mathematical analysis is not powerful enough to yield general analytical solutions to 
situations, then alternative experimental approaches are taken.

Use of simulation methods requires extending mathematical ability. Detail setting up 
a simulation model needs to be monitored by experts, because special skills required for 
proper formulation.

7.7 System Dynamics Technique

The SD technique was developed for the fi rst time by Forrester in the 1940s in the context 
of industrial applications. The technique had been used to understand such diverse prob-
lems as technical obsolesce, urban decay, drug addiction, etc. It explains the model causal 
mechanism and identifi es the feedback for modeling.

Advantages of SD technique

 1. It proposes the use of various diagrammatic tools for modeling the problem.

 2. Easy to understand the model.

 3. Easy to illustrate the model.



System Dynamics Techniques 333

 4. Easy to observe the effect of variables on the response.

 5. It can be used for nonlinear, ill-defi ned, time variant problems.

 6. Delays (information, transportation, implementation, etc.) and nonlinearities can 
be easily incorporated in the model.

 7. Easy to observe the effect of variables on system response.

 8. Easy to develop Expert System if model is developed by SD approach.

 9. Quick and easy insight can be gained.

Steps involved in the development of SD models

 1. Identifi cation of system variables and their causal relations.

 2. Draw causal links and causal loop diagram.

 3. Draw fl ow diagram.

 4. Write dynamo equations from the causal loop diagram and fl ow diagrams.

 5. Finally, simulate the above developed model using numerical integration tech-
niques and also the software available for simulating dynamo equations such as 
Dynamo or Dynamo Plus, Dyner, and Vinsim.

The SD technique of modeling has three main parts namely,

 1. Causal loop diagram
  Arrow of causal links in a causal loop diagram indicates the direction of infl u-

ence and sign (+ or −) shows the type of infl uence. Causal loop diagrams play an 
important role:

a. They serve as preliminary sketch of causal hypothesis.

b. Simplifi es illustration of the model.

c. Encourages the modeler to conceptualize the real-world systems.

 2. Flow diagram
 Flow diagram consists of rates, levels, and auxiliary variables organized into a 

consistent network.

 3. Dynamo equations
  The dynamo model consists of fi rst-order differential equation (ODE) to represent 

system states.

7.8 Structure of a System Dynamic Model

The form of a SD model should be such as to achieve several objectives. The model should 
have the following characteristics:

Able to describe any statement of cause–effect relationship• 

Simple in mathematical nature• 



334 Modeling and Simulation of Systems Using MATLAB and Simulink

Closely synonymous in nomenclature and terminology• 

Extendable to large numbers of variables without exceeding the practical limits of • 
digital computers

7.9 Basic Structure of System Dynamics Models

The preceding requirement can be met by an alternating structure of reservoirs or levels 
interconnected by controlled fl ows, as shown in Figure 7.3. It contains

Several level variables• 

Flow-rate variables that control the fl ow of quantities into level variables• 

Decision functions (draws as values) that control the rate of fl ow between levels• 

7.9.1 Level Variables

The level variables represent the accumulations within the system. The typical level vari-
ables may be the inventory level in a warehouse, the good in transit, bank balance, factory 
space, and number of employees. Levels are the present values of those variables that have 
resulted from the accumulated difference between infl ow and outfl ow. Levels exist in the 
information network of material. It is denoted by a rectangle, as shown in Figure 7.3 and 
describes the condition of the system at any particular instant of time.

7.9.2 Flow-Rate Variables

The fl ow-rate variables defi ne the present (instantaneous) fl ow between the level vari-
ables in the system. The rate variables correspond to activity, while the level variables 
measure the resulting state to which the system has been brought by the activity. The 
fl ow-rate variables are determined by the level variables of the system according to rules 
defi ned by the decision functions. In turn, the rates determine the levels. It tells how fast 
the levels are changing. The rate variable does not depend on its own past values, neither 
on the time interval between computations nor on the other rate variables.

No fl ow-rate variable can be measured instantaneously. All instruments that purport 
to measure rate variables actually require time for their functioning. They measure aver-
age rate over some time interval. At zero rate also, there is some value of level variable. 

Rate
variable

Level
variable

Other levels
variables

Decision
function

FIGURE 7.3
Schematic representation of level (state) variables and 

rate variables.



System Dynamics Techniques 335

Consider an example of the growth of a tree. The height of a tree cannot be zero although 
the growth rate becomes zero.

Four concepts are to be found in a rate equation, as shown in Figure 7.4:

 1. Goal

 2. An observed system condition

 3. Discrepancy

 4. A statement how action is to be taken

7.9.3 Decision Function

The decision function (also called the rate equation) is the policy statement that deter-
mines how the available information about level leads to the decision (current rate). All 
decisions pertain to impending action and are expressible as fl ow rates (generations or 
orders, construction of equipment, hiring of people). Decision functions therefore pertain 
both to managerial divisions and to those actions that are inherent results of the physical 
state of the system.

There are three major view points of modeling, as shown in Figure 7.5.

 1. To identify the cause–effect, relations (causal links) in a system are based on dis-
junctive viewpoint of modeling.

 2. Another viewpoint is linear, control viewpoint in which cause produces the effect, 
which may be the cause for other such causes and effects form chains like domi-
noes falling.

 3. Lastly, there is a causal loop, nonlinear viewpoint, in which the causal loops are 
identifi ed.

There are two types of cause–effect relationships (causal links) that can be identifi ed in 
any system

 1. Negative causal links

 2. Positive causal links

 1. Negative causal links
  In a system, if a change in one variable affects the other variable in the opposite 

direction under “cetris paribus” condition (keeping other variables constant), then 
it called a negative causal link. For example, consider the heat transfer from a hot 
body to the atmosphere, as shown in Figure 7.6. The heat transfer (Q) from a hot 

FIGURE 7.4
Four concepts in fl ow-rate variable.

Goal

Present value
of level

Decision
statement

Error



336 Modeling and Simulation of Systems Using MATLAB and Simulink

Cause Cause

Effect Effect

Cause

Effect

(1) Disjoint view point

Cause Effect/cause Effect/cause Effect

(2) Linear system view point

Effect/cause

Effect/cause

Effect/
cause

(3) Nonlinear system view point

FIGURE 7.5
Different viewpoints of causal modeling.

Heat transfer
(Q)

Ambient temperature
(Ta)

Hot body

FIGURE 7.6
Heat transfer from the heat body.

body is a function of ambient temperature (Ta) and the temperature of the hot 
body (Thb) is given by

 = a hbheat transfer ( ) ( , )Q f T T  (7.1)

  If the temperature of the hot body is kept constant, then it is a function of ambient 
temperature only. Hence, the heat transfer decreases as the ambient temperature 
increases and vice versa. In this cause–effect relationship, the ambient tempera-
ture (cause) negatively affects the heat transfer (effect). Therefore, the causal link 
is called negative causal link, as shown in Figure 7.7.



System Dynamics Techniques 337

 2. Positive causal links
In a system, if a change in one variable affects the 
other variable in the same direction under “cetris 
paribus” condition, for example, the relation-
ship between the job availability (JA) and migrant 
(M), then it is called a positive causal link. If the 
job availability is more in a particular part of the 
region, then the migration will also be more in 
that part of the region and as the job availability 
decreases, the migration will also reduce. In this 
example, the job availability is a cause for migration 
of people from one part of a region to other part of a 
region. Here, the cause has positive infl uence on the 
effect. Hence, it a positive causal link, as shown in 
Figure 7.8.

Negative causal loop: When feedback loop responses to a 
variable change opposes the original perturbation, it is called negative causal loop. A typi-
cal negative causal loop system and its responses are shown in Figures 7.9 and 7.10, respec-
tively. The decision process sector tells us how the action process sector (Level variable) is 
controlled. It works on the basis of error that is the difference between the present state of 
the system and the reference input. The constant in this sector controls the change in level 
variable. This constant is a part of decision function or policy.

Positive causal loop: When a loop response reinforces the original perturbation, the loop 
is called positive. The typical responses of positive causal loop systems are shown in 
Figure 7.11. Take an example of a snow ball falling from the top of the snow mountain, as 
shown in Figure 7.12. Its size and weight increases as it comes down and fi nally, broken 

FIGURE 7.8
Positive causal link between job 

availability and migrants.

Migrants (M)

Job availability ( JA)

+

FIGURE 7.9
Negative causal loop diagram.

Decision process sector

Action process sector

Reference
input

Error

Constant

RT
  Rate variable

Level variable
Lev+

+

+

–
(–)

FIGURE 7.7
Causal link between ambient tempera-

ture and heat transfer.

Heat transfer
(Q)

–

Ambient
temperature (Ta)



338 Modeling and Simulation of Systems Using MATLAB and Simulink

Va
ria

bl
e

Time

Va
ria

bl
e

Time

FIGURE 7.10
Responses of a negative feedback system.

FIGURE 7.11
Responses of a positive feedback system. 

(a) Mutually deteriorate response. (b) Mutually 

improve response. (a) (b)

FIGURE 7.12
Snow ball as an example of positive feedback system.

down into many small balls. This shows that the effect reinforces the cause and fi nally the 
system response becomes unstable.

S-shaped growth: Social and biological systems commonly exhibit exponential growth fol-
lowed by asymptotic growth. This mode of behavior occurs in any structure where loop 
dominance shifts from positive to negative feedback. Finally the system response exhibits 
steady state when positive effect and negative effect in the system balance each other, as 
shown in Figure 7.13.

Examples:

 1. Population trends of various plants and animals

 2. Growth of biological spices

 3. Propagation of a contagious disease

 4. The behavior of damped pendulum

 5. Diffusion of riots, rumors, news, etc.

Interconnected network

The basic model structure shows only one network with set of information from lev-
els to rates, as illustrated in Figure 7.14. It could be noted that fl ow rates transport the 



System Dynamics Techniques 339

contents of one level to another as shown in Figure 7.15. Therefore, the levels within one 
network must all have the same kind of content. Infl ow and outfl ow connecting to a 
level must transport the same kind of items that are stored in the level. For example, the 
material network deals only with material and accounts for the transport of the mate-
rial from one inventory to another. Items of one type must not fl ow into levels that store 
another type.

Dynamo equations

The model structure leads to a system with an equation that suffi ces for representing 
information-feedback system. The equations tell how to generate the system conditions 
for a new point in time, given the conditions known from the previous point in time.

The equations should be adequate to describe the situations, concepts, interactions, 
and decision processes. The equations of the model are evaluated repeatedly to generate 

FIGURE 7.13
Sigmoid (S-shaped) growth.

Time

Transient region

Asymptotic
growth

Steady state
region

Exponential
growth

Le
ve

l v
ar

ia
bl

e

FIGURE 7.14
Basic model structure.

Level

Decision function
Flow channel
Information source

Level

Level



340 Modeling and Simulation of Systems Using MATLAB and Simulink

sequence of steps equally spaced in time. Level equations are rate equations and gener-
ate the levels and rates of the basic model structure. In addition, auxiliary supplementary 
and initial-value equations are used. The interval of time between solutions must be rela-
tively short, determined by the dynamic characteristics of the real system that is being 
modeled.

Computing sequence

A system equation is written in the context of certain connections that state how the equa-
tions are to be evaluated. We are dealing here with a system equation that controls the 
changing interactions of a set of variables as time advances. Subsequently the equations 
will be computed periodically to yield the successive new states of the system.

The sequences of computation implied are shown in Figure 7.16. The continuous advance 
of time is broken into small intervals of equal length DT. It should be short enough so that 
we are willing to accept constant rates of fl ow over the interval as a satisfactory approxi-
mation to continuously varying rates in the actual system. This means that decisions made 
at the beginning of the interval will not be affected by any changes that occur during the 
interval. At the end of the interval, new values of levels are calculated and from these lev-
els new rates (decisions) are determined for the next interval.

The time interval could be spaced closely enough so that straight line segments over 
the intervals will approximate any curve as closely as required. Figure 7.16 shows such a 
straight approximation.

As shown in Figure 7.17 J, K, and L are the designations given to successive points in 
time.

The instant of time K is used to develop the “present.”

FIGURE 7.15
Decision functions (rate equations).

SSR

7- 5. R

FIGURE 7.16
Straight line approximation to a variable level. Time



System Dynamics Techniques 341

The interval • JK has just passed the information about it and earlier times is, in 
principle, available for use.

No information from a time later than • K, like the interval KL, or time L, or 
beyond, can ever be available for use in an equation being evaluated at present 
time K.

For the purpose of numerical evaluation, the basic equations of a model are separated into 
two groups:

The level equation in one group• 

Rate equation in another• 

For each time step, the level equations are evaluated fi rst, and the result becomes available 
for use in the rate equations. Auxiliary equations are an identical convenience and are 
evaluated between the level and rate groups.

The equations are to be evaluated at the moment of time that are separated by the solu-
tion interval ΔT. The equations are written in terms of the generalized time step J, K, and L 
using the arbitrary convention that K represents the “present” point in time at which the 
equations are being evaluated. In other words, we assume that the progress of the solution 
has just reached time K, but that the equations have neither been solved for levels at time 
K nor for rates over the interval KL.

FIGURE 7.17
Calculations at time K.

TimeΔTΔT

J K L

Auxiliary variables
calculated after

levels

Levels at time K,
to be calculated

Levels at time J,
already known

Rates in the
forthcoming period KL,
to be calculated at time

K

Constant rates over
interval JK, already

known



342 Modeling and Simulation of Systems Using MATLAB and Simulink

The level equations show how to obtain levels at time K, based on level at time J, and on 
rates over the interval JK at time K, when the level equations are evaluated, all necessary 
information is available and has been carried forward from the proceeding time step.

The rate equations are evaluated at the present time K after the level equations have been 
evaluated. The rate equations can, therefore, be available as inputs of the present values of 
the level at K. The value determine the rate (decision) equations determine the rates that 
represent the actions that will be taken over the forthcoming interval KL constant rates 
imply a constant rate of change in levels during a time interval. The slopes of the straight 
lines in Figure 7.17 are proportional to the rates and connect the values of the levels at the 
J, K, and L points in time.

After evolution of the levels at time K and the rates for interval KL, time is “indexed.” 
That is, the J, K, and L positions are moved one time interval to the right. The K levels just 
calculated are relabeled as J levels. The KL rates become the JK rates. Time K “the present,” 
is thus advanced by one interval of time of ΔT length. The entire computation sequence 
can then be repeated to obtain a new state of the system at a time that is one ΔT later than 
the previous state.

7.10 Different Types of Equations Used in System Dynamics Techniques

7.10.1 Level Equation

Levels are the varying content of the reservoir of system. They would exist even though 
the systems were brought to rest and no fl ow existed. New values of levels are calculated 
at each of the closely spaced solution intervals. Levels are assumed to change at a constant 
rate between solution times, but no values are calculated between such times.

The following is an example of a typical level equation:

 . = . + Δ . .1 1 1 2( ) * ( – )L L K L J T R JK R JK  (7.2)

The symbols represent variables as follows, given the dimension of measurement:

L1 inventory actual at retail (units), actual being used to distinguish from “desired” and 
other inventory concepts.

ΔT delta time (week) interval between evaluations of the set of equations.
R1 shipment received at retail (unit/week).
R2 shipment sent from retail (unit/week).

The indication of L1 on the left shows that this is a level equation.
The equation states that the present values of L1 at time K will equal the previously com-

puted L1.J plus the difference between the infl ow rate R1.JK during the last time interval 
and the outfl ow rate R2.JK, the difference rates multiplied by the length of time ΔT during 
which the rates persisted.

Level equations are independent of one another. Each depends only on information 
before time K. It does not matter in what order level equations are evaluated. At the evalu-
ation time K, no level equation uses information from other level equations at the same 
time. A level at time K depends on its previous value at time J and on rates of fl ow during 
the JK interval.



System Dynamics Techniques 343

7.10.2 Rate Equation (Decision Functions)

The rate equations defi ne the rates of fl ow between the levels of system. The rate equations 
are the “decision functions.” A rate equation is evaluated from the presently existing value 
of the level in the system, varies often including the level from which the rate comes and 
the one into which at goes. The rates in turn cause the changes in the level. The rate equa-
tion, being the decision equation in the broad sense controls what is to happen next in the 
system. A rate equation is evaluated at time K to determine the decision governing the rate 
of fl ow over the forthcoming interval KL. Rate equations, in principle, depend only on the 
value of levels at time K.

Rate equations are evaluated independent of one another within any particular time 
step, just as level equations. A rate equation determines an immediately forthcoming 
action.

The rate equations are independent of one another and can be evaluated in any sequence. 
Since they depend on the values of the levels, the group of rate equations is better to put 
after the level equations.

An example of a rate equation given by Equation 7.3 shows the outfl ow rate of a fi rst-
order exponential delay:

 . = .2 2  /DELAYR R KL L K  (7.3)

where
R2 is the outfl ow rate (unit/week)
L2 is the present amount stored in the delay (units)
DELAY is a constant and average length of time to transverse the delay

The equations defi ne the rate R2 and give the value over the next time interval KL. The rate 
is to be equal to the value of a level L2 at the present time K, divided by the constant that 
is called DELAY.

7.10.3 Auxiliary Equations

Often rate equations will become very complex if it is actually formulated only from lev-
els. Furthermore, a rate may best be defi ned in terms of one or more concepts, which have 
independent meaning and, in turn, arise from the level of the system. It is often convenient 
to break down a rate equation into component equations called “auxiliary equations.”

The auxiliary equation is a kind of great help in keeping the model formulation in close 
correspondence with the actual system, since it can be used to defi ne separately, the many 
factors that enter decision making.

The auxiliary equations are evaluated at the time K but after evaluating the level equa-
tions for time K because, the rate for which they are the part, they make use of present 
values of levels. They must be evaluated before the rate equations, because their values 
are obtained for substitution into rate equation. Unlike the level and rate equations, the 
auxiliary equations cannot be evaluated in an arbitrary order.

For example, two auxiliary equations between two levels and a rate equation are given 
below:

 . = .1 1 3  *A A K C L K  (7.4)



344 Modeling and Simulation of Systems Using MATLAB and Simulink

 . = + . .2 3 2 1 5  ( )/A A K C C A K L K  (7.5)

where
L5 is a level
C3 and C2 are constant

 . = ⋅ .3 6 2  /R R KL L K A K  (7.6)

where L6 is a level.
Equation 7.4 could be substituted into Equation 7.5 and fi nally substituted in Equation 7.6 

to give

 R R3 .KL = (L6.K)/C3 + C2(C1
*L3.K/L5.K)

The auxiliary equations have now disappeared leaving the rate R3 dependent only on 
levels and constants.

7.11 Symbol Used in Flow Diagrams

A pictorial representation of an equation encourages the modeler to understand the com-
plex system. It is easy to visualize the interrelationships when these are shown in a fl ow 
diagram rather than merely listing the equations.

7.11.1 Levels

A level is shown by a rectangle as in Figure 7.18 at the upper corner is the symbol group (L) 
that denotes this particular level variable. At the lower right corner is the equation number 
to tie the diagram to the equation.

Decision functions (rate equations):
Decision functions determine the rate of fl ow. They act as values in the fl ow channels, as 
shown in Figure 7.19 to equivalent forms are displayed. The symbol shows the fl ow that 
is being controlled. The equation number that defi nes the rate is 
also given.

7.11.2 Source and Sinks

Often a rate is to be controlled whose source or destination is 
considered to lie outside the consideration of the model. For 
example, in an inventory system, an order fl ow must start from 
somewhere, but clarity of fl ow system terminology does not per-
mit mere extension of information lines into the line symbols for 
order. Orders are properly thought of as starting from a supply a 
blank paper that we need not treat in the model dynamics.

SRR

SSR

IAR

7-1, L

FIGURE 7.18
Levels.



System Dynamics Techniques 345

FIGURE 7.19
Source and sinks.

File

Mine

Likewise, orders that have been fi lled must be discarded from the system into a com-
pleted order fi le, which usually has no signifi cant dynamic characteristics.

If it is assumed that the materials are readily available and that the characteristics of 
the source do not enter into system behavior, in such circumstances the controlled fl ow is 
from a source or to a sink, as shown in Figure 7.19 and given no further consideration in 
the system.

7.11.3 Information Takeoff

Information fl ows interconnect many variables in the system. The takeoff of information 
fl ow does not affect the variable from which the information is taken. An information 
takeoff, as shown in Figure 7.19, is indicated by a small circle at the source and by a 
dashed information line.

7.11.4 Auxiliary Variables

Auxiliary variables lie in the information fl ow channels between levels and decision func-
tions that control rates. They have independent meanings. They can be algebraically sub-
stituted into the rate equations.

Auxiliary variables are shown by circle, as in Figure 7.20 within the circle, the name of 
the variable and the equation number that defi nes it, is mentioned. The incoming informa-
tion depends on level or other auxiliary variables and the outfl ow is always an information 
takeoff. The auxiliary variable is not a one computational time step to the next. Any num-
ber of information lines can enter or leave.

7.11.5 Parameters (Constants)

Many numerical values that describe the characteristics of a system 
are considered constant, at least for duration of computation of a single 
model run. A line with circle shows the symbols of the constant, with 
information takeoff as shown in Figure 7.21.

7.12 Dynamo Equations

The dynamo is a special-purpose compiler for generating the execut-
able code to simulate the system model. The dynamo compiler takes 

FIGURE 7.20
Auxiliary variable.



346 Modeling and Simulation of Systems Using MATLAB and Simulink

DUR
DUR

FIGURE 7.21
Parameters (constant).

equations in the form that has been discussed. It checks equations for the kinds of logical 
errors that represent inconsistencies within equations.

Example 7.1: Modeling of Heroin Addiction Problem

The explosive growth in the number of heroin addicts in a community might result from a posi-
tive feedback process. We assume that the addiction rate depends on the level of addicts and is 
not restrained by the number of potential addicts. We also assume that each addict brings one 
nonaddict into the addict pool every 3 years (the addicted population increases by a fractional 
addiction rate (FAR) of 0.33 per year). We ignore outfl ow of addicts from level through arrests, 
dropouts, and rehabilitation. The model, although obviously oversimplifi ed, illustrates some 
interesting behavior. The causal loop diagram for heroin addiction problem is shown in Figure 
7.22 and the fl ow diagram is shown in Figure 7.23.

Dynamo equation

From the above developed causal loop and fl ow diagrams, the dynamo equations may be 
written as given below.

Addiction level in a given population ADCTS.K = ADCTS.J + dt*AR.KL
Initial value of addiction level ADCTS = 10
Addiction rate AR.JK = ADCTS.K*FAR
Fractional addiction rate FAR = 0.33

Results

The above-mentioned dynamo equations could be easily simulated 
in MATLAB® environments. The results show that the addicted popu-
lation and addiction rate both continuously increase with time, as 
shown in Figures 7.24 and 7.25.

Example 7.2: Modeling of Population Problem

The fi rst-order positive feedback structure can explain much, but not 
all of the basic character of human population growth.

Addicts

Addiction
rate (AR) +

+

(+)

FIGURE 7.22
Causal loop diagram for 

addiction problem.

FIGURE 7.23
Flow diagram for addiction problem.

ADCTS

AR

FAR

ΔT



System Dynamics Techniques 347

The causal representation of relationship between the population (POP) and net birth rate (NBR) 
(births per year less deaths per year) shows that as POP increases, NBR increases, as shown in 
Figure 7.26, and its fl ow diagram is shown in Figure 7.27. From these causal loop diagrams and 
fl ow diagrams, the following dynamo equations can be written and simulated in MATLAB to get 
the population trend, as shown in Figures 7.28 and 7.29:

FIGURE 7.24
Addicted population trend with time.

Time
0 0.5

A
dd

ic
te

d 
po

pu
la

tio
n

10

15

20

25

30

35

40

45

50

55

1 1.5 2 2.5 3 3.5 4 4.5 5

FIGURE 7.25
Addiction rate vs. time characteristic.

Time
0 0.5

A
dd

ic
tio

n 
ra

te

0

2

4

6

8

10

12

14

16

18

1 1.5 2 2.5 3 3.5 4 4.5 5



348 Modeling and Simulation of Systems Using MATLAB and Simulink

L POP.K = POP.J + (ΔT) (NBR.JK)
N POP = 0.5
R NBR.KL = NGF*POP.K
C NGF = 0.003

Example 7.3:  Inventory Control Problem 

A dealer likes to maintain a desired level of inventory as shown 
in Figure 7.30. When stock falls below the desired level, the 
dealer places orders to the factory to replenish the supply; 
orders stop when stock reaches the desired level. With too 
much inventory, depends on the market condition outside the 
system boundary assume that the dealer has no infl uence on 
the demand for his goods. The demand suddenly increases 
from 0 to 50 in the 6th week.

The causal relations between different variables combined are diagrammatically represented in 
the causal loop diagram, as shown in Figure 7.31. From the causal loop diagram, the fl ow diagram 
may be drawn as shown in Figure 7.32.

POP

NBR

NGF

ΔT

FIGURE 7.27
Flow diagram for human population growth.

POP

Net birth rate
(NBR) +

+

(+)

FIGURE 7.26
Positive causal loop diagram for 

human population growth.

FIGURE 7.28
Population trend with time.

Time
0

Po
pu

la
tio

n

0

5

10

15

20

25

30

35

40

45

5 10 15



System Dynamics Techniques 349

FIGURE 7.31
Causal loop diagram.

Inventory
(INV)Sales rate

(SR)

Order rate
(OR)

Discrepancy
(DISC)

Desired
inventory
(DINV)

FIGURE 7.29
Net birth rate vs. time.

Time
0

N
et

 b
irt

h 
ra

te

0

2

4

6

8

10

12

5 10 15

FIGURE 7.30
Inventory control problem.



350 Modeling and Simulation of Systems Using MATLAB and Simulink

Dynamo model

L INV.K = NV.J + (ΔT) (OR.JK − SR.JK)
N INV = DINV
R OR.KL = FOW*DISC.K
C FOW = 0.2
A DISC.K DINV − INV.K
C DINV = 200
R SR.KL = STEP (50, 6)

Results

The above developed dynamo equation may be simulated in MATLAB environment. The inven-
tory level decreases when the demand is suddenly increased, as shown in Figure 7.33. As soon 
as the inventory level decreases, the discrepancy increases and to maintain the inventory level 
constant, it is necessary to order the goods. Hence the order rate increases, as shown in Figure 
7.34. When the order rate and the sales rate are equal to each other, the inventory is fi xed at level. 
The sales rate in this example is suddenly changed from 0 to 50 at the 6th week, as shown in 
Figure 7.35.

Inventory

Step

Customer

OR

DiscFOW

Factory

SR

DINV

FIGURE 7.32
Flow diagram for inventory control system.

Time
0

In
ve

nt
or

y

–50

0

50

100

150

200

5 10 15 20 25 30

FIGURE 7.33
Change in inventory with time.



System Dynamics Techniques 351

Example 7.4: Rat Population

The rat birth rate (RBR) is defi ned as the number per month of infant rats that survive to adulthood 
the normal rat fertility NRF, the average number of infants per months produced by each adult 
female rat, equals 0.4 (rats/female/month) for a relatively low or normal population density. The 
adult rat death rate (ARDR) is a function of the number of adult rats and average rat life (ARL) time. 
Average rat life time ARL, defi ned as the number of months an average rat survives during normal 
conditions, equals 22 months; therefore 4.5% of the population dies every month.

FIGURE 7.34
Change in order rate with time.

Time
0

O
rd

er
 ra

te

0

10

5

20

15

30

25

40

35

50

45

5 10 15 20 25 30

FIGURE 7.35
Demand suddenly increases in 6th week from 0 to 50.

60

50

40

30

20

10

00 5 10 15
Time

Sa
le

 ra
te

20 25 30



352 Modeling and Simulation of Systems Using MATLAB and Simulink

The infant survival multiplier (ISM) makes infants survival dependent upon the rat population 
density. A low population density, approximately 100% survive. The causal loop diagram and 
fl ow diagram for rat population are shown in Figures 7.36 and 7.37, respectively.

Dynamo equation

L RP.K = RP.J + (ΔT) (RBR.JK – ARDR.JK)
N RP = 10
R RBR.KL = NRF*FRP.K*ISM.K
C NRF = 0.4
R ARDR.KL = RP.K/ARL
C ARL = 22
A FRP.K = SR*RP.K
C SR = 0.5
A ISM.K = TABLE (ISMT, PD, K, 0, .025, .0025)
T ISMT = 1/1/.96/.92/.82/.7/.52/.34/.20/.14/.1
A PD.K = RP.K/A
A FRP = RP*SR
C A = 11000
Spec ΔT = 1, length = 200

Results

The above developed dynamo equations were simulated in MATLAB and the following results 
have been obtained. Figure 7.38 shows that the birth rate increases initially and then gets saturated. 

FIGURE 7.36
Casual loop diagram for rat population.

Births

(+)

(–)

(–)
+

–
–

+

+

+

–

Density

Rat population

Deaths

FIGURE 7.37
Flow diagram for rate population model.

NRF FRP

PD

ISM

Area

AR
DRRBR

ARL

Rat
population

SR



System Dynamics Techniques 353

As the rat population increases, the death rate also increases, as shown in Figure 7.39. In the 
initial phase of simulation, birth rate is dominating and hence the rat population increases expo-
nentially, then in the later portion of simulation death rate increases at a faster rate and when both 
death rate and birth rate are equal to each other, then the rat population is constant, as shown 
Figure 7.40.

FIGURE 7.38
Rat birth rate.

500

450

400

350

300

250

200

150

100

50

0
0 20 40 60 80 100

Time

Ra
t b

irt
h 

ra
te

120 140 160 180 200

FIGURE 7.39
Death rate of adult rat.

450

400

350

300

250

200

150

100

50

0
0 20 40 60 80 100

Time

A
du

lt 
ra

t d
ea

th
 ra

te

120 140 160 180 200



354 Modeling and Simulation of Systems Using MATLAB and Simulink

Example 7.5: Modeling of Infected Population

The infection of any disease depends on the size of susceptible population (SP), normal contacts 
of infected people (IPC) with healthy people, and normal contact fraction (NCF). Derive a model 
to predict the infected population.

SOLUTION

The causal links for infected population model have been combined together to get a causal loop 
diagram as shown in Figure 7.41 and fl ow diagram (shown in Figure 7.42). From these diagrams, 
the dynamo equation can be obtained as follows:

L IP.K = IP.J + (ΔT) (CR.JK)
N IP = 10
R CR.KL = IPC*NCF*IP.K*SP.K

FIGURE 7.40
Rat population.

10000

9000

8000

7000

6000

5000

Ra
t p

op
ul

at
io

n

4000

3000

2000

1000

00 20 40 60 80 100
Time

120 140 160 180 200

Infected population

Susceptible
population

Total
population

Contagion rate

POP
–

–

+

++

+

(+)

(–)

FIGURE 7.41
Causal loop diagram for infected population.



System Dynamics Techniques 355

C IPC = 0.1
C NCF = 0.02
A SP.K = P − IP.K
C P = 100

%MATLAB program for simulation of addiction problem
clear all;

IP = 10
IPC = 0.1
NCF = 0.02
P = 100
SP=P-IP;
CR=0;
t=0;
dt=1;
Tsim=50;
n=round(Tsim-t)/dt;
for i=1:n

x1(i,:)=[t,IP, SP,CR];
SP= P-IP;
CR = IPC* NCF*IP*SP;
IP=IP+dt*CR;
t=t+dt;

end
figure(1)
plot(x1(:,1),x1(:,‘2),k-’)
xlabel(‘Time’)
%ylabel(‘Infected Population’)
hold
%figure(2)
plot(x1(:,1),x1(:,3),‘k–’)
xlabel(‘Time’)
%ylabel(‘Susceptible population’)

%figure(3)
plot(x1(:,1),x1(:,4),‘k:’)
xlabel(‘Time’)
%ylabel(‘Contagion rate ’)
legend(‘IP’, ‘SP’, ‘CR’)

FIGURE 7.42
Flow diagram for infected popu lation.

IPC

NCF

CR

SP

Infected
population

Total pop



356 Modeling and Simulation of Systems Using MATLAB and Simulink

Results

The infected population model is simulated in MATLAB and the results shown in Figure 7.43.

Example 7.6: Market Advertising Interaction Model

Modern business management is closely related with marketing strategies and effective advertis-
ing policies.

Aims of advertisements

Awareness about the product• 
Comprehension about the product• 
Highlight its salient features• 
Attract customer and ultimately increase sale• 

Assumptions

 1. Advertising is defi ned as impersonal communications.
 2. Only television is considered as the media, other media are excluded.
 3. Different aspects of merchandising such as competition, offers, gifts, packaging, etc., were 

excluded.
 4. Short-term effect is considered.

Postevaluation criterion of advertisements

 1. Advertising cost per thousand of buyers for each media category of advertisement (cost 
effective)

 2. Percentage of potential buyer attracted (toward the product advertised) by each media 
category (public response)

 3. Opinion of consumers on the content, presentation, and other parameters of the advertise-
ment for its effective (public comments)

100

90

80

70

60

50

40

30

20

10

0
0 5 10 15 20 25

Time

IP
SP
CR

30 35 40 45 50

FIGURE 7.43
Simulation results of infected population model.



System Dynamics Techniques 357

 4. Awareness of potential buyers toward the product before and after going through the 
advertising (awareness about product)

 5. Number and depth of inquiries stimulated by each category of the advertisement
 6. Cost per inquiry

Variable identifi cation

SR sales rate
SALES sales of product
ADV advertising campaign
PD consumer delay in purchasing
AAP consumer’s awareness of product after advertisement
RAAP rate of awareness of product after advertisement
MSALES maximum sales
MAAP maximum awareness about product
CIA consumer interest toward advertising
FOI frequency of advertisement
DAPI duration of advertisement
PMA popular models in advertisement
AJS attractive jingles/slogans in advertisement
TA Timings of advertisement
CRIA consumer’s rate of interest toward advertisement
MCIA consumer’s maximum interest in advertisement

The causal loop diagram showing the cause–effect relationship between the above-
mentioned variable is shown in Figure 7.44. The fl ow diagram differentiate between the type 
of variables like level variables, rate variables, auxiliary variables, and constants, as shown in 
Figure 7.45.

FIGURE 7.44
Causal loop diagram for advertisement interaction model.

Sales rate
(SR)

Sales

Advertisements

Consumers’ rate of
interest in advertisements

(CRIA)

Consumers’ interest in
advertisements

(CIA)

Rate of awareness
about product

(RAAP)

Awareness about
product
(AAP)

Consumers’
purchase delay

FOI

DAPI

PMA

AJS

TA



358 Modeling and Simulation of Systems Using MATLAB and Simulink

Dynamo equations

Level equations

There are three level variables considered in this system such as sales, awareness about the prod-
uct, and consumer’s interest toward watching advertisements. The present values of level vari-
ables are calculated as the sum of previous values and the increment in them during the fi nite 
small interval of time.

SALES.K = SALES.J + DT*SR.JK

AAP.K = AAP.J + DT*RAAP.JK

CIA.K = CIA.J + DT*CRIA.JK

Rate equations

To calculate the above-mentioned level variables, three rate equations are written for sales 
rate, rate of awareness about the product, and consumer’s rate of interest toward watching 
advertisements:

SR.KL = Min(A1.K, MSALES)

RAAP.KL = ((MAAP − AAP.K)/MAAP)*A3.K − AAP.K

CRIA.KL = (MCIA − CIA.K)/MCIA*ADV.K − CIA.K

SR
Sales

Min

ADV

PD

AAP

TA

AJS

PMADAPIFOI

Min 1

1

CIA
CRIA

MCIA

A3

A2

RAAP

MAAP

A1

Min

MSALES

FIGURE 7.45
Flow diagram for advertisement interaction model.



System Dynamics Techniques 359

Auxiliary equations

When advertising is more than zero (ADV > 0), sales rate (SR) is proportional to advertisement 
(ADV). Although, sale is dependent on many other factors such as quality of the product, cost, and 
packing, it is assumed that the sale is only controlled by advertisements, just to simplify the model. 
This relationship is true up to saturation of the market, that is ( (MSALES – SALES.K)/MSALES). The 
auxiliary variable A3.K represents consumer’s interest toward advertisements.

A1.K = ((MSALES − SALES.K)/MSALES)*ADV.K*AAP.K − SALES.K*PD.K

A2.K = FOI + DAPI + PMA + AJS + TA

A3.K = CIA.K*Min (A1.K, A2.K)

Initialization

CIA = 0
SALES = 8
MSALES = 80
AAP = 0
MAAP = 80
MCIA = 100
DAPI = 0.1
PMA = 0.1
AJS = 0.1
TA = 0.1
ADV.K = 0/1, 30/1, 30/2, 30/3, 0/4;
Length = 24 h

Results

The simulation results shown in Figure 7.46 of the above developed model validated the results. 
The conclusions drawn from the above simulation are as follows:

 1. The advertiser must create interesting commercials with cleverness that captures the view-
er’s interest.

 2. He includes attractive jingles and popular models in the advertisements, which helps in 
remembering the advertisements and draws attentions of the viewers.

 3. Advertisement should have clear messages/slogans.
 4. Scheduling of advertisements is also very important. It should be such that maximum pro-

spective consumers could watch it.
 5. The awareness of the consumer does not increase immediately. Always there is some delay. As 

awareness increases, sales also increase, although it is not linearly proportional to each other.
 6. The duration of advertisement is not directly affecting the sales, but the duration of adver-

tisement between 15 and 30 s is suffi cient.

Example 7.7: Modeling and Simulation of Production Distribution System

Every manufacturing company has three main departments, namely, fi nance, production, and 
marketing, as shown in Figure 7.47.

 1. Finance department concerned with mobilizing and regulating the resources.
 2. Production department concerned with production of products.
 3. Marketing department related to sales of products.



360 Modeling and Simulation of Systems Using MATLAB and Simulink

FIGURE 7.46
Simulation results of market advertisement interaction model.

FOI = DAPI = PMA = AJS = TA = 0.1

Sales

Advertisement

Awareness

Time (h)

0
12 24

77

30

FIGURE 7.47
Main departments of a manufacturing company.

Manufacturing company

Production MarketingFinance

The central core of many industrial organizations is the process of production and distribution 
system. When the product is produced and fi nally sold, there is a large time delay (due to number 
of reasons, such as delay in quality control department, in dispatch department, transportation 
delay, and delay by distributor). A recurring problem is to match the production rate to the rate of 
fi nal consumer sales. Production rate fl uctuates more widely than the actual customer’s purchase 
rate (due to cascade inventories of distribution system). The production distribution network is 
shown in Figure 7.48.

The causal loop diagram shows the relationship between pending orders which depends upon 
the satisfaction level of customers (distributor or industries), items available for supply and its qual-
ity, and production rate, etc., as shown in Figure 7.49. The fl ow diagram for production distribu-
tion system is shown in Figure 7.50 (Chaturvedi et al., 1995).



System Dynamics Techniques 361

FIGURE 7.48
Production–distribution system.

Factory

Factory
warehouse

Distributor

Retailer

Customer’s order

FIGURE 7.49
Causal loop diagram.

Total pending order
(TPO)

Production rate
(PR)

Total production
inventory (TPI)

Quantity available
for sale (QAS)

Quantity supplied to
distributor (QSD)

Quantity supplied to
industries (QSI)

Satisfaction level of
distributor (SD)

Order rate of replacement
from distributor (ORRD)

Order rate from
distributor (OD)

Order rate from
industries (ORI)

Pending orders of
industries

(POI)

Pending orders of
distributors

(POD)

Order rate of replacement
from industries (ORRI)

SRD

FOD

FSD

FOI

SRI

+

+ +

+

+

+

+

+

+

+

+

+

+ +

+

+

++

+ +

+ +

+

FSI



362 Modeling and Simulation of Systems Using MATLAB and Simulink

Dynamo equations

Level equations

The pending order level of industries (POLI), pending order level of distributors (POLD), and total 
produced inventory (TPI) levels may be determined by adding the incremental value of these vari-
ables to the previous value. The increment in level variable may be determined from the net rate, 
which is the difference between incoming rate and outgoing rate:

POLI.K = POLI.J + dt*(ORRI.JK − SRI.JK)

POLD.K = POLD.J + dt*(ORD.JK − SRD.JK)

TPI.K = TPI.J + dt*(PR.JK − SRI.JK − SRD.JK)

Rate equations

Rate equations for fl ow-rate variables such as order rate for replacement from industries (ORRI), 
order rate for replacement from distributor (ORRD), supply rate to industries (SRI), supply rate to 
distributor (SRD), production rate (PR), and supply rate (SR) may be found out with the following 
equations:

ORRI.KL = EORRI + FORI*QSI.K

FIGURE 7.50
Flow diagram for production–distribution system.

E

E

E

E

E

E

ORRI

ORRD

ORD

PR

ORI

POLI

SRI

POLD

QSI

QSI

TPI

SR

FAS
QAS

Min

TPO

E

E

SRD

STIME1

STIME2

Max. production
capacity



System Dynamics Techniques 363

SRI.KL = FSI*QAS.K

ORRD.KL = EORRD + FORD*QSD.K

SRD.KL = FSD*QAS.K

PR.KL = MIN(TPO.K, 3650)

SR.KL = QAS.K*FAS

Auxiliary equation

The auxiliary equations normally help in calculations of rate variables in the system.

ORI.K = EORI + FOI*QSI.K

ORD.K = EORD + FOD*QSD.K

QSI.K = SMOOTH(SRI.KL STIME1)

QSD.K = SMOOTH(SRD.KL, STIME1)

TPO.K = POLI.K + POLD.K

Constants

FORI = 0.05
FOI = 0.015
EORI = 1750
EORRI = 4
STIME1 = 10
FSI = 0.5
FORD = 0.01
FOD = 0.014
EORD = 1850
EORRD = 2
STIME2 = 10

Results

The aforesaid model is simulated on computer and the results obtained are shown in Figures 7.51 
and 7.52. The order rate from industries and distributors increases rapidly initially, then saturates 
after sometime. The pending order level for products increases even if the company is producing 
to its maximum capacity. The results match satisfactorily with the real data of a computer monitor 
manufacturing company. The shortage of raw material, machine breakdown, labor strikes etc., is 
not considered in the system.

Example 7.8: Modeling of AIDS/HIV Population

AIDS is not only a health problem, but it is a societal problem with important social, cultural, 
and economic dimensions. It threatens the basic social institutions at the individual, family, and 
community levels. Its economic consequences are equally serious as it could claim up to half of 
national expenditure for health if the needs of AIDS patients were to be fully met.



364 Modeling and Simulation of Systems Using MATLAB and Simulink

10,000

7,500

5,000

2,500

0
0 10 30 50

TPI

Production rate

Time

FIGURE 7.51
Simulation results of total pending order level and production rate.

FIGURE 7.52
Rate variables vs. time.

1880

1875

1870

1865

1860

0 20 40

ORI

ORD

Time

Till today, medical research could not fi nd a cure for AIDS or a vaccine to prevent its infection. 
We must rely on change in personal behavior to reduce the spread of HIV infection. Information 
and education play a vital role in the fi ght against HIV infection.

Keeping in view the complexities of HIV infection, nonrandom distribution, and occurrence of 
behaviors infl uencing HIV transmission, it is diffi cult to make exact estimates of HIV prevalence. 
It is more so in the Indian context, having its typical and varied cultural characteristics, traditions, 
and values with special reference to sex-related risk behaviors. The model is also required to pre-
dict HIV-infected population and its growth rate, which is very essential for planning of HIV/AIDS 
prevention and control programs. These predictions can also be useful for mapping of specifi c 
vulnerable groups and areas so as to plan targeted intervention in major urban areas and other 
areas in the states.



System Dynamics Techniques 365

Applications of data from sero-surveys of HIV in a sentinel population are considered for 
the model development of HIV for fi nding approximate estimate of the magnitude of the HIV 
in the community. The character and number of the epidemic-affected people varies from 
region to region, for example, Africa and Asia show more transmission through heterosexual 
sex, Latin America through homosexual sex, and Eastern Europe and newly independent states 
through drug injections (Renee, 1988). In India and China, HIV has infected 5% of the people 
who are engaged in high risk behavior (Thomas, 1994). Overall, more than 6.4 million people 
are currently believed to be living with HIV in Asia and Pacifi c—just over 1%–5% of the 
world’s total.

This is an alarming situation and it is a challenge to stop/reduce the rate of infection. Hence, 
there is a genuine need to develop a model for HIV-infected population.

This chapter highlights the SD methodology and presents its applications for modeling and 
simulation of the HIV-infected population. The SD modeling technique offers a number of advan-
tages over the conventional modeling techniques specially for modeling such systems where exact 
model cannot be obtained using conventional techniques. The diagrammatic tools used in the 
model development encourages the modeler and give better understanding and quick insight 
about the system which is quite complex in nature and diffi cult to model due to inherent non-
linearities and delays in it (Forrester, 1968). The results obtained by the model developed here is 
compared with the results predicted by National Aids Control Organization (NACO), India. The 
model is simulated up to 2003 A.D.

Variable identifi cation

The fi rst step in model development using SD technique is the identifi cation of key variables. The 
following variables are identifi ed for HIV-infected population model:

 1. RISK
 Some of population groups considered to be at high risk of HIV infections because of 

their behaviors and selected as sentinel groups for HIV sentinel Surveillance (HSS) have 
included men who have unprotected sex with many men (MSM), injecting drug users (IDU), 
and heterosexuals who have unprotected sex with multiple sex partners (HET) subgroups- 
female sex workers (FSW), and sexually transmitted disease (STD) patients. Lower risk HET 
subgroups used in HSS systems include blood donors, military recruits, and antenatal clinic 
attendants (ANC) (Gong, 1985; Feldman and Johnson, 1986; Gupta, 1986; Panos, 1988; 
Contwell, 1991). The authors have conducted a survey to fi nd the risk level of different 
population groups.

  The causal links between the variables and risk of HIV infection have been shown in 
Figure 7.53.

2. Awareness level
 The awareness has signifi cant infl uence on the risk and ultimately, to control the HIV-

infected population. To raise awareness about HIV in general population, an information, 
education and communication (IEC) campaign can be used. IEC is a process that informs, 
motivates, and helps people to adopt and maintain healthy practices and life styles in order 
to prevent them from acquiring infection and ill health (AIDS Manual 1993, 1994; Banerjee, 
1999; Srinivasa, 2003; Chaturvedi, 2001).

  India is not only a vast country but also a country of numerous culture and linguistic diver-
sities. This poses a great challenge for developing suitable IEC strategies and approaches. 
The survey was conducted in 1998 to fi nd the awareness level of the population within 
the age group of 15–49 years in rural and urban areas and some states of India; the results 
are tabulated in Table 7.1.

3. Research and development
 a. For testing facility for HIV—tests and also help in rehabilitation.
 b. For new methods for IEC to create awareness the society about this disease.
 c. Lastly, it could develop some vaccine for the same.



366 Modeling and Simulation of Systems Using MATLAB and Simulink

Risk from
IDU

Number of IDU

Factor

(a)

Risk from
FSW

Factor

Number of FSW

(c)

Risk from
blood

donors
Factor

(e)

Number of
blood donors

Risk from
LIG

Factor

Population of slum
and low income strata

(d)

Factor

Risk from
military

recruitment

Number of
military recruits

(f )

Risk from
R-L pop.

Factor

Population in red light
areas

(b)

FIGURE 7.53
Causal links between risk and other factors. (a) Causal links for risk from IDU. (b) Causal links for risk from red 

light population. (c) Causal links for risk from FSW. (d) Causal links for risk from LIG. (e) Causal links for risk 

from blood donors. (f) Causal links for risk from military recruits.

TABLE 7.1

Awareness Level about HIV (%)

S. No. State

Awareness Level 

about HIV (%)

Rural Urban

1 Delhi/Haryana 43.6 57.2

2 West Bengal 13.4 54.4

3 Maharashtra 27.5 55.1

4 Tamil Nadu 63.8 77.9

The complete list of the variables of interest identifi ed for the model is given in Table 7.2.

Causal loop diagram

Figure 7.54 shows the causal loop diagram with four positive loops and three negative feedback 
loops for HIV-infected population model. It identifi es not only the direction of causality but also 
the strength of relationships involved on the basis of knowledge acquired through relevant litera-
ture and survey results.

Causal loop diagram for HIV/AIDS population model
The four positive causal loops are made between the following variables:

 1. Risk, susceptible population (SP), rate of HIV infection (RIP), HIV-infected population (IP)
 2. Risk, RIP, IP
 3. Risk, IEC, rate of awareness (RA), awareness level (A)
 4. SP, RIP, IP



System Dynamics Techniques 367

TABLE 7.2

List of Variables

 1. Risk of getting infected from HIV 16. Rate of HIV infection

 2. Susceptible population 17. Information, Education, and Communication (IEC)

 3. Crude death rate 18. Blood demand level/blood donors

 4. Crude birth rate 19. Drug addicted population

 5. Total population 20. HIV-infected population

 6. Awareness level among the people 21. Funds allocated for reducing HIV infection rate

 7. Man power available to educated for HIV/AIDS

 8. Population in red-light areas

22.  Efforts by government and nongovernment 

organizations

23. HIV blood testing facility

24. Antenatal females

25. Prisoners, truck, and autorickshaw drivers

26. No. of nonlicensed blood banks

 9. Population in slums and low income strata

10. Migration level

11. Female sex workers

12. Meliorate recruits

13. Efforts in R&D for HIV/AIDS

14. Rehabilitation measure

15.  Prolonging death due to AIDS by effective 

rehabilitation

+

+

+
+ –

–

Risk RIP
+

+
+

(–)

FSW

Population
density (PD)

Literacy level

LIG

Sex ratio
(SR)

+ Awareness level
(AL)

(+)

Rate of
awareness (RA)

+

Govt. support
(GS)

+
+

IEC + Man power
(MP)

Birth rate
(BR)

+ Death rate
(DR)

+

(–)(+)

Total population
(TP)

+

+

+

–

+
Infected population

(IP) –

Blood demand
(BD)

Susceptible
population (SP)

FIGURE 7.54
Causal loop diagram for HIV/AIDS population prediction problem.

Similarly, the three negative causal loops are made between the following variables:

 1. Risk, IEC, awareness, blood screening facility, and RIP
 2. Total population (TP), SP, RIP, IP, Risk, IEC, RA, A, rehabilitation (RH), and death rate (DR)
 3. TP, manpower available for IEC, IEC, RA, A, RH, and DR



368 Modeling and Simulation of Systems Using MATLAB and Simulink

Flow diagram

The fl ow diagram is nothing but elaborated diagram of causal loop diagram, which clearly shows the 
level variables, rate variables, auxiliary variables, and exogenous variables. Figure 7.55 shows the cor-
responding fl ow diagram with the infected population (IP), blood demand (BD), total population (TP), 
and awareness (A) as the four-level or state variables; the rate of change of HIV infection (RIP), birth 
rate (BR), death rate (DR), rate of blood demand (BDR), and rate of awareness (RA) as the fi ve fl ow-
rate variables; the total risk due to various factors (RISK), delay in AIDS death, rehabilitation measure 
(RH), IEC, and susceptible population (SP) as the fi ve auxiliary variables; and funds allocated for HIV 
control, R&D activities and rehabilitation measures (FUNDS), FSW, military recruit (MR), low income 
strata (LIG), migration (M), injecting drug users (IDU), efforts from NGOs and people in red-light areas 
are the exogenous (externally supplied) variables and parameters.

Dynamo model

The dynamo equation can be written from the fl ow diagram drawn in the earlier stage. Dynamo 
equations are used for characterizing higher order dynamics of the HIV-infected population, which 
can be directly simulated in terms of the time profi le of level variables, fl ow-rate variables, and 
other illustrative characteristics for given values of exogenous variables and parameters:

L IP.K = IP.J + DT*RIP.JK

L TP.K = TP.J + DT*(BR.JK − DR.JK)

L BD.K = BD.J + DT*BDR.JK

L A.K = A.J + DT*RA.JK

E1

BSF

E2

BDR

RIP

Susceptible
population, SP

Infected
population, IP

Awareness, A

Rehabilitation
RH

Delay in death
after AIDS

MAP IEC

Total
population, TPE4

Risk Blood demand
BD

Funds
R&DNGOs

E3

E5

BR

RA

DR

IDUFSW

Migration,
M

LIG
MR

Population of red
light area

FIGURE 7.55
Flow diagram for HIV-infected population model.



System Dynamics Techniques 369

The equations from 1 to 4 are the level equations representing level (state) variables of the 
system. The level variables (such as infected population, total population, blood demand, and 
awareness level) at kth time instant are equal to the level variables at Jth time plus increment:

R RIP.KL = RISK.K*SP.K + K1*BD.K

R BR.KL = Table function

R DR.KL = Table function

R BDR.KL = Table function

R RA.KL = IEC.K *K2

The rate equations, which will give the rate of state or level variables over a fi nite time (say DT) are 
mentioned above. The total population is controlled by two rate variables, one is birth rate and the 
other is death rate. These rates are taken from the survey results conducted by the Government 
of India and published in the year book of 1998–1999. Rate of infection is mostly dependent on 
the risk (which is again controlled by various factors like awareness level, no. of injection drug 
users, no. of female sex workers, military recruitment, blood demand, population in red-light and 
slum areas and migration, etc.) and healthy population. The rate of awareness depends on the IEC 
programmes run by NGOs and GOs:

A IEC.K = RISK.K*FUNDS*K3

A SP.K = TP.K-IP.K

A RISK.K = FSW*K4 + MR*K5 + M*K6 + IDU*K7 + LIG*K8 − IEC.K*K9 − R&D.K*K10

A MPA.K = TP.K*K11

A R&D.K = FUNDS.K*K12

A RH.K = A.K*FUNDS*K13

C K1 to K13

The auxiliary equations are basically required for simplifying the calculations. In these equations, 
parameters and constants, which are initially decided based on the experience are then optimized 
during refi ning of the model.

The above developed dynamo model had been simulated using MATLAB and compared with 
the results in the growth in seropositive cases in India, as given by NACO from 1986 to 2003. The 
simulation results are shown in Figures 7.56 and 7.57 and also in Table 7.3.
From the above results, the following points are important to note:

 1. The result of SD model shows that the rate of HIV seropositive is increasing and has dou-
bled within a brief span of 6 years.

 2. The awareness level is an important and crucial variable, which is affecting the behavior 
of HIV-infected population/rate of HIV infection at a great extent. The awareness level is 
dependent on the IEC and IEC is dependent on the funds and manpower available from the 
government and/or from NGOs. From the simulation results, it is very clear that, as the rate 
of infection increases, the awareness level also increases exponentially. It was found from 
the model that average awareness level (combined for urban, suburban, and rural areas) will 
be around 70%–75% in 2003 with the present rate.



370 Modeling and Simulation of Systems Using MATLAB and Simulink

140

120

100

80

60

40

20

0
1985 1990 1995 2000 2005 2010 2015 2020 2025 2030

Time

IP
TP
SP

FIGURE 7.56
Prediction of infected population, total population, and susceptible population.

4

3.5

2.5

1.5

0.5

0

1

2

3

1985 1990 1995 2000 2005
Time

2010 2015 2020 2025 2030

BR
DR
RIP

FIGURE 7.57
Time profi le of birth rate, death rate, and rate of infected population.

 3. The high awareness level may help in reducing the rate of infection and a sigmoid shape of 
infected population curve may be obtained. The model is simulated only for limited time 
span and therefore, the saturation part is not apparent.

 4. The reasons of spreading HIV infection in Indian scenario are the gradual decline in moral 
values and premarital sexual experiences, increase in travel for economic reasons, fl ourish-
ing sex industry, and extension beyond red-light areas, which is the main cause for the high 
rate of infection in India.



System Dynamics Techniques 371

Example 7.9: Basic Commutating Machine

The basic commutating machine shown in Figure 7.58 has three ports namely fi eld port, armature 
port, and mechanical port, which are shown in Figure 7.59 (Chaturvedi and Satsangi, 1992). It has 
three modes of operation:

TABLE 7.3

Comparison of Results Obtained 
from the Model

S. No. Years

Cumulative HIV Sero 

Positive Rate per Thousand

Actual Simulated

1 1991 11.3 6.877

2 1996 16.8 25.431

3 2001 — 58.654

4 2006 — 108.820

5 2011 — 177.164

6 2016 — 263.575

7 2021 — 366.319

FIGURE 7.58
Constructional diagram and complete assembled diagram of basic commutating machine. (a) Schematic 

diagram. (b) Terminal graph.

Vf , If Va, Ia

T, ω

(a)

Vf, If Va, Ia T, ω

(b)

FIGURE 7.59
Basic commutating machine.



372 Modeling and Simulation of Systems Using MATLAB and Simulink

K

+

+

+

–

–

–

–

– –

–

(–)

(–)

(–)

+

+

+

+

+

+

+

+

+

+

+

–

–

+

+

+
Angular

Moment of inertia
JTorque

T

Angular
velocity ω

Rate of change of
armature current,

Rate of change of
field current,

Armature
inductance La

Armature
voltage Va

Armature
current Ia

Field
inductance Lf

Field
current If

Rf

Field
voltage VfIf Rf

Ia Ra

Ra

B. ω B

K. If .  ω

K. If . Ia

K

acceleration, dω
dt

dIa
dt

dIf

dt

FIGURE 7.60
Causal loop diagram for basic commutating machine.

Electromechanical transducer mode• 
  The fi eld current is constant, that is, fc(t) = FC

Electromechanical amplifi er mode• 
  The armature current is constant, that is, ac(t) = AC

Rotating amplifi er mode• 
  The shaft speed is constant, that is, w(t) = W

The complete causal loop diagram for basic commutating machine is shown in Figure 7.60, and 
its fl ow diagram in Figure 7.61.



System Dynamics Techniques 373

AC

VAD

RAC

FCW

AR

FCAC

VFD

BW

ω

ACC

E

E

B

RFC

FR

FC E

C

FIGURE 7.61
Flow diagram for basic commutating machine.

Dynamo equation

Field port 
Level equation for fi eld current FC.K = FC.J + DT*RFC.JK
Rate equation for rate of change of fi eld current RFC.KL = (VF − VFD.K)/FI
Auxiliary equation for armature drop in voltage VFD.K = FR*FC.K

Armature port 
Level equation for armature current AC.K = AC.J + DT*RAC.JK
Rate equation for rate of change of fi eld current RAC.KL = (VA − VAD.K −
  C*FC.K*W.K)/AI
Auxiliary equation for drop in fi eld voltage VAD.K = AC.K*RA

Shaft port 
Level equation for shaft speed W.K = W.J + DT*ACC.JK
Rate equation for angular acceleration ACC.K = (T + FCAC.K − BW.K)/Jx
Auxiliary equation for generated torque FCAC.K = C*AC.K*FC.K
Auxiliary equation for torque required to overcome  BW.K = B*W.K
 friction 

Constants 
Field resistance FR = 100 ohm 
Armature resistance RA = 0.5 ohm 
Torque coeffi cient C = 150 
Moment of inertia Jx = 10 

MATLAB program

%MATLAB program for simulation of basic commutating machine
% in electromechanical transducer mode of operation
clear all;

VA=125; % Armature voltage, V
VF=100; % Field voltage, V
FI=0.06; % Field inductance, H
AI=0.2; % Armature inductance, H



374 Modeling and Simulation of Systems Using MATLAB and Simulink

FR=100;  % Field resistance, ohm
RA=2;  % Armature resistance, ohm
C=0.3;  % Torque coefficient
Jx=0.010;  % Moment of inertia
B = 0.015;  % Damper
T=0;  % Applied torque

t=0;  % Initial time
DT=0.001;  % Step size
Tsim=3;  % Length of simulation
n=round(Tsim-t)/DT; % Number of iterations
% Initialization of level and rate variables
W=0; FC=0; AC=0;
ACC=0; RFC=0; RAC=0;

for i=1:n
% Store data during simulation in x1 vector
x1(i,:)=[t, W, FC, AC, ACC, RAC, RFC];

% Auxialary equations
FCAC= C*AC*FC;
BW= B*W;
VAD=AC*RA;
VFD = FR*FC;
% Rate Equations
RFC=(VF-VFD)/FI;
RAC=(VA-VAD-C*FC*W)/AI;
ACC=(T+FCAC-BW)/Jx;
% Level equation
FC=FC+DT*RFC;
AC=AC+DT*RAC;
W=W+DT*ACC;

% increament the time t
t=t+DT;
if t>=0.5
%T=-5; % Applied torque, N-m

end
end
figure(1)
plot(x1(:,1),x1(:,2) )
xlabel(‘Time, sec.’)
ylabel(‘Speed, r/s’)

figure(2)
plot(x1(:,1),x1(:,3) )
xlabel(‘Time, sec.’)
ylabel(‘Field current, A’)

figure(3)
plot(x1(:,1),x1(:,4) )
xlabel(‘Time, sec.’)
ylabel(‘Armature current, A’)

figure(4)
plot(x1(:,1),x1(:,5:6) )
xlabel(‘Time, sec.’)
ylabel(‘Rate variables,unit/sec’)
legend(‘Acceleration’,‘RAC’)



System Dynamics Techniques 375

Results

The above developed causal model simulated for given conditions and data and the following 
results have been obtained as shown in Figures 7.62 through 7.64. From the results, it is clear that 
when the supply is given to the machine in motoring mode the armature current increases rapidly 
in the beginning and then decreases and reaches steady state. The speed of machine gradually 
increases and settles down to some steady state value.

45

40

35

30

25

20

15

10

5

0
0 0.5 1 1.5 2 2.5 3

Time (s)

A
rm

at
ur

e c
ur

re
nt

 (A
)

FIGURE 7.62
Armature current vs. time.

350

300

250

200

150

100

50

0
0 0.5 1 1.5 2 2.5 3

Time (s)

Sp
ee

d 
(r

/s
)

FIGURE 7.63
Speed vs. time.



376 Modeling and Simulation of Systems Using MATLAB and Simulink

7.13 Modeling and Simulation of Parachute Deceleration Device

A parachute constitutes of a round surface that matches the shape of a hemisphere. They 
are used for various applications, namely, paratroopers, supply dropping, aircraft land-
ing, aircrew (for pilot of fi ghter aircraft), weapons, and missiles; their main purpose is to 
reduce the speed of descending mass to its specifi ed terminal velocity. It depends on the 
diameter of parachute.

Parachute canopies are made of nylon material. Parachute canopy materials are available 
in different strengths and elongations. According to the requirement, the particular mate-
rials are selected. While doing the preliminary calculation for requirement of the strength 
of material, it is assumed that the strength requirement is uniform throughout the fabric, 
whereas it is not, as the load imposed on the canopy reduces during parachute infl ations, 
an effi cient design could be evolved. It will help in reducing the mass, volume, and cost of 
parachute.

During the operation of a typical parachute system, say personnel parachute, it goes 
through a sequence of the following functional phases:

Deployment• 

Infl ation• 

Deceleration• 

Descent• 

Termination• 

The maximum forces are imposed during infl ation of the parachute. These maximum forces 

are the product of dynamic pressure 
⎛ ⎞ρ⎜ ⎟⎝ ⎠

21

2
v  and drag area of the parachute canopy (CdS). 

Acceleration
RAC

1200

1000

800

600

400

200

0

–200
0 0.5 1 1.5 2 2.5 3

Ra
te

 v
ar

ia
bl

es
 (u

ni
t/s

)

Time (s)

FIGURE 7.64
Rate of change of armature current (RAC) and acceleration vs. time.



System Dynamics Techniques 377

In this example, the aim is to develop a simulation model to determine the variation in 
(1) force, (2) velocity, (3) stress, and (4) fl ight path angle of parachute canopy during the 
period of its infl ation with respect to time.

7.13.1 Parachute Inflation

The shape of canopy gores in the skirt area governs the infl ation process, canopy mass its 
porosity parameters. The stages in the infl ation of a typical parachute in a fi nite mass sys-
tem are illustrated schematically in Figure 7.65. It has been observed that when the canopy 
mouth opens

 1. Substantial volume of air enters down the length of the simply streaming tube of 
fabric to the apex.

 2. The crown begins to fi ll continuously like a balloon being infl ated through a 
conical duct.

 3. Canopy expansion is resisted by structural inertia and tension.

By defi nition, full infl ation is completed when the canopy has fi rst reached its normal 
steady state projected area.

FIGURE 7.65
Different stages in parachute infl ation. (a) Opening of canopy 

mouth. (b) Air mass moves along canopy. (c) Air mass reaches 

crown of canopy. (d) Infl ux of air expands crown. (e) Expansion 

of crown resisted by structural tension and inertia. (f) Enlarged 

inlet causes rapid fi lling. (g) Skirt over-expanded, crown 

depressed by momentum of surrounding air mass.

(a)

(b)

(c)

(d)

(e)

(f )

(g)



378 Modeling and Simulation of Systems Using MATLAB and Simulink

The infl ation of circular parachutes is attended by increase in infl ated diameter, or pro-
jected frontal area with the time (infl ation/opening of parachute). The changing shapes 
during canopy infl ation cause the drag coeffi cient to increase. During the infl ation of a 
parachute, an aerodynamic force is developed tangential to the fl ight path that varies with 
time. The upper crown of the canopy is subjected to this maximum force and lower part 
of the crown is subjected to less force. The parachute could be made with a combination 
of two to three types of fabrics keeping in view the variation of forces/stresses on canopy 
surfaces.

7.13.2 Canopy Stress Distribution

The importance of knowing the stress distribution in canopy and its relation to canopy 
stress lies in the necessity for minimizing the weight of the canopy and its required pack-
ing volume. In lightweight designs, where maintenance of canopy strength is an impor-
tant factor, stress analysis is an indispensable element.

The stresses in a canopy are caused by aerodynamic loads acting on and between the vari-
ous structural components. The stresses are both dynamic and static. Dynamic stresses usually 
exist for comparatively short time during the transition period from the moment the suspen-
sion lines are stretched when the canopy fi lling begins to the moment a steady state is reached 
(the moment the canopy assumes its fully infl ated shape). Although the stresses are not con-
stant during the steady state, their variation is small compared to that encountered during the 
transition period. Therefore, the stresses in steady state can be considered as static.

The load-carrying elements are primarily fabric that has little stiffness and, therefore, 
can take no bending loads. Loads are resisted by tension in the members. Many types of 
fabric can be utilized, each having its own strength, elongation characteristics, shape, and 
construction, which vary with the type of canopy.

Maximum stresses occur during the opening process, which is the period of rapidly 
changing shape and load. Experiences with structural failures in canopies, as well as mea-
surement of snatch and opening forces, indicate that the critical stresses occur during the 
opening shock. Nevertheless, the steady state problem is of interest because the maximum 
stress in the infi nite-mass case, which approximates the conditions of opening for such 
applications as fi rst-state deceleration, aircraft landing deceleration, and others seem to 
occur when the canopy is fully or almost fully opened. The steady state case also serves 
as a useful, preliminary to the more diffi cult and important problems of critical transient 
stresses during opening. The maximum force is imposed on the upper part of the para-
chute. When the parachute opens fully, the magnitude of the forces reduces substantially.

In order to work out the effi cient design, the history of variation of forces on different 
part of canopy are essential so that the lower portion of the parachute fabric could be 
selected based on the actual reduced loads.

7.13.3 Modeling and Simulation of Parachute Trajectory

The following steps have been followed in the modeling and simulation of parachute 
dynamics using SD technique:

Step 1 Variable identifi cation and drawing causal links

The fi rst step in modeling and simulation of parachute system is to identify the key vari-
ables. Secondly, the cause–effect relationship is determined and systematically represented 
in the causal loop diagram shown in Figure 7.66.



System Dynamics Techniques 379

FIGURE 7.66
Causal loop diagram for modeling and simulation of parachute.

W

G

CD

S

+

+

+ +
+

+

+

+

+

+

+

–
–
– –

–

–

–
–

–
––

Q

V

D

Y

G*

Vx

X

RVx

Vy

RVy

Step 2 Draw causal loop and fl ow diagram

After drawing the causal loop diagram, the fl ow diagram is drawn illustrating the different 
types of variables, as shown in Figures 7.66 and 7.67.

Step 3 Dynamo equations

The dynamo equation can be written from the fl ow diagram drawn in the earlier stage. 
Dynamo equations for characterizing higher order dynamics of the parachute system can 
be directly simulated in terms of the time profi le of level variables, fl ow-rate variables, and 
other illustrative characteristics for given values of exogenous variables and parameters.

Level equations

Equations mentioned below are the level equations representing level (state) variables of 
the system. The level variables (such as horizontal velocity, vertical velocity, horizontal 
distance, and vertical distance) at kth time instant is equal to the level variables at Jth time 
plus increment:

L Vx.K = Vx.J + ΔT*RVx.JK

L Vy.K = Vy.J + ΔT*RVy.JK

L x.K = x.J + ΔT*Rx.JK

L H.K = H.J + ΔT*Ry.JK



380 Modeling and Simulation of Systems Using MATLAB and Simulink

Rate equations

The rate equations, which will give the rate of state or level variables over a fi nite time 
(say DT) are:

R RVx.KL = −(Q.K*Cd*S*G*Vx.K)/(W*V.K)

R RVy.KL = −(Q.K*Cd*S*G*Vy.K)/(W*V.K) − G

R Rx.KL = Vx.K

R Ry.KL = Vy.K

Auxiliary equation

The auxiliary equations are basically required for simplifying the calculations and are 
given below:

A V.K = sqrt(Vx.K2 + Vy.K2)

A Q.K = (rhow*V.K2)/2

A Drag = −(W/G)*(RVx.KL/Vx.K)*V.K

A theta = 90 + atan(Vx.K/Vy.K)*180/pi

The above developed dynamo equations are simulated on a computer in MATLAB envi-
ronment. The results are shown in Figures 7.68 and 7.69. It is very clear from the results that 

FIGURE 7.67
Flow diagram for modeling and simulation of parachute system.

RVx RVy
Vx Vy

V

H

E

Rhow

Q

E

D

XG*



System Dynamics Techniques 381

the time required to reach the ground is different if pilot parachute is detached at different 
timings. The value of the drag is also dependent on the time at which the pilot parachute 
is detached, as shown in Table 7.4.

The results also indicate that the time required to reach the ground is different if pilot 
parachute is detached at different horizontal velocities. The value of snatch force and the 
drag is also quite different for different velocities, as shown in Table 7.5.

FIGURE 7.68
Simulation results with two parachutes (pilot and main) when pilot parachute is detached at different 

horizontal velocities.

Vx = 100 m/s
Vx = 75 m/s
Vx = 50 m/s

Vx = 100 m/s
Vx = 75 m/s
Vx = 50 m/s

0

H
or

iz
on

ta
l v

el
oc

ity
 (m

/s
)

0

(a)

20

40

60

80

100

120

140

5 10 15
Time (s)

0

Ve
rt

ic
al

 v
el

oc
ity

 (m
/s

)

0

5

10

15

(b)

20

25

30

35

40

5 10 15
Time (s)

Vx = 100 m/s
Vx = 75 m/s
Vx = 50 m/s

Vx = 100 m/s
Vx = 75 m/s
Vx = 50 m/s

0

H
or

iz
on

ta
l d

ist
an

ce
 (m

)

0

50
100
150

250
200

300

(c)

350

450
400

500

5 10 15
Time (s)

0

H
ei

gh
t (

m
)

0

50

100

(d)

150

200

250

5 10 15
Time (s)

0

D
ra

g

0

0.5

1

(e)

1.5

2

2.5
×104

5 10 15

Vx = 100 m/s
Vx = 75 m/s
Vx = 50 m/s

Vx = 100 m/s
Vx = 75 m/s
Vx = 50 m/s

Time (s)
0

A
ng

le
 (d

eg
re

e)

0
10
20

50
60
70
80

30

(f)

40

90

5 10 15
Time (s)



382 Modeling and Simulation of Systems Using MATLAB and Simulink

0
(a)

0

20

40

80

100

120

60

140

5 10 15

Without pilot parachute
Pilot parachute detached at t =1 s

t = 5 s
t = 8 s

t = 3 s

H
or

iz
on

ta
l v

el
oc

ity
 (m

/s
)

Time (s)

Without pilot parachute
Pilot parachute detached at t =1 s

t = 5 s
t = 8 s

t = 3 s

50
45
40
35
30
25
20
15
10

5
0

0 5
(b)

10 15

Ve
rt

ic
al

 v
el

oc
ity

 (m
/s

)

Time (s)

Without pilot parachute
Pilot parachute detached at t = 1 s
t = 3 s
t = 5 s
t = 8 s

Time (s)

600

500

400

300

200

100

0
0 5

(c)
10 15

H
or

iz
on

ta
l d

ist
an

ce
 (m

)

Without pilot parachute
Pilot parachute detached at t = 1 s
t = 3 s
t = 5 s
t = 8 s

Time (s)

250

200

150

100

50

00 5 10 15

H
ei

gh
t (

m
)

(d)

Without pilot parachute
Pilot parachute detached at t = 1 s
t = 3 s
t = 5 s
t = 8 s

Time (s)

3.5
×104

3

2.5

2

1.5

1

0.5

0
0 5 10 15

D
ra

g

(e)

Without pilot parachute
Pilot parachute detached at t = 1 s
t = 3 s
t = 5 s
t = 8 s

90
80

70

60

40

50

30

20

10

0
0 5 10 15

Time (s)(f )

Th
et

a (
de

gr
ee

)

FIGURE 7.69
Simulation results with two parachutes (pilot and main) when pilot parachute is detached at different times.

7.14 Modeling of Heat Generated in a Parachute during Deployment

A large amount of heat is generated during power packing and deployment of parachute. 
The heat developed during packing may be controlled, but it is uncontrolled when para-
chute is deployed. Heat generated is due to interlayer friction and wall-fabric friction. 
The canopy is a poor conductor of heat and irregular in shape. A large temperature 



System Dynamics Techniques 383

gradient is developed in the canopy surface. This may cause a major failure in the para-
chutes (Chaturvedi and Gupta, 1995). The schematic diagram of a general utility decelera-
tor packing press is shown in Figure 7.70.

The key variables affecting the heat generation during deployment is identifi ed and the 
causal links are drawn to get complete causal loop diagram, as shown in Figure 7.71. The 
different types of variables are separated and systematically shown in the fl ow diagram, 
as shown in Figure 7.72.

TABLE 7.4

Simulation Results When Pilot Parachute Is Detached at Different Times

Time of 

Detachment (s)

Time Required 

to Reach to 

Ground (s)

Vertical 

Velocity When 

Detached (m/s) Drag

Angle from 

Horizontal

Total Horizontal 

Distance 

Traveled (m)

0 14.52 0 31,535 89.9 117.8

1 14.83 9 19,866 89.8 216.53

3 14.34 22.9 10,643 89.6 362.50

5 12.71 34.45 7,815.7 88.0 464.05

8 8.9 48.03 7,140.2 60.5 546.89

TABLE 7.5

Simulation Results When Pilot Parachute Is Detached at Different 
Horizontal Velocities (Vx)

Vx

Time Required 

to Reach to 

Ground (s)

Vertical 

Velocity When 

Detached (m/s) Drag

Angle from 

Horizontal

Total Horizontal 

Distance 

Traveled (m)

100 14.82 8.9 20,277 89.84 212.08

75 14.58 20.18 12,028 89.68 331.23

50 12.35 36.16 7,605.2 87.38 477.72

FIGURE 7.70
Schematic diagram of general utility decelerator packing press facility.

Packing box

Decelerator

Rigging table

Press frame
Cylinder

Ram cylinder



384 Modeling and Simulation of Systems Using MATLAB and Simulink

7.14.1 Dynamo Equations

From the fl ow diagram, the dynamic equations for heat generation during deployment are 
written as

 1. Level equations for temperature and energy

 T.K = T.J + dt*RT.JK

 E.K = E.J + dt*RE.JK

Wall temp., T
+

+

+

+

+

+

–
–

–

–

–

– –+

Room temp, Ta

Adiabatic wall temp
Taw

Temperature of
environment

Ts

Specific heat of
canopy material, C

Energy stored
by canopy, E

Rate of change of
energy stored by

canopy, RE

Radiation shape factor
FS

Rate of
change of wall
temperature

RT

Mass of canopy, M

Surface areas,
S1, S2, S3, S4

FIGURE 7.71
Causal loop diagram for heat generation model for parachute.

Rate of change
of wall temp.

RT
Adiabatic

wall
temperature

Taw

Room
temperature, Ta

Temperature of
environment

Ts
Mass of canopy, M

Specific heat of
canopy material, C

Energy
stored by
canopy, E

Rate of change
of energy stored
by canopy, RE

Radiation
shape factor

(FS)

Wall
temperature

(T)

S1, S2, S3, S4

FIGURE 7.72
Flow diagram for heat generation model for parachute.



System Dynamics Techniques 385

 2. Rate equations

 RT.KL = (CC.K + L*A*S2 – BB.K – AA.K)/(M*C)

 RE.KL = M*C*RT.KL

 3. Auxiliary equations

 AA.K = c1
*FS*E*S4

*(T.K – Ta)

 BB.K = c1
*S3

*E*(T.K – Ta)

 CC.K = H*S1
*(Taw – T)

  These equations are simulated in MATLAB environment and the results are shown 
in Figure 7.73.

7.15 Modeling of Stanchion System of Aircraft Arrester Barrier System

The aircraft arrester barrier nets are installed at the end of the runways for the purpose of 
arresting combat aircrafts overshooting runways’ length during aborted takeoff and emer-
gency landings. Two stanchion systems one at each end of the net are required in a system 
to support and to provide electrical controlled movement to the net. During deployment of 
the net, certain forces are generated and imposed on the subsystem of the aircraft arrester 
barrier system. Arrestment of a landing or aborted aircraft is accomplished by the engage-
ment of the aircraft with multiple element net assembly stretched across the runway which 
is lifted by two stanchion system. There are two energy absorbing systems installed at 
both ends of the aircraft arrester barrier system. The aircraft arrester barrier system is 
shown in Figure 7.74; it consists of the following subsystems:

FIGURE 7.73
Trend of increase in temperature, energy, and their rate variables.

700

600

500

400

300

200

100

0
0 0.2 0.4 0.6 0.8 1

Time(a)
1.2 1.4 1.6 1.8 2

Temperature
Rate of
temperature

3000

2500

2000

1500

1000

500

0
0 0.2 0.4 0.6 0.8 1

Time(b)
1.2 1.4 1.6

Energy
Rate of energy

1.8 2



386 Modeling and Simulation of Systems Using MATLAB and Simulink

 1. Stanchion system 2. Energy absorbing system     3. Engagement system
 4. Tape retrieval system 5. Pressure roller system     6. Suspension system
 7. Sheave assembly 8. Drive tape     9. Shear-off coupling
10. Tape connector 11. Net anchoring mechanism 12. Electrical control

These subsystems perform various functions during the operation of the aircraft arrester 
barrier system. After the landing of the aircraft, the aircraft arrester barrier system initiates 
its operation when the aircraft is stuck in the net assembly; then operation of energy absorb-
ing systems, which are installed at both ends of the runway start working and hence the 
braking torque is applied through net tape so that the aircraft stops within the prescribed 
length of the runway. Consequent upon the stopping of aircraft, the tape retrieval is done.

The stanchion system consists of an electrically operated winch device, which helps in 
rising and lowering the net of aircraft arrestor barrier system, as shown in Figure 7.74. The 
system is fi xed on a strong concrete ground base on either side across the runway through 
its metallic base frame.

As the up button is pressed on the panel, the current passes to the motor of the stan-
chion system, the motor starts rotating, and the lift cable starts winding on the winch 
drum lifting the stanchion system frame from horizontal to vertical position. As the frame 
reaches its extreme position, its base presses the lever of limit switch mounted on the base 
frame, switching off the current to the brake motor. As the current to the brake motor is 
switched off, the solenoid-operated brake of the motor is actuated, gripping to the shaft 
of the motor and stopping it instantaneously. To lower the stanchion, the down button is 
pressed, which passes current to the motor again, the brakes are released and the motor 
starts rotating again but in reverse direction. The winch cable thus gets unwound from 
the winch, lowering the stanchion frame. When frames come down to its extreme posi-
tion, it presses another limit switch stopping its moment further. The maximum forces are 
imposed during fully deployment of net with minimum allowable sag. This means when 
the angle of the stanchion frame is at a lower limit in up position, that is, 79° (79°–82°) and 
the net height in the center of the runway is at an upper limit, that is, 3.9 m (3.7 ± 2 m). the 
maximum tension T is the product of three functions, that is, weight of the net (W), the 
horizontal distance between two extreme points of the stanchion frame (l), and the sag of 
the net (Yc). This can be expressed in Equation 7.7:

 = √ +1 c
20.5 * * ( /4 * )( )T W l l Y  (7.7)

FIGURE 7.74
Aircraft energy absorbing system.



System Dynamics Techniques 387

FIGURE 7.76
Forces on stanchion systems.

T1

T2

θ1

α' yc

3.9 m
T1

T2

αβ'

β

30 m
3.1 m

62 m

L
BA

122 m

FIGURE 7.75
Different stages of deployment of aircraft arrestor barrier system.

In this work, the stanchion system is modeled and simulated under different operating 
conditions for the tension in winch cable and support cable under dynamic conditions 
when the system is erected. Also, the rate of change of tension in the suspension cable and 
the lift cable has been studied.

7.15.1  Modeling and Simulation of Forces Acting on Stanchion 
System Using System Dynamic Technique

The net deployment process is governed by the lifting of the net, thus increasing weight 
and center height of the net, which results in an increase in tensions in the suspension 
cable and the lift cable. The stages in the lifting of the net are illustrated schematically in 
Figure 7.75.

When the stanchion is in up position, different forces are acting on it, as shown in 
Figure 7.76. The total angle suspended by the 5.9 m long stanchion frame is φ in time t. 
Therefore the angular velocity ω is given by



388 Modeling and Simulation of Systems Using MATLAB and Simulink

 ω = φ * 3.14/(180 * )t  (7.8)

If H is the horizontal pull and V is the vertical reaction then

 α = /tan H V  (7.9)

Where l is the horizontal length between points AB and Yc is sag can be expressed as

 = =1 262 – 2 *l A A  (7.10)

where

 = ω2 5.9 cos( * )A t  (7.11)

Similarly

 =c 3 –Y A H  (7.12)

where

 = ω3 sin( * )A t  (7.13)

and H is the height of the net.
Therefore from Equations 7.10 and 7.11, Equation 7.9 becomes

 α = −1 3tan /4 * ( )A A H  (7.14)

Similarly from Equations 7.10 and 7.13 we get

 β = +3 2tan /(30 )A A  (7.15)

The look of the winch cable is attached on the stanchion frame at a distance of 5.63 m 
than

 θ = +1 5 6tan( ) /3.1A A  (7.16)

where

 = ω5 5.63 * sin( * )A t  (7.17)

and

 = ω6 5.63 * cos( * )A t  (7.18)

Similarly RA is the reaction due to tension T1 that can be expressed as

 = α + β1 1RA * cos sin T T  (7.19)



System Dynamics Techniques 389

From Equation 7.19, tension in the winch cable T2 and compression in the stanchion system 
T3 can be expressed as

 = θ2 1RA/sinT  (7.20)

 T3 = RA*5.9/A3

W is the weight of the net which can be expressed as

 = ρ*W V  (7.21)

where
ρ is the density of the material which is a constant
V is the volume of the material

Considering net as a fl exible certain with B is the thickness and A is the area of the net, 
Equation 7.21 becomes

 = ρ* *W A B  (7.22)

Area A can be calculated as
A = area of the net
 = area of the rectangle QABP – area of parabola

Finally A = 1*(A3 + 2H)/3

 +1 3area = *( 2 )/3A A H  (7.23)

Put this value in Equation 7.17

 = ρ +1 3* * *( 2 )/3W V A A H  (7.24)

Considering Equations 7.8 through 7.24, the net weight W, horizontal distance l, and sag 
Yc is the function of φ or angular velocity ω therefore change in the φ or angular velocity 
results substantial change in tensions T1, T2, and T3. By simulation, prediction can be made 
how quickly the net is deployed with particular HP of the motor and rate of the change of 
tension is predicted.

In the performance characteristic evaluation of the stanchion system, it is important to 
determine the maximum forces or tension in the suspension cable, lift cable in order to calcu-
late the power requirement of the electrical motor and the required strength of material to be 
used for above-mentioned elements. In preliminary design and trade of studies, the designer 
requires a simple theory, which will enable rapid and reasonably accurate estimate of peak 
loads in a particular deployment situation. Based on the maximum design value, the strength 
of shear pin is selected. HP of electrical motor is predicted by SD technique.

7.15.2 Dynamic Model

In this model, an attempt is made to simulate conditions when the net started to deploy from 
down position to the position when suspension strap suspended on point A to B of the stan-
chion system, as shown in Figure 7.77, in such a way that the center of the suspension strap 
made a point contact with ground. In this position, the geometrical profi le of the suspension 



390 Modeling and Simulation of Systems Using MATLAB and Simulink

strap, on which the net is attached, is a parabola. The total weight of the net is therefore equal 
to the weight of the bunch of the horizontal straps plus the wait of the suspended portion of 
the net. It varies with time. This model is simulated up to 0.72 s. The variation in the tension 
T1, T2, and T3 and rate of change of tension is observed at different intervals of time.

The simulation of time profi le of tensions, weight of the net, and deployment of the stan-
chion system have been attempted using SD technique. In this technique, casual loops are 
identifi ed, as shown in Figure 7.78 of casual loop diagram. From the casual loop diagram, 
the fl ow diagram is drawn, as shown in Figure 7.79, which encourages the modeler to 
understand the model. After drawing the fl ow diagram, dynamo equations are written, 
the DYNAMO model was simulated directly on the computer in MATLAB package with-
out any change in the model. This is an advantage of the model, when developed by this 
technique.

7.15.3 Results

The models obtained in the result match with the values obtained from imperial relations. 
The results obtained using the simulation is quite encouraging. The maximum  values of 
tension obtained from simulation are comparatively less than the maximum values 
attempted with the conventional method.

The variation of tension, weight of the net, aircraft engagement time profi le, rate of 
the change of tension, and rate of change of weight of the net, obtained from simulation 

FIGURE 7.77
Calculation of area of net.

A B

T1

dT1

W_net

dW_net

A_net
P Thickness

of belt

Rate of
change of

sag

Sag

RA dT2

T2α

A2

A4

W_stan

H
ω

Length

FIGURE 7.78
Causal loop diagram.



System Dynamics Techniques 391

studies are given in Figures 7.80 and 7.81. From Figure 7.81, the results are quite close to the 
actual results obtained from the system. Figures 7.82 and 7.83 show the simulation results 
of stanchion system of aircraft arrestor barrier system for 20 ton aircraft.

E1

E2

E3

E4

H

A2

α

dT2

RA

Tension in winch
cable T2

Sag

Rate of
change

sag

dW_net

A_netρ

W_net

Thickness
of belt

Tension in
suspension 

cable T1dT1

Length

FIGURE 7.79
Flow diagram for modeling and simulation of Stanchion system.

FIGURE 7.80
Simulation results of stanchion system during deployment of 20 ton aircraft arrester barrier system.

1800

1600

1400

1200

1000

800

600

400

200
0

(a)
0.5

Te
ns

io
n 

in
 th

e s
us

pe
ns

io
n 

ca
bl

e

1 1.5 2 2.5 3
Time (s)

800

700

600

500

400

300

200

100

0
0

Re
ac

tio
n 

fro
m

 st
an

ch
io

n 
sy

st
em

0.5 1 1.5 2 2.5 3
Time (s)(b)

(continued)



392 Modeling and Simulation of Systems Using MATLAB and Simulink

500
450
400
350
300
250
200
150
100

50
0

0 0.5

W
ei

gh
t o

f t
he

 n
et

1 1.5 2 2.5 3
Time (s)(c)

400

350

300

250

200

150

100

50

0
0 0.5

A
re

a o
f t

he
 n

et

1 1.5 2 2.5 3
Time (s)(d)

3

2.5

2

1.5

1

0.5

0
0 0.5

Sa
g 

in
 n

et

1 1.5 2 2.5 3
Time (s)(e)

FIGURE 7.80 (continued)

4500
Experimental results
Simulated results4000

3500

3000

2500

2000

1500

1000

500

0
0

Te
ns

io
n 

in
 th

e w
in

ch
 ca

bl
e

0.5  1 1.5 2 2.5 3 3.5
Time (s)

FIGURE 7.81
Time profi le of tension T1, T2, reaction and weight of the net during deployment of 40 ton aircraft arrester 

 barrier system.



System Dynamics Techniques 393

2000

500 2.5

2

1.5

1

0.5

0

400

300

200

100

0

600

400

200

0

1500

1000

500

0
0

Te
ns

io
n 

in
 th

e s
us

pe
ns

io
n 

ca
bl

e
W

ei
gh

t o
f t

he
 n

et

Sa
g 

in
 n

et
Re

ac
tio

n 
fro

m
 st

an
ch

io
n 

sy
st

em

1 2 3

0 1 2 3 0 1 2 3

0 1 2 3
Time (s)Time (s)

Time (s)Time (s)

FIGURE 7.82
Time profi le of tension in suspension cable, reaction from stanchion system, weight of the net and sag of the net 

during deployment of 20 ton ABBS.

2200

2000

1800

1600

1400

1200

1000

800

600

400

200
0 0..5

Te
ns

io
n 

in
 th

e w
in

ch
 ca

bl
e

1 1.5 2 2.5 3

Experimental data
Simulated results

Time (s)

FIGURE 7.83
Comparison of experimental data and simulated data.



394 Modeling and Simulation of Systems Using MATLAB and Simulink

%MATLAB Program for simulation of stanchion system
clear all;
% Simulation parameters
t=0.05;
tsim=3.0;
dt=0.001;tc=t;
% Constants
W_stan=500; %kg
Hmax=4.9; %m
dh=dt*Hmax/(tsim-t);
H=0;
B1=5;
w=82*pi/(180*(tsim-t) );
Row=1140; % kg/m3
thick=11.37e-4; %m
c=1.02;
n=round( (tsim-t)/dt); % no. of iterations
% Loop
num=.1;
den=[.5,0.9,150];
[A B C D]=tf2ss(num,den);
k=00; u=1;x=[0;0];
for i=1:n

A1=7.4*cos(w*t);
A2=7.4*sin(w*t);
A3=6.9*cos(w*t);
A4=6.9*sin(w*t);
length=64.5-2*A1;
sag=(A2-H);
A5=length/(4*sag);
alpha=atan(A5);
beta=atan(A2/(20+A1) );
theta1=atan(A4/(A3+3.1) );
A_net=length*(A2-H)/2+length*H;
W_net=Row*A_net*thick;
T1=0.5*W_net*sqrt(1+A5ˆ2);
RA=T1*cos(alpha)+T1*sin(beta);
dx=A*x+B*u;
x=x+dt*dx;
B1=45e5*(C*x+D*u);
tc=tc+dt;
T2=(RA*A1+W_stan*(1.25*cos(w*t) )+B1*w)/(cos(theta1)*A4)-1500*exp(-
t/0.5);%;
H=H+dh;
t=t+dt;
x1(i,:)=[t,T1,T2,RA,W_net, B1, A_net sag, theta1];

end
T2exp=[10 3450 630 1905 300 1190 320 700 500
 .6 1 1.25 1.4 1.6 1.75 1.9 2.2 2.5]′;
figure(3)
plot(x1(:,1),x1(:,2) )
xlabel(‘Time (sec.) —–>’)
ylabel(‘Tension in the suspension cable’)

figure(1)
plot(T2exp(:,2)-0.6, T2exp(:,1),‘:x’)
hold



System Dynamics Techniques 395

plot(x1(:,1)+0.2,x1(:,3) )
xlabel(‘Time (sec.) —–>’)
ylabel(‘Tension in the winch cable’)
legend(‘Experimental results’, ‘Simulated results’)

figure(2)
plot(x1(:,1),x1(:,4) )
xlabel(‘Time (sec.) —–>’)
ylabel(‘Reaction from stanchion system’)

figure(4)
plot(x1(:,1),x1(:,5) )
xlabel(‘Time (sec.) —–>’)
ylabel(‘weight of the Net’)

figure(5)
plot(x1(:,1),x1(:,7) )
xlabel(‘Time (sec.) —–>’)
ylabel(‘Area of the net’)

figure(6)
plot(x1(:,1),x1(:,8) )
xlabel(‘Time (sec.) —–>’)
ylabel(‘Sag in net’)

figure(7)
plot(x1(:,1),x1(:,9) )
xlabel(‘Time (sec.) —–>’)
ylabel(‘Angle theta1’)

if (tc>=0.1 & tc<0.25); B=B*1.2;
 %elseif (tc>=0.25 & tc <0.26) B=B;
 elseif (tc>= 0.25 & tc <0.4) B=B/1.2;
 elseif (tc>=0.4); tc=0.1;B=.05*exp(-t/1.5);
 end

7.16 Review Questions

 1. Briefl y describe three main approaches of representing qualitative simulation 
models.

 2. In the context of the SD simulation methodology, explain the following con-
cepts: causal links, causal loop diagram, fl ow diagram, dynamo equations, and 
S-shaped growth.

 3. Differentiate the following:

 a. Positive and negative causal link

 b. Positive and negative causal loops

 c. Level and rate variables

 d. Auxiliary variables and constants

 e. Decision sector and process sector



396 Modeling and Simulation of Systems Using MATLAB and Simulink

 3. i.  In a delayed ordering system, the goods on order are increased by the order rate 
and depleted by the receiving rate (goods on order/delay in ordering). Suppose 
that the goods on order are initially zero and that an order rate of 800 units per 
week suddenly begins at the 4th week and continues up to 20th week. Draw causal 
loop diagram, fl ow diagram, and dynamo equations to simulate for receiving rate 
and goods in order.

 ii.  The amount of heat in thermometer determines its temperature; the greater the 
heat content, the higher the temperature. The heat fl ow rate depends on the dif-
ference in temperature between the thermometer and its surroundings. Develop 
a dynamo model for this thermal system and simulate it on digital computer. 
Assume that the initial temperature of thermometer is 60°C and the temperature 
of surrounding is 20°C.

 iii.  Consider a water storage system the fl oat drops, it turns on the valve to admit 
water in the tank. The water level rises, causes the fl oat to rise, and this is in turn 
gradually shuts off the valve, because the valve controls the water level (WL) 
which controls the valve. Assume that the initial water level equals to zero and 
maximum water level may be equal to 4 gal.

 iv.    Radioactive material spontaneously disintegrates at a rate that depends on the 
amount of material that remains. That is, a given fraction of the remaining mate-
rial disintegrates everyday. Depending on the particular kind of atom, the rate 
of decay can be so fast that it is diffi cult to observe the material before it disin-
tegrates or so slow that it takes thousands of years to lose half of the material, 
assume we have 1 mg of material which decays at 5% per day.

 a. Draw causal loop and fl ow diagram for above system.

 b. Draw decay rate and amount of material vs. time.

 4. Sketch a causal loop diagram and a fl ow diagram. Also write DYNAMO equations 
for the S-shaped growth structure represented by either population model or an 
infection disease model.

 5. Write DYNAMO equations corresponding to the fl ow diagram shown in Figure 7.84. 
The variable dimensions are given in Table 7.6.

Q. Short Answer Questions

 1. Draw general trends of:

 a. Positive feedback systems.

 b. Negative feedback systems.

 2. Defi ne and give one example for each:

 a. Positive causal links.

 b. Negative causal links.

 3. Arms proliferation causal loop diagram shown as:

 a. Draw fl ow diagram for this system.

 b. Write dynamo equations for the arms proliferation system.

 c. Draw system response with time (approximately).



System Dynamics Techniques 397

 4. Defi ne:

 a. Causal links.

 b. Level variables.

 c. Rate variables.

 d. Auxiliary variables.

 e. Exogenous variables.

 5. Establish the causal relationships for the following:

 a. Job availability attracts migrants to the city.

 b. More jobs affect job availability.

 c. Migration affects job availability.

 d. Rate of change of current to inductance in series R-L circuit.

 e. Weapons of nation “A” increases the threat perceived by nation “B.”

 f. Addiction rate depends on fraction addiction rate.

 6. Draw the level variable for the rate variable, which is shown in Figure 7.85.

TABLE 7.6

Variables and Their Dimensions

Variable Dimension

NUT, BIO Food unit

FR, FOOD, GRO, DIE, FRT Food unit/time

FTIME, LT Time

GT Food units-Time

FR

NUT

DIEGRO

GT

BIO LT

FRI

FTIME
FI

FIGURE 7.84
Flow diagram for nutrition system.



398 Modeling and Simulation of Systems Using MATLAB and Simulink

Level variableRate variable

FIGURE 7.85
Rate variable and corresponding level variable.

JA

J

L

M Wb

Ta

Wa

Tb

FIGURE 7.86
Causal loop diagrams.

 7. A causal loop diagram is shown below; supply proper signs for each causal link 
and mention the type of causal loops shown in Figure 7.86.

JA Job availability
J Job
L Labor
M Migration
Ta Threat perceived by nation A
Tb Threat perceived by nation B
Wa Weapons of nation A
Wb Weapons of nation B



System Dynamics Techniques 399

7.17 Bibliographical Notes

The technique of SD was developed for the fi rst time by J.W. Forrester in 1940s. The tech-
nique had been used to understand many diverse problems. The excellent description 
of SD is given in the book on “Study Notes in System Dynamics” by Goodman (1983). 
The applications of system dynamics technique in industrial problems have only recently 
reemerged after a lengthy slack period. Current research on SD technique in industrial 
problems focuses on inventory decision and policy development, time compression, 
demand amplifi cation, supply chain design and integration, and international supply 
chain management (Bernhard and Marios, 2000).



This page intentionally left blank 



401

8
Simulation

8.1 Introduction

The word simulation is derived from the Latin word simulare, which means pretend. 
Simulation is thus an inexpensive and safe way to experiment with the system model. 
However, the simulation results depend entirely on the quality of the system model. It is a 
powerful technique for solving a wide variety of problems.

There are various types of simulations depending upon the type of model. Physical sim-
ulation deals with the experimentation of physical prototype of real system. In this case, 
the real input (scaled) is applied to the model and its output is compared with the real 
 system. Sometimes, electrical analogous systems are also used in this type of simulation.

Another type of simulation is numerical simulation of mathematical models. This is 
very common in systems approach. After the development of digital computers, this type 
of simulation has gained popularity because it is easy to develop and modify. Numerical 
simulation is also sequential simulation because the calculations proceed in a time 
sequence. Computers are used to imitate or simulate the operations of various kinds of 
real-world facilities or processes. The facility or process of interest is usually called a sys-
tem, and in order to study it scientifi cally, we often have to make a set of assumptions 
about how it works. These assumptions usually take the form of mathematical or logical 
relationships and constitute a model that is used to gain some understanding of how the 
corresponding system behaves.

If the relationships that compose the model are simple enough, it may be possible to 
use mathematical methods (such as algebra, calculus, or probability theory) to obtain 
exact information on questions of interest. This is called an analytical solution. Most real-
world systems are too complex to allow realistic models to be evaluated analytically and 
these models must be studied numerically. However, a careful simulation study could 
shed some light on the question by simulating the operation of the complex system, as it 
 currently exists, and the effect of various modifi cations in the existing system.

Most of the systems of engineers’ concern are represented by different equations; the 
solutions of these equations describe the time response of the system to the given initial 
conditions and the input history. Electrical, mechanical, hydraulic, thermal, and other 
systems that contain energy storage elements can be represented by differential equa-
tions. Often the assumption is made that the system is lumped rather than distributed 
parameter, so that it can be described by ordinary differential equations (ODEs) rather 
than partial differential equations (PDE). Digital simulation refers to the simulation on 
a digital computer of the equations that describes a particular system. The solution is 
obtained either by numerical integration of the system ODEs or from the solution of 
difference equations.



402 Modeling and Simulation of Systems Using MATLAB and Simulink

Simulation can also be viewed as the manipulation of a model in such a way that it 
operates on time or space to compress it, thus enabling one to perceive the interactions 
that would not otherwise be apparent because of their separation in time or space.

Simulation generally refers to a computerization of a developed model, which is run 
over time to study the implication of the defi ned interactions of the parts of the system. It is 
generally iterative in their development. One develops a model, simulates it, learns from 
the simulation, revises the model, and continues the iteration unit until an adequate level 
of understanding/accuracy is obtained. Simulation points out modeler’s own ignorance. 
Simulation is an operational research tool which can be used to get top performance 
from the given system. Simulations are good at helping people to understand complex 
problems where mistakes are expensive. Simulation helps to improve an existing pro-
cess/system or plan a new facility and fi lls the gap between exact analysis and physical 
intuition.

8.2 Advantages of Simulation

Simulation could play a more vital role in biology, sociology, economics, medicine, 
psychology, engineering, etc., where experimentation is very expensive, time consuming, 
and risky.

 1. Get deeper understanding about system
  Important design issues that may have been overlooked frequently come to light. 

Quick and useful insight about the systems can be gained easily.

 2. Improve system effi ciency
  Simulation gives a good look at how the resources are performing. It makes the 

whole system more productive by spotting problems like excess capacity, bottle-
necks, and space shortages.

 3. Try out many alternatives
  With simulation model, one can avoid the risk and cost of trial and error experi-

mentation on the real system. It tells us how key design changes can affect the 
entire system.

 4. Save time and money
  The cost of carrying out a simulation is often small compared to the potential 

reward of making a correct management decision or the cost of making a poor 
decision. Simulations allow rapid prototyping of an idea, strategy, or decision.

 5. Create virtual environments
  With the simulation models one can generate a virtual environment, which is very 

useful for many applications such as training of army personnel and training to 
fi re fi ghters and players.

 6. Improves the quality of analysis
  System analysis can be effectively done if the system model is developed and 

simulated for different operating conditions and/or with different system 
parameters.



Simulation 403

8.3 When to Use Simulations

The performance of a complex system (such as weather, traffi c jam, monthly production 
in an industry) is diffi cult to predict, either because the system itself is too complex or 
the theory is not suffi ciently developed. The diffi culties in handling such problems using 
conventional mathematical modeling also arise due to the effect of uncertainties or due 
to dynamic interaction between system components or due to complex interdependencies 
among variables in the system or due to some combinations of these.

Changing one part of your strategy results in cascading changes throughout the • 
organization. For example, Ford company realizes that when they reduced delivery 
times, it was possible for dealers to offer better service with smaller inventories. 
The consequence was that dealer orders to Ford became more reliable and Ford 
could reduce delivery times further still. Once the system began to improve, these 
cascading effects allowed it to improve even more.

You don’t see the results of the decision you have made for several years, so • 
you would not know that you have gone down the wrong path until it is too 
late. Simulation can help you in understanding when that short- and long-term 
trade-offs are worthwhile and when they are costly. They help you in gaining 
the confi dence to make tough choices.

Many of the opportunities you are evaluating have not been tried before (new idea). • 
When there is limited historical information, people sometimes like to rely on 
hunches alone, but a good simulation is just a simple version of the real world. 
It provides you with experiences but the future is more relevant than past 
experience.

Your mere involvement in the problem changes the environment. Many of the • 
consequences of your decision might only partially be under your control. This 
makes decision messy, but simulation is good at handling these messes.

Making mistakes would be painful. Making a mistake in a simulation is inexpensive • 
and has no effect on people’s lives. In a simulation, it is a good idea to experiment 
with making intentionally bad decisions to try to crash the organization just to learn 
where the pitfalls exist and help in creating brilliant strategies.

The decision you are making is complicated and diffi cult to think.• 

8.4 Simulation Provides

 1. Effi ciency

  Cost quantifi cation in terms of savings or avoidance

Higher mission availability• 

Increased operational system availability• 

Transportation avoidance• 

Reduced• /eliminated expendable costs

Less procurement and operational costs• 



404 Modeling and Simulation of Systems Using MATLAB and Simulink

 2. Effectiveness

  Positive contribution that are seldom quantifi ed as

Improved profi ciency• /performance

Provides activities otherwise impossible short of combat• 

Provides neutral and opposition forces• 

Greater observation• /assessment/analysis capability

 3. Risk reduction

Safety• 

Environment• 

Equipment• 

What is the risk?
Risk is the possibility of loss, damage, or any other undesirable event.

Where is the risk?
Whenever we make any changes in the system that may be good or bad poses some risk.

How signifi cant is the risk?
Once the risk is identifi ed, a model helps you in quantifying it (putting a price on it). It also 
helps you in deciding whether risk is worth taking or not.

8.5 How Simulations Improve Analysis and Decision Making?

Simulation can improve analysis and decision making by

Improving your ability to understand the consequences of choices and the effect • 
on your organization or the world.

Identifying both strengths and weaknesses of specifi c options you are considering.• 

Challenging your organization’s assumptions about its internal or external • 
environment.

Providing a nonthreatening forum for discussion about what might happen if cer-• 
tain policies are pursued.

Helping to identify comprehensive strategies and policies that meet your objec-• 
tives in a variety of future scenarios.

Developing and communicating analyses that include multiple perspectives, • 
showing consistencies and inconsistencies among a variety of viewpoints.

Improving the speed and effi ciency of understanding and solving complex strat-• 
egy and policy problems.

8.6 Application of Simulation

Application areas for simulation are numerous and diverse. A list of some particular kinds of 
problems for which simulation has been found to be a useful and powerful tool is as follows:



Simulation 405

Designing and analyzing of systems• 

Evaluating hardware and software requirements for a computer system• 

Evaluating a new military weapons system or tactic• 

Determining ordering policies for an inventory system• 

Designing communications systems and message protocols for them• 

Designing and operating transportation facilities such as freeways, airports, sub-• 
ways, or ports

Evaluating designs for service organizations such as hospitals, post offi ces, or fast-• 
food restaurants

Analyzing fi nancial or economic systems• 

8.7 Numerical Methods for Simulation

The numerical methods can be classifi ed into the following two classes:

 1. One-step or single-step method

 2. Multistep method

One-step methods: In one-step method, to fi nd out the value of a dependent variable Yi+1 
at a future point Xi+1, we require the information at a single point Xi, for example, Euler’s 
method, Runge–Kutta method, etc.

Multistep function: In case of multistep methods, the information at more than one point is 
needed to fi nd out the value of Yi+1 at Xi+1.

The numerical methods yield solution either

 i. As power series in t from which the values of y can be found by direct substitution 
(Picard’s and Taylor’s methods)

 ii. As a set of values of t and y (Euler, Runge–Kutta, Milne, Adams–Bashforth, etc.)

Note:

 a. In (ii), the values of y are calculated in short steps for equal intervals of t and are, 
therefore, termed as step-by-step methods.

 b. Euler and Runge–Kutta methods are used for computing y over a limited range of 
t values whereas Milne, Adams–Bashforth methods may be applied for fi nding y 
over a wide range of t values. These later methods require starting values, which 
are found by Picard and Taylor’s methods or Runge–Kutta methods.

Relatively simple functions cannot be integrated in terms of elementary functions and it 
is futile to make this unattainable goal the aim of the integral calculus. On the other hand, 
the defi nite integral of a continuous function does exist and this fact raises the problem 
of fi nding methods for calculating it numerically. Here, we shall discuss the simplest and 
most obvious of these methods with the aid of geometrical intuition and then consider 
error estimation.



406 Modeling and Simulation of Systems Using MATLAB and Simulink

Our objective is to calculate the integral

 

= ∫ ( )d

b

a

I f x x
 

(8.1)

where a < b. We imagine the interval of integration to have been subdivided into n equal 
parts of length h = (b–a)/n and denote the points of subdivision by x1 = a, x2 = a + h,…, 
xn = b, the values of the function at the points of subdivision by f0, f1,…, fn and, similarly, 
the values of the function at the midpoints of the intervals by f1/2, f3/2,…, f(2n−1)/2. We interpret 
our integral as an area and cut up the region under the curve into strips of width h in the 
usual manner. We must now obtain an approximation for each such strip of surface, that 
is, for the integral

 

+

= ∫ ( )d

y

y

x h

y

x

I f x x

 

(8.2)

8.7.1 The Rectangle Rule

The crudest and most obvious method of approximating the integral I is directly linked to 
the defi nition of the integral; we replace the area of the strip Iv by the rectangle of area fvh 
and obtain for the integral the approximate expression

 −≈ + + +0 1 1
...( )nI h f f f

 (8.3)

From here on, the symbol ≈ means is approximately equal to

 + += + = +1 2and 2,y y y y yx x x h x x h
 

(8.4)

8.7.2 The Trapezoid and Tangent Formulae

We obtain a closer approximation with no greater trouble if we do not replace the area 
of the strip Iv, as above, by a rectangular area, but by the trapezoid of area ( fv + fv+1)h/2 
(Figure 8.1). For the whole integral, this process yields the approximate expression

 
−≈ + + + + +1 2 1 0

...( ) ( )
2

n n
h

I h f f f f f
 

(8.5)

(Trapezoid formula), because, when the areas of the trapezoids are added, each value of the 
function except the fi rst and the last occurs twice.

As a rule, the approximation becomes even better if, instead of choosing the trapezoid 
under the chord AB as an approximation to the area of I, we select the trapezoid under the 
tangent to the curve at the point with the abscissa x = xv + h/2. The area of this trapezoid is 
simply 1

2
vhf + , so that the approximation for the entire integral is

 −≈ + + +1 2 3 2 (2 1) 2
...( )nI h f f f

 
(8.6)

which is called the tangent formula.



Simulation 407

8.7.3 Simpson’s Rule

By means of Simpson’s rule, we arrive with very little trouble at a numerical result, which is 
generally much more exact. This rule depends on estimating the area Iv + Iv+1 of the double 
strip between the abscissa x = xv and x = xv + 2h = xv+2 by considering the upper boundary 
to be no longer a straight line but a parabola—in order to be specifi c, that parabola which 
passes through the three points of the curve with the abscissa xv, xv+1 = xv + h, and xv+2 = xv + 2h 
(Figure 8.2). The equation of this parabola is

 

+ + +− − − − − += + − +1 2 1

2

( )( ) 2
( )

2
v v v v v v v

v v
f f x x x x h f f f

y f x x
h h  

(8.7)

When we substitute the three values of x in question, this equation gives the proper val-
ues of y, that is, fv, fv+1 and fv+2, respectively. If we integrate this second-degree polynomial 
between the xv and xv + 2h, we obtain, after a brief calculation, for the area under the 
parabola

 

+

+ + +
⎛ ⎞= + − + − − +⎜ ⎟⎝ ⎠∫

2

1 2 1

1 8
d 2 2 ( ) 2 ( 2 )

2 3

v

v

x h

v v v v v v

x

y x hf h f f h h f f f

 

(8.8)

FIGURE 8.1
Trapezoid formula.

y

f0
fv

xo xy xxy+1

fv+1

fn–1
fn

FIGURE 8.2
Simpson’s formula.

y

xv xv+1 xv+2 x



408 Modeling and Simulation of Systems Using MATLAB and Simulink

This represents the required approximation to the area of our strip Iv + Iv+1.
If we now assume that n = 2m, that is, that n is an even number, we obtain, by addition of 

the areas of such strips, Simpson’s rule

 
− −≈ + + + + + + + + +1 3 2 1 2 4 2 2 0 2

4 2... ...( ) ( ) ( )
3 3 3

m m m
h h h

I f f f f f f f f
 

(8.9)

Example 8.1

Solve ∫
2

1

dx
log  2e

x
=  using

 a. Trapezoidal rule
 b. Tangent rule and
 c. Simpson’s rule

If we divide this integral from 1 to 2 into 10 equal parts, h will be 
equal to 0.1 and results obtain by the Trapezoidal rule as given 
in Table 8.1.

MATLAB® codes

% Codes for Trapezoidal rule
clear all
h=0.1;  % step size
y=0;
x=1;    % Initial value of x
n=9;    % number of iterations
sum_f=0;
for i=1:n

 x=x+h;
 f=1/x;
 sum_f=sum_f+f;
 x1(:,i)=[x f];
end
x1′
sum_f=0.1*(sum_f+(1/2)*(1/1+1/2) )

The value, as was to be expected, is too large, since the curve 
has its convex side turned towards the x-axis.

By the tangent rule as shown in Table 8.2, we fi nd owing to the 
convexity of the curve, this value is too small.

For the same set of subdivisions, we obtain the most accurate 
result by means of Simpson’s rule given in Table 8.3.

As a matter of fact, loge 2 = 0.693147…

Estimation of the error: It is easy to obtain an estimate of the 
error for each of our methods of integration, if the deriva-
tives of the function f(x) are known throughout the interval 
of the integration. We take M1, M2, … as the upper bounds 
of the absolute values of the fi rst, second, … derivative, 
respectively, that is, we assume that throughout the inter-
val |f(v)(x)| < Mv. Then the estimates are as follows:

TABLE 8.1

Results of Trapezoidal Rule

x1 = 1.1 f1 = 0.90909

x2 = 1.2 f2 = 0.83333

x3 = 1.3 f3 = 0.76923

x4 = 1.4 f4 = 0.71429

x5 = 1.5 f5 = 0.66667

x6 = 1.6 f6 = 0.62500

x7 = 1.7 f7 = 0.58824

x8 = 1.8 f8 = 0.55556

x9 = 1.9 f9 = 0.52632

Sum 6.18773

x0 = 1.0 =0

1
0.5

2
f

x10 = 2.0
=10

1
0.25

2
f

× 1
6.93773

10

loge 2 ≈ 0.69377

TABLE 8.2

Results of Tangent Rule

x0 + 1/2h = 1.05 f1/2 = 0.95238

x1 + 1/2h = 1.15 f3/2 = 0.86957

x2 + 1/2h = 1.25 f5/2 = 0.80000

x3 + 1/2h = 1.35 f7/2 = 0.74074

x4 + 1/2h = 1.45 f9/2 = 0.68966

x5 + 1/2h = 1.55 f11/2 = 0.64516

x6 + 1/2h = 1.65 f13/2 = 0.60606

x7 + 1/2h = 1.75 f15/2 = 0.57143

x8 + 1/2h = 1.85 f17/2 = 0.54054

x9 + 1/2h = 1.95 f19/2 = 0.51282

× 1
6.92836

10

loge 2 ≈ 0.69284



Simulation 409

For the rectangle rule:

 

−

=
− < − < = −∑

1
2 2

1 1 1

0

1 1 1
or ( )

2 2 2

n

v v v v
v

I hf M h I h f M nh M b a h

 

(8.10)

For the tangent rule:

 

−

+ +
=

− < − < −∑
1

3 2
1 2 1 2

02 2

1 1
or ( )

24 24

n

v
v v

v

I hf M h I h f M b a h

 

(8.11)

For the trapezoid rule:

 
+− + 〈 2 3

1( )
2 12

v v v
h M

I f f h
 

(8.12)

For Simpson’s rule:

 
+ + ++ − + + 〈 4 5

1 1 2( 4 )
3 90

v v v v v
h M

I I f f f h
 

(8.13)

The last two estimates also lead to estimates for the entire integral I. We see that Simpson’s 
rule has an error of much higher order in the small quantity h than the other rules, so that 
when M4 is not too large, it is very advantageous for practical calculations. In order to 
avoid tiring the reader with the details of the proofs of these estimates, which are funda-
mentally quite simple, we shall restrict ourselves to the proof for the tangent formula. For 
this purpose, we expand the function f(x) in the (v + 1)th strip by Taylor’s theorem:

 

2

1

2

1
( )

2 2 2 2
v v v

v

h h h
f x f x x f x x x

+

⎛ ⎞ ⎛ ⎞ ⎛ ⎞′= + − − + + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠  
(8.14)

TABLE 8.3

Results of Simpson’s Rule

x1 = 1.1 f1 = 0.90909 x2 = 1.2 f2 = 0.83333

x3 = 1.3 f3 = 0.76923 x4 = 1.4 f4 = 0.71429

x5 = 1.5 f5 = 0.66667 x6 = 1.6 f6 = 0.62500

x7 = 1.7 f7 = 0.58824 x8 = 1.8 f8 = 0.55556

x9 = 1.9 f9 = 0.52632

Sum 3.45955 × 4 Sum 2.72818 × 2

5.45636

13.83820 13.83820

x0 = 1.0    f0 = 1.0

x10 = 2.0   f10 = 0.5

20.79456 × 1/30

loge  2 = 0.693147



410 Modeling and Simulation of Systems Using MATLAB and Simulink

where ξ is a certain intermediate value in the strip. If we integrate the right-hand side over 
the interval xv ≤ x ≤ xv + h, the integral of the middle term is zero. Since, as is easily verifi ed,

 

+

⎛ ⎞− − =⎜ ⎟⎝ ⎠∫
2 31
d

2 2 24

v

v

x h

v

x

h h
x x x

 

(8.15)

it follows immediately that

 

+

+− 〈∫
3

1 2( )d
24

v

v

x h

v

x

h
f x x hf M

 

(8.16)

which proves the above assertion.

8.7.4 One-Step Euler’s Method

The linear or nonlinear dynamic system may be represented by fi rst-order differential 
equations (state space model).

 

d ( )
( , )

d

x t
f x t

t
=

 
(8.17)

where
x(t) is state vector of size n × 1 
x(t0) = α is initial condition

We are interested in estimating x(ti) for t0 < ti < T, where ti are equally spaced points 
between the interval t0 and T. ti = to + kh, where h is the step size and i = 1 to m.

 0T t
h

m
−=  m—number of points in simulation 

 k1 = hf(xn, yn) 

 
2

1 1 ( )n nx x k O h+ = + +
 

However, the Euler method has limited value in practical usage, because solution diverges 
if the norm of the difference between the computed solution xn+ 1 and the exact solution x(t) 
grows without bound with increasing time. Also, the numerical solution diverges when 
the step size is large.

8.7.5 Runge–Kutta Methods of Integration

Euler’s method for solving ODE can be regarded as the fi rst member of family of higher 
order methods called the Runge–Kutta methods. Each of the methods is one-step method 
in the sense that only values of f(t, x) in the intergration interval (t0, t1) is used. Each Runge–
Kutta method is derived from appropriate Taylor method in such a way that the fi nal 
global error is of the order O(hN). A trade-off is made to perform several function evalu-
ations at each step and eliminate the necessity to compute the higher order derivatives. 
These methods can be constructed for any order N.



Simulation 411

The Runge–Kutta method of order N = 4 is the most popular and called fourth-order 
Runge–Kutta method. It is a good choice for common purposes because it is quite accurate, 
stable, and easy to program. Most authorities proclaim that it is not necessary to go to a higher 
order method because the increased accuracy is offset by additional computation efforts. If 
more accuracy is required, then either a smaller size or an adaptive method should be used.

8.7.5.1 Physical Interpretation

Consider the solution curve x = x(t) over the interval [t0, t1] and the functional values k1, k2, 
k3, and k4 which are approximations for the slopes to this curve. k1 is the slope at the left, 
k2 and k3 are two estimates for the slope in the middle, k4 is the slope at the right. The next 
point (t1, x1) is obtained by integrating the slope function.

 
= =∫1( )– ( ) ( , ( ))dx t x t f t x t t0

 

The Euler’s method of integration may be generalized using the average of the slope of x(t) 
at t = ti and the slope at t = ti+1. The slope at t = ti+1 is not known because x(ti+1) is not known. 
However, the slope at ti+1 can be approximated by using f(ti+1, xi+1), where xi+1 is computed 
by xi+1 = xi + h*dx. This yields the following system of three equations called a second-order 
Runge–Kutta method.

 1 ( , )n nk hf t x=  

 2 1( , )n nk hf t h x k= + +  

 

1 2 3
1 ( )

2 2
n n

k k
x x O h+ = + + +

 
(8.18)

Equation 8.18 has a local truncation error of order O(h3) and global truncation error of 
order O(h2). Hence, this is a second-order method. This is also known as midpoint method, 
which improves the Euler method by adding a midpoint in the step which increases the 
accuracy.

8.7.6 Runge–Kutta Fourth-Order Method

The fourth-order Runge–Kutta method is used to calculate the value xi+1 from past value 
of xi with the help of the following four equations.

 =1 ( , )n nk hf t x  

 

1
2 ,

2 2
n n

h k
k hf t x⎛ ⎞= + +⎜ ⎟⎝ ⎠  

 

1
3 ,

2 2
n n

h k
k hf t x⎛ ⎞= + +⎜ ⎟⎝ ⎠  

 
= + +4 3( , )n nk hf t h x k

 



412 Modeling and Simulation of Systems Using MATLAB and Simulink

 

1 2 3 4 5
1 ( )

6 3 3 6
n n

k k k k
x x O h+ = + + + + +

 

(8.19)

The coeffi cient of fourth-order Runge–Kutta method is chosen to ensure that its local trun-
cation error of order O(h5), and its global truncation error is order O(h4).

The second- and fourth-order Runge–Kutta method is more accurate than the Euler’s 
method; they still can become unstable, if the step size h is too large. For example, for the 
one-dimensional linear system, the fourth-order Runge–Kutta method gives a solution 
which diverges from exact solution for step sizes in the range h > 2.785/c as opposed to h > 2/c 
for Euler’s method. The computational effi ciency of fourth-order Runge–Kutta method can 
be signifi cantly improved by allowing the step size to vary as the solution progresses. For 
example, for certain values of x, the function f(t, x) may change very rapidly, in which case 
small steps are needed. However, in the other regions the function f(t, x) might be quite 
smooth, even fl at, in which case much larger steps are permitted. The key to implementing 
adaptive step size control is to develop an estimate of local truncation error. The step size 
can then be decreased or increased dynamically during execution in order to maintain a 
desired level for error. There are many methods presented by Schilling and Harris (2000) 
for making adaptive step size algorithms such as interval halving, Runge–Kutta–Fehlberg, 
and step size adjustment using local error criterion.

8.7.7 Adams–Bashforth Predictor Method

The Euler and Runge–Kutta methods are examples of single-step method because they 
use only the recent value xn, to compute the solution. In multistep methods, we consider 
the many past solution points {xn, xn−1, xn−2, … Xn−m} to predict xn+ 1. The general formula for 
calculating the next point is as follows:

 

+ − −
=−

= + ∑1

1

( , )
m

n n j n j n j
j

x x h b f t x

 

(8.20)

To generate a Adams–Bashforth predictor multistep method, we start approximating using 
Newton backward difference interpolation of degree 3. In third-order Adams–Bashforth 
predictor the following expression is used.

 

2 3
1 1 2 3

1 5 3

2 12 8
n n n n n nx x h f f f f+ − − −

⎛ ⎞= + + + Δ + Δ⎜ ⎟⎝ ⎠
 

(8.21)

where 
Δfn−1 = fn − fn−1

Δ2fn−2 = fn−2 fn−1 + fn−3

Similarly fourth-order Adams–Bashforth formula may be written as

 
+ − − −= + − + −1 1 2 3(55 59 37 9 )

24
n n n n n n

h
x x f f f f

 
(8.22)



Simulation 413

The four-point estimate of x(tn+1) has a local truncation error of order O(h5) and global 
truncation error of order O(h4). In this method, four previous solution points must be 
known to start. Hence, it is not a self-starting method. A single-step method, such as 
Euler’s method or Runge–Kutta method is used to compute the fi rst four points and then 
this method could be used.

8.7.8 Adams–Moulton Corrector Method

The accuracy of the results obtained from the Adams–Bashforth method can be improved 
by using a second application of multistep formula. The basic idea is to use predictor 
formula of Equation 8.22 fi rst and then use implicit formula given in Equation 8.23 for 
refi nement or correction to the solution obtained in earlier step.

 

2 3
1 1 1 2

1 1 1

2 12 24
n n n n n nx x h f f f f+ + − −

⎛ ⎞= + − Δ − Δ − Δ⎜ ⎟⎝ ⎠  
(8.23)

The equations pair (8.22) and (8.23) together forms the predictor–corrector pair. Equation 
8.23 can be made more direct by expanding the forward differences and collecting terms. 
This yields the Adams–Moulton formula given in equation.

 
1 1 1 2(9 19 5 )

24
n n n n n n

h
x x f f f f+ + − −= + + − +

 
(8.24)

This method has a local truncation error of order O(h5) and a global truncation error of 
order O(h4).

8.8 The Characteristics of Numerical Methods

 1. Number of starting points

 2. Rate of convergence stability

 3. Accuracy

 4. Breadth of the application

 5. Propagation efforts required

 6. Ease of application

 7. Presence of error

8.9 Comparison of Different Numerical Methods

An ODE is an equation which consists of one independent variable and one dependent 
variable. Such an equation plays an important role in engineering because many physi-
cal phenomena are one of the best formulated mathematically n term of their rate of 
change.



414 Modeling and Simulation of Systems Using MATLAB and Simulink

To discuss various numerical methods, the solution can be found in two forms as follows:

 1. A series of y in terms of power of x from which the value of y can be obtained by 
direct substitution, for example, Picard’s method and Taylor’s method.

 2. A set of tabulated values of x and y, for example, Euler’s method, Runge–Kutta 
method, etc.

The performance of different numerical methods for solving ODEs has been compared 
and shown in Table 8.4.

8.10 Errors during Simulation with Numerical Methods

The errors are present in numerical methods because we take a number of approximations 
and by numerical methods we get approximate result so the relationship between result 
and approximate result is

True value = Approximation + Error

or

Error = True value – Approximation

There are mainly two types of errors in numerical methods:

 1. Truncation error

 2. Round off error

8.10.1 Truncation Error

The truncation errors are those which are produced due to using approximation an m 

place of an exact mathematical procedure. For example, we have a derivative term 
d

d

x
t

.

 +

+ −Δ= =
Δ −1

( ) ( )d

d

i n n

n n

x t h x tx x
t t t t  

(8.25)

TABLE 8.4

Comparison of Different Numerical Methods for Solving Differential Equations

Methods

Starting 

Values

Iteration 

Required

Global 

Error

Programming 

Efforts

One-step Euler’s method 1 No O(H) Easy

Improved Euler’s method 1 Yes O(H2) Moderate

Modifi ed Euler’s method 1 No O(H2) Moderate

Runge–Kutta method 1 No O(H2) Moderate

Fourth-order Runge–Kutta 

method

1 No O(H4) Moderate

Milne’s method 4 Yes O(H5) Moderate to diffi cult

Fourth-order Adam’s method 4 Yes O(H5) Moderate to diffi cult



Simulation 415

The truncation errors are composed of two parts: local truncation error and propagated 
truncation error. The sum of these two is called global truncation error.

 1. Local truncation error: It results from an application of method in question over a 
single step.

 2. Propagated truncation error: It results from the approximation produced during 
the previous step.

The truncation error arises in Euler’s method because the curve y(x) is generally not a 
straight line between the neighboring grid points xn and xn+1, as assumed above. The error 
associated with this approximation can easily be assessed by Taylor’s expansion.

Initial condition x = xn

 
+ = + ′ + ″ +2 . . .(  )  ( )  ( )  ( /2) ( )  n n n nx x h x t hx t h x t

 
(8.26)

In other words, every time we take a step using Euler’s method we incur a truncation error 
of O(h2) where h is the step length. Suppose that we use Euler’s method to integrate ODE 
over an x interval of order unity. This requires O(h−1) steps. If each step incurs an error of 
O(h2) and the errors are simply cumulative (a fairly conservative assumption), then the net 
truncation error is O(h). In other words, the error associated with integrating an ODE over 
a fi nite interval using Euler’s method is directly proportional to the step length. Thus, if 
we want to keep the relative error in the integration below about 10−6, then we would need 
to take about 1 million steps per unit interval in x. Incidentally, Euler’s method is termed 
a fi rst-order integration method because the truncation error associated with integrating 
over a fi nite interval scales like h1. More generally, an integration method is conventionally 
called nth order if its truncation error per step is O(hn+ 1).

Note that truncation error would incur even if computers perform fl oating-point arith-
metic operations to infi nite accuracy. Unfortunately, computers do not perform such oper-
ations to infi nite accuracy. In fact, a computer is only capable of storing a fl oating-point 
number to a fi xed number of decimal places.

8.10.2 Round Off Error

The round off error is an error which is present in every type of computer due to the fact 
that the computer can represent the quantities with a fi nite number of digits. For example, 
we know that the value of π is 3.141592653897285… and if we are using a computer that can 
retain only seven signifi cant fi gures so this computer might store or use π as π = 3.141592 
which omitted the term resulting in an error called round off error. This error equals to 
0.00000065. Every fl oating-point operation incurs a round off error of O(p) which arises 
from the fi nite accuracy to which fl oating-point numbers are stored by the computer. 
Suppose that we use Euler’s method to integrate our ODE over a given interval of time. 
This entails O(h−1) integration steps, and, therefore, O(h−1) fl oating-point operations. If each 
fl oating-point operation incurs an error of O(p) and the errors are simply cumulative, then 
the net round off error is O(p(h)).

The total error, E associated with integrating ODE over an x-interval of order unity is 
(approximately) the sum of the truncation and round off errors. Thus, for Euler’s method

 E = p/h + h 



416 Modeling and Simulation of Systems Using MATLAB and Simulink

Clearly, at large step size (h), the error is dominated by the truncation error, whereas 
the round-off error dominates at small step size, as shown in Figure 8.3. The net error 
attains its minimum value when h = ho ∼ p1/2. There is clearly no point in making the 
step size, h, any smaller than ho, since this increases the number of fl oating-point opera-
tions but does not lead to an increase in the overall accuracy. It is also clear that the 
ultimate accuracy of Euler’s method (or any other integration method) is determined by 
the accuracy, p, to which fl oating-point numbers are stored on the computer performing 
the calculation.

The value of p depends on how many bytes the computer hardware uses to store 
fl oating-point numbers. For IBM-PC clones, the appropriate value for double precision 
fl oating-point numbers is p = 2.12 × 10−15. It follows that the minimum practical step size 
for Euler’s method on such a computer is ho = 10−8, yielding a minimum relative inte-
gration error of eo = 10−8. This level of accuracy is perfectly adequate for most scientifi c 
calculations. Note, however, that the corresponding p value for single-precision fl oating-
point numbers is only p = 1.19 × 10−7, yielding a minimum practical step length and 
a minimum relative error for Euler’s method of ho = 3 × 10−4 and eo = 3 × 10−4, respec-
tively. This level of accuracy is generally not adequate for scientifi c calculations, which 
explains why such calculations are invariably performed using double rather than single-
precision fl oating-point numbers.

The errors in the trapezoid rule and Simpson’s rule

If f″(x) is continuous in [tn+1, tn], then the error in the trapezoid rule is no larger than

 

+ − ′′
3

1

2

( )
( )

12
n nt t

f M
n  

(8.27)

where |f″(M)| is the largest value of |f″(x)| in [tn+1, tn].
If f (4)(x) is continuous in [tn+1, tn], then the error in Simpson’s rule is no larger than

 

+ − 5
1 (4)

4

( )
( )

180
n nt t

f M
n  

(8.28)

where |f (4)(M)| is the largest value of f (4)(x)| in [tn+1, tn].

FIGURE 8.3
Error curves.

Truncation error
Rounding off

error

Number of terms

Er
ro

r



Simulation 417

Example 8.2

Solve the following integration using trapezoidal integration rule with n = 4.

 

−∫ 2

2

1

dxe x

 

(8.29)

In order to estimate the error, we need to fi nd the largest value of |f″(x)| in the interval [1, 2] for

 
2

( ) xf x e−=  

Calculating, 
2

( ) 2 xf x x e−= −′  and 
22( ) 2(2 1) xf x x e−= −′′ .

Since, we want to fi nd the extreme values of f″, we calculate its derivative

 
2(3) 2( ) 4 (3 2 ) xf x x x e−= −  

Now f (3)(x) = 0 only when x = 0 or 3 − 2x2= 0, so x = 0 or ±(3/2)1/2 = ±1.225. Checking values in 
the interval [1, 2], we get the following (where we have rounded up the values of f″(x) rather than 
simply rounding to two decimal places).

X 1 1.225 2

f″(x) 0.74 0.90 0.26

The largest value of |f″(x)| is therefore 0.90. This tells us that the error is no larger than

 

3

2

(2 1)
0.0047

12* 4
− ≈

 

Estimating the error in the Simpson rule

How large would n have to be to obtain a Simpson rule approximation of −+∫
2

3

1
( )dxx e x accurate 

to fi ve decimal places?

SOLUTION

“Accurate to fi ve decimal places” means an error of less than 0.000 005. In this problem, we do 
not know the value of n, but we know an upper bound for the error.

Our formula for the error in Simpson’s rule says that

 

+ −≤
5

1 (4)
4

(  )
Error ( )

180
n nt t

f M
n  

(8.30)

A quick calculation shows that the fourth derivative of f is

 f (4)(x) = e−x 

so that it is positive, and its largest value in the interval [−1, 2] occurs when x = −1:

 |f(4)(M)| = e ≈ 3 



418 Modeling and Simulation of Systems Using MATLAB and Simulink

As before, we have overestimated rather than underestimated the quantity e. This gives

 

+ −≤

≤ =

5
1 (4)

4

5

4 4

(  )
Error ( )

180

3 81
3

180 20

n nt t
f M

n

n n  
(8.31)

8.10.3 Step Size vs. Error

The methods we introduce for approximating the solution of the initial value problem 
(IVP) are called difference methods or discrete variable methods (DVM). The solution 
approximated at a set of discrete points is called a grid (or mesh) of points. An elementary 
single-step method has the form: xn+1 = xn + hΦ(tk, xn) for some function called an increment 
function.

In case of DVM for IVP, there are two types of errors:

Discretization error• 

Round off error• 

8.10.4 Discretization Error

Let {(tn, xn)} be a set of approximation and x = x(t) the unique solution to IVP then

 1. Global discretization error

 
= −( )k n ne x t x

 
(8.32)

  for k = 0, 1, 2, 3, … , M
  This the difference between unique solution and solution obtained by DVM.

 2. Local discretization error

 + +∈ = − − Φ1 1( ) ( , )k n n k nx t x h t x  (8.33)

  It is the error committed in the single step from tk to tk+1.

Final global error

After M steps within [tn+1, tn], error accumulated = Σ∈k+1 = O(h)
Note that the Taylor method of order N has the property that the fi nal global error is of 

the order of O(hN+1).
The numerical methods for solving ODEs are methods of integrating a system of fi rst-

order differential equations, since higher order ODEs can be reduced to a set of fi rst-order 
ODEs. For example

 

2

2

d d
( ) ( ) ( )

d d

x x
p t q t r t

t t
+ =

 
(8.34)



Simulation 419

Let x(t) = x1(t) and 2

d
( )

d

x
x t

t
= , then the above equation may be written as

 

⎧ ⎫=⎪ ⎪⎪ ⎪⇒ ⎨ ⎬
⎪ ⎪= −⎡ ⎤⎣ ⎦⎪ ⎪⎩ ⎭

1
2

2
2

d
( )

d

d
( ) ( ) ( ) / ( )

d

x
x t

t
x

r t q t x t p t
t  

An nth order ordinary differential can be similarly reduced to

 
= …1 2

d ( )
( , , , , )

d
n

n n
x t

f t x x x
t  

where k = 1, 2, … , n.

Example 8.3: Pendulum Problem

Consider a simple pendulum having length L, mass m, and instantaneous angular displacement 
θ (theta), as shown below in Figure 8.4.

The force equation for pendulum is

 

2

2

d
sin 0

d
mg mL

t
θθ + =

 

Thus
 

2

2

d
sin

d
g

t L
θ = − θ.

For all angles θ, we make the assumption that sin θ = θ leading to an analytical solution. However, 
for large angles θ, we resort to a numerical method to solve the differential equation above. We 
fi rst reduce the second-order differential equation to a set of two fi rst-order differential equations 
by introducing ω (angular velocity), thus

 

d
d

d
sin( )

d

t

g
t L

θ = ω

θ = − θ
 

FIGURE 8.4
Pendulum swing.mg

mL d2 θ/dt2

L

θ



420 Modeling and Simulation of Systems Using MATLAB and Simulink

MATLAB codes

function [x,dx] = pend(t,x)
% Pendulum differential equations
% G [m/s^2] acceleration due to gravity
% L pendulum length in meter
global G L
THETA = 1; % index of angle in rad
OMEGA = 2; % index of angular velocity in rad/sec
dx(THETA) = x(OMEGA);
dx(OMEGA) = -(G/L)*sin(x(THETA) );
dx = [dx(THETA);dx(OMEGA)]; % Column vector

Notice the use of upper case characters for both the indices and the global variables, as is the 
convention in MATLAB. Notice also that returning both x and dx (instead of only dx as is normally 
done). Consider now a typical main function for this case

% Solve the large angle pendulum problem

THETA = 1; % index of angle in rad
OMEGA = 2; % index of angular velocity in rad/sec
global G L
G = 9.807; % [m/s^2} acceleration due to gravity
L = input(‘Enter pendulum length in meter’);
angle0 = input(‘Enter initial pendulum angle degrees’);
period = 2*pi*sqrt(L/G);
fprintf(‘small angle period is %.3f seconds\n’, period);
tfinal = 2*period;
n = input(‘Enter the number of solution points >’);
dt = tfinal/(n - 1);
t = 0;
x = [angle0*pi/180;0]; % Initialize y as a Column vector
time(1) = t;
angle(1) = angle0;
for i = 2:n
[t, x, dx] = rk4(‘pend’,2,t,dt,x);
 time(i) = t;
 angle(i) = x(THETA)*180/pi;
 fprintf(‘%10.3f%10.3fn’,time(i),angle(i) );
end
plot(time, angle)

The MATLAB functions mentioned above are very short and mostly self-documenting. Notice 
that after specifying the system parameters, we use the for loop to build the ‘time’ and ‘angle’ 
arrays in order to plot them. The most interesting aspect of this program is the ‘rk4’ function call 
to integrate one-step ‘dt’ of the differential equation set given in function ‘pend’ as follows:
[t, x, dx] = rk4(‘pend’,2,t,dt,x);

Thus, the input arguments are the string constant representing the derivative function ‘dpend,’ the 
number of differential equations in the set (2), the independent variable and increment (t,dt), and 
the dependent variable vector (y). The output arguments are the solution variables and derivatives 
(t,x,dx) integrated over one time step dt. MATLAB provides fi ve separate routines for solving ODEs 
of the form dx = f(t,x) where t is the independent variable and x and dx are the solution and 
derivative vectors. One of the most widely used of all the single-step Runge–Kutta methods (which 
include the Euler and Modifi ed Euler methods) is the so-called classical fourth-order method with 
Runge’s coeffi cients. Being a fourth-order method (equivalent in accuracy to including the fi rst fi ve 
terms of the Taylor series expansion of the solution), it requires four evaluations of the derivatives 
over each increment dx, denoted by dx1, dx2, dx3, dx4, respectively. These are then weighted 
and summed in a very specifi c manner to obtain the fi nal derivative dx.



Simulation 421

function [t, x, dx] = rk4(deriv,n,t,dt,x)
% Classical fourth order Runge - Kutta method
% integrates n first order differential equations
% dx(t,x) over interval x to t+dt
t0 = t;
x0 = x;
[x,dx1] = feval(deriv,t0,x);
for i = 1:n
 x(i) = x0(i) + 0.5*dt*dx1(i);
end
tm = t0 + 0.5*dt;
[x,dx2] = feval(deriv,tm,x);
for i = 1:n
 x(i) = x0(i) + 0.5*dt*dx2(i);
end
[x,dx3] = feval(deriv,tm,x);
for i = 1:n
 x(i) = x0(i) + dt*dx3(i);
end
t = t0 + dt;
[x,dx] = feval(deriv,t,x);
for i = 1:n
 dx(i) = (dx1(i) + 2*(dx2(i) + dx3(i) ) + dx(i) )/6;
 x(i) = x0(i) + dt*dx(i);
end

The most interesting aspect of this function is the use of the MATLAB function ‘feval’ to evalu-
ate the function argument which is passed as a string. This is a fundamental aspect of MATLAB 
programming and understanding this is essential to developing MATLAB programs. The plotting 
capabilities of MATLAB are extremely simple to use and very versatile. A typical output plot for 
the pendulum case study is shown in Figure 8.5.

We see that 20° is about the limit of the small angle period (2.006 s), however at 80°, the period 
is seen to be much larger (2.293 s). This could only have been determined by numerically solv-
ing the differential equation set. The model may also be simulated using Simulink, as shown in 
Figure 8.6 and the results are shown in Figure 8.7.

FIGURE 8.5
Simulation results.

80

60

40

20

0

–20

–40

–60

–80
0 0.5 1 1.5 2 2.5

Angle = 20
Angle = 60

3



422 Modeling and Simulation of Systems Using MATLAB and Simulink

Example 8.4: Continuous System Simulation (Water Reservoir System)

Consider the water reservoir system in which two inputs are river infl ow and direct rainfall and 
one output is demand of water for irrigation and for other purposes, as shown in Figure 8.8. Some 
of the water is lost in the form of seepage and evaporation. It is known that the evaporation loss 
depends upon the surface area and the atmospheric temperature and the seepage loss depends 
upon the volume water stored in the reservoir. Develop a model to determine the volume of water 
stored in the reservoir so that it does not spill over and there is no shortage in summer.

FIGURE 8.6
Simulink model.

FIGURE 8.7
Simulation results.

5

4

3

2

1

0

–1

–2

–3

–4

–5
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5



Simulation 423

SOLUTION

As given in the problem, seepage loss is function of volume.

Seepage loss = f (volume)

Evaporation loss is function of area of exposed surface and coeffi cient of evaporation.

Evaporation loss = f (surface area, Cevap)

The state variable is the volume which changes with time.

Model development

Total input Vin = Rain + river fl ow
Gross volume = Vin + earlier volume
Total loss = Seepage loss + evaporation loss
Net volume = Gross volume – total loss − Demand
If Demand > = Net volume then reservoir is dry and shortage of water (=Dem-Vnet)
Otherwise Diff = Demand − Vnet

If Diff > Cap then Spill over

MATLAB program

% Matlab program for simulation of Water reservior
clear all;
Cevap=0.1; % Coefficient of evaporation
River_flow=[5000 4500 4000 3000 2500 2000 2000 3000 5000 5500 5000 
5000]; % input from river
V=500; % initial volume of water
Dem=[100, 400, 400, 200, 200, 100, 50 50 50 100 150 200];; % Water 
from rain
Rain=[0 0 0 0 0 0 50 300 500 0 0 0]; % Initial Demand
t=0; % STart time
DT=1; % Step size - 1-month
Tsim=120; % Simulation time (100 Yrs.)
n=round(Tsim-t)/DT;
Cap=20000;i1=1;
for i=1:n
 x1(i,:)=[t,V, Dem(i1)];
 if i1= =12;
 i1=1;
 end
 Demand=Dem(i1)*exp(0.003*t);

FIGURE 8.8
Water reservoir system.

River inflow

Seepage loss

Evaporation loss

Reservoir

Supply to
meet demand

Direct rainfall



424 Modeling and Simulation of Systems Using MATLAB and Simulink

 Vin= Rain(i1) + River_flow(i1);
 Asurface=0.01*V;
 Evaporation=Asurface*Cevap;
 Seepage = 0.2*V;
 Tloss = Seepage + Evaporation;
 V = V + Vin -Tloss-Demand;
 if Demand >= V;
 % disp(‘shortage of water’)
 Vshortage=Demand-V;
else
 % disp(‘Excess of water’)
 Diff1= V-Demand ;
 if Diff1 > Cap
 % disp(‘Spill over’)
 Vspil=Diff1-Cap;end

end
 i1=i1+1;
 t=t+DT;
end

time1=x1(:,1);
figure(1)
plot(time1,x1(:,2),‘k-’)
xlabel(‘Time(months)’)
ylabel(‘Water in Rservior’)
figure(2)
plot(time1,x1(:,3),‘k––’)
xlabel(‘Time(months)’)
ylabel(‘Demand’);
axis([0 120 0 400]);

The above developed model is simulated in MATLAB for 10 years and the results are shown in 
Figures 8.9 and 8.10.

FIGURE 8.9
Net volume of water in reservoir.

2.5
×104

2

1.5

1

0.5

0
0 20 40 60

Time (months)

W
at

er
 in

 re
se

rv
io

r

80 100 120



Simulation 425

Example 8.5: Chemical Reactor

In a certain chemical reaction, substances A and B produce a third chemical substance C.
A (1 g) + B (1 g) ↔ C (2 g)
The rate of formation of C is proportional to the amounts of A and B (Forward reaction). 

The decomposition of C is proportional to amount of C present in the mixer (backward 
reaction).

Develop a model for the above-mentioned reaction.

SOLUTION

The differential equations for the system are

 
2 1

d
d
a

k c k ab
t

= −
 

 
2 1

d
d
b

k c k ab
t

= −
 

 
1 2

d
2 2

d
c

k ab k c
t

= −
 

and the initial conditions are
K1, K2, a, b are given
c = 0, t = 0, choose suitable value of dt
Use some integration technique to get the time profi le of a, b, and c.

FIGURE 8.10
Change in demand of water.

400

350

300

250

200

150

100

50

0
0 20 40 60

Time (months)

D
em

an
d

80 100 120



426 Modeling and Simulation of Systems Using MATLAB and Simulink

MATLAB program

% Matlab program for simulation of Water reservoir
clear all;
K2 = 0.1;
K1=0.01;
c = 0.02;
a= 0.01;
b = 0.02;

t=0; % Start time
DT=.01; % Step size - 1-month
Tsim=10; % Simulation time (100 Yrs.)
n=round(Tsim-t)/DT;
Cap=20000;i1=1;
for i=1:n
 x1(i,:)=[t,a, b, c];
 da = K2 *c - K1* a* b;
 db = K2 *c - K1 *a* b;
 dc =2 *K1 *a *b - 2 * K2* c;
 a=a+DT*da;
 b=b+DT*db;
 c=c+DT*dc;
 t=t+DT;
end

time1=x1(:,1);
figure(1)
plot(time1,x1(:,2:4) )
xlabel(‘Time(months)’)
legend(‘Concentration of a’, ‘concentration of b’, ‘concentration of c’)

The simulation results obtained are shown in Figure 8.11.

FIGURE 8.11
Simulation results of chemical reaction.

Concentration of a
0.03

0.025

0.02

0.015

0.01

0.005

0
0 1 2 3 4 5

Time (s)
6 7 8 9 10

Concentration of b
Concentration of c



Simulation 427

Example 8.6: Rocket Dynamics

Consider the dynamics of a rocket constraint to travel in a vertical line 
over the launch site. Ignore or linearize the nonlinearity due to changing 
distance from the center of the earth and aerodynamic drag effects. The 
linearized time-varying equation of motion for the system is (Figure 8.12)

2

2

d ( ) d ( )
( ) ( ) ( )

d d
x t x t

m t k t u m t g
t t

+ = −

where 
m(t)—Mass of rocket (varying due to fuel consumption)
k(t)—Aerodynamic drag
g—Acceleration due to gravity
u—Thrust

The mass of rocket varies as
m(t) = (120,000 − 2,000t − 20,000 g(t − 40) ) kg for t < = 40 s.
m(t) = 20,000 kg for t > 40 s.
k = 1000
u = 106 for t < = 40 s.
u = 0 for t > 40 s.

Write a MATLAB program to simulate it.

MATLAB program

% Simulation program of rocket dynamics
k=1000;
dt=0.01;
n=300;
time=0.0;
x=[0;0];
for i=1:n
 if time<=40
 g=10;
 u=10E6;
 m=(120000-2000*time-20000*g*(time-40) );
 else
 g=0;
 u=0;
 m=20000;
 end
 a=[0 1;0 -k/m];
 b=[0;u/m-g];
 dx=a*x+b;
 x=x+dx*dt;
 x1(i,:)=[x’];
 time=time+dt;
 t1(i,:)=time;
end
plot(t1,x1)
legend(‘Displacement’, ‘Velocity’)

FIGURE 8.12
Dynamics of a rocket when 

launched from a site.



428 Modeling and Simulation of Systems Using MATLAB and Simulink

Example 8.7: Butterworth Filter

Simulate digitally the operation of a third-order Butterworth fi lter governed by

 

2

2

d ( ) d
2

d d
x t x

x u
t t

= − − +
 

using Adam–Bashforth method. Compare the results with Euler’s method.

MATLAB program

% Matlab simulation of Butterworth filter using AB-3.
dt=0.1;
xe=0;
dx=0;
x=[0 0 0]′;
f=x;
fs=f;
fss=f;
u=1;
for n=1:150
 f(1)=x(2);
 f(2)=x(3);
 f(3)=-x(1)-2*x(2)-2*x(3)+u;
 x=x+(dt/12)*(23*f-16*fs+5*fss);
 fss=fs;
 fs=f;
 ddx=-2*dx-xe +u;
 dx=dx+dt*ddx;
 xe=xe+dt*dx;
 y1(n,:)=[x(1), xe];
end
plot(0.1:0.1:15,y1)
xlabel(‘Time’)
ylabel(‘Filter output’)
legend(‘AB-3 with dt=0.1’, ‘Euler Method’)

Results (Figure 8.13)

FIGURE 8.13
Simulation of rocket dynamics.

0

–5

–10

–15

–20

–25

–30

–35

–40
0 0.5 1 1.5 2 2.5

Displacement
Velocity

3



Simulation 429

Example 8.8: Modeling of Water Pollution Problem

Let us consider the water pollution problem and the associated dynamics. The river water can 
decompose signifi cant amount of untreated industrial waste products without upsetting the liv-
ing processes that occur within and around them. However, pollution level increases when more 
untreated waste water is mixed in the river. The decomposition processes may use considerable 
oxygen, which is dissolved in the water. If the amount of oxygen in water gets too low, the water 
is not usable and also unfi t for fi sh, drinking, and recreational activities. Rivers replenish their 
oxygen level by drawing oxygen from atmosphere (Figure 8.15).

Develop a model to predict the oxygen content in a river when the waste water is dumped in 
upstream.

Results (Figure 8.14)

FIGURE 8.14
Simulation results of Butterworth fi lter.

1.4

1.2
AB-3 with dt = 0.1
Euler method

1

0.8

0.6

0.4

0.2

0
0 5

Time

Fi
lte

r o
ut

pu
t

10 15

FIGURE 8.15
Untreated waste industrial water modeling for river pollution.

Untreated industrial
waste water

Flow of water

River



430 Modeling and Simulation of Systems Using MATLAB and Simulink

SOLUTION

First, we develop a model for pollution level of river water. It is very clear from the above dis-
cussion that the pollution level in the river water is proportional to the rate at which the amount 
of waste water (w(t) ) is dumped into the river by the industry and the chemical concentration. 
It also depends on the decomposition of wastage. The decomposition reduces the pollution 
level.

Hence, the rate of pollution level

 
chem chem

d
( ) ( ) * ( )

d
P t C W t D P t

t
= −

 

where
Cchem—coeffi cient of chemical concentration of waste water
W(t)—amount of waste water dumped into river
Dchem–decomposition of waste water
P(t)–pollution level

Similarly, the oxygen content in the river water is proportional to the rate of oxygen used by 
wastes in decomposition and some oxygen is replenished in the water by air.

The rate of oxygen content in river water is given by

 
o Max d

d
( ) * ( ( )) * chem* ( )

d
O t C O O t C D P t

t
= − −

 

where
O(t)—oxygen content at a particular time t
Co—coeffi cient representing the time delay in taking oxygen from air
Cd—coeffi cient to represent oxygen requirement for particular wastes

8.11 Review Questions

 1. a. Differentiate between analog and digital simulations.

  b.  Discuss three major simulation characteristics for digital simulation.

  c. Explain the errors in this simulation.

 2. Describe the essential features of PC-based simulation packages for analog and 
discrete simulations.

 3. Use Euler’s method to develop a difference equation to solve the differential equa-
tion: dy/dt = 2x(t) = 1.0 with x(0) = 0.

  a. Calculate the fi rst 20 values for T = 0.1 s and also T = 0.05 s.

  b.  Determine the exact solution and compare the values at corresponding points in 
time.

  c.  Comment on the impact of integration time interval on the magnitude of the error.

  d.  Write a MATLAB program for solving the above equation using Euler’s 
method.



Simulation 431

 4. Write a computer program for simulating a linear time invariant system whose 
state space model is given below:

 

1 1

2 2

3 3

( ) 1 2 0 ( ) 1
d

( ) 1 1 3 ( ) 0 ( )
d

( ) 1 4 5 ( ) 0

x t x t

x t x t u t
t

x t x t

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

 5. A double-pole LC circuit shown in Figure 8.16. Develop the system model and 
simulate it in Matlab for the frequency analysis.

 6. Write a MATLAB program for determining the transfer function for the network 
shown in Figure 8.17.

 7. Develop a four-segment lumped model for coaxial power cable shown in Figure 8.18.
  The parameter values per segment are as follows: R = 0.0193 Ω, L = 0.163 H, 

C = 68.4 pf, Vs = 10 V dc, Rs = 50 Ω, Rl = 50 Ω. Also write a MATLAB program for 
simulating it.

FIGURE 8.16
LC circuit.

1 F

10 mH1V

200 ohm 100 ohm 50 ohm

10 mH 50 mH

25 ohm

100 mH

1 F 1 F 1 F

FIGURE 8.17
Series R–L circuit.

L = 1 mH

R = 3 ohm1V
I(t)

FIGURE 8.18
Coaxial electric cable.

Cable
RL

Rs

V



432 Modeling and Simulation of Systems Using MATLAB and Simulink

 8. Simulate the following nonlinear system (shown in Figure 8.19).

  M = 10 kg, K = 360 N/m, and damper B is a quadratic damper governed by the equa-
tion Fb = BVb2.

 9. Explain local and global truncation errors.

 10. What do you mean by adaptive step size and how is it advantageous in simulating 
ODE?

 12. Compare truncation errors for different methods.

FIGURE 8.19
Schematic diagram of a nonlinear mechanical system.

V
K B M



433

9
Nonlinear and Chaotic System

Too little liberty brings stagnation and too much brings chaos.

Bertrand Russell (1872–1970)

Chaos is the score upon which reality is written.

Henry Miller

Everybody’s a mad scientist, and life is their lab. We’re all trying to experiment to fi nd 
a way to live, to solve problems, to fend off madness and chaos.

David Cronenberg

I have a great belief in the fact that whenever there is chaos, it creates wonderful 
thinking. I consider chaos a gift.

Septima Poinsette Clark

9.1 Introduction

Life is a nonlinear entity. Almost everything around us is associated with some fundamen-
tally nonlinear system. Commonly the nonlinearities are undesirable in mathematical 
modeling of systems. The mathematics associated with nonlinear dynamic systems is not 
very accessible or useful. The mathematics for linear systems however, is relatively simple. 
Also, there are powerful techniques available in linear systems theories. Validity of linear 
system stability can be evaluated by Root locus techniques, Nyquist plots, Bode plots, and 
other techniques. Thus, to begin with, engineers initially consider most systems to be lin-
ear in their behavior. However, it is not always true as we are aware what nonlinear sys-
tems can do. From the point of view of control theory, if we do not know what the system is 
going to do we cannot control it. From a simulation point of view, if we do not know what 
the system is capable of doing, we will not know if our simulation is reasonable. Thus, it is 
important to be aware of the types of behavior demonstrable by nonlinear system so that 
the strange responses that sometimes occur are not totally unexpected.

We may categorize nonlinearities in dynamic system into continuous and discontinu-
ous nonlinearity. Continuous nonlinearities usually arise out of the physics of the system. 
These are more mathematical in nature. A good example is the gravitational force acting 
on the pendulum, which is proportional to sin(x). Discontinuous nonlinearities are more 
often engineered into a system. Good examples of discontinuous nonlinearities are relays, 
saturation, hysteresis, and gear backlash, etc. None of these nonlinearities are particularly 
easy to deal with; however, they each have developed specifi c tools.



434 Modeling and Simulation of Systems Using MATLAB and Simulink

9.2 Linear versus Nonlinear System

The most fundamental property of a linear system is the validity of the principle of super-
position. A nonlinear system does not hold the superposition principle. Nonlinearity is an 
undesirable phenomenon in a system. Nonlinearity is to be as less as possible in a system. 
Let us take any linear time invariant system in this world, we can fi nd some nonlineari-
ties in that system up to some extent. Unfortunately there is a diffi culty in evaluating the 
stability of a nonlinear system.

Perfect linear systems do not exist in practice, as all practical systems are nonlinear to 
some extent. Linear feedback control systems are idealized models, which are made by 
analyst purely for the simplicity of analysis and design (Kuo, 1990).

When the input signal to the control system has magnitude that is limited to a range 
in which the system components possess linear characteristics, the system is essentially 
linear. But when the input signal magnitude extends outside the range of linear  operation, 
the system is no longer considered linear. For example, amplifi ers used in control system 
often exhibit saturation effect; when their input signal becomes large, the magnetic fi eld of 
motor usually has saturation properties. Other common nonlinear effects found in system 
are backlash or dead play between coupled gear members, nonlinear characteristics in 
springs, nonlinear frictional force or torque between moving members.

Some times nonlinear characteristics are intentionally introduced in a control system to 
improve its performance or provide more effective control. For example, to achieve mini-
mum time control, an on–off (bang-bang or relay) type of controller is used. This type of 
controller is used in many missiles and spacecrafts. Linear systems have a wealth of ana-
lytical and graphical techniques for design and analyses purposes. Nonlinear systems are 
very diffi cult to treat mathematically and there are no general methods that may be used 
to solve a wide class of nonlinear systems.

9.3 Types of Nonlinearities

Following are the types of nonlinearities (Nagrath and Gopal, 2001; Fielding and Flux, 
2003) in a system:

 1. Saturation

 2. Friction

 3. Backlash/hysteresis

 4. Dead zone

 5. Relay

 6. Delay

 7. Jump resonance

Friction: In all the moving parts of a system, friction exists between two rubbing surfaces.

Saturation: All system components operate within a permissible range. Beyond this range, 
it may refuse to operate at all. This situation may be called as saturation.



Nonlinear and Chaotic System 435

Dead zone: In this region, the output is zero for a particular range of input. Such a situation 
occurs due to initial conditions of inertia, friction, etc.

Hysteresis: This is a common type of phenomena that occurs when the system is sub-
jected to an alternative input. This phenomenon causes an energy waste or hysteresis 
loss in a system.

Relay: Relay is a nonlinear amplifi er.

Delay: The information delay and transformation delay in the system also produce non 
linearity in the system response.

Jump resonance: It is usually associated with nonlinearity in spring due to change in spring 
stiffness with frequency.

9.4 Nonlinearities in Flight Control of Aircraft

The fl ight control system (autopilot) is designed for automatic stabilization of the aircraft 
attitude about its center of gravity. As every system possesses some nonlinearities, the 
fl ight control system (autopilot) also has some nonlinearities, that is, backlash in servo sys-
tem compliances, dead zone in pilot’s control column, and saturation in servo amplifi er.

This study investigates the effects of backlash in servo system compliances, dead zone 
in pilot’s control column, and saturation in servo amplifi er of fl ight control system (FCS). 
Starting from pilot’s column, a realistic nonlinear Simulink® model of FCS is evolved 
including the applicable nonlinearities.

Different pilot’s commands have been given to the Simulink model of nonlinear FCS in 
the form of step input, ramp input, constant input, and sinusoidal input considering dif-
ferent applicable nonlinearities separately and combined.

Proportional, proportional-integral, proportional-integral-derivative (PID) (based on 
root locus method), and fuzzy controllers (Mamdani type) are designed and devolved. 
Performance of all these controllers has been compared. Fuzzy controller is able to handle 
the system nonlinearities and give the desired output.

9.4.1 Basic Control Surfaces Used in Aircraft Maneuvers

In order to steer an aircraft, a system of fl aps called control surfaces is used. Control 
surfaces defl ect the airfl ow around an aircraft and turn or twist the aircraft so that it 
rotates about the center of gravity. This movement is made by a control stick and pedals.

Basic control surfaces used in aircraft maneuvers, as shown in Figure 9.1, are as follows:

 1. Aileron—For roll

 2. Elevator—For pitch

 3. Rudder—For yaw

9.4.2 Principle of Flight Controls

In addition to the engines and control surfaces that can be used to change the present 
state of motion of the aircraft, every aircraft contains some motion sensors which provide 



436 Modeling and Simulation of Systems Using MATLAB and Simulink

measure of change which have occurred in the measured motion variables as the aircraft 
responses to the pilot’s commands or it encounters a disturbance (McLean, 1999). In mod-
ern aircraft, hydraulic systems or electric motors called actuators move control surfaces by 
responding to control signals sent from a fl ight computer connected to the control stick. 
The actuator command signal travels over a wide area from the control computer to the 
actuator, as shown in Figure 9.2.

The signals from these sensors can be used for display in cockpit or can be used for feed-
back signal to FCS (Figure 9.3). These sensors are gyroscopes; and aircraft sensors such as 
orientation, altitude, velocity sensors, etc. Control effectors include throttle control, rudder 
control, elevator control, aileron control, etc. Pilots issue control commands for fl ight path 
control, velocity command, altitude command, etc.

Stick

Throttle

Control
computer

Hydraulic
piston Elevators

FIGURE 9.2
Movement of control surfaces.

Aircraft
sensors

Flight
control

computer
Cockpit

Control
effectors

Sensor
measurements

Pilot
commands

Controller
commands

FIGURE 9.3
Arrangement of FCS.

FIGURE 9.1
Basic control surfaces used in aircraft maneuvers.

Aileron
Elevator Rudder



Nonlinear and Chaotic System 437

Vertical gyro

Rate gyro

Altitude controller

Servo
unit

Elevator

δe

ω

Δh

v

FIGURE 9.5
Pitch channel operation in altitude hold mode and synchronization mode block diagram.

Vertical gyro

Rate gyro Servo
unit

Elevator

v

Pilot input

δe
ω

FIGURE 9.6
Pitch channel operation in control mode block diagram.

9.4.3 Components Used in Pitch Control

Elevators are used to pitch the aircraft up and down causing it to climb or dive. To climb, 
the pilot pulls the control stick back causing the elevators to be defl ected up. This in turn 
causes the airfl ow to force the tail down and the nose up thereby increasing the pitch 
angle, as shown in Figure 9.4. Similarly, to dive, the pilot pushes the control stick forward 
causing the elevator to defl ect down. This in turn causes the airfl ow to lift the tail up and 
the nose down thereby decreasing the pitch angle.

Components, which are used in FCS (pitch control), are shown in Figures 9.5 and 9.6.

 1. Vertical gyro: The vertical gyro generates electrical signals proportional to the air-
craft’s pitch attitude.

 2. Rate gyro: The rate gyro generates electrical signals proportional to the aircraft’s 
pitch rate.

 3. Altitude controller: Altitude controller is designed to give altitude hold signal when 
altitude hold mode is selected as shown in Figure 9.5.

 4. Servo unit: When error signal is given in case of stabilization mode and control 
signal is given from pilot in case of control mode, servo unit is designed to move 
the elevators.

FIGURE 9.4
Pitch angle control.

Pitch angle

Elevator
deflection



438 Modeling and Simulation of Systems Using MATLAB and Simulink

9.4.4 Modeling of Various Components of Pitch Control System

Though our mathematics—given certain axioms—can be shown to be true in an absolute 
sense, any attempt to model a physical system, say, a car suspension or an aeroplane in 
fl ight will result in something that is “lesser” than the original system. Even if our esti-
mates of all relevant physical quantities are correct, it is likely that we will have taken a 
simplifi ed view of the system dynamics and ignored the potential for interaction with the 
rest of the world.

Transfer functions simplify working with linear differential equations, which describe 
the transition behavior of linear dynamical systems. The servo unit diagram is shown in 
Figure 9.7.

Transfer function of pitch control system components
Transfer function of servo amplifi er = Ga(s) = K

Transfer function of gears = =1
0.66

15
Transfer function of pitch gyro = Kg1

Transfer function of pitch rate gyro = Kg2

To get the transfer function of servomotor, we have to model its components.

 
= + +d

Rotor circuit 
d

a
a a a a b

i
e i R L V

t  
(9.1)

 

θ= d
Rotor EMF 

d
m

b bV K
t  

(9.2)

 
=Mechanical torque m t aT K i

 
(9.3)

 

θ θ= −
2

2

d d
Equation governing mechanical port ( )

d d
m m

m m mJ T t D
t t  

(9.4)

 

θ= + +d d

d d
a m a m

a m b
t t

L T R
e T K

K t K t  
(9.5)

FIGURE 9.7
Servomotor.

R

L

Ia

ea

+

–

ω, T



Nonlinear and Chaotic System 439

From Equations 9.4 and 9.5

 

θ θ θ⎛ ⎞ ⎛ ⎞= + + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

3 2

3 2

d d d

d d d
a m a a m a m

a m m m m b
t t t t

L L R R
e J D J D K

K t K K t K t
 

(9.6)

Taking Laplace transform of both sides

 

⎛ ⎞ ⎛ ⎞= θ + + θ + + θ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

3 2( ) ( ) ( ) ( )a a a a
a m m m m m m b m

t t t t

L L R R
E s J s s D J s s D K s s

K K K K
 

 

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞= + + + + θ⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

2( ) a a a
a m m m m b m

t t t t

L L R Ra
E s s J s D J s D K

K K K K
 

 

θ =
⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞+ + + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

2

1

( )
m

a
a a a a

m m m m b
t t t t

E s L L R R
s J s D J s D K

K K K K
 

(9.7)

Let us introduce

Motor time constant = m a
m

t

J R
T

K

Armature time constant = a
a

a

L
T

R

Damping factor γ = m a

t

D R
K

  Transfer function of servomotor = 
θ
( )
m

aE s
=

+ + γ + γ +2

1

[ ( ) ]a m m a bs T T s T T s K  

(9.8)

Designing the values

 
= =0.5N m/A, 0.5 V s/radt bK K

 

 

=

= = Ω

=

= = γ = = =

20.03kg-m ,

0.02N m s/rad, 8

8H,

0.68 , 0.32, 1

m

m a

a

m a m a
m a

t t

J

D R

L

J R D R
T s T

K K  

Transfer function of servomotor = 
+ +2

1

(0.68 1 1.82)s s s



440 Modeling and Simulation of Systems Using MATLAB and Simulink

9.4.5 Simulink Model of Pitch Control in Flight

Simulink model of pitch control in fl ight is shown in Figure 9.8 after obtaining the transfer 
functions of different components by connecting them as their applicable order (James, 1993).

9.4.5.1 Simulink Model of Pitch Control in Flight Using Nonlinearities

Simulink model of pitch control in fl ight is made after obtaining the transfer functions of 
different components by connecting them as their applicable order and considering some 
nonlinearities, that is, backlash in servo system compliances, dead zone in pilot’s control 
column, and saturation in servo amplifi er (Wills, 1999) of FCS (Figures 9.9 and 9.11).

9.4.6  Study of Effects of Different Nonlinearities on Behavior 
of the Pitch Control Model

Study of effects of different nonlinearities on the behavior of the pitch control model with 
different input signals is carried out and the results are discussed below:

9.4.6.1 Effects of Dead-Zone Nonlinearities

Dead-zone nonlinearity is considered in pilots control column. The system performance is 
observed at different dead-zone nonlinearities, that is, at (−0.05 to 0.05), (−0.25 to 0.25), and 
at (−0.50 to 0.50). The system response is shown in Figure 9.10 with different nonlinearities 
and with step input. The system performance (with above-said nonlinearities) is compared 

Scope1

Gain6

0.61
s

1

Integrator1

Step1 Subtract2 Gain4
Subtract3 Gain5

Gain7

Transfer Fcn1

5
0.1

0.5

+
– +

– den(s)

FIGURE 9.8
Simulink model of pitch control in fl ight.

Scope
Gain2 Backlash

0.6

Integrator

1
sDead ZoneStep

Gain1
Gain

SubtrationSubtract1Subtract

Gain3

Transfer 
Fcn

0.1
5

0.5

+
–

+
–

1
den(s)

FIGURE 9.9
Simulink model of pitch control in fl ight using some nonlinearities.



Nonlinear and Chaotic System 441

with the system performance (without considering nonlinearities) at step input, as shown 
in Figure 9.10. As shown in Figures 9.12 through 9.15, when the dead zone increases the 
system responses get more distorted.

9.4.6.2 Effects of Saturation Nonlinearities

Saturation nonlinearity is considered in servo amplifi er. The system performance is 
observed at different saturation nonlinearities, that is, at (−0.05 to 0.05), (−0.10 to 0.10), and 

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2
0.3

0.4

0.5

0.6

0.7
0.8

0.9

1

Nonlinear system
Linear system

FIGURE 9.10
Comparison of performances of linear and nonlinear models.

Subtract1Subtract
Gain1

Gain5Subtract3
Gain4Subtract2

Gain7

Gain3

Transfer Fcn
den(s)

2

Integrator

Integrator1 Gain6

Scope

Gain2

0.6

0.6

GainDead Zone

Dead Zone1

Step

+
5

0.1

0.5

–

+
– +

–

Subtract5

+
–

+
–

Transfer Fcn1
den(s)

2

1

5

Gain8Subtract4

+
– 5

0.1

Gain9 Transfer Fcn2
den(s)

2
0.1

0.5

Gain11

Gain13

0.5

Integrator2 Gain10

0.6

Dead Zone2
Subtract7

+
–

Gain14Subtract6

+
– 5

Gain15 Transfer Fcn3
den(s)

2
0.1

0.5

Integrator3 Gain12

0.6

s

1
s

1
s

1
s

FIGURE 9.11
Simulink model of FCS (pitch control) with dead-zone nonlinearities.



442 Modeling and Simulation of Systems Using MATLAB and Simulink

Effect of nonlinearity

M
ag

ni
tu

de

–0.4
–0.3
–0.2

–0.1
0

0.1
0.2
0.3
0.4
0.5
0.6

0 1 2 3 4 5
Time (s)

±0.5

±0.25

±0.05

6 7 8 9 10

FIGURE 9.13
System performance at different dead-zone nonlinearities with sinusoidal input.

Effect of nonlinearity
1

0.9

0.8

0.7

0.6

0.5

0.4M
ag

ni
tu

de

0.3

0.2

0.1

0
0 1 2 3 4 5

Time (s)

±0.50

±0.25

±0.05

6 7 8 9 10

FIGURE 9.12
System performance at different dead-zone nonlinearities with step input.

at (−0.25 to 0.25). The system is shown in Figure 9.16 with different nonlinearities and with 
step input. The system performance (with above-said nonlinearities) is compared with the 
system performance (without considering nonlinearities) at step input, as shown in Figure 
9.17. As shown in Figures 9.17 through 9.21 when saturation nonlinearities decrease, the 
system responses gets more distorted.

9.4.6.3 Effects of Backlash Nonlinearities

The backlash nonlinearity is considered in pilots control column. The system performance 
is observed at different backlash nonlinearities, that is, at 1.0, 2.0, and at 3. The system is 



Nonlinear and Chaotic System 443

0 1 2 3 4 5 6 7 8 9 10
–1

0

1

2

3

4

5

6

7

8

Time (s)

M
ag

ni
tu

de

Effect of nonlinearity

FIGURE 9.14
System performance at different dead-zone nonlinearities with ramp input.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4 5

Time (s)

Effect of nonlinearity

M
ag

ni
tu

de

6 7 8

±0.50

±0.25

±0.05

9 10

FIGURE 9.15
System performance at different dead-zone nonlinearities with constant input.

shown in Figure 9.22 with different nonlinearities and with step input. The system perfor-
mance (with above-said nonlinearities) is compared with the system performance (with 
out considering nonlinearities) at step input. As shown in Figures 9.23 through 9.27 when 
the dead zone increases, the system responses get more distorted.

9.4.6.4 Cumulative Effects of Backlash, Saturation, Dead-Zone Nonlinearities

Effects of backlash at 2, saturation is at (0.15 and −0.15), dead zone at (−0.25 and 0.25) non-
linearities collectively is analyzed in Figures 9.28 through 9.30 at different inputs.



4
4

4 
M

odeling and Sim
ulation of System

s U
sing M

A
T

LA
B and Sim

ulink

Step Subtract

Subtract2

Subtract4

Subtract6

Gain

Gain4

Gain8

Gain14

5

5

5

5

0.1

0.1

0.1

0.5

0.5

0.1

0.6

0.6

0.6

0.6

0.5

0.5

2
den(s)

2
den(s)

2
den(s)

2
den(s)

1
s

1
s

1
s

1
s

Subtract1

Subtract3

Subtract5

Subtract7

Saturation1

Saturation3

Saturation2

Transfer Fcn

Transfer Fcn1

Transfer Fcn2

Transfer Fcn3

Integrator Gain2

Integrator1

Integrator2

Integrator3

Gain6

Scope

Gain10

Gain12

Gain1

Gain5

Gain9

Gain15

Gain3

Gain7

Gain11

Gain13

+
– +

–

+
– +

–

+
–

+
–

+
–

+
–

FIGURE 9.16
Simulink model of FCS at different saturation nonlinearities with step input.



Nonlinear and Chaotic System 445

1

0.9

Effect of nonlinearity

±0.25

±0.10

±0.05

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4 5

Time (s)

M
ag

ni
tu

de

6 7 8 9 10

FIGURE 9.17
System performance at different saturation nonlinearities with step input.

8

7

6

5

4

3

2

1

0

–1
0 1 2 3 4 5

Time (s)

±0.25

±0.10

±0.05

Effect of nonlinearity

M
ag

ni
tu

de

6 7 8 9 10

FIGURE 9.18
System performance at different saturation nonlinearities with ramp input.

9.4.7 Designing a PID Controller for Pitch Control in Flight

9.4.7.1  Designing a PID Controller for Pitch Control in Flight with the Help 
of Root Locus Method (Feedback Compensation)

We design a feedback system to meet the specifi cations which are given below:

 1. Velocity error as small as possible

 2. Damping ratio ζ = 0.9

 3. Settling time ≤ 10 s



446 Modeling and Simulation of Systems Using MATLAB and Simulink

0.6

0.5

0.4

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4
0 1 2 3 4 5

Time (s)

±0.05
±0.10

±0.25

Effect of nonlinearity

M
ag

ni
tu

de

6 7 8 9 10

FIGURE 9.19
System performance at different saturation nonlinearities with sinusoidal input.

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4 5

Time (s)

M
ag

ni
tu

de

Effect of nonlinearity

6 7

±0.25

±0.10

±0.05

8 9 10

FIGURE 9.20
System performance at different saturation nonlinearities with waveform generator input.

First, we can introduce a proportional controller (a gain, say A).
Open loop transfer function of uncompensated system is as follows:

 
=

+ +2

0.24
( )

(0.9 1.6 1.64)

A
G s

s s s  
(9.9)

Characteristic equation of the uncompensated system is

 
+ =

+ +2

0.24
1 0

(0.9 1.6 1.64)

A
s s s  

(9.10)



Nonlinear and Chaotic System 447

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4 5

Time (s)

Effect of nonlinearity

M
ag

ni
tu

de

6 7 8 9

±0.05

±0.10

±0.25

10

FIGURE 9.21
System performance at different saturation nonlinearities with constant input.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4 5 6 7 8 9 10

Time (s)

M
ag

ni
tu

de

Effect of nonlinearity

0.0

1.0
2.0 3.0

FIGURE 9.22
System performance at different backlash nonlinearities with constant input.

The root locus of Equation 9.2 can be found as follows:

With the help of MATLAB®,

num=[1];
den=[0.96 1.6 1.64 0];
rlocus(num,den),

In order for the feedback system to have a settling time ≤10 s, all the closed loop poles 
in root locus must lie on the left-hand side of the vertical line passing through the point 
(−4/ts = −4/10 = −0.4 s).



448 Modeling and Simulation of Systems Using MATLAB and Simulink

Step Subtract

+

Gain

5

Subtract1 Gain1

Subtract2 Gain4
Subtract3 Gain5 Transfer Fcn1

0.1

0.5

0.5

den(s)
Transfer Fcn

Gain3

Gain7

Gain11

Gain13

0.5

0.5

Integrator

Integrator1

Backlash Gain2

Backlash1 Gain6

0.6

0.612

5
0.1 den(s)

Scope

2

Subtract4

Subtract6

Gain8

Gain14

Subtract5 Gain9 Transfer Fcn2

Subtract7 Gain15 Transfer Fcn3

Integrator2

Integrator3

Backlash2 Gain10

Gain12

0.6

0.6

5

5

0.1

0.1

den(s)
2

den(s)
2

s

1
s

1
s

1
s

–

+
–

+
–

+
– +

–

+
–

+
–

+
–

FIGURE 9.23
System performance at different backlash nonlinearities with step input.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4 5 6 7 8 9 10

Time (s)

M
ag

ni
tu

de

Effect of nonlinearity

0.0

1.0 2.0

3.0

FIGURE 9.24
System performance at different backlash nonlinearities with step input.



Nonlinear and Chaotic System 449

0.6

0.5

0.4

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4
0 1 2 3 4 5 6 7 8 9 10

Time (s)

M
ag

ni
tu

de

Effect of nonlinearity

0.0

1.0

2.0
3.0

FIGURE 9.25
System performance at different backlash nonlinearities with sinusoidal input.

8

7

6

5

4

3

2

1

0

–1
0 1 2 3 4 5 6 7 8 9 10

Time (s)

M
ag

ni
tu

de

Effect of nonlinearity

0.0 1 2
3.0

FIGURE 9.26
System performance at different backlash nonlinearities with ramp input.

From the root locus of the system without compensator, as shown in Figure 9.31, we see 
this is not possible for any A > 0.

The characteristic equation (Equation 9.11) of the compensated system becomes

 
( )+ + + + =3 21 0.24 /0.96 1.6 1.64 0.24 0tA s s s sK

 
(9.11)

Partitioning the characteristic equation and selecting the value of A = 5, it gives

 + + + = −3 20.96 1.6 1.64 1.20 0.24 ts s s sK  



450 Modeling and Simulation of Systems Using MATLAB and Simulink

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4

0.0 1.0

2.0
3.0

5
Time (s)

Effect of nonlinearity

M
ag

ni
tu

de

6 7 8 9 10

FIGURE 9.27
System performance at different backlash nonlinearities with waveform generator input.

1

0.9

0.8

0.7

0.6

0.5
0.4

0.3

0.2

0.1

0
0 1 2 3 4

Nonlinear
system

Linear system

5 6 7 8 9 10

FIGURE 9.28
System performance at different nonlinearities with step input.

 ( )+ + + + =3 2or 1 0.24 / 0.96 1.6 1.64 1.20 0( )tsK s s s  (9.12)

Now we plot root locus for Equation 9.12.
The root locus of Equation 9.12 is shown in Figure 9.32:

num =[1 0];
den =[0.96 1.6 1.64 1.20];
rlocus(num,den),

The root locus of the system with compensator (Figure 9.32) is analyzed now. The damping 
ratio ζ 0.9 line intersects the root locus at two points. Both the points lie on the left-hand side 
of the vertical line passing through (−0.4).



Nonlinear and Chaotic System 451

One of these two points is (−0.41 + j1.1).
Now putting the value of s = −0.41 + j1.1 in Equation 9.12 gives Kt = 1.5670.
So, now selecting the value for Kt = 1.5670, A = 5.0 (already taken), a new compensated 

Simulink model in combination with uncompensated Simulink model is developed, as 
shown in Figure 9.33.

9.4.7.1.1 Study of Steady State Behavior of the Compensated System

Let us now investigate the study of steady state behavior of the compensated system:

 
→

⎡ ⎤
= ⎢ ⎥+⎣ ⎦( 0)

( )

1 ( )
v

Limits s t

AG s
K

sK G s
 

0

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
1 2 3 4 5 6

Nonlinear system

Linear system

7 8 9 10

FIGURE 9.29
System performance at different nonlinearities with waveform generator input.

FIGURE 9.30
System performance at different nonlinearities with ramp input.

0

8

7

6

5

4

3

2

1

0

–1
1 2 3 4 5 6 7 8 9

Nonlinear system

Linear system

10



452 Modeling and Simulation of Systems Using MATLAB and Simulink

where
A = [5.0]
Kt = [1.5670]

=
+ +3 2

0.24
( )

0.96 1.6 1.64
G s

s s s

It gives

Kv = 0.5970

Figure 9.34 shows a comparison between compensated and uncompensated systems out-
puts. The graph shown by yellow line denotes uncompensated system and graph shown 
by other line denotes compensated system.

FIGURE 9.31
Root locus of the system without compensator.

3

2

1

0

–1

–2

–3
–3.5 –3 –2.5 –2 –1.5 –1 –0.5 0 0.5 1

FIGURE 9.32
Root locus of the system with compensator.

4

3

2

1

0

–1

–2

–3

–4
–1.4 –1.2 –1 –0.8 –0.6 –0.4 –0.2 0

Root locus 

Real axis 

Im
ag

in
ar

y a
xi

s



Nonlinear and Chaotic System 453

9.4.7.1.2 Stability Check (Using Routh Table)

Stability check of the obtained compensated system (using Routh table) is carried out. The 
characteristic equation of the obtained compensated system can be written as follows:

 + + + + =3 20.96 1.6 1.64 0.24 1.20 0ts s s sK  

Putting K = 0.24Kt

 
+ + + + =3 20.96 1.6 (1.64 ) 1.20 0s s K s

 

FIGURE 9.33
Comparison of Simulink models (between compensated and uncompensated).

FIGURE 9.34
Results of comparison of Simulink models (between compensated and uncompensated systems).

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0 1 2 3 4 5 6 7 8 9 10

Uncompensated system
Compensated system



454 Modeling and Simulation of Systems Using MATLAB and Simulink

Routh table is as under

s3 0.96 (1.64 + K)

s2 1.6 1.20

s1 [1.6(1.64 + K) − 1.152]/1.6 0

s0 1.20 0

For stable operation

 
+ − >[1.6(1.64 ) 1.152]/1.6 0K

 

it gives K > −0.92
or, Kt > −3.83

This condition is satisfi ed by our obtained compensated system as Kt = 1.5670.
Now we can say that our obtained compensated system is stable.

Comments

 1. The above-mentioned PID controller is developed using feedback compensation.

 2. The feedback compensation provides greater stiffness against load disturbances.

 3. Suitable rate gyroscope is available for feed back compensation.

 4. Its performance indices are as given below:

Percentage overshoot • = 14%
Rise time • = 2.9 s

Settling time • = 8.3 s

9.4.7.2  Designing a PID Controller (Connected in Cascade with the System) 
for Pitch Control in Flight

 
= + +3 2( ) 0.24/0.96 1.6 1.64[ ]G s s s s

 

 
= + + + + +3 2 3 2( )/ ( ) Kp 0.24/ 0.96 1.6 1.64 / 1 Kp 0.24/0.96 1.6 1.64s[ ( )] ( [ ])C s R s s s s s s

 

 
= + + +3 2Kp(0.24)/(0.96 1.6 1.64 Kp0.24)s s s

 

The critical gain is determined by Routh array for the characteristic equation:

 
+ + + =3 20.96 1.6 1.64 Kp0.24 0 is as given below.s s s

 

Routh table is as follows:

s3 0.96 1.64

s2 1.6 Kp0.24

s1 [0.96Kp(0.24) − (1.6)(1.64)]/1.6 0

s0 Kp0.24 0



Nonlinear and Chaotic System 455

For stable operation

 
− >[0.96Kp(0.24) (1.6)(1.64)]/1.6 0

 

it gives Kp > 11.39

Hence, the critical gain Ker = 11.39,

9.4.7.2.1 To Find the Frequency of Oscillations (Ter)

1.6s2 + Kp0.24 = 0 (Auxiliary equation found from above Routh table)

putting Kp = 11.9

s = ±j1.3 rad/s

Ter = 2π/1.3 = 4.83 s

Substituting these values in the following standard equations:

Kp = 0.6 Ker

τi = 0.5 Ter

τd = 0.125 Ter

We get

Kp = 6.834

τi = 2.46

τd = 0.60

The transfer function of developed PID controller may be in the following form:

 = + τ + τc d( ) Kp (1 1/ )iG s s s  

This PID controller is connected in cascade to the system’s transfer function.
The PID controller is prepared on the above discussion basis and then Simulink model 

is developed, as given in Figure 9.35, and compared with the results of the predeveloped 
PID controller (feedback compensation), as shown in Figure 9.36.

Comments: Comparisons between both PID controllers for Design 1 and 2

 1. We can easily see from Figure 9.36 that there is an appreciable difference in per-
centage overshoots of the outputs for the given step input.

 2. Rise time in feedback compensation controller is better.

 3. There is no remarkable difference in settling times of both the designs.

Parameters Design 1 Design 2

Percentage over shoot 14% 62%
Rise time 2.9 s 2.1 s

Settling time 8.3 s 8.4 s

 From the above discussion, it is concluded that design 1 is the better design option.



456 Modeling and Simulation of Systems Using MATLAB and Simulink

9.4.7.3 Design of P, I, D, PD, PI, PID, and Fuzzy Controllers

Design of P, I, D, PD, PI, PID, and fuzzy controllers and their use on linear as well as 
nonlinear system is carried out. The compared results of application of these controllers 
(for linear as well as nonlinear system) are shown after each model (Figure 9.37).

FIGURE 9.36
Comparing the results with the predeveloped PID controller (feedback compensation).

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

0
0 1 2 3 4 5 6 7 8 9 10

1

Feedback controller
System without any controller
Cascade proportional controller

FIGURE 9.35
Arrangement of cascade proportional controller and predeveloped PID controller (feedback compensation) 

at a place.



Nonlinear and Chaotic System 457

From Figures 9.38 through 9.46, it is clear that the performance of linear system can 
be controlled and improved by different controllers, that is, P, I, PD, PI, PID, and fuzzy 
controller. The blue line curves show linear system and green line curves show nonlinear 
system. But the performance of nonlinear system cannot be controlled and improved by 
different controllers, that is, P, I, PD, PI, and PID controllers. Only fuzzy controller is able 
to control the nonlinear system.

FIGURE 9.37
Proportional controller for linear and nonlinear systems.

FIGURE 9.38
Results of application of proportional controller.

1.4

1.2

0.8

0.6

0.4

0.2

–0.2

0

0 1 2 3 4 5 6 7 8 9 10

1

Linear system
Nonlinear system



458 Modeling and Simulation of Systems Using MATLAB and Simulink

The results of application of fuzzy controller on both the systems are satisfactory.

 1. Proportional controller
  The proportional mode adjusts the output signal in direct proportion to the controller 

input (which is the error signal e). The adjustable parameter is the controller gain.
   A proportional controller reduces error but does not eliminate it (unless the pro-

cess has naturally integrating properties), that is, an offset between actual and the 
desired value will normally exist.

 = c( )/ ( )V s e s K  

FIGURE 9.39
Arrangement of integral controller.

FIGURE 9.40
Results of application of integral controller.

1.4

1.2

1

0.8

0.6

0.4

0.2

–0.2

0

0 1 2 3 4 5 6 7 8 9 10

Linear system
Nonlinear system 



Nonlinear and Chaotic System 459

 2. Integral controller

 3. Proportional-integral controller
  The additional integral mode (often referred to as reset) corrects for any reset (error) 

that may occur between the desired value (set point) and the process output automati-
cally. The adjustable parameter to be specifi ed is the integral time of the controller:

 = +c( )/ ( ) [1 1/ ( )]iV s e s K T s  

 4. Proportional-derivative controller

 = +c d( )/ ( ) [1 ( )]V s e s K T s  

FIGURE 9.41
Arrangement of proportional-integral controller.

FIGURE 9.42
Results of application of proportional-integral controller.

2.5

1.5

0.5

0

0 1 2 3 4 5 6 7 8 9 10
–0.5

1

2

Linear system
Nonlinear system



460 Modeling and Simulation of Systems Using MATLAB and Simulink

 5. PID controller
  The PID control constitutes the heuristic approach to controller design that has 

found wide acceptance in industrial applications.
   The PID controller is the most popular feedback controller used within the pro-

cess industries. It has been successfully used over many years. It is a robust easily 
understood algorithm that can provide excellent control performance despite the 
varied dynamic characteristics of process plant. The mathematical representation 
of the PID controller is as shown in Figure 9.45:

 
= + +c d( )/( ) [1 1/ ( ) ( )]iV s e K T s T s

 

FIGURE 9.43
Arrangement of proportional-derivative controller.

FIGURE 9.44
Results of application of proportional-derivative controller.

1.2

1

0.8

0.6

0.4

0.2

–0.2

0

0 1 2 3 4 5 6 7 8 9 10

Linear system
Nonlinear system



Nonlinear and Chaotic System 461

9.4.8 Design of Fuzzy Controller

There is no design procedure in fuzzy control such as root-locus design, frequency 
response design, pole placement design, or stability margins, because the rules are often 
nonlinear.

FIGURE 9.45
Arrangement of PID controller.

FIGURE 9.46
Results of application of PID controller.

1.8
1.6
1.4
1.2

0.8
0.6
0.4
0.2

–0.2

0

0 1 2 3 4 5 6 7 8 9 10

1

Linear system
Nonlinear system



462 Modeling and Simulation of Systems Using MATLAB and Simulink

9.4.8.1 Basic Structure of a Fuzzy Controller

A fuzzy controller can be handled as a system that transmits information like a conven-
tional controller with inputs containing information about the plant to be controlled and 
an output, that is, the manipulated variable. From outside, there is no vague information 
visible, both, the input and output values as crisp values. The input values of a fuzzy 
controller consist of measured values from the plant that are either plant output values or 
plant states, or control errors derived from the set-point values and the controlled variables 
(Mamdani and Assilian, 1975; Chaturvedi, 2008). A control law represented in the form of a 
fuzzy system is a static control law. This means that the fuzzy rule-based representation of 
a fuzzy controller does not include any dynamics, which makes a fuzzy controller a static 
transfer element, like the standard state-feedback controller. In addition to this, a fuzzy 
controller is, in general, a fi xed nonlinear static transfer element, which is due to those 
computational steps of its computational structure that have nonlinear properties. The 
computational structure of a fuzzy controller consists of three main steps, as illustrated by 
the three blocks in below Figure 9.47:

 1. Signal conditioning and fi ltering at the input (input fi lter)

 2. Fuzzy system

 3. Signal conditioning and fi ltering at the output (output fi lter)

9.4.8.2 The Components of a Fuzzy System

Figure 9.48 shows the contents of a fuzzy system.
The input signals are crisp values, which are transformed into fuzzy sets in the fuzzi-

fi cation block. The output u comes out directly from the defuzzifi cation block, which 
transforms an output fuzzy set back to a crisp value. The set of membership functions 
responsible for the transforming part and the rule base as the relational part contain as 

FIGURE 9.47
Basic structure of a fuzzy controller.

Fuzzy controller

Input
filter

Fuzzy
system

Output
filter

x c
υ

u

FIGURE 9.48
Basic components of fuzzy system.

Rule base

Inference Defuzzification

Membership functions

Fuzzy system

Fuzzificationx u



Nonlinear and Chaotic System 463

a whole the modeling information about the system, which is processed by the inference 
machine (discussed later). This rule-based fuzzy system is the basis of a fuzzy controller, 
which is described in the following section.

9.4.8.2.1 Representation Using 3D Characteristics

For the case of two inputs and one output, a 3D representation is possible. The fuzzy con-
troller with a fuzzy system having two inputs e1 and e2 and one output u, is shown in 
Figures 9.49 and 9.50.

FIGURE 9.49
Block diagram of fuzzy controller.

PlantFuzzy-
system+

–

Fuzzy
controller

d
dt

yu
e1

e2

ew

FIGURE 9.50
Fuzzy controller.



464 Modeling and Simulation of Systems Using MATLAB and Simulink

Fuzzifi cation:

The fi rst block inside the fuzzy system is fuzzifi cation, which converts each piece of input 
data to degrees of membership by a lookup in one or several membership functions 
(Figures 9.51 and 9.52).

Rule base:

The rules may use several variables both in the condition and the conclusion of the 
rules. The controllers can therefore be applied to both multi-input-multi-output (MIMO) 
problems and single-input-single-output (SISO) problems. The typical SISO problem is 
to regulate a control signal based on an error signal. The controller may actually need 
both the error, the change of error, and the accumulated error as inputs, but we will call it 
single-loop control, because in principle all three are formed from the error measure-
ment. To simplify, this section assumes that the control objective is to regulate some 
process output around a prescribed set point or reference.

Rule format:

Basically a linguistic controller contains rules in the if-then format, but they can be pre-
sented in different formats. In many systems, the rules are presented to the end user in a 
format similar to the following (Figures 9.54 and 9.55):

FIGURE 9.51
Membership function plot of input 1 of fuzzy controller.



Nonlinear and Chaotic System 465

 1. If error is low and change in error is low then output is low.

 2. If error is med and change in error is med then output is med.

 3. If error is high and change in error is high then output is high.

 4. If error is low and change in error is med then output is med.

 5. If error is high and change in error is med then output is high.

 6. If error is med and change in error is high then output is med.

 7. If error is high and change in error is med then output is high.

The names low, med, and high are labels of fuzzy sets.
A more compact representation is as follows:

Error Change in Error Output

Low Low Low

Med Med Med

High High High

Low Med Med

High Med High

Med High Med

High Med High

FIGURE 9.52
Membership function plot of input 2 of fuzzy controller.



466 Modeling and Simulation of Systems Using MATLAB and Simulink

Defuzzifi cation:

The resulting fuzzy set must be converted to a number that can be sent to the process as 
a control signal. This operation is called defuzzifi cation. The output surface is shown in 
Figure 9.56 for both inputs.

The Simulink model of Fuzzy controller is shown in Figure 9.57 and the results are shown 
in Figure 9.58.

In the graph in Figure 9.58, dotted line shows linear system and simple line shows nonlin-
ear system.

Cumulative arrangement of different controllers (P, I, D, PD, PI, PID, and fuzzy controllers) 
for linear system (Figures 9.59 through 9.64):

load xyy1;
plot(ans(1,:),ans(2,:),‘-’,ans(1,:),ans(3,:),‘-’,ans(1,:),ans(4,:),‘-’,
ans(1,:),ans(5,:),‘-’,ans(1,:),ans(6,:),‘-’),

In the above comparison, nonlinearities included are the following:

Dead-zone parameters: ± 0.01

Saturation parameters: ± 0.85

Backlash parameters: ± 0.002

FIGURE 9.53
Membership function plot of output of fuzzy controller.



Nonlinear and Chaotic System 467

FIGURE 9.54
Rule editor of fuzzy controller.

FIGURE 9.55
Rule viewer of fuzzy controller.



468 Modeling and Simulation of Systems Using MATLAB and Simulink

Cumulative arrangement of different controllers (P, PD, PI, PID, and fuzzy controllers) for 
increased dead-zone nonlinearities:

Now, the considered nonlinearities are following:

Dead-zone parameters: (−0.15 to 0.15)

Saturation parameters: (−0.85 and 0.85)

Backlash parameters: (−0.002 and 0.002)

FIGURE 9.56
Surface view of fuzzy controller.

FIGURE 9.57
Arrangement of fuzzy controller in linear system as well as in nonlinear system.

Scope

Backlash1
0.24

den(s)

0.24
den(s)

Transfer Fcn1

Transfer Fcn2

Saturation2Gain5

Gain3

Fuzzy Logic
Controller3

Fuzzy Logic
Controller1

du/dt

du/dt

Derivative1

Derivative5

Subtract

Subtract3

Dead Zone1Step

+
–

+
–

5

5



Nonlinear and Chaotic System 469

9.4.9 Tuning Fuzzy Controller

The tunned fuzzy system is shown in Figure 9.65 and the fuzzy membership function for 
inputs and outputs are shown in Figure 9.66 through 9.68.

Rule format

Basically, a linguistic controller contains rules in the if-then format, but they can be pre-
sented in different formats. In many systems, the rules are presented to the end user in a 
format shown in Figure 9.69.

FIGURE 9.59
Arrangement of different controllers (P, I, D, PD, PI, and fuzzy controllers) connected at a place for linear system.

FIGURE 9.58
Results of application of fuzzy controller in linear as well as nonlinear system.

0
–0.2

0

0.2

0.4

0.6

0.8

1

1.2

10 20 30 40 50

Nonlinear system

Linear system

60 70 90 10080



470 Modeling and Simulation of Systems Using MATLAB and Simulink

FIGURE 9.60
Results of different controllers (P, I, D, PD, PI, PID, and fuzzy controllers) connected at a place for linear system.

FIGURE 9.61
Arrangement of different controllers (P, PD, PI, PID, and fuzzy controllers) connected at a place for linear system.



Nonlinear and Chaotic System 471

FIGURE 9.63
Arrangement of different controllers (P, PD, PI, and fuzzy controllers) connected at a place for nonlinear system.

FIGURE 9.62
Results of different controllers (P, PD, PI, PID, and fuzzy controllers).

PD

0
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

10 20 30 40 50 60 70 80 90 100

P
PID

PI

Fuzzy

Time (s)

N
or

m
al

iz
ed

 el
ev

at
or

 an
gl

e



472 Modeling and Simulation of Systems Using MATLAB and Simulink

 1. If error is low and change in error is low then output is low.

 2. If error is med and change in error is med then output is med.

 3.  If error is high and change in error is high then output is high.

 4.  If error is low and change in error is med then output is med.

FIGURE 9.65
Tuned fuzzy controller.

FIGURE 9.64
Results of different controllers (P, PD, PI, PID, and fuzzy controllers) with some nonlinearities connected 

at a place.

PD

0

0

–0.5

0.5

1

1.5

2

10 20 30 40 50 60 70 80 90 100

P PID

PI

Fuzzy

Time (s)

N
or

m
al

iz
ed

 el
ev

at
or

 an
gl

e



Nonlinear and Chaotic System 473

 5.  If error is high and change in error is med then output is high.

 6.  If error is med and change in error is high then output is med.

The names low, med, and high are labels of fuzzy sets.
A more compact representation of rules is shown in Table 9.1. The 3-D surface of tuned 

fuzzy controller is shown in Figure 9.70.

9.5 Conclusions

It is quite clear from the results that the nonlinearities are affecting the performance of 
the fl ight control system. Flight control system (FCS) Simulink model has been evolved 
using some applicable nonlinearities. Proportional controller (P), Integral controller (I), 
Derivative controller (D), Proportional integral controller (PI), Proportional-derivative 
controller (PD), Proportional-integral-derivative controller (PID), evolved and tuned. 
Proportional controller also evolved with the help of root locus techniques. The perfor-
mance of P, PI, PD, and PID controllers are analyzed separately. Their responses for step 
input, ramp input, and constant input have been studied. Fuzzy controller has also been 
developed and results have been compared with the aforesaid controllers; the results show 
that fuzzy controller is able to handle the applicable nonlinearities more effi ciently.

FIGURE 9.66
Input-1 membership function of tuned fuzzy controller.



474 Modeling and Simulation of Systems Using MATLAB and Simulink

FIGURE 9.67
Input-2 membership function of tuned fuzzy controller.

FIGURE 9.68
Output membership function of tuned fuzzy controller.



Nonlinear and Chaotic System 475

This work may be further extended as follows:

Adaptive• /neuro-fuzzy controller may be developed.

 Online tuning of fuzzy logic controller (FLC) may be done • 
using genetic algorithm.

 Yow and Roll control can be done with fuzzy• /neuro-fuzzy 
controllers.

Example

Consider a simple mass–dashpot and spring system.

TABLE 9.1

Fuzzy Rules Table

Error

Change 

in Error Output

Low Low Low

Med Med Med

High High High

Low Med Med

High Med High

Med High Med

M
K4 B3

V1 M2

K = 360 N/m
M = 10 kg
B = 24–60 N s/m

In this system, the damping (friction) is not linear but is nonlinear; the damping equations for linear 
damping and nonlinear damping are as follows:

For linear damping, f = bv23

For nonlinear damping, = 2
23f bv

FIGURE 9.69
Rule view of tuned fuzzy controller.



476 Modeling and Simulation of Systems Using MATLAB and Simulink

f = bv23

f = bv2
23

System equations

Linear system

 

3

3

d d
d d

v k v k k
v Vin

t mb t m m
+ + =

 
Nonlinear system

 

3

3

d d
d d

v k v k k
v Vin

t mb t m m
+ + =

 

MATLAB program

% Non-linear Mass-spring dashpot system Simulation
clear all
clc
K = 360; % N/m
M = 10;  % Kg

FIGURE 9.70
Surface view of tuned fuzzy controller.



Nonlinear and Chaotic System 477

B = 24;     % N-s/m – 60N-s/m
dt = 0.001;
t = 0;
tsim = 2;
n = round( (tsim-t)/dt);
x1 = 0;dx1 = 0;x2 = 0;dx2 = 0;
vin = 0;
for i = 1:n
    x11(i,:) = [t,dx1,dx2,x1,x2,vin];
    vin = sin(2*pi*5*t);
    ddx1 = (K/M)*(vin-x1-dx1/B);
    ddx2 = (K/M)*(vin-x2)-sqrt(K*dx2/M*B); 
dx1 = dx1 + dt*ddx1;dx2 = dx2 + dt*ddx2;
   x1 = x1 + dt*dx1;x2 = x2 + dt*dx2;
   t = t + dt;
end
figure(1)
plot(x11(:,1),x11(:,2:3) )
title(‘Simulation of non-linear’)
legend(‘Linear parameters’, ‘non-linear parameter’)
xlabel(‘Time (Sec.)’)
ylabel(‘Velocity (m/s)’)
figure(2)
plot(x11(:,1),x11(:,4:5) )
title(‘Simulation of non-linear’)
legend(‘Linear parameters’, ‘non-linear parameter’)
xlabel(‘Time (sec.)’)
ylabel(‘Displacement (m)’)

Results

From a simulation point of view, if we do not know what the system is capable of doing, we will 
not know if our simulation is reasonable, thus it is important to be aware of the types of behavior 
demonstrable by nonlinear system so that the strange responses that sometimes occur are not 
totally unexpected. The response of given mechanical system for linear parameters and nonlinear 
parameters are in fi gures below.

2.5

2

1.5

1

0.5

0

–0.5

–1

–1.5

–2

–2.50 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (s)

Ve
lo

ci
ty

 (m
/s

)

Linear parameters
Nonlinear parameter

Simulation of nonlinear



478 Modeling and Simulation of Systems Using MATLAB and Simulink

9.6 Introduction to Chaotic System

The word chaos (derived from the Ancient Greek Xα′ oς, Chaos) typically refers to unpre-
dictability. Chaos is the complexity of causality or the relationship between events. It has 
both a general meaning and a scientifi c meaning. As is usually the case, the general mean-
ing tends to convey little of the strict defi nition that scientists and mathematicians apply 
to the chaos.

9.6.1 General Meaning

 1. A condition or place of total disorder or utter confusion: “emotions in complete 
chaos.”

 2. Chaos is the disordered state of unformed matter and infi nite space supposed by 
some religious cosmological views to have existed prior to the ordered universe.

 3. The confused, unorganized condition or mass of matter before the creation of dis-
tinct and orderly forms.

 4. Any confused or disordered collection or state of things or a confused mixture.

9.6.2 Scientific Meaning

What scientists and mathematicians mean by chaos is very much related to the spirit of the 
defi nitions given above.

The systems are chaotic if they are deterministic through description by mathemati-
cal rules and these mathematical descriptions are nonlinear in some way. Unpredictable 
behavior of deterministic systems has been called chaos.

However, we can talk about chaos in regard to its typical features:

 1. Nonlinearity

 2. Determinism

 3. Sensitivity to initial conditions

0.3

0.2

0.1

0

–0.1

–0.2

–0.4

–0.3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (s)

D
isp

la
ce

m
en

t (
m

)

Simulation of nonlinear

Linear parameters
Nonlinear parameter



Nonlinear and Chaotic System 479

 4. Sustained irregularity

 5. Long-term prediction impossible

Chaos is related to the irregular behavior of the system. The system contains a “hidden 
order” which itself consists of a large or infi nite number of periodic patterns (or motions). 
Effectively this is “order in disorder.” Chaotic processes are not random; they follow rules 
but even simple rules can produce extreme complex outputs. This blend of simplicity and 
unpredictability also occurs in music and art. Music consisting of random notes or of an 
endless repetition of the same sequence of notes would be either be disastrously discor-
dant or unbearably boring. Chaos is all around us. For example, consider the human brain 
function and heart beat. It is suggested that pathological “order” may lead to epilepsy and 
too much periodicity in heart rate may indicate disease!

9.6.3 Definition

No defi nition of the term chaos is universally accepted yet, but almost everyone would 
agree on the three ingredients used in the following working defi nition:

Chaos is a periodic long-term behavior in a deterministic system that exhibits sensitive 
dependence on initial conditions.

 1. A periodic long-term behavior
  It means that the system behaviors do not settle down to fi xed points, period orbits, 

or quasi periodic orbits as t → ∞.

 2. Deterministicism
  It means that the system has no random or noisy inputs or parameters. The irregu-

lar behavior arises from the system’s nonlinearity, rather than from noisy driving 
forces.

  A system which is deterministic has an attribute that its behavior is specifi ed 
without probabilities and the system behavior is predictable without uncertainty 
once the relevant conditions are known.

 3. Sensitive dependence on initial conditions
  If the nearby trajectories separate exponentially fast, it means the system has a 

positive Lyapunov exponent. Small changes in the initial state can lead to radi-
cally different behavior in its fi nal state. This gives rise to “butterfl y effect” in the 
system behavior.

  An iterated function system (IFS) consists of one or more functions that are repeat-
edly applied to their own outputs.

  An attractor is a set to which all neighboring trajectories converge. Stable fi xed 
points and stable limit cycles are examples of attractors. More precisely, it is a 
closed set A with the following properties:

 1. A is an invariant set
Any trajectory x(t) that starts in A stays in A for all time.

 2. A attracts an open set of initial conditions
  A attracts all trajectories that start suffi ciently close to it. The largest open set con-

taining As is called the basin of attraction of A.

 3. A is minimal
There is no proper subset of A that satisfi es conditions 1 and 2.



480 Modeling and Simulation of Systems Using MATLAB and Simulink

If an attractor is a fractal, then it is said to be a strange attractor. A strange attractor is an 
attractor that exhibits sensitive dependence on initial conditions. Chaotic systems gener-
ally have strange attractors.

When we say a chaotic system is unpredictable, we do not mean that it is nondeterministic.

A deterministic system is one that always gives the same results for the same • 
input/initial values.

Real-world chaotic systems•  are unpredictable in practice because we can never deter-
mine our input values exactly. Thus, sensitive dependence on initial conditions 
will always mess up our results, eventually.

A chaotic system does not need to be very complex. For example, f(x) = ax(1 − x) is pretty 
simple, but it does need to be nonlinear. So methods that approximate functions by linear/
affi ne functions (e.g., Newton’s method) can sometimes give qualitatively different behav-
ior than that which they purport to approximate.

Chaos refers to the complex, diffi cult-to-predict behavior found in nonlinear systems. One 
of the important properties of chaos is sensitive dependence on initial conditions, informally 
known as the Butterfl y effect.

Sensitive dependence on initial conditions•  means that a very small change in the initial 
state of a system can have a large effect on its later state, as shown in Figure 9.71.

In particular, you can eventually get the large effect, no matter how small the • 
initial change was. This effect is very common in time series prediction such as 
weather forecasting and electrical load forecasting, as shown in Figure 9.72.

Time series

t

X(
t)

(b)
t

(a)

X(
t)

FIGURE 9.72
Chaotic behavior of time series predictions. (a) Non chaotic. (b) Chaotic.

FIGURE 9.71
System response sensitive to initial conditions. Stable response

Unstable response

Nearly identical initial
conditions



Nonlinear and Chaotic System 481

9.7 Historical Prospective

The fi rst discoverer of chaos was Henri Poincaré in 1890 while studying the three-body 
problem. Henri Poincaré found that there can be orbits which are non-periodic, and yet 
not forever increasing nor approaching a fi xed point (Poincaré, 1890). In 1898, Jacques 
Hadamard published an infl uential study of the chaotic motion of a free particle gliding 
frictionless on a surface of constant negative curvature (Hadamard, 1898). He had shown 
that all trajectories are unstable in that all particle trajectories diverge exponentially from 
one another with a positive Lyapunov exponent.

Chaos was observed by a number of experimenters before it was recognized; for exam-
ple, in 1927 by van der Pol (van der Pol and van der Mark, 1927) and Ives in 1958 (Ives, 1958). 
Edward Lorenz in 1963 recorded chaotic behavior while studying mathematical models 
of weather (Lorenz, 1963). Lorenz had discovered that small changes in initial conditions 
produced large changes in the long-term outcome. Lorenz’s discovery, which gave its 
name to Lorenz attractors, proved that meteorology could not reasonably predict weather 
beyond a certain period. Lorenz explained the basic concepts of chaos in his book (Lorenz, 
1996). The history of dynamics and chaos is given in Table 9.2. The chaotic and systematic 
knowledge handling tools are compared in Table 9.3.

TABLE 9.2

Dynamics and Chaos: A History

1666 Newton Invention of calculus, explanation of planetary motion

1700 Flowering of calculus and classical mechanics

1800 Analytical studies of planetary motion

1890 Poincare Geometric approach, nightmare of chaos

1898 Jacques Hadamard Particle trajectories diverge exponentially from one another

1920–1950 Nonlinear oscillators in physics and engineering, invention 

of radio, radar, laser

1950–1960 Birkhoff Complex behavior in Hamiltonian mechanics

Kolmogorov

Arnol’d

Moser

1963 Edward Lorenz Chaos in weather predictions and found strange attractor 

in simple model of convection

1970 Ruelle and Takens Turbulence and chaos

May Chaos in logistic map

Feigenbaum Universality and renormalization, connection between chaos 

and phase transitions

Winfree Experimental studies of chaos

Mandelbrot Nonlinear oscillators in biology

Fractals

December 1977 First symposium on chaos organized by New York Academy 

of Sciences

1979 Albert J. Libchaber Experimental observation of the bifurcation cascade leads 

to chaos

1980 Widespread interest in chaos, fractal, oscillators, and their 

applications



482 Modeling and Simulation of Systems Using MATLAB and Simulink

TABLE 9.3

Chaotic versus Systematic Knowledge Handling

Chaotic Systematic

Heuristics Rules

Unsound reasoning methods Formal logic

Inconsistent knowledge Consistency

Jumping to conclusions Proofs

Ill-defi ned problems Well-defi ned problems

Unclear boundaries of knowledge Domain-specifi c

Informal, continuous meta-reasoning Knowledge

Expensive, distinct meta-reasoning

TABLE 9.4

Chaos in Cryptography

Chaotic Property Cryptographic Property Description

Ergodicity Confusion The output has the same 

distribution for any input

Sensitivity to initial 

conditions/control parameter

Diffusion with a small change 

in the plaintext/secret key

A small deviation in the input 

can cause a large change at the 

output

Mixing property Diffusion with a small change 

in one plain block of the whole 

plaintext

A small deviation in the local area 

can cause a large change in the 

whole space

Deterministic dynamics Deterministic pseudorandomness A deterministic process can cause 

a random-like (pseudorandom) 

behavior

Structure complexity Algorithm (attack) complexity A simple process has a very high 

complexity

The main catalyst for the development of chaos theory was the digital computer. Much 
of the mathematics of chaos theory involves the repeated iteration of simple mathemati-
cal formulas, which would be impractical to do by hand. Digital computers made these 
repeated calculations practical and powerful software made fi gures and images made it 
possible to visualize these systems. The chaotic properties are explained in Table 9.4 to use 
chaos in cryptography.

Orbits and Periodicity

Suppose we have an IFS with exactly one function: • f:S → S.

Recall: Given a point • x in S, the orbit of x is the collection of all points that the IFS 
takes x to that is, the orbit of x contains x, f(x), f( f(x)), f( f( f(x))), etc.

x•  is a periodic point if repeatedly applying f eventually takes x back to itself.

Put another way: A periodic point is a point whose orbit is fi nite.• 



Nonlinear and Chaotic System 483

TABLE 9.5

Linear and Nonlinear Systems

n = 1 n = 2 n ≥ 3 n >> 1 Continuum

Linear Growth 

decay or 

equilibrium

Oscillation Collective 

phenomena

Waves and patterns

Exponential 

growth

Linear 

oscillator 

mass and 

spring

Civil 

engineering, 

structure

Coupled 

harmonic 

oscillators solid 

state physics

Elasticity wave 

equations

RC circuit RLC circuit Electrical 

engineering

Molecular 

dynamics

Electromagnetism 

(Maxwell)

Radioactive 

decay

2-body 

problem 

(Kepler, 

Newton)

Equilibrium 

statistical 

mechanics

Quantum mechanics 

(Schrodinger, 

Heisenberg, Dirac) 

Heat and Diffusion 

Acoustics Viscous 

fl uids

Chaos Spatiotemporal 

complexity

Nonlinear Fixed points Pendulum Strange 

attractor 

(Lorenz)

Coupled 

nonlinear 

oscillators

Nonlinear waves 

(shocks, solitons)

Bifurcations Harmonic 

oscillator

3-body problem 

(Poincare)

Laser, nonlinear 

optics

Plasmas

Overdamped 

systems

Limit cycles Chemical 

kinetics

Nonequilibrium 

statistical 

mechanics

General 

relativity(Einstein)

 Relaxational 

dynamics

Biological 

oscillators 

(neurons, 

heart cells)

Iterated maps 

(Feigenbaum)

Nonlinear solid 

state physics 

(semiconductors)

Quantum fi eld 

theory

Logistic 

equation for 

single species

Predator–prey 

cycles

Fractals 

(Mandelbrot)

Josephson arrays Reaction–diffusion 

Biological and 

chemical waves

Nonlinear 

electronics 

(van der Pol, 

Josephson)

Forced 

nonlinear 

oscillators 

(Levison, 

Smale)

Heart cell 

synchronization

Neural networks

Immune system

Ecosystems

Fibrillation

Epilepsy

Turbulent fl uid 

(Navier–Stokes)

Life

Practical use 

of chaos, 

quantum 

chaos

Economics

Three main categories where chaos may be applied are as follows.

 1. Stabilization and control
  The idea is that the extreme sensitivity of chaotic systems to tiny perturbations 

can be manipulated to control the system artifi cially. Artifi cially generated sys-
tems  incorporate perturbations to

 a. Keep a large system stable (stabilization)

 b. Direct a large system into a desired state (control)



484 Modeling and Simulation of Systems Using MATLAB and Simulink

 2. Synthesis
  The idea is that “regular is not always best.” So, take artifi cially generated chaotic 

systems and apply them to certain problems to make certain systems (whether 
chaotic or not) work better, for example, artifi cially stimulated chaotic brain waves 
may help inhibit epileptic seizures. Similarly, chaos may be used in encryption for 
communications via “synchonization.” Two identical sequences of chaotic signals 
may be used via the sender superimposing a message on one sequence and the 
receiver simply strips of the chaotic signal. It may also be used in solving optimi-
zation problems (such as in neural networks).

 3. Analysis and prediction
  It is possible to predict for the future trend of a chaotic system based on suffi cient 

chaotic data points of past.

9.8 First-Order Continuous-Time System

First-order autonomous time invariant system can be written as

 

.
= ( )

o
x f x

 
(9.13)

Several important things can be determined from this equation. The values of x where f(x) = 0 
are the steady state points of the system. These are also called fi xed points. Contrary to linear 
thinking more than one steady state can exist simultaneously. The slope of f(x) at these points 
in the system Jacobian, which is df/dx, determines the local stability of the points. If df/dx is 
negative at a fi xed point, the point is stable and is called an attractor. If df/dx is positive at a 
fi xed point, the point is unstable and is called a repeller. If df/dx = 0, the points are saddled, 
which means that they are attracted from one side and repelled from the other. The geometry 
of this equation indicates that the attractor and repeller alternate on the x-axis. It should be 
noted that no oscillation or undamped responses are possible. Basically fi rst-order systems are 
damped.

Consider the system

 = − +3

.
o
x x x u  (9.14)

with the input u = 0. The plot of the derivative versus x is given in Figure 9.73. The fi xed 
points can be found either from the intersection with the x-axis or from

 = = − 3

.

0
o
x x x  (9.15)

which gives x = 0, +1, and −1. The local stability of these points can be determined graphi-
cally from the slopes at these points. Mathematically, this is shown by Equation 9.16:

 

⎡ ⎤∂⎢ ⎥− = −
⎢ ⎥∂
⎣ ⎦

2

.
.

1 3

ss

ss

x

x
J x

x
 

(9.16)



Nonlinear and Chaotic System 485

Thus the slope at x = 0 is +1, and the slope at x = ±1 is 2. The fi xed points at the origin are 
unstable and are called repellers. The fi xed points at x = ±1 are stable and are called attrac-
tors, as shown in Figure 9.73. It should be observed that these slopes near fi xed points are 
effectively equivalent to the system poles of a linearized version of the system.

Another thing to observe is that each attractor possesses a basin of attraction that is 
a region in space where any initial condition in the space is attracted to that particular 
attractor. For this example, the basin of attraction for the x = +1 points is all x. The basin of 
attraction for the x = −1 points is all x.

Linearization

Before going on to second-order system, it is important to talk about the linearization pro-
cedure as it is used by almost all control engineers at some time. The general vector form 
is given fi rst, and then it is applied to the scalar system of the last section.

Consider the vector system

 
=

.
.

( , )x f x u
 

(9.17)

Assume that u reaches some fi xed value u. It is then possible to fi nd the steady state value 
of x where the derivative vector is identically zero by solving

 
=

.
( , ) 0 forss ss ssf x u x

 
(9.18)

The purpose of linearization is to fi nd the behavior of the system near one of the fi xed 
points. Thus we set

 
= + δ = + δandss ssx x x u u u

 

Substituting this back into the original vector system, we get

 
+ δ = + δ + δ

. .
( , )ss ss ssx x f x x u u

 
(9.19)

FIGURE 9.73
Function trajectory versus x.

0
x

0.5 1 1.5–2 –1.5
–6

–4

–2

0

f(x
)=

x–
x3

2

4

6

–1 –0.5 2



486 Modeling and Simulation of Systems Using MATLAB and Simulink

Notice that the derivative of x is zero. Now expanding the right side we obtain

 

∂ ∂⎡ ⎤ ⎡ ⎤δ = + δ + δ⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦, ,

.
( , )

ss ss ss ss

ss ss
x u x u

f f
x f x u x u

x u
 

(9.20)

Notice that the fi rst term in this series is zero by defi nition. We then have

 
δ = δ + δ

.
x J x G u

 
(9.21)

Equation 9.21 should be recognized as a useful state space representation used by most 
control engineers. Thus the eigenvalues of the system Jacobian matrices are the poles of 
the linearized system and determine the stability of the resulting system. Improved tech-
niques for computing the input Jacobian G are given in Danielli and Krosel.

Example

Find the stability of system xº = x2 – 1 after fi nding all fi xed points.

SOLUTION

Here f(x) = x2 − 1. To fi nd the fi xed points, we set f(x*) = 0 and solve for x*. Thus x* = ±1. To deter-
mine the stability, we plot the function f(x). Figure 9.74 shows that the fl ow is to the right where 
x2 − 1 > 0 and to the left where x2 − 1 < 0. Thus x* = −1 is stable and x* = 1 is unstable.

MATLAB codes

x = −2:.1:2;
fx = x.∧2-1;
plot(x,fx)

FIGURE 9.74
Function f(x) = x2 − 1 versus x.

0
x

0.5 1 1.5–2 –1.5
–1

–0.5

0.5

0

1f(x
)

1.5

2

2.5

3

–1 –0.5 2



Nonlinear and Chaotic System 487

9.9 Bifurcations

The dynamics of vector fi elds on the line is very limited: all solutions either settle down 
to equilibrium or head out to ±∞. In one-dimensional system, the dynamics depends upon 
parameters. The qualitative structure of the fl ow can change as parameters are varied. In 
particular, fi xed points can be created or destroyed, or their stability can change. These 
qualitative changes in the dynamics are called bifurcations, as shown in Figure 9.75, and 
the parameter values at which they occur are called bifurcation points. Bifurcation is 
important scientifi cally; they provide models of transitions and instabilities as some con-
trol parameters are varied. Bifurcations occur in both continuous systems (described by 
ODEs, DDEs, or PDEs) and discrete systems.

Types of bifurcations

 1. Local bifurcation

 2. Global bifurcation

 1. Local bifurcation
It can be analyzed entirely through changes in the local stability properties of 
equilibria, periodic orbits, or other invariant sets as parameters cross through crit-
ical thresholds. For example:

Saddle-node (fold) bifurcation
Transcritical bifurcation
Pitchfork bifurcation
Period-doubling (fl ip) bifurcation
Hopf bifurcation
Neimark (secondary Hopf) bifurcation

 2. Global bifurcation
It occurs when larger invariant sets of the system “collide” with each other or with 
equilibria of the system. They cannot be detected purely by a stability analysis of 
the equilibria (fi xed points). For example:

Small change
in a parameter

One pattern Another pattern

FIGURE 9.75
Bifurcation.



488 Modeling and Simulation of Systems Using MATLAB and Simulink

Homoclinic bifurcation in which a limit cycle collides with a saddle point.
Heteroclinic bifurcation in which a limit cycle collides with two or more saddle 

points.
Infi nite-period bifurcation in which a stable node and saddle point simultane-

ously occur on a limit cycle.
Blue sky catastrophe in which a limit cycle collides with a non-hyperbolic 

cycle.

9.9.1 Saddle Node Bifurcation

The saddle node bifurcation is the basic mechanism by which fi xed points are created and 
destroyed. As a parameter is varied, two fi xed points move toward each other, collide, and 
mutually annihilate.

The prototype example of a saddle node bifurcation is given by the fi rst-order system:

 = + 2o
x r x  (9.22)

where r is a parameter which may be positive, negative, or zero. When r is negative there 
are two fi xed points, one stable and one unstable, as shown in Figure 9.76.

As r approaches 0, the parabola moves up and the two fi xed points move toward each 
other. When r = 0, the fi xed points coalesce into a half-stable fi xed point at x* = 0. This type 
of fi xed point is extremely delicate—it vanishes as soon as r > 0, and now there are no fi xed 
points at all.

Hence, in this example the bifurcation occurred at r = 0, since the vector fi elds for r < 0 
and r > 0 are qualitatively different, as shown in Figure 9.77.

9.9.2 Transcritical Bifurcation

There are certain scientifi c situations where a fi xed point must exist for all values of a 
parameter and can never be destroyed. For example, in the logistic equation and other 
simple models for the growth of a single species, there is a fi xed point at zero population, 
regardless of the value of the growth rate. However, such a fi xed point may change its 
stability as the parameter is varied, as shown in Figure 9.78. The transcritical bifurcation is 
the standard mechanism for such changes in stability.

(a)

xo

(b) (c)

FIGURE 9.76
Effect of r on fi xed points. (a) r < 0. (b) r = 0. (c) r > 0. 



Nonlinear and Chaotic System 489

The normal form for a transcritical bifurcation is

 = − 2o
x rx x  (9.23)

Note that there is a fi xed point at x* = 0 for all values of r. The important difference 
between the saddle node and transcritical bifurcations is in transcritical case, the two fi xed 
points do not disappear after the bifurcation—instead they just switch their stability, as 
shown in Figure 9.79.

(a)

xo

(c)(b)

FIGURE 9.78
Effect of r on fi xed points. (a) r < 0. (b) r = 0. (c) r > 0.

FIGURE 9.77
The bifurcation diagram for the saddle node bifurcation.

Stable

x

r

Unstable

FIGURE 9.79
The bifurcation diagram for the transcritical 

bifurcation.

Stable

Stable

x

r

Unstable

Unstable



490 Modeling and Simulation of Systems Using MATLAB and Simulink

9.9.3 Pitchfork Bifurcation

This bifurcation is common in physical problems that have symmetry. There are two types 
of pitch fork bifurcation. The simpler type is called supercritical pitchfork bifurcation.

9.9.3.1 Supercritical Pitchfork Bifurcation

The normal form of the supercritical pitchfork bifurcation is expressed with Equation 9.24:

 = − 3o
x rx x  (9.24)

This equation is invariant under the change of variable x → −x.
In real physical systems, such as explosive instability is usually opposed by the stabiliz-

ing infl uence due to higher order terms. In the supercritical case, xº = rx − x3, the cubic term 
is stabilizing, which acts as a restoring force that pulls x(t) back toward x = 0, as shown in 
Figures 9.80 and 9.81. On the other hand, if the cubic term is positive as xº = rx + x3, then 
this term was destabilizing, which is called subcritical pitchfork bifurcation, as shown in 
Figure 9.82.

x* = ±√(−r) are unstable and exist only below the bifurcation (r < 0), which motivate 
the term “subcritical.” More importantly, the origin is stable for r < 0 and unstable for 
r > 0 as in the supercritical case, but now the instability for r > 0 is not opposed by the 
cubic term—in fact the cubic term lends a helping hand in driving the trajectories out to 
infi nity. This shows that x(t) → ±∞ in fi nite time starting from any initial condition xo ≠ 0 
(Figure 9.83).

(a)

xo

(b) (c)

FIGURE 9.80
Effect of r on fi xed points. (a) r < 0. (b) r = 0. (c) r > 0.

FIGURE 9.81
The bifurcation diagram for the supercritical pitch-

fork bifurcation.

Stable

Stable

Stable

x

r Unstable



Nonlinear and Chaotic System 491

FIGURE 9.82
The bifurcation diagram for the subcritical pitchfork 

bifurcation.

%Matlab program for studying the effect of simulation time step
u = −1;
b = 1.8;
x = −0.99;
xd = 0;
dt = 0.5;
axis([0.5 0.95 −2 2]);
plot(0.5,0,′.′)
hold
for n = 1:900
 f1 = xd;
 f2 = −b*xd-x∧3 + u;
 xd = xd + dt*f2;
 x = x + dt*f1;
 plot(dt,xd,′.′)
 dt = dt + 0.0005;
end
hold
title(‘Biffurcation diagram for studying the effect of dt’)
xlabel(‘DT’), ylabel(‘xd’)

FIGURE 9.83
Bifurcation diagram for studying the effect of ΔT.

Stable r

x

Unstable

Unstable

Unstable

0.5
–2

–1.5

–1

–0.5

0xd

0.5

1

1.5

2

0.55 0.6 0.65 0.7 0.75
DT

Bifurcation diagram for studying the effect of dt

0.8 0.85 0.950.9



492 Modeling and Simulation of Systems Using MATLAB and Simulink

9.9.4 Catastrophes

The term catastrophe is motivated by the fact that as parameters change, the state of the 
system can be carried over the edge of the upper surface, after which it drops discontinu-
ously to the lower surface, as shown in Figure 9.84. This jump could be truly catastrophic 
for the equilibrium of a bridge or a building.

9.9.4.1 Globally Attracting Point for Stability

Consider an uncoupled system state; equate xº = ax and yº = −yx. The solution to these equa-
tions are x(t) = x0eat and y(t) = y0e−t.

The phase portraits for different values of “a” are shown in Figure 9.85. When a < 0, x(t) 
also decays exponentially and so all trajectories approach the origin as t → ∞. However, the 
direction of approach depends on the size of “a” compared to −1.

In nonlinear systems, if x* = 0, then it results in attracting a fi xed point as shown in 
Figure 9.85. It means all trajectories that start near x* approach to it as t → ∞, that is,

 
→ → ∞( )  * as   x t x t

 

In fact x* attracts all trajectories in the phase plane, so that it could be called globally 
attracting fi xed point.

There is a completely different notion of stability, which is related to the behavior of 
trajectories for all time, not just as t → ∞. A fi xed point x* = 0 is Lyapunov stable if all tra-
jectories that start suffi ciently close to x* remain close to it for all time.

Figure 9.85(a) shows that a fi xed point can be Lyapunov stable but not attracting, which 
is called neutrally stable. This type of stability is commonly encountered in mechanical 
systems in the absence of friction. Conversely, it is possible for a fi xed point to be attracting 
but not Lyapunov stable; thus neither notion of stability implies the other.

However, in practice, the two types of stability often occur together. If a fi xed point is 
both Lyapunov stable and attracting, we will call it stable or sometimes asymptotically 
stable.

Figure 9.85(e) is unstable, because it is neither attracting nor Lyapunov stable.

FIGURE 9.84
Catastrophe due to parameter change.

r

x

h



Nonlinear and Chaotic System 493

9.10 Second-Order System

Second-order systems are considerably more complicated than fi rst-order system. 
Although multiple attractor and repeller are still possible oscillation in addition to the 
damped responses of a fi rst-order system. Furthermore a new form of attractor or repeller 
is available. This is usually called a limit cycle. A limit cycle is an isolated closed trajectory. 
Isolated means that neighboring trajectories are not closed; they spiral either toward or 
away from the limit as shown in Figure 9.86.

In the phase plane, this closed curve that shows continuous oscillation, whereas a fi xed 
point is zero. It should be noted that limit cycle should not be confused with conservative 
oscillation. A conservative system such as

 + =�� 0x x  

or

 
+ =�� sin( ) 0x x

 

(a) (c)(b)

(d) (e)

FIGURE 9.85
Phase portraits for different values of “a.” (a) a < –1. (b) a = –1. (c) –1 < a < 0. (d) a = 0. (e) a > 0.

Stable limit
cycle

Unstable
limit cycle

Half stable
limit cycle

FIGURE 9.86
Different types of limit cycles.



494 Modeling and Simulation of Systems Using MATLAB and Simulink

will oscillate forever with an amplitude determined by its initial condition. Any slight per-
turbation will cause it to oscillate with different amplitude. These oscillations are called 
conservative since there is no damping and energy is conserved. Volumes in phase space 
are constant. A MATLAB program for simulating the pendulum is given below and results 
are shown in Figure 9.87.

% Matlab program for simulation of the pendulum using Halijak double
% integrator, T = 0.08, x0 = 2 & 3.

clear all;
xss = 2; % or 3
T = 0.08;
xd = 0;
xs = xss + T*xd + 0.5*T*T*(—sin(xss) );
plot(xs, (xs-xss)/T,‘.k’)
hold on
for n = 1:300
 f = —sin(xs);
 x = 2*xs-xss + T*T*f;
 xss = xs;
 xs = x;
 xd = (xs-xss)/T;
 plot(xs,xd,‘.k’)
end
xlabel(‘position’)
ylabel(‘velocity’)
axis([−4 4 −4 4])

Unlike conservative oscillations, a limit cycle attracts trajectories. Any slight per-
turbation will still be attracted back to the cycle, equivalently, volumes in phase space 
contract. Good example of a limit cycling system is van der Pol’s oscillator shown in 
Equation 9.25:

 
2 .

( 1) 0x x x x+ − + =��  
(9.25)

FIGURE 9.87
Simulation of the pendulum using Halijak double 

integrator, T = 0.08, x0 = 2 and 3.

4

3

2

1

0

–1

–2

–4
–4 –3 –2 –1 0 1 2 3 4

–3

Position
Ve

lo
ci

ty



Nonlinear and Chaotic System 495

This equation looks like a simple harmonic oscillator, but with a nonlinear damping term 
(x2 − 1)xº. Here, this damping is negative when |x| < 1, indicating instability. When |x| > 1,
the damping is positive, indicating stability. In other words, it causes large amplitude 
oscillations to decay, but it pumps them back up if they become too small. Thus the tra-
jectory is basically stuck in the middle and a continuous limit cycle occurs as shown in 
Figure 9.88. A MATLAB program for producing the simulation is written below.

%Matlab program for simulation of van der Pol equation using Euler, T = 0.05, 
% % several initial conditions

Clear all
plot(0, 0,‘.r’)
hold on
T = 0.05;

for x10 = −1.5:1:1.5
    for x20 = −1.5:1:1.5
 x1 = x10;
 x2 = x20;
for n = 1:200
    f1 = x2;
    f2 = −x1-(x1*x1-1)*x2;
    x1 = x1 + T*f1;
    x2 = x2 + T*f2;

    plot(x1,x2,‘.r’)
end
end
end

xlabel(‘position’)
ylabel(‘velocity’)
title(‘simulation of van der Pol equation using Euler, T = 0.05, several ICs’)
axis([−4 4 −4 4])

When second-order systems are forced by a periodic forcing function, several frequency 
dependent phenomena are possible. These include subharmonics super-harmonics, jump, 

FIGURE 9.88
Simulation of van der Pol equation using Euler, 

T = 0.05, several ICs.

4

3

2

1

0

–1

–2

–3

–4
–4 –3 –2 –1 0 1 2 3 4

Position

Ve
lo

ci
ty



496 Modeling and Simulation of Systems Using MATLAB and Simulink

and entrainment, among others. Since a time dependent input can simply be considered 
to be the function of another state of a system, for example x = 1, these are also subsets of 
the next section.

9.11 Third-Order System

Third-order systems display all the above behavior in addition to some interesting feature. 
It should be noted that as the dimension of the phase space increases the possible dimen-
sion of the attractor and repeller also increases. The limiting factor is that the dimension 
of the attracting and repelling object must be strictly less than the dimension of the phase 
space. Thus, the fi rst object that logically follows is a two dimensional attractor. A two 
dimensional object basically looks like a donut and can be thought of as a limit cycle that 
is being forced at a different frequency. Trajectories are than attracted to or repelled from 
this object, which is usually referred to as a tours.

An interesting and unexpected phenomenon that can also exist in third and higher order 
continuous-time system is called chaos. Although diffi cult to explain briefl y, chaos usually 
is caused by the tangled intersection of several unstable repellers. The resulting trajectory, 
which basically is being repelled from everywhere, is called a chaotic, or strange attrac-
tor, the dimension of this object is usually not integer, for example, dim = 2.6 and is called 
fractal, at any given cross section, the fl ow is converging in one direction and diverging in 
the other, so that volume in phase space is still getting smaller. However, since the fl ow is 
diverging in one direction, it is usually folded back over on to itself, and the attractor can 
resemble taffy being stretched and folded on a machine. Some authors have referred this 
behavior as sensitive dependence on initial conditions. We preferred to describe chaos as 
the apparent random motion demonstrated by a completely deterministic system. It should 
also be remembered that the chaotic behavior just like a limit cycle is a steady-state behavior. 
That is although, the system is oscillating with no apparent period and the trajectories 
have converged to their attractor and the steady state chaotic behavior is observed.

A simple system that behaves in this way is the chaotic oscillator of Cook:

 
′′′ ′′ ′+ + − − =3( ) 0x x x a x x

 
(9.26)

As the parameter a is increased, the system goes through a series or period doubling limit 
cycle bifurcation and eventually becomes chaotic as shown in Figures 9.89 through 9.92. 
It is truly remarkable that the interesting behavior of such simple system went unnoticed 
until relatively recently. The MATLAB program for this simulation is given below:

%Matlab program for simulation of Cook system, a = 0.55, ic = [.1.1.1] 
using Euler, T = 0.1
clear all;
plot(0, 0,‘.r’)
hold on
T = 0.1;
a = 0.55;
x1 = 0.1;
x2 = 0.1;
x3 = 0.1;



Nonlinear and Chaotic System 497

2

1.5

0.5

0

–0.5

–1

–1.5

–2
–2 –1.5 –1 –0.5 0 0.5 1 21.5

1

x1

x2

FIGURE 9.89
Simulation of Cook system, a = 0.55, ic = [.1.1.1] 

using Euler, T = 0.1.

2

1.5

1

0.5

0

–0.5

–1

–1.5

–2
–2 –1.5 –1 –0.5 0 0.5 1 1.5 2

x1

x2

FIGURE 9.90
Simulation of Cook system, a = 0.7, ic = [.1.1.1] 

using Euler, T = 0.1.

2

1.5

1

0.5

0

–0.5

–1

–1.5

–2
–2 –1.5 –1 –0.5 0 0.5 1 1.5 2

x1

x2

FIGURE 9.91
Simulation of Cook system, a = 0.85, ic = [.1.1.1] 

using Euler, T = 0.1.



498 Modeling and Simulation of Systems Using MATLAB and Simulink

    for n = 1:800

 f1 = x2;
 f2 = x3;
 f3 = −x3-x2 + a*(x1-x1∧3);
 x1 = x1 + T*f1;
 x2 = x2 + T*f2;
 x3 = x3 + T*f3;

 plot(x1,x2,‘.k’)
end

xlabel(‘x1’)
ylabel(‘x2’)
axis([−2 2 −2 2])

With respect to chaos, this complicated deterministic phenomenon is sometimes confused with 
the fact of stochastic or noisy signals. Although it can be analyzed as if it were a noisy signals, 
chaos is a completely deterministic feature of a nonlinear system and is not known to be related 
to the unpredictable behavior resulting from physically occurring randomness. Alternatively 
if we wished to simulate a system being forced by a stochastic signal that is represented in 
the computer by a random number generator. A continuous–time stochastic signal is usually 
represented by its probabilistic properties such as mean and variance; although chaotic signals 
can use these properties is one form of measure, they do not characterize the system. It should 
be noted in simulating a continuous-time noisy input signal that the sampling of these noise 
required its variance to be divided by the simulation time step to preserve the same level of 
excitement in the system as the continuous-time noise. This is not surprising when it is remem-
bered that the frequency spectrum of white noise is identical to that of an impulse.

Nonetheless, how do you know nonlinear behavior when you see it? Let’s start by looking at 
an example.

9.11.1 Lorenz Equation: A Chaotic Water Wheel

In 1963 Edward Lorenz derived three dimensional system from a drastically simplifi ed 
model of convection rolls in the atmosphere. The mechanical model of Lorenz equations 

FIGURE 9.92
Simulation of Cook system, a = 1.4, ic = [.1.1.1] 

using Euler, T = 0.1.

2

1.5

1

0.5

0

–1

–0.5

–1.5

–2
–2 –1.5 –1 –0.5 0 0.5 1 1.5 2

x1
x2



Nonlinear and Chaotic System 499

(Equation 9.27) was invented by Willem Malkus and Lou Howard at MIT in the 1970s. The 
simplest version is a toy waterwheel with leaky paper cups suspended from its rim.

 

= σ −
= − −

= −

( )
o

o

o

x y x
y rx y xz

z xy bz  

(9.27)

where σ, r, b > 0 are parameters.
In this system, the nonlinearities are due to product terms such as xy and xz. Another 

important property of this equation is symmetry. If (x, y) replaced by (−x, −y) in Equation 
9.27, then the equation stays the same.

The numerical solution to these equations at σ = 10, r = 8/3, b = 28 and the results are 
shown in Figures 9.93 through 9.95 for different initial conditions.

FIGURE 9.93
Simulation of Lorenz equations at r = 12.

40

30

20

10

0

–10

–20

–30

–40
–25 –20 –15 –10 –5 0 5 10 15 20 25

x

y

Simulation of Lorenz equations

FIGURE 9.94
Response of Lorenz equations for initial conditions r = 15.

25

20

15

10

5

0
–15 –10 –5 0 5 10 15

y

z



500 Modeling and Simulation of Systems Using MATLAB and Simulink

FIGURE 9.95
Response of Lorenz equations for initial condi-

tions r = 28.

%Matlab Code for Simulation of Lorenz equations
clear all;
T = 0.02;
a = 10;
b = 8/3;
r = 28;
x = 0.1;
y = 0.1;
z = 0.1;
 for n = 1:2000
 dx = a*(y-x);
 dy = (r*x-y-x*z);
 dz = (x*y-b*z);
 x = x + dx*T;
 y = y + dy*T;
 z = z + dz*T;
 var(n,:) = [x,y,z];

end
plot(var(:,2),var(:,3),‘-k’)
xlabel(‘y’)
ylabel(‘z’)
title(‘simulation of Lorenz Equations’)

Consider the Rössler system whose system equations (Equation 9.28) are

 

= − −
= +

= + −( )

o

o

o

x y z

y x ay

z b z x c  

(9.28)

where a, b, and c are parameters.
When the system is simulated for different values of c the following results are obtained 

as shown in Figure 9.96.

70

60

50

40

30

20

10

0
–40 –30 –20 –10 0 10 20 30 40

z
y



Nonlinear and Chaotic System 501

Simulation of Rossler system

x

40

20

0

–20

–40

–60

–80

–100

–120

–140
–80 –60 –40 –20 0 20 40 60

y

FIGURE 9.96
Results of Rossler system.

9.12 Review Questions

 1. What do you mean by nonlinearity of a system?

 2. Explain different types of nonlinearities in a system?

 3. How could nonlinearities be modeled mathematically?

 4. Defi ne chaos?

9.13 Bibliographical Notes

General concepts of chaos theory as well as its history is described in many books 
(Gutzwiller, 1990; Moon, 1990; Tufi llaro et al. 1992; Baker, 1996; Gollub and Baker, 1996; 
Alligood et al. 1997; Badii and Politi, 1997; Douglas and Euel, 1997; Smith, 1998; Hoover, 
1999; Strogatz, 2000; Ott, 2002; Devaney, 2003; Sprott, 2003; Zaslavsky, 2005; Tél and Gruiz, 
2006). The mathematics of chaos is explained by Stewart (1990). Currently, chaos theory 
continues to be a very active area of research, involving many different disciplines (math-
ematics, topology, physics, population biology, biology (Richard, 2003), meteorology, astro-
physics, information theory, economic systems (Hristu-Varsakelis and Kyrtsou, 2008), 
social sciences (Douglas and Euel, 1997), etc.).



This page intentionally left blank 



503

10
Modeling with Artifi cial Neural Network

Look deep into nature, and then you will understand everything better.
Logic will get you from A to B. Imagination will take you everywhere.

Albert Einstein

Art is the imposing of pattern on experience, and our aesthetic enjoyment is in the rec-
ognition of the pattern.

Alfred North Whitehead

10.1 Introduction

Neural networks are very sophisticated modeling techniques capable of modeling 
extremely complex functions. In particular, neural networks are nonlinear. Linear model-
ing has been the commonly used technique in most modeling domains since linear models 
have well-known optimization strategies. Where the linear approximation was not valid, 
the models suffered accordingly. Neural networks also keep in check the curse of dimen-
sionality problem that bedevils attempts to model nonlinear functions with large numbers 
of variables.

Neural networks learn by example. The neural network user gathers representative 
data, and then invokes training algorithms to automatically learn the structure of the data. 
Although the user does need to have some heuristic knowledge of how to select and pre-
pare data, how to select an appropriate neural network, and how to interpret the results, 
the level of user knowledge needed to successfully apply neural networks is much lower 
than would be the case using (for example) some more traditional nonlinear statistical 
methods.

We can explain neural networks as a broad class of models that mimic functioning inside 
the human brain and are known as biological neurons.

10.1.1 Biological Neuron

The biological neuron is the most important functional unit in human brain and is a class 
of cells called as NEURON. A human brain consists of approximately 1011 computing ele-
ments called neurons, which communicate through a connection network of axons and 
synapses having a density of approximately 104 synapses per neuron. A typical neuron has 
three major regions: cell body, axon, dendrites. Dendrite receives information from neu-
rons through axons—long fi bers that serve as transmission lines. The axon dendrite con-
tact organ is called a synapse, as shown in Figure 10.1. The signal reaching a synapse and 



504 Modeling and Simulation of Systems Using MATLAB and Simulink

received by dendrites are electrical impulses. Apart from the electrical signaling, there are 
other forms of signaling that arise from neurotransmitter diffusion, which have an effect 
on electrical signaling. As such, neural networks are extremely complex.

Neuron elements and their functions

Dendrites Receives information
Cell body Process information
Axon Carries information to other neurons
Synapse Junction between axon end and dendrites of other neuron

10.1.2 Artificial Neuron

When creating a functional model of the biological neuron, there are three basic com-
ponents of importance. First, the dendrites of the neuron are modeled as weights. The 
strength of the connection between an input and a neuron is noted by the value of the 
weight. Negative weight values refl ect inhibitory connections, while positive values des-
ignate excitatory connections. The next two components model the actual activity within 
the neuron cell. An adder sums up all the inputs modifi ed by their respective weights. This 
activity is referred to as a linear combination. Finally, an activation function controls the 
amplitude of the output of the neuron. An acceptable range of output is usually between 
0 and 1, or −1 and 1. The output is passed through axon to give outputs.

Mathematically, this process is described in Figure 10.2.
The artifi cial neuron receives the information (X1, X2, X3, X4, X5, . . . , XP) from other neu-

rons or environments. The inputs are fed in connection with weights, where the total input 
is the weighted sum of inputs from all the sources represented as

 

= × + × + × + ×

= ∑
�1 1 2 2 3 3 p p

i i

I w X w X w X w X

w x  

The input I is fed to the transfer function or activation function which converts input I into 
output Y.

 
( )Y f I=

 

The output Y goes to other neuron or environment for processing.

Dendrite

Cell body

Axion

Synapses
Biological neuron

Σ ∫

FIGURE 10.1
Biological neuron and its schematic.



Modeling with Artifi cial Neural Network 505

10.2 Artificial Neural Networks

ANN consists of many simple elements called neurons. The neurons interact with each 
other using weighted connection similar to biological neurons. Inputs to artifi cial neural net 
are multiplied by corresponding weights. All the weighted inputs are then segregated and 
then subjected to nonlinear fi ltering to determine the state or active level of the neurons.

Neurons are generally confi gured in regular and highly interconnected topology in 
ANN. The networks consist of one or more layers between input and output layers. There 
is no clear-cut methodology to decide parameters, topologies, and method of training of 
ANN. Hence, to build the ANN is time consuming and computer intensive. However these 
can be used in real time because of inherent parallelisms and noise immunity characteris-
tics. The development of ANN is performed in two phases:

10.2.1 Training Phase

In this phase, the ANN tries to memorize the pattern of learning data set. This phase con-
sists of the following modules.

10.2.1.1 Selection of Neuron Characteristics

Neurons can be characterized by two operations: aggregation and activation function. 
Nonlinear fi ltering (also called activation function) can be characterized by several func-
tions: sigmoidal and tangent hyperbolic functions being the most common. Selection of 
the function is problem dependent. For example, the logarithmic activation is used when 
the upper limit is unbounded while the radial basis function (RBF) is used for problems 
having complex boundaries.

10.2.1.2 Selection of Topology

Topology of ANN deals with the number of neurons in each layer and their interconnec-
tions. Too few hidden neurons hinder the learning process, while too many occasionally 
degrade the ANN generalization capability. There are no clear-cut or absolute guidelines 
available in the literature for deciding the topology of ANN. One rough guideline for 
choosing the number of hidden neurons is the geometric pyramid rule.

Σ I

Axon
hillock Axon

brings neuron output Y

Synaptic
weights

Neuron
inputs Xi

Summation of
inputs (ΣwiX1)

Activation
function

Xp

X2

X1 w1

w2

wp

FIGURE 10.2
Artifi cial neuron.



506 Modeling and Simulation of Systems Using MATLAB and Simulink

10.2.1.3 Error Minimization Process

When ANNs are trained, the weights of the links are changed/adjusted so as to achieve 
minimum error. During this process, a part of the entire data set is used as training set, and 
the error is minimized on this set. Calculations for error may be done using various func-
tions. The most commonly used being the root mean square (RMS) function and is given by

 Error = (1/2) * √(∑[(actual – predicted)k]) 

where k is the order of norm.

10.2.1.4 Selection of Training Pattern and Preprocessing

Selection of the training data is very critical for building ANN. Although preprocessing 
is not mandatory, it defi nitely improves the performance of the network and reduces the 
learning time.

10.2.1.5 Stopping Criteria of Training

The process of adjusting weights of an ANN is repeated until the termination condition is 
met. The training process may be terminated if any one of these conditions is met:

 1. The error goes below a specifi c value.

 2. The magnitude of gradient reaches below a certain value.

 3. Specifi c number of iterations is complete.

10.2.2 Testing Phase

Here ANN tries to predict and test data sets. The performance of ANN on the testing data 
set represents its generalization ability. In actual practice, the data set is divided into two. 
One set is used for training and the other for testing. In fact, a generalized neural network 
will perform well for both training and testing data.

10.2.2.1 ANN Model

An ANN is a powerful data modeling tool that is able to capture and represent complex 
input–output relationships. The motivation for the development of neural network tech-
nology stemmed from the desire to develop an artifi cial system that could perform “intel-
ligent” tasks similar to those performed by the human brain. Neural networks resemble 
the human brain in the following two ways:

 1. Acquires knowledge through learning.

 2. A neural network’s knowledge is stored within interneuron connection strengths 
known as synaptic weights.

The true power and advantage of neural networks lies in their ability to represent both 
linear and nonlinear relationships and in their ability to learn these relationships directly 
from the data being modeled. Traditional linear models are simply inadequate when it 
comes to modeling data that contains nonlinear characteristics.



Modeling with Artifi cial Neural Network 507

The ANN consists of three groups, or layers, of units: a layer of “input” units is con-
nected to a layer of “hidden” units, which is connected to a layer of “output” units, as 
represented in Figure 10.3.

The activity of the input layer represents the raw information that is fed into the • 
network.

The activity of each hidden unit is determined by the activities of the input units • 
and the weights on the connections between the input and the hidden units.

The behavior of the output units depends on the activity of the hidden units and • 
the weights between the hidden and output units.

This simple type of network is interesting because the hidden units are free to construct 
their own representations of the input. The weights between the input and hidden units 
determine when each hidden unit is active, and so by modifying these weights, a hidden 
unit can choose what it represents.

The neural network models are designed considering the following characteristics:

Input: X1, X2, X3, …

Output: Y1, Y2, Y3, …

ANN model: f(X1, X2, X3, …, w1, w2, w3, …)

The model is explained as an example considering the inputs and weight assignment. 
The weights between the input and hidden units determine when each hidden unit is 
active, and so by modifying these weights, a hidden unit can choose what it represents.

When the inputs (X1 = −1, X2 = 1, X3 = 2) are given to the neural network, the output (Y) is 
predicted according to the weights assigned. This is explained with the help of Figure 10.4.

Input space

Input layer
(Inputs distributed)

Hidden layer
(Processing)

Output layer
(Processing)

Output

FIGURE 10.3
Artifi cial neural network.



508 Modeling and Simulation of Systems Using MATLAB and Simulink

10.2.2.2 Building ANN Model

Step 1: At the input layer, the number of inputs = number of input neurons = 3.

Step 2: At the output layer, the number of outputs = number of input neurons = 1.

Step 3: At the hidden layer, the number of neurons and layers are not fi xed and may take 
any number more than zero to map any complex functions. Let us assume single hidden 
layer with two neurons.

Step 4: Assign weights.

According to the above architecture, number of weights = p * q + q * r = 3 * 2 + 2 * 1 = 8. 
Assign these weights randomly in the range ±1.0.

Step 5: Decide activation function
Here, logistic function is taken for all neurons.

 
( )

1

x

x

e
f x

e
=

+  

Step 6: Select appropriate training pattern, that is, input–output pairs.

Inputs Output

X1 X2 X3 Y

Step 7: Training of ANN model
For the above selected training patterns, calculate the ANN output and compare with 
the desired output to determine the error E (i.e., desired output – actual output). Finally, 
minimize this error using some optimization technique. The sum-squared error may be 
written as

 =
= −∑ 2

1

( )

n

i i
i

E Y V
 

X1

0.4 0.6 –0.1

–0.20.1

0.2 0.5 0.7

Input layer
(No. of neurons p = 3)

Hidden layer
(No. of

neurons q = 2)

Output layer
(No. of

neurons r = 1)

Output, Y

X2 X3

FIGURE 10.4
Typical ANN architecture.



Modeling with Artifi cial Neural Network 509

For the above model, the output was calculated as V = 0.531 and let us assume that the 
desired output is Y = 1. The prediction error in the given network is given by 1− 0.531 = 0.469.

Hence, we have to update the weights of the network so that the error is minimized. This 
process is called the training of neural network. In the training of ANN, the error is fed 
back to the network and updates the weights. This will complete one cycle. The complete 
cycle is performed many times till the predicted error is reduced. The complete stage is 
known as an epoch.

10.2.2.3 Backpropagation

The adjustment of the weight is done by the method of backpropagation. The procedure of 
adjustment of the weights by backpropagation is done as follows:

Let Vi be the prediction for ith observation in a network and is a function of the network 
weights vector W_ = (W1, W2,…)

Hence, E, the total prediction error is also a function of W.

 = −∑ 2( ) [ ( )]i iE W Y V W  

10.2.2.3.1 Gradient Descent Method

For every individual weight WI, the updating formula is given as

 old
new old * ( / )

W
W W E W= + α ∂ ∂

 

where α is the learning parameter and is generally taken between 0 and 1.

10.2.2.3.2 Learning Parameter

Too big a learning parameter leads to large leaps in weight space that result in the risk of 
missing global minima. Too small a learning parameter takes a long time to converge to 
the global minima and once stuck in the local minima, fi nds it diffi cult to get out of it.

In gradient descent method, the following procedure is used:

Start with a random point (• w1, w2)

Move to a “better” point (• 1 2,w w′ ′) where the height of error surface is lower

Keep moving till you reach • 1 2
* *,( )w w , where the error is minimum

10.2.2.4 Training Algorithm

The training algorithm can be explained as having two process of information fl ow given 
as back propagation and feed forward.

Decide the network architecture

(Hidden layers, neurons in each hidden layer)

Decide the learning parameter and momentum

 Initialize the network with random weights

  Do till convergence criterion is not met

   For i = 1 to # training data points



510 Modeling and Simulation of Systems Using MATLAB and Simulink

    Feed forward the i-th observation through the net

    Compute the prediction error on i-th observation

    Back propagate the error and adjust weights

   Next i

 Check for Convergence

End Do

How do we know, when to stop the network training?
Ideally, when we reach the global minima of the error surface

Practically:

 1. Stop if the decrease in total prediction error (since last cycle) is small.

 2. Stop if the overall changes in the weights (since last cycle) are small.

Partition the training data into training set and validation set. Training set to build the 
model, and validation set to test the performance of the model on unseen data.

Typically as we have more and more training cycles

Error on training set keeps on decreasing (training)

Error on validation set keeps fi rst decreases and then increases (over train)

Stop training when the error on validation set starts increasing. The block diagram for 
ANN model development is shown in Figure 10.5.

10.2.2.5 Applications of Neural Network Modeling

 1. Data mining applications

 a. Prediction: For prediction application of ANN, past history is taken as input 
and based on that the future trend may be predicted, as shown in Figure 10.6.

 b. Classifi cation: Classify data into different predefi ned classes based on the 
inputs, for example, if the color, shape, and dimensions of different fruits are 
given, we may classify then as lemon (class 1), orange (class 2), banana (class 3), 
etc., as shown in Figure 10.7.

Pre
processing 

of data

Post
processing 

of data

Training
algorithm Σ +

–

Desired output

ANN model

FIGURE 10.5
Block diagram for model development using ANN.



Modeling with Artifi cial Neural Network 511

 c. Change and deviation detection (interpolation): To fi nd certain data that are miss-
ing from the records or to detect and determine suspicious records/data. It is 
quite similar to the ANN predictor. The ANN predictor normally extrapolates 
while this interpolates the values.

 d. Knowledge discovery: The ANN is a very good tool for knowledge discovery. 
We may apply unforeseen inputs and determine the output for study purpose. 
This will help in fi nding new relationships and nonobvious trends in the data. 
With the help of ANN, we may explore our own ignorance.

 e. Response modeling: Train the ANN model to fi nd the systems response.

 2. Industrial applications

 a. Process/plant control: The ANN is quite suitable for complex and ill-defi ned 
dynamical process/plant control applications. It is diffi cult or sometimes 
impossible to model these processes/plant using mathematical equations. For 
such systems, conventional linear control system is diffi cult or not possible.

 b. Quality control: The routine jobs with certain fuzziness like predicting the qual-
ity of products and other raw materials, product defect diagnosis, tire testing, 
load testing, etc. may be done with ANN.

 c. Parameter estimation: Unknown or complex system parameter estimation could be 
done with ANN estimators. This is a very useful tool for complex and ill-defi ned 
systems, where mathematical modeling is either not possible or quite diffi cult. 
ANN helps in estimating the system parameters for control applications.

 3. Financial applications

 a. Stock market prediction: Predict the future trend of share market using the his-
torical data and present economical conditions of countries.

 b. Financial risk analysis: Decide whether an applicant for a loan is a good or bad 
credit risk. From present fi nancial conditions and previous performance of a 
company or an individual, we may fi nd the credit rating of a company or an 
individual.

Past history
and present
conditions

Input

ANN predictor Future
trends

Output

FIGURE 10.6
MISO ANN predictor.

Input
space

Inputs

ANN classifier Class 2

Class n

Class 1

Outputs

FIGURE 10.7
MIMO ANN classifi er.



512 Modeling and Simulation of Systems Using MATLAB and Simulink

 c. Property appraisal: Evaluate real estate, automobiles, machinery, and other proper-
ties. Also forecast prices of raw materials, commodities, and products for future.

 4. Medical

 a. Medical diagnosis: Assist doctors in diagnosing a particular disease after ana-
lyzing the medical test reports a patient’s personal information, symptoms, 
heart rate, blood pressure, temperature, etc.

 b. Prescribe the medicine based on medical diagnosis, personal information such 
as age and sex, heart rate, blood pressure, temperature, etc.

 5. Marketing

 a. Sales forecasting: Predict future sales based on historical data, advertisement bud-
get, mode of advertisements, special offers, and other factors affecting sales.

 b. Profi t forecasting: Forecast the behavior of profi t margins in the future to deter-
mine the effects of price changes at one level to other. It also helps in deciding 
distributors’ and retailers’ commissions.

 6. HR management

 a. Employee selection and hiring: Predict on which job an applicant will achieve 
the best job performance based on personal information, previous experience 
and performance, educational levels, etc. In the hiring process of an employee, 
it is necessary to determine their retentivity of an employee, which could be 
predicted using ANN models.

 b. Predict the psychology of a person.

 7. Operational analysis

 a. Inventory control and optimization: Forecast optimal stock level that can meet 
customer needs, reduce waste, and lessen storage; predict the demand based on 
previous buyers’ activity, operating parameters, season, stock, and budgets.

 b. Smart scheduling: Smart scheduling of buses, airplanes, and trains based on 
seasons, special events, weather, etc.

 c. Decision making in confl icting situation: Select the best decision option using the 
classifi cation capabilities of neural network.

 8. Energy

  Electrical load forecasting, short- and long-term load shading, predicting natural 
resources and their consumption, monitoring and control applications, etc.

 9. Science

  In the area of science, ANN may be used on a number of problems such as 
physical system modeling, image recognition, identifi cation and optimization, 
ecosystem evaluation, classifi cation, signal processing, systems analysis, etc.

Example 10.1: Artifi cial Neural Network Applications in Physical System’s Modeling

Predict the speed for a vehicle at a given accelerating force using ANN (Figure 10.8).
Let us defi ne
F = force generated by the car = 80 t N assumed.
V = velocity (m/s)
M = mass of the vehicle = 1000 kg
b = frictional coeffi cient = 40 N-s/m



Modeling with Artifi cial Neural Network 513

Applying Newton third law

 

= +

= +

v
F M bv

t

v
t v

t

d
d

d
80 1000 40

d  

Taking Laplace transform

 

= +

=
+

2

2

80
1000 ( ) 40 ( )

0.08
( )

( 0.04)

V s V s
s

V s
s s

 

Applying partial fraction and after calculating the residues we have

 
= − +

+
V s

s s s2

2 50 50
( )

0.04
 

Taking inverse Laplace transform we obtain

 
−= − + tv t t e 0.04( ) 2 50 50  

Using neural network we can train the velocity equation and obtain the response; we can also 
predict the future value (Figures 10.9 through 10.11).

FIGURE 10.8
Automobile modeling for predicting speed.

v

bv

F

Time (s)
151050

30

25
20

Sp
ee

d 
(m

/s
)

15

10
5

0
20 25 30

FIGURE 10.9
Speed profi le of an automobile. 



514 Modeling and Simulation of Systems Using MATLAB and Simulink

% MATLAB CODE FOR PREDICTION OF SPEED FOR A VEHICLE AT AN
% ACCELERATING FORCE:

clear;
% Define and plot time vs velocity for the model
t=[0:.5:30]′;
v=2*t−50+50*exp(−0.04*t);
grid
figure(1);
plot(t,v);
xlabel(‘time in seconds’);ylabel(‘speed in m/s’);

Time (s)(a)
151050

30

25

20
Sp

ee
d 

(m
/s

)

15

10

5

0
20 25 30

Train data
Check data

Time (s)(b)
151050

30

25

20

Sp
ee

d 
(m

/s
)

15

10

5

0

–5
20 25 30

Original response
Neural o/p without
training

Time (s)(c)
151050

30

25

20

Sp
ee

d 
(m

/s
)

15

10

5

0

–5 20 25 30

Original response
Neural trained o/p

FIGURE 10.10
Comparison of ANN response and system response.



Modeling with Artifi cial Neural Network 515

%Define and plot training as well as checking data
data=[t v];
trndata=data(1:2:size(t),:);
chkdata=data(2:2:size(t),:);
grid
figure(2);
plot(trndata(:,1),trndata(:,2),‘o’,chkdata(:,1),chkdata(:,2),‘x’);
xlabel(‘time in seconds’);ylabel(‘speed in m/s’);

%initialize ANN
trainpoint=trndata(:,1)′;
trainoutput=trndata(:,2)′;
net=newff(minmax(trainpoint),[10 1],{‘tansig’ ‘purelin’});
%Simulate and plot the network ouput without training
Y=sim(net,trainpoint);
grid
figure(3);
plot(trainpoint,trainoutput,trainpoint,Y,‘o’);

%Initialize parameter
net.trainParam.epochs=100;
net.trainParam.goal=0.0001;

%Train the network and plot the output
net=train(net,trainpoint,trainoutput);
Y=Sim(net,trainpoint);
figure(4);
plot(trainpoint,trainoutput,trainpoint,Y,‘o’);

%test the network and plot the error
checkpoint=chkdata(:,1)′;
checkoutput=chkdata(:,2)′;
W=Sim(net,checkpoint);
e=W−checkoutput;
grid
figure(5);
plot(e);

Check data points
151050

0.15

0.1

Er
ro

r 0.05

0

–0.05

–0.1
20 25 30 35

FIGURE 10.11
Error during testing.



516 Modeling and Simulation of Systems Using MATLAB and Simulink

Example 10.2: Weighing Machine Model (Figure 10.12)

Modeling the given diagram, we have taken following parameters
Mass (M) = 1 kg
Damping coeffi cient = 20 N-s/m
Spring constant = 10 N/m
Force = F
Displacement = x m

Modeling the system

= + +
2

2

d d
;

d d
x x

F M B kx
t t

 

2

2

d d
1. 20 10 ;

d d
x x

F x
t t

= + +

Taking the Laplace transform

 
2( ) ( ) 20 ( ) 10 ( )F s s X s sX s X s= + +  

 
2

( )
( )

20 10
F s

X s
s s

=
+ +  

In the given model, the random force (F) was applied and given to the neural network for training 
the system with input “force” and output “displacement.” Using the trained neural network, the 
output displacement (x) is predicted using the check data. In the previous example, we have 
given constant input force but in this example the input is a random force as shown in Figure 
10.13.

FIGURE 10.12
Schematic diagram of weighing 

machine. 

F

Mx

Kx
B dx/dt

10

9

8

7

6

5

Fo
rc

e

4

3

2

1

00 10 20 30 40 50
Points for force

60 70 80 90 100

FIGURE 10.13
Random force as system input.



Modeling with Artifi cial Neural Network 517

%MATLAB CODE FOR PREDICTING DISPLACEMENT USING RANDOM INPUT FORCE

clear all;
% created random force applied on system
forceupper=10;
forcelower=0;
force=(forceupper−forcelower)*rand(100,1)+forcelower;
figure(1);
clf;
%plot for random force
plot(force,‘−’);
%determination of displacement
for i=1:100
num=[force(i)];
den=[1 20 10];
displace(i)=max(step(num,den) );
end
%plot for force vs displacement
figure(2);
clf;
plot(force,displace,‘*’);
displace=displace′;
data=horzcat(force, displace);
%Initialize data for ANN
trndata=data(1:2:100,:);
chkdata=data(2:2:100,:);
forcepoints=trndata(:,1)′;
disppoints=trndata(:,2)′;
net=newff(minmax(forcepoints),[5 1],{‘tansig’ ‘purelin’});
net.trainParam.epochs=50;
net.trainParam.goal=.00001;
net=init(net);
%Train the system
net=train(net,forcepoints,disppoints);
Y=sim(net,forcepoints);
figure(3);
clf;
%plot the real output and trained output
plot(forcepoints,disppoints,‘−’,forcepoints,Y,‘o’);
%testing of ANN with checkdata
checkpoint=chkdata(:,1)′;
checkoutput=chkdata(:,2)′;
W=Sim(net,checkpoint);
e=W−checkoutput;
grid
figure(4);
bar(e);

  The results of the program are shown in Figures 10.14 through 10.18.

Example 10.3:  Approximation and Prediction for Teacher 
Evaluation System Using Neural Network

In the current education system, to improve education quality, teacher evaluation is must. The 
teacher can be evaluated on the basis of student feedback, results, peer feedback, and educational 
activities as shown in Figure 10.19. The evaluation is based on fi xed mathematical formula and 
hence there are many problems.



518 Modeling and Simulation of Systems Using MATLAB and Simulink

Each expert has his/her own intuition for judgment; often it is not taken into account.• 
Different weights are assigned to different parameters by each expert, but it is not easy due • 
to subjectivity in weights.
Mathematical computation is not fast.• 
Many experts get biased with candidate teacher and it infl uences the results.• 

Due to the above diffi culties, the conventional methods are not so effective for this problem. The 
soft computing techniques such as the ANN model may be used to overcome some of the diffi cul-
ties mentioned above. The block diagram for ANN approach is shown in Figure 10.20.

1

0.9

0.8

0.7

0.6

0.5

D
isp

la
ce

m
en

t (
m

)

0.4

0.3

0.2

0.1

0
0 1 2 3 4 5

Force (N)

Force vs. displacement

6 7 8 9 10

FIGURE 10.14
Results of displacement vs. force.

Tr
ai

ni
ng

-b
lu

e g
oa

l-b
la

ck

10–6

10–5

10–4

10–3

10–2

10–1

100

0 1 2 3 4 5 6 7 8
8 Epochs

Performance is 4.57266e-006, goal is 1e-005

Stop training

FIGURE 10.15
Error reduction during training.



Modeling with Artifi cial Neural Network 519

For this example, the system model has a teacher evaluation database, which has three experts 
who have judged the teachers on the basis of their feelings from the mind. The average of the 
experts’ judgments were taken as the overall judgment.

The judgment of the teacher is done on a 10-point scale. The evaluated data as shown in Table 
10.1 is given to the neural network for training and testing. MATLAB® code is written for simulating 
the ANN model with the following data set. The ANN performance during training and testing is 
shown in Figures 10.21 and 10.22, respectively.

Check data
1

0.9

0.8

0.7

0.6

0.5

D
isp

la
ce

m
en

t (
m

)

0.4

0.3

0.2

0.1

0
0 1 2 3 4 5

Force (N)
6 7 8 9 10

Original data

FIGURE 10.17
Data fi tting during testing.

Original data
1

0.9

0.8

0.7

0.6

0.5

D
isp

la
ce

m
en

t (
m

)

0.4

0.3

0.2

0.1

0
0 1 2 3 4 5

Force (N)
6 7 8 9 10

Tested data

FIGURE 10.16
Data fi tting during training.



520 Modeling and Simulation of Systems Using MATLAB and Simulink

% Matalb Codes of ANN model for Teachers Evaluation system

Trndata=[Student feedback, Examination results, Peer feedback, Educational 
activities]
Target = [Expert overall results]

% Matlab code for approximation and prediction of
% teacher evaluating system

%Initialization of training and target data

Educational
activities

Expert panel evaluating
teacher

Peer
feedback

Results

Student
feedback

FIGURE 10.19
Teacher evaluation system.

Er
ro

r

–0.02

–0.015

–0.01

–0.005

0

0.005

0.01

0.015

0.02

0 5 10 15 20 25 30 35 40 45 50
Number of points

FIGURE 10.18
Error during prediction.



Modeling with Artifi cial Neural Network 521

trndata;
target;
x=1:1:58;
%Initialization of neural network
net=newff (minmax (trndata),[20 1],{‘logsig’ ‘purelin’});
net.trainParam.epochs=500;
net.trainParam.goal=.0001;
net=init(net);
%Train the system
net=train(net,trndata,target);
Y=sim(net,trndata);
%Plot for the output
figure(1);
plot(x,target,‘−’,x,Y,‘o’);

(continued)

TABLE 10.1

Training Data for ANN Model

Student 

Results

Examination 

Result

Peer 

Feedback

Educational 

Activities Expert 1 Expert 2 Expert 3 Total

8.4 10 7.53 8.2 8.7 9 8.5 8.733333

8.4 5.8 7.85 8.4 7.9 8 7.8 7.9

8.84 5.8 7 9.2 8 7.8 8.1 7.966667

7.8 10 7.4 9.2 8.8 9.5 9.1 9.133333

8.33 10 9.5 9.6 8.8 10 9.2 9.333333

8.66 10 9 9.5 8.9 10 9.2 9.366667

9 10 9 9 9.1 10 9.2 9.433333

8.66 10 8.35 7.5 9 9 8.5 8.833333

8.66 10 7 7 8.8 9 8.2 8.666667

7.33 10 6.5 6.5 8.6 8 7.2 7.933333

9 7.33 8.5 9.6 7.9 9 8.5 8.466667

9.33 7 7 6.5 7.9 7 8.2 7.7

7.33 7.33 7 6 7.7 7 7.2 7.3

User output

Explanatory
interface

Teacher
evaluation
database

Knowledge
acquisition

module

ANN model

Expert panel

FIGURE 10.20
Block diagram for teacher’s evaluation system.



522 Modeling and Simulation of Systems Using MATLAB and Simulink

TABLE 10.1 (continued)

Training Data for ANN Model

Student 

Results

Examination 

Result

Peer 

Feedback

Educational 

Activities Expert 1 Expert 2 Expert 3 Total

8 7.66 7 7.5 7.8 7.5 7.9 7.733333

8.66 9.33 8 6.5 8.4 8.2 7.5 8.033333

8.66 9.33 8 8.5 8.6 8.5 8.5 8.533333

7.33 9.33 7 6 8.9 8 7.1 8

8.33 7.66 5.5 8 7.7 6.5 8.1 7.433333

8.66 7.66 5.5 6.5 7.6 6.5 8.2 7.433333

7.66 9 6.5 8 8.2 7.5 7.9 7.866667

7.66 9.33 6 8 8.3 7.5 7.9 7.9

8.33  9.33 6 5 8.4 8  7.2  7.866667

9.38 2 8 9 6 6 9 7

7.38 2 7.2 7.2 6 5.5 7.6 6.366667

6.07 2 6.4 6.6 6 5 6.9 5.966667

9.18 4 7 7 6.5 6 7.7 6.733333

8.07 2 7 6.6 6 6.5 7.5 6.666667

7.9 2 6.2 6.4 6 6.3 7.2 6.5

5.2 2 6 5.4 6 6 5.1 5.7

8.2 2 6 6.4 6 6 7.5 6.5

6.78 2 5.4 6 6 6 6.5 6.166667

9.2 2 6 7.2 6 7 8.2 7.066667

8.87 2 6.4 6.8 6 6.8 8.4 7.066667

7.16 2 5.4 5.4 6 6 7.9 6.633333

8 4.9 8.65 8.2 6.6 6 8.1 6.9

8.07 4.95 8.6 8.4 6.7 7 8.5 7.4

8.28 2.58 8.45 8.6 6.1 8 6.2 6.766667

8.3 6.44 7.35 6.4 6.9 7 7.5 7.133333

8.13 3.32 7.6 7 6.2 6 7 6.4

9.03 4.79 8.45 8.6 6.6 8 8.2 7.6

7.08 4.06 6.35 6.2 6.1 7 7.5 6.866667

7.96 4.16 6 5.2 6.1 6.5 7.5 6.7

7.5 3.55 7.35 6.5 5.9 6.5 7.4 6.6

8.15 6.16 6.8 6.6 7.2 6.8 7.2 7.066667

6.8 3.6 7.35 6.6 6.1 6 6.5 6.2

8.03 5.54 6.8 6.6 6 6.5 7.5 6.666667

9.4 6 9.55 7.8 7 8 8.2 7.733333

7.37 2 8.51 8.6 5.4 8.5 7.9 7.266667

7.87 5 9.11 7.8 6.5 7.4 7.8 7.233333

6.86 3 6.68 6.2 5.9 6 6.5 6.133333

9.08 4 6.96 8.2 6.2 7.5 9.2 7.633333

8.3 6 7.08 7.4 7.1 7 7.2 7.1

6.8 2 6.51 7 5.4 7 7.2 6.533333

7.49 4 6 7.6 6.2 6.5 7.6 6.766667

7.7 4 8.21 8.4 6.3 7.5 8.5 7.433333

8.03 2 5.86 8.2 5.6 7.8 8.2 7.2

4.23 4 2.81 2.6 5.7 4.2 4.5 4.8

3 3 3.63 2.8 4.6 4 3.5 4.033333



Modeling with Artifi cial Neural Network 523

Example 10.4: Rainfall Prediction Using Neural Network

Rainfall forecasting has been one of the most challenging problems around the world for more 
than half a century. The traditional rainfall forecasters are generally based on available informa-
tion to establish the mathematical models. Thus, it involves the question of pattern recognition. 
We introduce the situation of ANN for rainfall forecasting. To develop the ANN model, we have 
used the data of rainfall comprising of 194 years. Neural network technology can be applied to 
such a nonlinear system. Neural network has a built-in capability to adapt their synaptic weights 
to changes in the surrounding environment. In particular, ANN is trained to operate in a specifi c 

Tr
ai

ni
ng

-b
lu

e g
oa

l-b
la

ck

10–5

10–4

10–3

10–2

10–1

100

101

102

0 20 40 60 80 100
111 Epochs

Performance is 9.05142e-005, goal is 0.0001

Stop training

FIGURE 10.21
Training error of ANN for teacher’s evaluation system.

Number of teachers

3020100
4

5

6

7

Ex
pe

rt
s e

va
lu

at
io

n 8

9

10

40 50 60

Expert evaluation trend
Neural output

FIGURE 10.22
Comparison of results.



524 Modeling and Simulation of Systems Using MATLAB and Simulink

situation and it can easily retain the past experiences. ANN completes the whole network of 
information processing through the interaction between the neurons. It has self-learning and 
adaptive capabilities, which motivated us to use in rainfall forecasting. The historical data of 
rainfall for 194 years are graphically shown in Figure 10.23.

The rainfall data shown above is random in nature. Hence, it is diffi cult to develop a mathemati-
cal model for it except time series prediction. The time series prediction method has its own draw-
backs. Here, we have used neural network as nonlinear predictor. The MATLAB code is written to 
simulate the problem. The training, validation, and testing performance of ANN rainfall predictor 
is shown in Figure 10.24.

Year
100 12060 8020 400

Ra
in

fa
ll 

(in
 m

m
)

1500

1400

1300

1200

1100

1000

900

800
140 160 180 200

FIGURE 10.23
Historical data plot for rainfall.

0 2 4 6 8 10 12 14 16

Pe
rfo

rm
an

ce

Performance is 0.0744813, goal is 0

Train
Validation
Test

100

10–1

10–2

FIGURE 10.24
ANN performance during rainfall prediction.



Modeling with Artifi cial Neural Network 525

% Load data for training
p=year;
t=rainfall;
figure(1);
% plot the data
plot(year,rainfall);
%Normalize the data
[p2,ps] = mapminmax(p);
[t2,ts] = mapminmax(t);
%divide data for training,validation and testing
[trainV,val,test] = dividevec(p2,t2,0.2,0.15);
%Initialize network
net = newff(minmax(p2),[40 1]);
init(net);
%train the network
[net,tr]=train(net,trainV.P,trainV.T,[],[],val,test);
%simulate the network
a2 = sim(net,p2);
% reverse normalize the data for original plot
a= mapminmax(‘reverse’,a2,ts);
[m,b,r] = postreg(a,t);

The best fi t is represented by the red line; we can simulate the network using sim com-
mand for the future prediction (Figure 10.25).

800 900 1000 1100

Data points
Best linear fit
A = T

1200

Targets T

1300 1400 1500

O
ut

pu
ts

 A
, l

in
ea

r f
it:

 A
=

(0
.2

5)
T

+
(8

.7
e+

00
2)

Outputs vs. targets, R = 0.42032
1500

1400

1300

1200

1100

1000

900

800

FIGURE 10.25
Best fi t curve for rainfall problem.



526 Modeling and Simulation of Systems Using MATLAB and Simulink

10.3 Review Questions

 1. Explain the working of biological neuron.

 2. Explain different parts of artifi cial neuron and mention how it replicates the bio-
logical neuron.

 3. What is artifi cial neural network?

 4. How does ANN model be developed?

 5. Explain different types of training used in ANN.

 6. Develop a feed forward ANN model for character recognition.

 7. What is gradient descent learning algorithm for ANN models?

 8. Develop ANN model for electrical load forecasting problem. (Use randn function 
of MATLAB to generate data.)



527

11
Modeling Using Fuzzy Systems

So far as the laws of mathematics refer to reality, they are not certain and so far as the 
laws they are certain, they do not refer to reality.

Albert Einstein

If you do not have a good plant model or if the system is changing, then fuzzy will pro-
duce a better solution than conventional control technique.

Bob Varley

Good judgment comes from experience; experience comes from bad judgment.

Frederick Brooks

11.1 Introduction

A paradigm shift from classical thinking to fuzzy thinking was initiated by the concept 
of fuzzy sets and the idea of mathematics based on fuzzy sets. It emerged from the need 
to bridge the gap between mathematical models and their interpretations. This gap has 
become increasingly disturbing, especially in the areas of biology, cognitive sciences, and 
social and applied sciences, such as modern technology and medicine. Hence, there is a 
need to bridge this gap between a mathematical model and the experience, as expressed 
by Zadeh (1962):

…There is a fairly wide gap between what might be regarded as ‘animate’ system 
theorists and ‘inanimate’ system theorists at the present time, and it is not all cer-
tain that this gap will be narrowed, much less closed, in the near future. There are 
some who feel this gap refl ects the fundamental inadequate of the conventional 
 mathematics—the mathematics of precisely-defi ned points, functions, sets, probabil-
ity measures, etc.—for coping with the analysis of biological systems, and that to 
deal effectively with such systems, which are generally orders of magnitude more 
complex than man-made systems, we need a radically different kind of  mathematics, 
the mathematics of fuzzy or cloudy quantities which are not describable in terms of 
probability distribution. Indeed, the need for such mathematics is become increas-
ingly apparent even in the realm of inanimate systems, for in most practical cases the 
a priori data as well as the criteria by which the performance of a man-made system 
is judged are far from being precisely specifi ed or having accurately known prob-
ability distributions.



528 Modeling and Simulation of Systems Using MATLAB and Simulink

Prof. Lotfi  A. Zadeh, University of California, Berkley, fi rst coined the term “fuzzy” in 
1962. This was the time for a paradigm shift from the crisp set to the fuzzy set. The fuzzy 
logic provides a tool for modeling human-centered systems. Fuzziness seems to pervade 
most human perceptions and thinking processes. One of the most important facets of 
human thinking is the ability to summarize information “into labels of fuzzy sets which 
bear an approximate relation to primary data.” Linguistic descriptions, which are usually 
summary descriptions of complex situations, are fuzzy in essence. Fuzziness occurs when 
there are no sharp boundaries.

In fuzzy logic, the transition is gradual and not abrupt, from member to nonmember. It can 
deal with uncertainty in terms of imprecision, nonspecifi city, vagueness, inconsistency, etc. 
Uncertainty is undesirable in science and should be avoided by all possible means; science 
strives for certainty in all manifestations (precision, specifi city, sharpness, and consistency).

An alternative view, which is tolerant of uncertainty, insists that science cannot avoid it. 
Warren Weaver (1948) mentioned the problems of organized simplicity and disorganized 
complexity (randomness). He called some of the problems lying in these categories and 
most of the problems lying in between, organized complexity (nonlinear systems with 
large numbers of components and rich interactions), which may be nondeterministic but 
not as a result of randomness.

Fuzzy sets were specifi cally designed to mathematically represent uncertainty and 
vagueness, and to provide formalized tools for dealing with imprecision intrinsic to many 
problems. However, the detailed history of fuzzy logic was given in Chaturvedi (2008).

The goal of this chapter is to demonstrate how fuzzy logic can be used for system model-
ing. To demonstrate fuzzy logic applications to model real-world systems, MATLAB® with 
the fuzzy logic toolbox is used.

11.2 Fuzzy Sets

A fuzzy set is any set that allows its member to have different grades of the membership 
function in the interval of [0, 1]. It is a generalized subset of a classical set.

Degree of Truth

To what degree is person x tall?
To answer this question, it is necessary to assign a degree of membership to each per-

son in the universe of discourse, in the fuzzy subset “tall.” The easiest way to do this is to 
defi ne the membership function based on a person’s height.

Person Height Degree of Tallness

Raman 3′2″ 0.0

Madan 5′5″ 0.31

John 5′9″ 0.67

Hari 6′1″ 0.76

Kareem 7′2″ 1.00

0 If height (x) < 5′
Membership value = (height(x)-5′)/2′ If height (x) ≤ 7′

1 If height (x) > 7′

⎧
⎪
⎨
⎪
⎩



Modeling Using Fuzzy Systems 529

Each fuzzy set is completely and uniquely defi ned by one particular membership function, 
for example, “tall” is defi ned by a fuzzy set shown in Figure 11.1. A fuzzy set represents 
vague concepts and their contexts, for example, the concept of high temperature in context 
of weather may be between 25°C and 50°C. Again, in different seasons, high temperature 
may be different. The concept of high temperature in context of a nuclear reactor may be 
between 100°C and 300°C. The usefulness of fuzzy sets depends critically on our ability to 
construct appropriate membership functions for various concepts in various contexts. The 
different shapes generally used for fuzzy membership functions are shown in Figure 11.2 
and mathematically expressed as in Table 11.1. In some situations, it is not possible to iden-
tify membership functions with an exact degree. Then, it is necessary to choose reasonable 
values between lower and upper bounds. Such fuzzy sets are called internal-valued fuzzy 
sets, as shown in Figure 11.3.

(b)

(a)

FIGURE 11.2
Different shapes for fuzzy membership functions. (a) Piecewise linear functions and (b) nonlinear functions.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

Height (ft)

M
em

be
rs

hi
p 

va
lu

e

FIGURE 11.1
Fuzzy membership function for tall.



530 Modeling and Simulation of Systems Using MATLAB and Simulink

TABLE 11.1

Different Membership Functions

Triangular membership function ( ; , , ) max min , , 0
x a c x

trimf x a b c
b a c b

⎛ ⎞− −⎛ ⎞= ⎜ ⎟⎜ ⎟⎝ ⎠− −⎝ ⎠

Trapezoidal membership function ( ; , , , ) max min , 1, , 0
x a d x

trapmf x a b c d
b a d c

⎛ ⎞− −⎛ ⎞= ⎜ ⎟⎜ ⎟⎝ ⎠− −⎝ ⎠

Gaussian membership function

2
1

2( ; , , )

x c

gaussmf x a b c e
−⎛ ⎞− ⎜ ⎟⎝ ⎠σ=

Bell-shaped membership function
2

1
( ; , , )

1

bgbellmf x a b c
x c

b

=
−+

Sigmoidal membership function ( )

1
( ; , , )

1 a x csigmf x a b c
e − −=

+

Let X be a collection of objects or a universe of discourse. Then a fuzzy set, A, in X is a set 
of ordered pairs, A = {μA(x)/x}, where μA(x) is the characteristic function (or the member-
ship function) of x in A. If the membership function of A is discrete, then A is written as 
in Equation 11.1:

 

= μ + μ + μ + + μ

= μ∑
…

1 1 2 2 3 3[ ( )/ ( )/ ( )/ ( )/ ]

[ ( )/ ]

n n

i i

A x x x x x x x x

x x  (11.1)

where

“+” or 
“∑”

 sign denotes union
μi(x) denotes the membership value/grade
xi denotes the variable value

When the membership function is continuous, then the fuzzy set, A, is written as

  ( )/AA x x= μ∫  

where the integral denotes the fuzzy singletons.
There are three basic methods by which a set can be defi ned.

 1. List of elements
  A set may be defi ned by all the elements along with their membership values or 

membership grades associated with it, as mentioned in Equation 11.2:

 

1 1 2 2 3 3

1 1 2 2 3 3

[ ( )/ ( )/ + ( )/ ( )/ ] or

[ ( )/ , ( )/ , ( )/ , , ( )/ ]

n n

n n

A x x x x x x x x

x x x x x x x x

= μ + μ μ + + μ

= μ μ μ … μ

…

 (11.2)

α1

α2

FIGURE 11.3
Internal-valued fuzzy sets.



Modeling Using Fuzzy Systems 531

 2. Rule method
  A set may be represented by some rule that all the elements follow. A is defi ned 

by the following notation as the set of all elements of x for which the proposition, 
P(x), is true:

 = { | ( )}A x p x  

where
| denotes the phrase “such that”
p(x) denotes that x has the property p

 3. Characteristic (membership) function
  A set may also be defi ned by a characteristic (membership) function that will give 

the membership value of each element:

 

( ) for 
( )

0 for
A

f x x A
x

x A

∈⎧
μ = ⎨  ∉⎩  

where f(x) could be any function like f(x) = 0.5x + 1 or f(x) = 1.5*e−1.2x.

11.3 Features of Fuzzy Sets

 1. Fuzzy logic provides a systematic basis for quantifying uncertainty due to vague-
ness and incompleteness of the information.

 2. Classes with no sharp boundaries can be easily modeled using fuzzy sets.

 3. Fuzzy reasoning is an informalism that allows the use of expert knowledge and is 
able to process this expertise in a structured and consistent way.

 4. There is no broad assumption of a complete independence of the evidence to 
be combined using fuzzy logic, as required for other subjective probabilistic 
approaches.

 5. When the information is inadequate to support a random defi nition, the use of 
probabilistic methods may be diffi cult. In such cases, the use of fuzzy sets is 
promising.

Subset

If every member of set A is also a member of set B (i.e., x ε A implies x ε B), then A is called 
a subset of B and is written as A B⊆ . A subset has the following properties:

 1. Every set is a subset of itself and every set is a subset of the universal set.

 2. If A B⊆  and B A⊆  then A = B (equal set).

 3. If A B⊆  and B ≠ A then A B⊂  (A is a proper subset of B).



532 Modeling and Simulation of Systems Using MATLAB and Simulink

Power set

The family of all subsets of a given set, A, is called the power set of A and is denoted by 
P(A). The family of all subsets of P(A) is called the second-order power set of A, denoted 
by P2(A).

 2( ) ( ( ))P A P P A=  

11.4 Operations on Fuzzy Sets

11.4.1 Fuzzy Intersection

Fuzzy intersection of two sets, A and B, is interpreted as “A and B”, which takes the mini-
mum value of two membership functions, as given in Equation 11.3:

 ( )
∩μ = μ Λμ

= μ μ ∀ ∈

∑( ) { ( ) ( )}

min ( ),  ( )

A B A B

A B

x x x

x x x X  (11.3)

11.4.2 Fuzzy Union

Fuzzy union is interpreted as “A or B,” which takes the maximum value of two member-
ship functions, as given in Equation 11.4:

 ( )

μ = μ μ

= μ μ ∀ ∈

∑( ) ( ) ( )

max ( ),  ( )

AVB A B

A B

x x V x

x x x X  (11.4)

A justifi cation of the choice of max and min operators for fuzzy union and fuzzy intersec-
tion was given by Bellman and Giertz (1973). These are the only functions that meet the 
following requirements:

 1. The results of these operators depend on the element membership values.

 2. These are commutative, associative, and mutually distributive operators.

 3. These are continuous and nondecreasing with respect to their arguments.

 4. The boundary conditions imply as operator(1, 1) = 1 and operator(0, 0) = 0.

The above requirements are true for all union and intersection operators suggested by dif-
ferent researchers.

11.4.3 Fuzzy Complement

The complement of a fuzzy set, A, which is understood as “NOT(A),” is defi ned by 
Equation 11.5:

 μ = − μ ∀ ∈∑( ) (1 ( ))AA x x x X  (11.5)

where Ā stands for the complement of A.



Modeling Using Fuzzy Systems 533

The relative complement of set A with respect to set B is the set containing all members of 
B that are not members of A, denoted by B − A:

 ( ) { | and }B A x x B x A− = ∈ ∉  

If set B is a universal set, then A’s complement is absolute. An absolute complement is 
always involutive. The absolute complement of an empty set is always equal to a universal 
set and vice versa:

 
−

φ = = φandX X  

11.4.4 Fuzzy Concentration

Concentration of fuzzy sets produces a reduction in the membership value, μi(x), by taking 
a power more than 1 of the membership value of that fuzzy set. If a fuzzy set, A, is written 
as in Equation 11.6:

 = μ μ + μ…
1 1 2 2{ / + / + / }n nA x x x  (11.6)

then a fuzzy concentrator applied to the fuzzy set, A, is defi ned as given in Equation 11.7 
and graphically shown in Figure 11.4:

 = = μ + μ + + μ…
1 1  2 2CON( ) { / / / }mm m m

n nA A x x x  (11.7)

where CON(A) represents the concentrator applied to A:

 m > 1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4 5 6

Natural numbers -->

M
em

be
rs

hi
p 

va
lu

e

Close to 3
Very close to 3
Extremely close to 3

FIGURE 11.4
Strong fuzzy modifi er.



534 Modeling and Simulation of Systems Using MATLAB and Simulink

%Matlab Program for Fuzzy concentrator
% Close_to_3=A
A =[0:.1:1, .9:-0.1:0];
x=[0:6/20:6];
Very_Close_to_3= A.∧2;
Extermey_Close_to_3 = A.∧1.25;
plot(x,A)
hold
plot(x,Very_Close_to_3, ‘––’)
plot(x,Extermey_Close_to_3, ‘:’)
legend(‘Close to 3’, ‘Very close to 3’, ‘Extremely close to 3’)
xlabel(‘Natural Numbers ––>’)
ylabel(‘Membership value’)

11.4.5 Fuzzy Dilation

Fuzzy dilation is an operation that increases the degree of belief in each object of a 
fuzzy set by taking a power less than 1 of the membership value, as given in Equation 
11.8 and graphically shown in Figure 11.5. Dilation has an opposite effect to that of 
concentration:

 1 1 2 2DIL( ) { / / / }m m m m
n nA A x x x= = μ + μ + + μ…  (11.8)

where m < 1.
The fuzzy operations of ‘plus and minus’ applied to a fuzzy set give intermediate effects 

of CON(A) and DIL(A) for which the values of m are 1.25 and 0.75, respectively. If a set, A, 
is fuzzy, then the plus and minus operations may be defi ned as

Plus(A) = A1.25 and Minus(A) = A0.75

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4 5 6

Natural numbers -->

M
em

be
rs

hi
p 

va
lu

e

Close to 3
More or less close to 3
Fairly close to 3

FIGURE 11.5
Weak fuzzy modifi er.



Modeling Using Fuzzy Systems 535

%Matlab Program for Weak Fuzzy Modifiers
clear all
% Close_to_3=A
A=[0:.1:1, .9:-0.1:0];
x=[0:6/20:6];
More_or_less_Close_to_3=A.∧0.75;
fairly_Close_to_3=A.∧0.5;
plot(x,A)
hold
plot(x,More_or_less_Close_to_3, ‘––’)
plot(x,fairly_Close_to_3, ‘:’)
legend(‘Close to 3’, ‘More or Less close to 3’, ‘fairly close to 3’)
xlabel(‘Natural Numbers ––>’)
ylabel(‘Membership value’)

11.4.6 Fuzzy Intensification

Intensifi cation is an operation that increases the membership function of a set above the 
maximum fuzzy point (at α = 0.5) and decreases it below the maximum fuzzy point.

If A is a fuzzy set, x C- A, then the intensifi cation applied to A is defi ned as given in 
Equation 11.9:

 
1

2

1

1

1 if 0 0.5
( )

1 if 0.5 1.0

n
AA

n
AA

n
I A

n

⎧μ ≥ ≤ μ ≤⎪= ⎨μ ≤ ≤ μ ≤⎪⎩
 (11.9)

 

2

2

2 If 0 0.5
For example intensified close to 3

1 2(1 ) If 0.5 1.0

AA

A A

μ ≤ μ ≤
=

− − μ ≤ μ ≤  

%Matlab Program for intensified fuzzy modifiers
clear all
% Close_to_3=A
A=[0:.1:1, .9:-0.1:0];
x=[0:6/20:6];
[l n]= size(A);
for i=1:n
 if A(i)<=0.5
 A1(i)=2*A(i).∧2
 else
 A1(i)=1–2*(1-A(i) ).∧2
 end
end
plot(x,A); hold
plot(x,A1, ‘:’)
legend(‘Close to 3’, ‘intensified close to 3’)
xlabel(‘Natural Numbers ––>’)
ylabel(‘Membership value’)

The intensifi ed fuzzy modifi er is shown in Figure 11.6.



536 Modeling and Simulation of Systems Using MATLAB and Simulink

11.4.7 Bounded Sum

The bounded sum of two fuzzy sets, A and B, in the universes, X and Y, with the member-
ship functions, μA(x) and μB(y), respectively, is defi ned by Equation 11.10 and also shown 
in Figure 11.7:

 

( )
( )

⊕⊕ = μ = ∧ μ + μ

= μ + μ

( )  1 ( ) ( )

min 1, ( ( ) ( ))

A B A B

A B

A B x x y

x y  (11.10)

where the “+” sign is an arithmetic operator.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4 5 6

Natural numbers -->

M
em

be
rs

hi
p 

va
lu

e

Close to 3
Intensified close to 3

FIGURE 11.6
Intensifi ed fuzzy modifi er.

FIGURE 11.7
Results of MATLAB program for bounded sum.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4 65 7

Natural numbers -->

M
em

be
rs

hi
p 

va
lu

e

Set A
Set B
A(bounded sum)B



Modeling Using Fuzzy Systems 537

These operators are summarized in Table 11.2.

%Matlab program for finding the bounded sum of two fuzzy numbers
clear all
% Close_to_3=A on the universe
X=[0, 1, 2, 3, 4, 5, 6]
% and Close_to_4=B on the universe X=Y
A=[0, 0, 0.5, 1, 0.5, 0, 0];
B=[0, 0, 0, 0.5, 1, 0.5, 0];
A_bounded_B= min(1, (A+B) )
plot(X,A, ‘b’); hold
plot(X,B,‘k’)
plot(X, A_bounded_B, ‘r-+’)
legend(‘Set A’, ‘Set B’, ‘Set A(bounded sum)B’)
xlabel(‘Natural Numbers ––>’)
ylabel(‘Membership value’)

11.4.8 Strong a-Cut

A Strong α-cut of a fuzzy set, A, is also a crisp set, Aα+, that contains all the elements of the 
universal set, X, that have a membership grade in A greater than the specifi ed values of 
α between 0 and 1, as given in Equation 11.11:

 { } | ( )A x A x Aα+ = > α  (11.11)

For example, Young0.8+ = {1/5, 1/10}

TABLE 11.2

Summary of Operations on Fuzzy Sets

S. No. Operation Symbol Formula

 1. Intersection A B∩ min(μA(x), μB(x) )

 2. Union A B∪ max(μA(x), μB(x) )

 3. Absolute complement Ā 1 − μA(x)

 4. Relative complement 

of A with respect to B

B − A μB(x) − μA(x)

 5. Concentration CON(A) m
iμ  if m ≥1

 6. Dilution DIL(A)
m
iμ  if m ≤1

 7. Intensifi cation INT(A)
m
iμ  if m ≥1 for μi < 0.5

m
iμ  if m ≤ 1 for μi > 0.5

 8. Bounded sum A ⊕ B min(1, (μA(x) + μB(y) )
 9. Bounded difference A ⊝ B max(0, (μA(x) − μB(x) ) )

10. Bounded product A ⊗ B Max(0, (μA(x) + μB(x) − 1) )

11. Algebraic sum A + B μA(x) + μB(x) − μA(x)μB(x)

12. Algebraic product AB μA(x)μB(x)

13. Equality A = B μA(x) = μB(x)



538 Modeling and Simulation of Systems Using MATLAB and Simulink

The α-cuts of a given fuzzy set, A, for two distinct values of α, say α1 and α2 such that 

α1 < α2, are Aα1 and Aα2 such that 1 2A Aα α⊇ . Similarly, for a strong α-cut, 1 2A Aα + α +⊇ .

Properties of an a-cut

 1. A Aα+ α⊇ .

 2. ( ) ( ) and ( ) ( )A B A B A B A Bα α α α α α∩ = ∩ ∪ = ∪ .

 3. ( ) ( ) and ( ) ( )A B A B A B A Bα+ α+ α+ α α +α∩ = ∩ ∪ = ∪ .

 4. (1 )A Aα −α += .

11.4.9 Linguistic Hedges

Linguistic hedges, such as very, much, more, and less, modify the meaning of atomic as 
well as composite terms, and thus serve to increase the range of linguistic variables from 
a small collection of primary terms.

A hedge, h, may be regarded as an operator that transforms the fuzzy set, M(u), repre-
senting the meaning of u, into the fuzzy set, M(hu). For example, by using the hedge “very” 
in conjunction with “not,” and the primary term “tall,” we can generate the fuzzy sets 
“very tall,” “very very tall,” “not very tall,” “tall,” etc.:

Very: x = x2

Very very: x = (very (x))2

Not very: (very( ))x x=
Plus: x = x1.25

Minus: x = x0.75

Slightly: A = int [norm (plus A and not (very A))]

From the last two sets, we have the approximate identity:

 plus plus minus (very )x x=

Example

  

⎡ ⎤= =⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦
1 0.8 0.6 0.4 0.2

If the universe of discourse, 1, 2, 3, 4, 5 , and small , , , , , find very small,
1 2 3 4 5

very very small, not very small, plus small, and minus small.

U

SOLUTION

⎡ ⎤= = μ⎢ ⎥⎣ ⎦
21 0.64 0.36 0.16 0.04

Then,  very small , , , , /
1 2 3 4 5

A A



Modeling Using Fuzzy Systems 539

⎡ ⎤= ⎢ ⎥⎣ ⎦
1 0.4 0.1

very very small , , (neglecting small terms)
1 2 3

 ⎡ ⎤= ⎢ ⎥⎣ ⎦
0 0.36 0.64 0.84 0.96

not very small , , , ,
1 2 3 4 5

 1 0.76 0.53 0.32 0.13
plus small , , , ,

1 2 3 4 5
⎡ ⎤= ⎢ ⎥⎣ ⎦

 1 0.85 0.68 0.5 0.3
minus small , , , ,

1 2 3 4 5
⎡ ⎤= ⎢ ⎥⎣ ⎦

The modifi ed set may be plotted using MATLAB, as shown in Figure 11.8.

small=[1 0.8 0.6 0.4 0.2];
very_small = small.∧2
very_very_small = very_small.∧2
not_very_small = (1-very_small)
plus_small=small.∧1.25
minus_small=small.∧0.57
plot(small, ‘k’); hold on
plot(very_small, ‘k––’); plot(very_very_small, ‘k:’)
plot(not_very_small, ‘k-.’); plot(plus_small, ‘k-*’)
plot(minus_small, ‘k-+’)
legend(‘small’,‘very small’, ‘very very small’, ‘not very small’, …
 ‘plus small’, ‘minus small’)
xlabel(‘Variable value’); ylabel(‘membership value’);

FIGURE 11.8
Fuzzy quantifi ers/modifi ers.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

4.54 5

M
em

be
rs

hi
p 

va
lu

e

Small
Very small
Very very small
Not very small
Plus small
Minus small

0
1 1.5 2 2.5 3 3.5

Variable value



540 Modeling and Simulation of Systems Using MATLAB and Simulink

11.5 Characteristics of Fuzzy Sets

11.5.1 Normal Fuzzy Set

A fuzzy set is said to be normal if the greatest value of its membership function is unity: 
Vx μ(x) = 1, where Vx stands for the supremum of μ(x) (least upper bound), otherwise the 
set is subnormal.

11.5.2 Convex Fuzzy Set

A convex fuzzy set is described by a membership function whose membership values are 
strictly monotonically increasing, or strictly monotonically decreasing, or strictly mono-
tonically increasing and then strictly monotonically decreasing with the increasing value 
for elements in the universe of discourse, X, that is, if x, y, z ∈ A and x < y < z then μA(y) ≥ 
min[μA(x), μA(z)] (see Figure 11.9).

11.5.3 Fuzzy Singleton

A fuzzy singleton is a fuzzy set that only has a membership grade for a single value. Let A 
be a fuzzy singleton of a universe of discourse, X, x ∈ X, then A is written as A = μ/x. With 
this defi nition, a fuzzy set can be considered the union of the fuzzy singleton. In Figure 
11.10, the range from a to c is the support and element b only has a membership value 
greater than zero. Fuzzy sets of this type are called fuzzy singletons.

11.5.4 Cardinality

The number of members of a fi nite discrete fuzzy set, A, is called the cardinality of A, and 
is denoted by |A|. The number of possible subsets of a set, A, is equal to 2|A|, which is also 
called a power set.

FIGURE 11.9
Convexity of fuzzy sets: (a) A is a convex fuzzy set and (b) B is a nonconvex fuzzy set.

(a)

1
A

x

μ

(b)

B
1

x

FIGURE 11.10
Fuzzy singleton.

a b

A

c
x

μ(
x)



Modeling Using Fuzzy Systems 541

11.6 Properties of Fuzzy Sets

The properties of fuzzy sets are summarized in Table 11.3.

11.7 Fuzzy Cartesian Product

Let A be a fuzzy set on universe X and B be a fuzzy set on universe Y; then the Cartesian 
product between fuzzy sets, A and B, will result in a fuzzy relation, R, which is contained 
within the full Cartesian product space, or

 A B R X Y× = ⊂ ×  

where the fuzzy relation, R, has a membership function:

 ×μ = μ = μ μ( , ) ( , ) min( ( ), ( ))R A B A Bx y x y x y  (11.12)

The Cartesian product defi ned by A × B = R, is implemented in the same fashion as the 
cross product of two vectors, as given in Equation 11.12. The Cartesian product is not 

TABLE 11.3

Properties of Fuzzy Sets

S. No. Property Expression

 1. Commutative property max[μA(x), μB(x)] = max[μB(x), μA(x)]

min[μA(x), μB(x)] = min[μB(x), μA(x)]

 2. Associative property max[μA(x), max(μB(x), μc(x)] 

= max[μA(x), max{μB(x), μc(x)}]

min[μA(x), min{μB(x), μC(x)}] 

= min[min{μA(x), μB(x)}, μC(x)]

 3. Distributive property max[μA(x), min(μB(x), μc(x)] 

= min[max{μA(x), μB(x)}, 

max{μA(x), μc(x)}]

 4. Idempotency max{μA(x), μA(x)} = μA(x)

min{μA(x), μA(x)} = μA(x)

 5. Identity max{μA(x), 0} = μA(x)

min{μA(x), 1} = μA(x)

min{μA(x), 0} = 0

and max{μA(x), 1} = 1

 6. Involution 1 − (1 − μA(x) ) = =μ ( )
A

x

 7. Excluded middle law max{μA(x), μĀ(x)} ≠ 1

 8. Law of contradiction min{μA(x), μĀ(x)} ≠ 0

 9. Absorption max[μA(x), min[μA(x), μB(x)] = μA(x)

min[μA(x), max[μA(x), μB(x)] = μA(x)

10. Demorgan’s law ∪ = ∩ ∩ = ∪( )  and ( )A B A B A B A B

11. Transitive ⊆ ⊆ ⊆If  and  Then A B B C C



542 Modeling and Simulation of Systems Using MATLAB and Simulink

the same operation as the arithmetic product. Each of the fuzzy sets could be thought of 
as a vector of membership values; each value is associated with a particular element in 
each set.

For example, for a fuzzy set (vector), A, that has four elements, hence a column vector of 
size 4 × 1, and for a fuzzy set (vector), B, that has fi ve elements, hence a row vector of size 
1 × 5, the resulting fuzzy relation, R, will be represented by a matrix of size 4 × 5, that is, 
R will have four rows and fi ve columns.

Example 

Suppose that we have two fuzzy sets—A, defi ned on a universe of four discrete temperatures, 
X = {x1, x2, x3, x4), and B, defi ned on a universe of three discrete pressures, Y = (y1, y2, y3)—and 
we want to fi nd the fuzzy Cartesian product between them. The fuzzy set, A, could represent 
the “ambient” temperature and the fuzzy set, B, the “near optimum” pressure for a certain heat 
exchanger, and the Cartesian product could represent the conditions(temperature–pressure pairs) 
of the exchanger that are associated with “effi cient” operations.

  1 2 3 4Let 0.2/ 0.5/ 0.8/ 1/A x x x x= + + +  

  = + +1 2 3and 0.3/ 0.5/ 0.9 / .B y y y  

Here, A can be represented as a column vector of size 4 × 1 and B can be represented as a row 
vector of size 1 × 3. Then the fuzzy Cartesian product results in a fuzzy relation, R, (of size 4 × 3) 
representing “effi cient” conditions:

 
⎡ ⎤
⎢ ⎥× = =
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1 2 3

1

2

3

4

0.2 0.2 0.2

0.3 0.5 0.5

0.3 0.5 0.8

0.3 0.5 0.9

y y y

x
A B R x

x

x

 
(11.13)

11.8 Fuzzy Relation

If A and B are two sets and there is a specifi c property between elements x of A and y of B, 
this property can be described using the ordered pair (x, y). A set of such (x, y) pairs, x ∈ A 
and y ∈ B, is called a relation, R:

 = ∈ ∈{( , )| , }x y x A y BR  (11.14)

R is a binary relation and a subset of A × B.
The term “x is in relation, R, with y” is denoted as

(x, y) ∈ R or xRy, with R A B⊆ × .

If ( , )x y ∉ R, x is not in relation, R
_
 with y.

If A = B or R is a relation from A to A, it is written (x, x) ∈ R or xRx, for R A A⊆ × .



Modeling Using Fuzzy Systems 543

Example

Consider two binary relations, R and S, on X × Y defi ned as

R:x is considerably smaller than y
S:x is very close to y

The fuzzy relation matrices, MR and MS, are given as

 

1 2 3 1 2 3

1 1

2 2

3 3

0.3 0.2 1.0 0.3 0.0 0.1

0.8 1.0 1.0 0.1 0.8 1.0

0.0 1.0 0.0 0.6 0.9 0.3

R SM y y y M y y y

x x

x x

x x  

Fuzzy relation matrices, ∪R SM  and R SM ∩ , corresponding to R S∪  and R S∩ , yield the 
following:

 

∪ ∩1 2 3 1 2 3

1 1

2 2

3 3

0.3 0.2 1.0 0.3 0.0 0.1

0.8 1.0 1.0 0.1 0.8 1.0

0.6 1.0 0.3 0.0 0.9 0.0

R S R SM y y y M y y y

x x

x x

x x  

Here, the Union of R and S means that “x is considerably smaller than y” OR “x is very 
close to y.” And the Intersection of R and S means that “x is considerably smaller than y” 
AND “x is very close to y.” Also, the complement relation of the fuzzy relation, R, shall be

 

1 0.7 0.8 0.0

2 0.2 0.0 0.0

3 1.0 0.0 1.0

RM a b c

 

Inverse relation

When a fuzzy relation, ⊆ ×R A B , is given, its inverse relation, R−1, is defi ned by the fol-
lowing membership function:

For all (x, y) ⊆ ×A B,

 −μ = μ1 ( , ) ( , )R Ry x x y  

Composition of fuzzy relation

Two fuzzy relations, R and S, are defi ned on sets A, B, and C. That is, R A B⊆ × , and S B C⊆ × . 
The composition, S • R = S • R, of two relations, R and S, is expressed by the relation from 
A to C, and this composition is defi ned by the following:

For (x, y) ∈ A × B, and (y, z) ∈ B × C,

  •μ = μ μ( , ) max[min( ( , ), ( , ))]S R R S
y

x z x y y z  

  ∨= μ ∧ μ[ ( , ) ( , )]y R Sx y y z  

From this elaboration, S • R is a subset of A × C. That is, S R A C• ⊆ × .



544 Modeling and Simulation of Systems Using MATLAB and Simulink

FIGURE 11.11
Composition of fuzzy relation.

R
0.1

0.2

0.3

1

0.3

0.2
0.9

b

c

d
1

0.4

0.8

3
(a)

2

1
a 0.9

0.3 0.2

0.8
0.8

0.7

0.3

0.2

0.4

1
β

γ

α

S

1 0.4
0.2
0.3

0.3
0.3
0.3
0.8
0.9
0.8

S R

2

3
(b)

γ

β

α

If the relations, R and S, are represented by the matrices, MR and MS, the matrix, MS•R, 
corresponding to S • R, is obtained from the product of MR and MS:

 S R R SM M M• = •

Example

Consider fuzzy relations R A B⊆ × , and S B C⊆ × . The sets A, B, and C shall be the sets of 
events. By the relation, R, we can see the possibility of occurrence of B after A, and by the rela-
tion, S, that of C after B. For example, by MR, the possibility of a ∈ B after 1 ∈ A is 0.1. By MS, the 
possibility of occurrence of 7 after a is 0.9.

 

α β γ
0.9 0.0 0.3

1 0.1 0.2 0.0 1.0
0.2 1.0 0.8

2 0.3 0.3 0.0 0.2
0.8 0.0 0.7

3 0.8 0.9 0.1 0.4
0.4 0.2 0.3

S
R a b c d

a

b

c

d  

Here, we cannot guess the possibility of C when A has occurred. So, our main job now will be to 
obtain the composition, S R A C• ⊆ × . The following matrix, MS•R, represents this composition as 
given in Figure 11.11:



Modeling Using Fuzzy Systems 545

 

• α β γ
1 0.4 0.2 0.3

2 0.3 0.3 0.3

3 0.9 0.9 0.8

S R

 

We see the possibility of occurrence of α ∈ C after event 1 ∈ A is 0.4, that of β ∈ C after event 
2 ∈ A is 0.3, etc.

Presuming that the relations, R and S, are the expressions of rules that guide the occurrences of 
events or facts, the possibility of occurrence of event B when event A has happened is guided by 
the rule, R. And rule S indicates the possibility of C when B is existing. For further cases, the pos-
sibility of C when A has occurred can be induced from the composition rule, S • R. This technique 
is named an “inference,” which is a process producing new information.

11.9 Approximate Reasoning

In 1979, Zadeh introduced the theory of approximate reasoning. This theory provides a 
powerful framework for reasoning in the face of imprecise and uncertain information.

Central to this theory is the representation of propositions as statements assigning fuzzy 
sets as values to variables.

Suppose that we have two interactive variables, x ∈ X and y ∈ Y, and the causal relation-
ship between x and y is completely known, that is, we know that y is a function of x:

y = f(x)

Then we can make inferences easily:

premise y = f(x)
fact x = x′
consequence y = f(x′)

This inference rule says that if we have ( ), xy f x X= ∀ ∈ , and we observe that x = x′, then 
y takes the value, f(x′) = y′, as shown in Figure 11.12.

Suppose that we are given an x′ ∈ X and want to fi nd y′ ∈ Y that corresponds to x′ under 
the rule base.

FIGURE 11.12
Simple crisp inference.

y

x

y = y'

y' = f (x)

x = x'



546 Modeling and Simulation of Systems Using MATLAB and Simulink

Rule 1: If x = x1 Then y = y1

And
Rule 2: If x = x2 Then y = y2

And
Rule 3: If x = x3 Then y = y3

And
… …

Rule n: If x = xn Then y = yn

Fact: x = x′
Consequence: y = y′
Let x and y be linguistic variables, for example, “x is big” and “y is medium.” The basic 

problem of approximate reasoning is to fi nd the membership function of the consequence, 
C, from the rule base and the fact, A.

Rule 1: If x = A1 Then y = C1

And
Rule 2: If x = A2 Then y = C2

And
… …

Rule n: If x = An Then y = Cn

Fact: x = A
Consequence: y = C

Zadeh introduced a number of translation rules that allow us to represent some com-
mon linguistic statements in terms of propositions in our language.

Entailment rule:

x is A Anjali is very beautiful
A B⊆  very beautiful ⊂ beautiful
————————————————–
x is B Anjali is beautiful

Conjunction rule:

x is A Anjali is beautiful
and
x is B Anjali is intelligent
———————————————————
x is A B∩  Anjali is beautiful and intelligent

Disjunction rule:

x is A Anjali is married
or
x is B Anjali is a bachelor
————————————————————-
x is A B∪  Anjali is married or a bachelor

Projection rule:

(x, y) have a relation, R: x is ΠX(R)
(x, y) have a relation, R: y is ΠY(R)
For example, (x, y) is close to (3, 2): x is close to 3

(x, y) is close to (3, 2): y is close to 2



Modeling Using Fuzzy Systems 547

Negation rule:

not (x is A): x is A
For example, not (x is high): x is not high

The classical implication:

Let P = “x is in A” and Q = “y is in B” be crisp propositions, where A and B are crisp sets 
for the moment. The implication, P → Q, is interpreted as (p q¬ ∩ ¬ ).

“P entails Q” means that it can never happen that P is true and Q is not true.
It is easily seen that

    P Q P U Q→ = ¬  (11.15)

In the 1930s, Lukasiewicz, a Polish mathematician, explored for the fi rst time logics other 
than the Aristotelian (classical or binary) logic (Rescher, 1969; Ross 1995). In this implica-
tion, the proposition, P, is the hypothesis or the antecedent, and the proposition, Q, is also 
referred to as the conclusion or the consequent. The compound proposition, P → Q, is true 
in all cases except when a true antecedent, P, appears with a false consequent, Q, that is, a 
true hypothesis cannot imply a false conclusion, as given in the truth table (Table 11.4).

Generalized modus ponens

Classical logic elaborated many reasoning methods called tautologies. One of the best 
known is modus ponens. The reasoning process in modus ponens is given as follows:

Rule IF X is A THEN Y is B

Fact X is A
Conclusion Y is B

In classical modus ponens tautology, the truth value of the premise “X is A” and the 
conclusion “Y is B” is allowed to assume only two discrete values, 0 and 1, and the fact 
considering “X is …,” must fully agree with the implication premise:

 is    is IF X A THEN Y B  

Only then the implication be used in the reasoning process. Both the premise and the rule 
conclusion must be formulated in a deterministic way. Statements with nonprecise formu-
lations such as follows are not accepted:

X is about A.
X is more than A.
Y is more or less B.

In fuzzy logic, an approximate reasoning has been applied. 
It enables the use of fuzzy formulations in premises and conclusions. 
The approximate reasoning based on the generalized modus ponens 
(GMS) tautology is

Rule IF X is A THEN Y is B

Fact X is A′
Conclusion Y is B′

TABLE 11.4

Truth Table for 
Classical Implication

P Q P Æ Q

T T T

T F F

F T T

F F T



548 Modeling and Simulation of Systems Using MATLAB and Simulink

where A′ and B′ can mean, for example, A′ = more than A and B′ = more or less B. A reason-
ing example according to the GMP tautology can be as follows:

Rule IF (route of the trip is long) THEN (traveling time is long)

Fact route of the trip is very long
Conclusion traveling time is very long

Here, fuzzy implication is expressed in the following way:

 ,u U v V∀ ∈ ∀ ∈  

 1 if ( ) ( )
( , )

( ) otherwise

A B
R

B

u v
u v

v

μ ≤ μ⎧
μ = ⎨μ⎩

 

 ∈
μ = μ μ' '( ) sup min( ( ), ( , ))B A R

u U
v u u v

 

In fuzzy logic and approximate reasoning, the most important fuzzy implication inference 
rule is the GMP. The classical modus ponens inference rule says

premise if p then q
fact p
——————————
consequence  q

This inference rule can be interpreted thus: If p is true and p → q is true, then q is true.
The fuzzy implication inference is based on the compositional rule of inference for 

approximate reasoning suggested by Zadeh:

Compositional rule of inference:

premise  if x is A then y is B
fact x is A′
—————————————————
consequence y is B′

where the consequence, B′, is determined as a composition of the fact and the fuzzy impli-
cation operator:

 ( )B A A B′ ′= →


that is

 ( ) supmin{ ( ),( )( , )},
u U

B v A u A B u v v V
∈

= → ∈′ ′  (11.16)

The consequence, B′, is nothing else but the shadow of A → B on A′.
The GMP, which reduces to classical modus ponens when A′ = A and B′ = B, is closely 

related to the forward data-driven inference, is particularly useful in the fuzzy logic con-
trol. The truth table for the GMP is given in Table 11.5.

The classical modus tollens inference rule is stated thus: If p → q is true and q is false, 
then p is false. The generalized modus tollens:



Modeling Using Fuzzy Systems 549

premise  if x is A then y is B
fact   y is B′
—————————————————
consequence x is A′

which reduces to modus tollens when B B=  and A A′ = , is closely related to the backward 
goal-driven inference. The consequence, A′, is determined as a composition of the fact and 
the fuzzy implication operator:

 ( )A B A B′ ′= →


Fuzzy relation schemes:

Rule 1: If x = A1 and y = B1 Then z = C1

Rule 2: If x = A2 and y = B2 Then z = C2
… …

Rule n: If x = An and y = Bn Then z = Cn

Fact: x is x0 and y is y0

——————————————————–
consequence: z =C

The ith fuzzy rule from this rule base:

Rule i: If x = Ai and y = Bi Then z = Ci

is implemented by a fuzzy relation, Ri, and is defi ned as

 = →( , , ) ( )( , )i i i iR u v w A xB C u w

 [ ( ) ( )] ( )i i iA u B v C w= ∩ →  (11.17)

for i = 1, 2, … , n.

From the input, x0, and from the rule base, R = {R1, R2, … , Rn}, fi nd the interpretation “C” with

Logical connective “and”• 

Sentence connective “also”• 

Implication operator “then”• 

Compositional operator “°”.• 

TABLE 11.5

Truth Table for Modus Ponens

P Q P Æ Q [ ( )]P P Q∩ → [ ( )]P P Q Q∩ → →

0 0 1 0 1

0 0.5 1 0 1

0 1 1 0 1

0.5 0 0 0 1

0.5 0.5 1 0.5 1

0.5 1 1 0.5 1

1 0 0 0 1

1 0.5 0.5 0.5 1

1 1 1 1 1



550 Modeling and Simulation of Systems Using MATLAB and Simulink

We fi rst compose x0 × y0 with each Ri producing intermediate results:

 0 0  oi iC x y R′ = ∩

for i = 1, …, n. Here, iC ′ is called the output of the ith rule:

 0 0( ) ( ) ( ) ( )i i i iC w A x B y C w′ = ∩ →

for each w.

Then combine iC ′ component-wise into C′ by some aggregation operator:

 
′= ∪ iC C

 
= ∩ → ∪ ∪ ∩ →…0 0 0 0( ) ( ( ) ( ) ( )) ( ( ) ( ) ( ))i i i i n n nC w A x B y C w A x B y C w

Steps involved in approximate reasoning:

Input to the system as (• x0, y0).

Fuzzify the input as (• x0, y0).

Find the fi ring strength of the • ith rule after aggregating the inputs as

 
∩0 0( ) ( )i iA x B y

Calculate the • ith individual rule output as

 0 0( ) ( ) ( ) ( )i i i iC w A x B y C w′ = ∩ →

Determine the overall system output (fuzzy) as• 

 
′ ′ ′= ∪ ∪…1 2 nC C C C

Finally, calculate the defuzzifi ed output.• 

We present fi ve well-known inference mechanisms in fuzzy rule-based systems. For 
simplicity, we assume that we have fuzzy IF-THEN rules of the form:

Rule 1: If x = A1 and y = B1 Then z = C1

Rule 2: If x = A2 and y = B2 Then z = C2
… …

Rule n: If x = An and y = Bn Then z = Cn

Fact: x is x0 and y is y0

——————————————————–
consequence z = c

Mamdani: The fuzzy implication is modeled by Mamdani’s minimum operator and 
defi ned by the max operator.



Modeling Using Fuzzy Systems 551

The fi ring levels of the rules, denoted by αi, i = 1, 2, are computed, as shown in Figure 
11.13, by

 1 1 0 1 0 2 2 0 2 0( ) ( ) and ( ) ( )A x B y A x B yα = ∩ α = ∩

The individual rule outputs are obtained by

 1 1 1 2 2 2( ) ( ( )) and ( ) ( ( ))C w C w C w C w′ ′= α ∩ = α ∩

Then the overall system output is computed by taking the union of the individual rule 
outputs:

 
1 2( ) ( ) ( )C w C w C w′ ′= ∪

 1 1 2 2( ( )) ( ( ))C w C w= α ∩ ∪ α ∩

Finally, to obtain a deterministic control action, we employ any defuzzifi cation strategy.

Tsukamoto: All linguistic terms are supposed to have monotonic membership 
functions.

The fi ring levels of the rules, denoted by αi, i = 1, 2, are computed, as shown in Figure 
11.14, by

 1 1 0 1 0 2 2 0 2 0( ) ( ) and ( ) ( )A x B y A x B yα = ∩ α = ∩

In this mode of reasoning, the individual crisp control actions, z1 and z2, are computed 
from the equations:

 1 1 1 2 2 2( ), ( )C z C zα = α =

A1

0.45

u

B1

0.3
v

C2

w

A2
0.5

ux0

B2
0.7

vy0

C1

w

FIGURE 11.13
Fuzzy inference.



552 Modeling and Simulation of Systems Using MATLAB and Simulink

and the overall crisp control action is expressed as

 
1 1 2 1

0
1 2

* *z z
z

α + α=
α + α  (11.18)

that is, z0 is computed by the discrete center-of-gravity method.
If we have n rules in our rule base, then the crisp control action is computed as

 
=

=

α
=

α
∑
∑

1
0

1

n
i ii

n
ii

z
z

 
(11.19)

where αi is the fi ring level and zi is the (crisp) output of the ith rule, i = 1, …, n.

Sugeno: Sugeno and Takagi use the following architecture:

Rule 1: If x = A1 and y = B1 Then z1 = a1x + b1y
Rule 2: If x = A2 and y = B2 Then z2 = a2x + b2y

… …

Rule n: If x = An and y = Bn Then zn = anx + bny
Fact: x is x0 and y is y0

——————————————————–
consequence: Z0

The fi ring levels of the rules are computed, as shown in Figure 11.15, by Equation 11.20:

 1 1 0 1 0 2 2 0 2 0( ) ( ) and ( ) ( )A x B y A x B yα = ∩ α = ∩  (11.20)

Then the individual rule outputs are derived from the relationships:

 1 1 0 1 0 2 2 0 2 0
* *andz a x b y z a x b y= + = +  (11.21)

FIGURE 11.14
Tsukamoto inference.

0.7

0.3

u v

y0x0
vu

w

w

0.4
0.4

0.8

0.3



Modeling Using Fuzzy Systems 553

and the crisp control action is expressed as

 
1 1 2 2

0
1 2

* *z z
z

α + α=
α + α  

(11.22)

If we have n rules in our rule base, then the crisp control action is computed as

 

=

=

α
=

α

∑
∑

1
0

1

*n
ii

i

n
i

i

z
z

 

(11.23)

where αi denotes the fi ring level of the ith rule, i = 1, …, n.

Larsen: The fuzzy implication is modeled by Larsen’s product operator, and the sen-
tence connective “also” is interpreted as oring the propositions and defi ned by the max 
operator.

Let us denote αi, the fi ring level of the ith rule, as shown in Figure 11.16, i = 1, 2:

 1 1 0 1 0 2 2 0 2 0( ) ( ) and ( ) ( )A x B y A x B yα = ∩ α = ∩  (11.24)

Then the membership function of the inferred consequence, C, is pointwise, given by

 1 1 2 2( ) ( ( )) ( ( ))C w C w C w= α ∪ α  (11.25)

To obtain a deterministic control action, we employ any defuzzifi cation strategy.

FIGURE 11.15
Sugeno inference mechanism.

A1

A2 B2

B1

u v

x yu v

α1

a1x + b1y

a2x + b2y

α2

FIGURE 11.16
Inference with Larsen’s product oper-

ation rule.

A1

A2

B1

B2

u v

vyux
min

w

w



554 Modeling and Simulation of Systems Using MATLAB and Simulink

If we have n rules in our rule base, then the consequence, C, is computed as

 
1

( ) ( ( ))
n

i i
i

C w C w
=

= ∨ α  (11.26)

where αi denotes the fi ring level of the ith rule, i = 1, …, n.

11.10 Defuzzification Methods

The output of the inference process so far is a fuzzy set, specifying a possibility of the 
distribution of control action. In the online control, a nonfuzzy (crisp) control action is usu-
ally required. Consequently, one must defuzzify the fuzzy control action (output) inferred 
from the fuzzy control algorithm, namely:

 0 ( )z defuzzifier C=

where
z0 is the nonfuzzy control output
defuzzifi er is the defuzzifi cation operator

Defuzzifi cation is a process to select a representative element from the fuzzy output, C, 
inferred from the fuzzy control algorithm. The most often used defuzzifi cation methods 
are as follows.

 1. Center-of-area/gravity
  The defuzzifi ed value of a fuzzy set, C, is defi ned as its fuzzy centroid:

 0

( )d

( )d

w

w

zC z z
z

C z z
= ∫

∫
 (11.27)

  The calculation of the defuzzifi ed value of the center of area is simplifi ed if we 
consider a fi nite universe of discourse, W, and thus a discrete membership func-
tion, C(w):

 0

( )d

( )d

j j
w

j
w

z C z z
z

C z z
= ∫

∫  (11.28)

 2. First-of-maxima
  The defuzzifi ed value of a fuzzy set, C, is its smallest maximizing element, as 

shown in Figure 11.17, that is:

 0 min { | ( ) max ( )}
w

z z C z C w= =  (11.29)



Modeling Using Fuzzy Systems 555

 3. Middle-of-maxima
  The defuzzifi ed value of a discrete fuzzy set, C, is defi ned as a mean of all values 

of the universe of discourse, having maximal membership grades:

 =
= ∑0

1

1 N

j
j

z z
N

 

(11.30)

  where {z1, …, zN} is the set of elements of the universe, W, that attain the maximum 
value of C.

   If C is not discrete, then the defuzzifi ed value of a fuzzy set, C, is defi ned as

 

0

d

d

G

G

z z
z

z
= ∫

∫
 

(11.31)

  where G denotes the set of maximizing elements of C.

 4. Max-criterion
  The max-criterion method chooses an arbitrary value, from the set of maximizing 

elements of C, that is:

 0 { | ( ) max ( )
w

z z C z C w∈ =
 (11.32)

 5. Height defuzzifi cation
  The elements of the universe of discourse, W, that have membership grades lower 

than a certain level, α, are completely discounted, and the defuzzifi ed value, z0, is 
calculated by the application of the center-of-area method on those elements of W 
that have membership grades not less than α:

 

[ ]
0

[ ]

( )d

( )d

C

C

zC z z
z

C z z

α

α

=
∫
∫

 

(11.33)

where [C]α usually denotes the α-level set of C.

FIGURE 11.17
Fuzzy system outputs for different 

defuzzifi cation methods.

Membership value

Variable valueZFM ZMM ZLM

ZCoG



556 Modeling and Simulation of Systems Using MATLAB and Simulink

11.11 Introduction to Fuzzy Rule-Based Systems

The inputs of fuzzy rule-based systems should be given in a fuzzy form, and, therefore, 
we have to fuzzify the crisp inputs, that is, preprocess sensor’s outputs. Furthermore, the 
output of a fuzzy system is always a fuzzy output, and, therefore, to get an appropriate 
crisp value, we have to defuzzify and postprocess it. Fuzzy logic control systems usually 
consist of three major parts: fuzzifi cation, approximate reasoning, and defuzzifi cation, as 
shown in Figure 11.18.

A fuzzifi cation operator has the effect of transforming crisp data into fuzzy sets. In most 
cases, we use fuzzy singletons as fuzzifi ers:

 0 0fuzzifier ( )x x=  (11.34)

where x0 is a crisp input value from a process.

 1. Preprocessing module does input signal conditioning and also performs a scale 
transformation (i.e., an input normalization), which maps the physical values of 
the current system state variables into a normalized universe of discourse (nor-
malized domain).

 2. Fuzzifi cation block performs a conversion from crisp (point-wise) input values to 
fuzzy input values, in order to make it compatible with the fuzzy set representa-
tion of the system state variables in the rule “antecedent.” The process of fuzzifi ca-

tion of 
μi

ix  gives rise to two special cases:

 a. Support fuzzifi cation (s-fuzzifi cation)
  In this fuzzifi cation, μi is kept constant and xi is fuzzifi ed. It is denoted by 

SF(A, k):

 = μ + μ + + μ�1 1 2 2( , ) ( ) ( ) ( )n nSF A k k x k x k x  (11.35)

  μik(xi) is a fuzzy set that is the product of a scalar constant and a fuzzy set, k(xi).

Preprocessing

Fuzzifier

Fuzzy
knowledge

base
Fuzzy

inference

Approximate
reasoning

Defuzzifier

Postprocessing
Output

Fuzzy
output

Fuzzy
input

Sensor's
output

FIGURE 11.18
Fuzzy knowledge-based system (FKBS).



Modeling Using Fuzzy Systems 557

Example

 0.8 0.5 0 0
Let the universe of discourse be [1,  2, 3, 4] and the fuzzy set be , , , .

1 2 3 4
U A ⎡ ⎤= = ⎢ ⎥⎣ ⎦

 ⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
1 0.3 0 0 0.3 1.0 0.2 0

Assume that (1) , , , and (2)= , , , .
1 2 3 4 1 2 3 4

k k

 

= μ + μ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡= ⎢⎣

1 1 2 2( , ) ( ) ( )

1 0.3 0 0 0.3 1.0 0.2 0
0.8 , , , 0.5 , , ,

1 2 3 4 1 2 3 4

min(0.8,1) min(0.8,0.3) 0 0 min(0.5,0.3) min(0.5,1.0) 0 0
, , , , , ,

1 2 3 4 1 2 3 4

max(0.8,0.3) max(0.3,0.5) 0 0
, , ,

1 2 3 4

SF A k k x k x

⎤
⎥⎦

⎡ ⎤= ⎢ ⎥⎣ ⎦
0.8 0.5 0 0

, , ,
1 2 3 4

  b. Grade fuzzifi cation (g-fuzzifi cation)
   It is denoted by GF(A,k):

 1 2

1 2

( ) ( ) ( )
( , ) n

n

k k k
GF A k

x x x
μ μ μ= + + +�

  where k(μi) denotes point fuzzifi cation of μi.
   Consider the above example to illustrate grade fuzzifi cation. If we defi ne

 1 0.7 0.3 1 0.6 0.5
(0.8) , , and (0.5) , ,

0.8 0.6 0.5 0.5 0.4 0.3
k k⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 ⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
1 0.7 0.3 1 0.6 0.5

then ( , ) , , 1 , , 2
0.8 0.6 0.5 0.5 0.4 0.3

iGF A k

 3. Fuzzy knowledge base (FKB) comprises of a knowledge of the application domain 
and the attendant control goals. It includes the following:

  a.  Fuzzy sets (membership functions) representing the meaning of the linguistic 
values of the system state and control output variables.

  b.  Fuzzy rules of the form: If x is A THEN y is B. x is the state variable and y is the 
output variable. A and B are linguistic variables. The basic function of the fuzzy 
rule base is to represent the control policy of an experienced process operator 
in a structured way and/or a control engineer in the form of set of production 
rules. Rules have two parts: antecedent and consequent.

 4. Fuzzy inference: There are two basic types of approaches employed in the design of 
the inference engine of an FKBC: (1) composition-based inference (fi ring) and (2) indi-
vidual rule-based inference (fi ring). Mostly, we use individual rule-based inference.

 5. Defuzzifi cation converts fuzzy output values into a single point value. Six most often 
used defuzzifi cation methods are center of area (COA), center of sum (COS), center of 



558 Modeling and Simulation of Systems Using MATLAB and Simulink

largest area (CL), fi rst maxima (FM), mean of maxima (MOM), and height (weighted 
average) defuzzifi cation.

 6. Postprocessing module involves de-normalization of the defuzzifi ed output of a 
fuzzy system onto its physical domain.

11.12 Applications of Fuzzy Systems to System Modeling

In the previous chapters of this book, methods have been discussed to develop mathemati-
cal models for physical as well as conceptual systems. In these models, the parameters and 
variables have crisp (numerical) values. Another class of models, which are called logical 
models, use logical-type connectives, such as “and,” “or,” and “if-then.” These models have 
linguistic terms for variables and parameters. These models use qualitative information, 
which may be dealt with fuzzy logic. Here, it is the information gathered from domain 
experts to develop fuzzy rules for such models. These models are generally based on a 
partitioning of the domain of the problem, which reduces the diffi culty of the modeling 
problem by allowing the use of simpler models in each of the components or subsystems.

Why fuzzy systems for modeling?

They support the generation of fast prototype and incremental optimization.• 

They are plain and simple to understand.• 

The intelligence of a system is not buried in differential equations or source codes.• 

The fuzzy system models are simple, and fast in development.• 

System design is more transparent.• 

They have greater expressive powers than classical mathematical models.• 

They are easily implemented on 8 bit microcontrollers.• 

Fuzzy systems theory is the starting point for developing models of ambiguous thinking 
and judgment processes; the following fi elds of application are conceivable:

 1. Human models for management and societal problems

 2. Use of high-level human abilities for use in automation and information systems

 3. Reducing the diffi culties of man–machine interface

 4. Other AI applications, like risk analysis and prediction, and development of func-
tional devices

The fuzzy rule-based model, as shown in Figure 11.19, may be classifi ed as

 1. Mamdani model

 2. Takagi–Sugeno–Kang (TSK) model

In Mamdani models, the input side (antecedent part or if part) as well as the output side 
(consequence part or then part) of the system are fuzzy, as shown in Figure 11.20. Consider a 
simple resistive electrical network; the voltage and current are related with the following rule:



Modeling Using Fuzzy Systems 559

If voltage is high then current fl ow is high.

The fuzzy input in the above system (Figure 11.20) has linguistic terms A1, A2, and A3.
On the other hand, TSK models have a fuzzy antecedent part and a functional conse-

quent; essentially, they are a combination of fuzzy and nonfuzzy models. These types 
of models permit a relatively easy application of powerful learning techniques for their 
identifi cation of data. In this chapter, we shall discuss both kinds of models and how they 
apply to dynamics systems.

11.12.1 Single Input Single Output Systems

In the following section, we will discuss about single input single output system (SISO) 
models.

Example

Consider that the hysteresis (B–H) characteristic of a magnetic material for all electrical devices is 
nonlinear in nature, as shown in Figure 11.21.

The input universe (i.e., magnetic fi eld intensity, H) and the output universe (i.e., magnetic fl ux 
density, B) may be divided in three linguistic terms: small, medium, and high.

FIGURE 11.19
Block diagram of fuzzy logic model 

 devel opment.

Input System
System output

Error

Model output

Fuzzy logic
model

FIGURE 11.20
Detailed diagram of fuzzy logic model for a SISO system.

Input
Output

Fuzzification
(Crisp       fuzzy)

μA1
(x)

μA2
(x) μ(y)

μA3
(x)

Approximate reasoning

(Rule base, inference
mechanism, membership

functions)

Defuzzification
(Fuzzy      crisp)

FIGURE 11.21
Hysteresis curve for magnetic material.

B

H



560 Modeling and Simulation of Systems Using MATLAB and Simulink

The following set of rules may be used:

If H is small THEN B is small
Also
If H is medium THEN B is medium
Also
If H is high THEN B is high

This model is developed for a SISO system in MATLAB fuzzy toolbox (see Figure 11.22) using 
the Mamdani method of reasoning, and the results are shown in Figure 11.23 with the membership 

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1
0 0.2 0.4 0.6 0.8 1

H

B

FIGURE 11.23
Result of the Mamdani fuzzy model for B–H characteristic before tuning.

FIGURE 11.22
Fuzzy model for B–H characteristic in MATLAB fuzzy toolbox.



Modeling Using Fuzzy Systems 561

FIGURE 11.24
Membership functions for input (H) and output (B) variables before tuning.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

0.5

0

Medium High

Membership function plots

Membership function plots

Plot points:

Plot points:

181

Small

Medium HighSmall

Input variable ''H''

Output variable ''B''

181

functions shown in Figure 11.24. When the fuzzy membership functions are tuned, as shown in 
Figure 11.25, the results improve, as shown in Figure 11.26.

Algorithm:

 1. For linguistic variables, H and B, select suitable number of linguistic terms.
 2. Draw membership functions for these linguistic terms.
 3. Write fuzzy rules between the input and the output.
 4. For each rule of fuzzy logic model

Calculate the degree of fi ring (DOFi), if the input is A(x):

 DOF [ ( ) ( )]i x iH x A x= ∨ ∧

Find the fuzzy output, Oi, from the ith rule:

 = ∧DOF ( )i i iO B y

Aggregate the fuzzy output, Oi, of each rule using the max operation to get the fi nal output:

 

1
( )

m

i
i

O O y
=

= ∪

Find the crisp output, B, from the aggregated fuzzy output using the centroid defuzzifi cation method.



562 Modeling and Simulation of Systems Using MATLAB and Simulink

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

1

0.5

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

0

Input variable ''H''

Output variable ''B''

High

Small

Medium

Medium

High

High

 Membership function plots Plot points:

 Membership function Plots Plot points:

181

181

FIGURE 11.25
Membership functions for input (H) and output (B) variables after tuning.

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H

B

FIGURE 11.26
Result of the Mamdani fuzzy model for B–H characteristic after tuning.



Modeling Using Fuzzy Systems 563

Example

Model a theoretical relationship between a set of input and a set of output given below:

input = [1 2 3 4 5 6 7 8 9 10 11];
output = [20 12 9 6 5 4 5 6 9 12 20].

The plot between these sets of input and output and the best-fi t curve are shown in Figure 11.27.
To model a relationship between a set of input and a set of output, the following steps have to 

be adhered to:

Step 1 Create fuzzy sets for input variable

The fi rst thing to consider while designing a system model is the range for the input variables. 
The input ranges for this particular problem from 1 to 11, which is the universe of discourse 
for the input variable. Once we have a reasonable range, then we have to divide that range into 
descriptive linguistic terms. Here, we have divided the input universe of discourse into six, even, 
triangular fuzzy sets, as shown in Figure 11.28.

20

18

16

14

12

10

8

6

4
1 2 3 4 5 6 7 8 9 10 11

O
ut

pu
t

Input

FIGURE 11.27
Original data plot with best-fi t curve.

1 2 3 4 5 6 7 8 9 10 11
Input variable ''input''

0

0.5

1
VS S LM HM H VH

181Membership function plots Plot points:

FIGURE 11.28
Fuzzy sets for input variables.



564 Modeling and Simulation of Systems Using MATLAB and Simulink

Step 2 Create fuzzy sets for output variable

Like the input variable, the range of the output variable must be divided into various membership 
functions. The output ranges from 4 to 20 over the input range, called the universe of discourse for 
the output variable, which is divided into fi ve fuzzy sets, as shown in Figure 11.29.

Step 3 Develop fuzzy rules

Fuzzy rules represent a pair-wise relationship between an input and an output. The fi rst part in the 
fuzzy rules is the input condition or the if part of the implication, and the second part represents 
the output condition or the then part. In this example, the input–output pairs are {(1, 20), (2, 12), …, 
(10, 12), (11, 20)}, which are written in linguistic terms as (VS, VH), and would be equivalent to the 
verbal statement:

If the input is VS then the output is VH.

Fuzzy rules are based on test data or simply on observations. Here is the complete list of rules that 
were used in the paper presented by Stachowicz and Kochanska (1987).

Fuzzy rule base:

If the input is VS then the output is VH
If the input is S then the output is H
If the input is H then the output is H
If the input is VH then the output is VH
If the input is LM then the output is VS
If the input is HM then the output is VS

To get a better performance from the above-developed Mamdani model, tuning of the member-
ship function is needed.

11.12.2 Multiple Input Single Output Systems

The above discussed logical model for SISO systems may be extended for multiple input 
single output (MISO) systems. In MISO systems, the input variables are more than one and 
the output is one.

181

1

0.5

0
4 6 8 10 12 14 16 18 20

VS S M H VH

Membership function plots Plot points:

Output variable ''output'' 

FIGURE 11.29
Fuzzy sets for output variables.



Modeling Using Fuzzy Systems 565

The rules for the MISO system are as follows:

If I1 is x11 and I2 is x12 and … and I1n is x1n then O1 is y1

If I1 is x21 and I2 is x22 and … and I2n is x2n then O2 is y2

.

.

.

If I1 is xn1 and I2 is xn2 and … and Inn is x1n then O1 is yn

where
[I1 I2 … In] is the input variable vector
[O1 O2 … On] is the output variable vector
xij and yi are the fuzzy subsets of the universe of discourse of input and output spaces

For a SISO system, the fuzzy model is straightforward, but in a MISO system, the ante-
cedent part of the fuzzy rule base contains many inputs, which are aggregated by “and” 
and “or” operators. The “and” aggregation is interpreted as a fuzzy intersection (i.e., min) 
operator and the “or” aggregation as a fuzzy union (i.e., max) operator.

Considering the rule: If I1 is x11 and I2 is x12 and … and I1n is x1n then O1 is y1.

The fi ring strength for this rule can be determined with the aggregated output:

 = ∧ ∧…11 12 1Agg nx x x

The output from this rule may be calculated as

 ∧=Aggi iO y

The total output is the union of the outputs from all the rules:

 1

( )
m

i
i

O O y
=

= ∪

Example—Dynamic System Modeling

Fuzzy logic models can be used for representing dynamic knowledge-based systems. It is diffi cult to 
imagine the applicability of the concept of fuzzy modeling in the framework of physical systems, like 
electrical or mechanical systems. However, this strategy is attractive for soft (conceptual) systems, 
like economical, social, emotional, or spiritual systems. About conceptual systems, the knowledge 
we have is incomplete. The concept of fuzziness is to represent this incomplete knowledge in a form 
that is an alternative to a nonlinear state space model. A fuzzy logic model is very useful when the 
system information is qualitative and not quantitative. If quantitative information is available for a 
given system, then an artifi cial neural network (ANN) is the best tool for modeling.

In fuzzy logic models, the fuzzy input–output data may be partitioned in a suitable 
number of linguistic terms (fuzzy sets), say Bi0, Bi1, Bi2, …, Bin for the input space, and 
Ai0, Ai1, Ai2, …, Ain for the output space. Fuzzy logic models for dynamic systems may be 
derived from the MISO rules, such as:

If u(k) is Bi0 and u(k − 1) is Bi1 and u(k − 2) is Bi2 … and u(k − n) is Bin and y(k − 1) is Ai1 and 
y(k − 2) is Ai2 and y(k − 3) is Ai3 … and y(k − n) is Ain Then y(k) is Ai0

where I = 1 to m.



566 Modeling and Simulation of Systems Using MATLAB and Simulink

It is easy to see that this model is the fuzzy counterpart of an nth-order nonlinear model. 
The output of the system is a nonlinear function, which depends upon the input and the 
past outputs of this system, and is represented as mentioned in Equation 11.36:

 

( ) ( ( ), ( 1),  ( 2),  ,  ( ),  

( 1),  ( 2),  ( 3),  ,  ( ))

y k f u k u k u k u k n

y k y k y k y k n

= − − … −

− − − … −  (11.36)

This model can be viewed as a fuzzifi ed extension of the auto regression moving average 
(ARMA) model, widely used in digital control.

Modeling of fi rst-order systems

A fi rst-order system may be written as y(k) = f(u(k), y(k − 1)). Hence, it can be expressed with 
the following rules for a fuzzy model, as shown in Figure 11.30:

 1. If u(k) is small and y(k − 1) is small Then y(k) is small

 2. If u(k) is medium and y(k − 1) is small Then y(k) is medium

 3. If u(k) is medium and y(k − 1) is medium Then y(k) is high

 4. If u(k) is high and y(k − 1) is high Then y(k) is high

It can also be represented by the fuzzy associative memory (FAM) table (Table 11.6).

11.12.3 Multiple Input Multiple Output Systems

Conventional linear mathematical models of electrical machines are quite accurate in the 
operating range for which they were developed, but their outputs degrade for slightly 
different operating conditions, because these models are unable to cope up with the non-
linearity of the system. If a nonlinear model is developed for these systems, the model 
complexity increases. It is diffi cult to simulate a complex system model and the computa-
tion time is unbearably long. To deal with system nonlinearity, soft computing tools, like 
ANNs, fuzzy systems, and genetic algorithms, are used. The accuracy of an ANN model 
depends on the availability of suffi cient and accurate historical (numerical) input–output 

FIGURE 11.30
Two-input and output fuzzy 

system.

u(k)

y(k – 1)
y(k)

I-order
(Mamdani)

TABLE 11.6

FAM Table for First-Order System

u(k)/y(k − 1) Small Medium High

Small Small

Medium Medium High

High High



Modeling Using Fuzzy Systems 567

data for training the network. Also, there is no exact method available to fi nd suitable 
ANN training method. The performance of a standard gradient descent training algo-
rithm depends on initial weights, learning parameters, and the quality of data. Most of 
the time in real life situations, it is diffi cult to get suffi cient and accurate data for training 
an ANN. In such situations, the operator experience may be helpful, which may be used 
to develop fuzzy logic-based models. Neither mathematical nor ANN models are trans-
parent for illustration purposes, because in these models, information is buried in model 
structures (differential or difference equations, or ANN connections). Hence, it is not easy 
to illustrate these models to others. Fuzzy models are quite simple and easy to explain due 
to their simple structures and complete information in the form of rules.

Fuzzy logic is applied to a great extent in controlling processes, plants, and various 
complex and ill-defi ned systems, due to its inherent advantages like simplicity, ease in 
design, robustness, and adaptability. Also it is established that this approach works very 
well, especially when the systems are not clearly understood and transparent. In this sec-
tion, this approach is used for the modeling and simulation of dc machines to predict 
their characteristics. The effects of different connectives (aggregation operators), like inter-
section, union, averaging, and compensatory operators, different implications, different 
compositional rules, different membership functions of fuzzy sets and their percentage 
overlapping, and different defuzzifi cation methods have also been studied.

11.13 Takagi–Sugeno–Kang Fuzzy Models

The Mamdani fuzzy models described above have certain drawbacks as follows.
They are useful only when the input and the output both are qualitative (fuzzy), solely 

based on an expert’s knowledge about the system. If the expert’s knowledge about the 
system is faulty, the model developed is bad. The quantitative observation of the function-
ing of the system is not specifi cally used for the structure or parameters of the model. 
It does not contain an explicit form of objective knowledge about the system if such knowl-
edge cannot be expressed and/or incorporated into the fuzzy set framework. This kind 
of knowledge is often available and is typically in the form of general conditions on the 
physical structure of the system. Sugeno and his coworkers proposed an alternative type 
of fuzzy reasoning, which does not permit the recognization of these types of conditions. 
These types of fuzzy models have a rule base that contains fuzzy input variables defi ned 
by some fuzzy sets, and the consequent part is functional type, for example

If input1 is small … and inputn is medium then yi = f(inputi, wi)

The overall output is inferred from the weighted sum of the individual outputs gener-
ated by each rule.

The main advantage of the TSK model lies in the representation of qualitative and quan-
titative information in its rule base, which helps in describing complex technological pro-
cesses. The above representation allows us to decompose a complex system into simpler 
linear or nonlinear subsystems. The overall model of a nonlinear system is a collection of 
logical models of subsystems.

In realistic situations, however, such a disjoint (crisp) decomposition is not possible, due 
to the inherent lack of natural boundaries in the system and also due to the fragmentary 
nature of available knowledge about the system. The TSK model allows us to replace the 
crisp decomposition by a fuzzy decomposition.



568 Modeling and Simulation of Systems Using MATLAB and Simulink

The fi rst signifi cant application of fuzzy logic in the modeling of complex systems, espe-
cially in the duplicating of an operator’s experience in the area of control engineering 
(Mamdani, 1974, 75, 76; Tong, 1978), was a manifestation of the great power of this novel 
approach for dealing with complexities of the real world.

11.14 Adaptive Neuro-Fuzzy Inferencing Systems

An alternative method of developing fuzzy models inspired by classical systems theory 
and recent developments in ANNs is based on input–output data. In this method, model 
development consists of two major phases as follows.

 1. Structure identifi cation
  The identifi cation of the structure of a fuzzy model includes the determination of 

input and output variables, the structure of the rules, number of rules in the fuzzy 
rule base, and the portioning of the input and output variables into fuzzy sets. It 
is one of the most diffi cult parts of model development and the most ill-defi ned 
process. It is more an art than a science, and not readily amenable to automated 
techniques. It is partially simplifi ed if some expert’s knowledge about the system 
is used with the observed data. Hence, it is useful for a system that is seen as a 
gray box rather than a black box.

 2. Parameter identifi cation
  Once a rough model is developed from the expert’s knowledge, then input–output 

data are used to generate weights or probabilities associated with the importance 
of potential rules, which are related with the credibility of rules. The concept of 
learning the weights of the rules from data was devised by Tong (1978). Kasko 
(1997) developed a more general and computationally effi cient method for model-
ing fuzzy systems.

Parameter identifi cation is also closely related to the estimation of membership functions 
of fuzzy sets or fuzzy relations. The fi rst works in this direction were based on Sanchez’s 
fundamental results on the solutions of fuzzy relational equations (Sanchez, 1974). Real 
success in parameter identifi cation of fuzzy models has been achieved after a paper was 
presented by Tagaki and Sugeno (1985) that introduced a new method of fuzzy reason-
ing. The successful coupling of fuzzy logic with neural networks has supplied a new and 
powerful tool for parameter identifi cation of fuzzy models with the use of the back-
propagation method.

The fuzzy logic model is developed on the basis of causal relationships between the 
variables. A causal relationship, as depicted by the causal-loop diagram of causal models, 
is often fuzzy in nature. For example, there is no simple calculation to fi nd the answer 
of “how much load increase in an interconnected power system would result in a given 
change in power angle?” If one would like to answer this question, it is necessary to simu-
late a complex differential or a partial differential equation for the interconnected power 
system. This exercise is quite time consuming and cumbersome. It can be represented by a 
simple causal relationship, as shown in Figure 11.31, with appropriate fuzzy membership 
functions for linguistic values of load and power angles.



Modeling Using Fuzzy Systems 569

The system dynamics technique is used for modeling electrical machines (Chaturvedi, 
1992, 1996). The knowledge gathered in a causal model is used to develop the fuzzy rule 
base. The fl owchart for the development of a fuzzy simulator is shown in Figure 11.32.

Fuzzy logic model development needs the following vital decisions:

 1. Selection of input and output variables

 2. Normalization range of these variables

 3. The number of fuzzy sets for each variable

 4. Selection of membership functions for each fuzzy set

 5. Determination of overlapping of fuzzy sets

 6. Acquiring knowledge and defi ning appropriate number of rules

 7. Selection of intersection operators

 8. Selection of union operators

 9. Selection of implication methods

 10. Selection of compositional rules

 11. Selection of defuzzifi cation methods

Load
+

Power angle, δ 
FIGURE 11.31
Positive causal relationship.

Input

Input data preparation

Define fuzzy sets and their overlapping

Develop knowledge base from causal model

Select suitable connectives, implication, composition,
and defuzzification method

Generate fuzzy relational matrices

Determine fuzzy output

Defuzzification

Crisp output

FIGURE 11.32
Flowchart for the development of a fuzzy 

simulator.



570 Modeling and Simulation of Systems Using MATLAB and Simulink

 1. Selection of variables, their normalization range, and the number of linguistic 
values

  The selection of variables depends on the problem situation and the type of 
analysis one would like to perform. For example, if one needs to conduct steady 
state analysis, the variables will be different from those for transient analysis. 
The reason behind this is that in transient analysis it is necessary to consider the 
dynamics of the system, while in steady state analysis we are only interested in 
the fi nal output of the system, rather than how it comes to it. Hence, for transient 
analysis, more variables have to be handled. After identifying the variables for 
a particular system one can draw the casual-loop diagram for formulating the 
fuzzy rules.

   Once the variables are identifi ed, it is also necessary to decide about the nor-
malization range for input and output variables, and then specify the number of 
linguistic values for each variable. The general experience is that as the number 
of fuzzy sets increases, the computational time increases exponentially. Complex 
problems having numerous variables require enormous simulation time.

   A linguistic variable is fully characterized by a quintuple (V, T, X, G, M), as 
shown in Figure 11.33.

V—name of the fuzzy or linguistic variable

T—linguistic value/terms for linguistic variable, V

X—universal set

G—syntactic rule (grammar) for generating T

M—semantic rule that assigns to each T

 2. Selection of shapes of membership functions for each linguistic value
  A fuzzy membership function can be a triangular function, a trapezoidal func-

tion, an S-shaped function, a π-function, or an exponential function. For different 
fuzzy sets, one can use different fuzzy membership functions. The most popular 
membership function is the triangular function due to its simplicity and ease in 
calculations. In the present research work, modeling and simulation of the basic 
commutating machine have been performed using the triangular fuzzy member-
ship function.

FIGURE 11.33
Quintuple for fuzzy (linguistic) variable.

Linguistic value
Linguistic variablePerformance

Very small Small  Medium  Large   Very large

0 10 22.5 32.5 45 55 67.5 77.5 90



Modeling Using Fuzzy Systems 571

 3. Determination of overlapping of fuzzy sets
  As one fuzzy set reaches its end, it is not necessary that the next fuzzy set should 

continue from where the previous one ended. In other words, a particular value 
of the variable may belong to more than one fuzzy set. Thus, there is an overlap of 
two or more fuzzy sets. It is observed that overlapping of neighboring fuzzy sets 
affects the results to a great extent.

 4. Selection of fuzzy intersection operators
  The intersection of two fuzzy sets, A and B, is specifi ed in general by a binary 

operation on the unit, that is, a function of the form—i: [0, 1] x [0, 1] → [0, 1].
   For each element, x, of the universal set, this function takes as its argument the 

pair consisting the element’s membership grades in set A and in set B, and yields 
the membership grade of the element in the set constituting the intersection of A 
and B. Thus,

 [ ]∩ = ∈( ) ( ) ( ), ( )A B x i A x B x x X∀

  Various fuzzy intersection operators are defi ned by different choices of parameter 
values, as given in Table 11.7.

 5. Selection of fuzzy union operators
  Fuzzy unions are close parallels of fuzzy intersections. Like the fuzzy intersec-

tion, the general fuzzy union of two fuzzy sets, A and B, is specifi ed by a function, 
u: [0, 1] x [0, 1] → [0, 1].

   The argument of this function is the pair consisting the membership grade of 
some element, x, in fuzzy set A and the membership grade of that same element in 
fuzzy set B. This function returns the membership grade of the element in the set, 

∪A B. Thus,

 [ ] ∪ = ∈( ) ( ) ( ), ( )A B x u A x B x x X

TABLE 11.7

Fuzzy Intersection Operators (T-Norms)

Year Name Intersection Operator, i Parameter

— Schweizer and 

Sklar 2

1 − [(1 − a)w + (1 − b)w − (1 − a)w (1 − b)w]1/w w > 0

— Schweizer and 

Sklar 3

exp(−(|In a|w + |In b|w)1/w) w > 0

— Schweizer and 

Sklar 4

ab/[aw + bw − awbw]1/w w > 0

1963 Schweizer and 

Sklar 1

{max(0, a−w + b−w − 1)}−1/w −∞ < w < ∞

1978 Hamcher ab/[w + (1 − w)(a + b − ab)] w > 0

1979 Frank logs[1 + {(wa − 1)(wb − 1)/(w − 1)}] w > 0, w ≠ 1

1980 Yager 1 − min{1, [(1 − a)w + (1 − b)w]1/w} w > 0

1980 Dubois and Prade ab/max(a, b, w) ∉[0,  1]w

1982 Dombi [1 + {(1/a) − 1)w + ( (1/b) − 1)w}1/w]−1

1983 Weber max(0, {(a + b + wab − 1)/(1 + w)} w > −1

1985 Yu max[0, (1 + w)(a + b − 1) − wab] w > −1



572 Modeling and Simulation of Systems Using MATLAB and Simulink

  Various fuzzy unions are defi ned by different choices of parameters, as men-
tioned in Table 11.8. It is possible to defi ne alternative compensatory operators 
(Mizumoto, 1983) by taking the convex combination of min (∩) and max (∩), as 
given below:

 (1 ) ,w w−∩ ⋅ ∪( ) ( 0 1x y x y) w≤ ≤

  Hence, in addition to the intersection (t-norm) and union (t-conorm) operators, the 
fuzzy simulator that has been developed also accommodates fuzzy compensatory 
operators, some of which can be obtained using t-norms, t-conorms, averaging 
operators, and compensatory operators. The 3D surfaces for compensatory opera-
tors for different parameters may be drawn with MATLAB programs.

 6. Selection of implication methods
  To select an appropriate fuzzy implication for approximate reasoning under 

each particular situation is a diffi cult problem. The logical connective implica-
tion (Ying 2002; Yaochu, 2003), that is, P → Q (P implies Q), in classical theory is 

→ = ′ ∪( ) ( )T P Q T P Q .

   Various types of implication operators are summarized in Table 11.9.

 7. Selection of compositional rules
  Modus ponens deduction is used as a tool for making inferences in rule-based 

systems. A typical if-then rule is used to determine whether an antecedent (cause 
or action) infers a consequent (effect or reaction). Suppose that we have a rule 
of the form, IF A THEN B, where A is a set defi ned on universe X and B is a set 
defi ned on universe Y. This can be translated into a relation between sets A and B, 
that is, R = (A x B) U (A′ x Y). Now suppose that a new antecedent, say Aa, is known 
and we want to fi nd its consequence, Bb:

 = ′=  o  o (( )  (   Y))b a aB A R A A x B U A x

TABLE 11.8

Fuzzy Unions (T-Conorms)

Year Name Union Operator, u Parameter

— Schweizer and Sklar 2 [aw + bw − awbw]1/w w > 0

— Schweizer and Sklar 3 1 − exp(−(|In(1 − a)|w + |In(1 − b)|w)1/w) w > 0

— Schweizer and Sklar 4 1 − [(1 − a)(1 − b)/[(1 − a)w + (1 − b)w 

− (1 − a)w(1 − b)w]1/w

w > 0

1963 Schweizer and Sklar 1 1 − {max(0, (1 − a)w + (1 − b)w − 1)}1/w w > 0

1978 Hamcher [a + b + (w − 2)ab]/[w + (1 − w)ab] w > 0

1979 Frank 1 − logs[1 + {(wa − 1)(wb − 1)/(w − 1)}] w > 0, w ≠ 1
1980 Yager min{1, [aw + bw]1/w} w > 0

1980 Dubois and Prade 1 − [(1 − a)(1 − b)/max( (1 − a), (1 − b), w)] w ∈ [0, 1]

1982 Dombi 1/[1 + {(1/a) − 1)w + ( (1/b) − 1)w}−1/w] w > 0

1983 Weber min(1, {a + b +wab/(1 − w)} w > −1

1985 Yu min[1, a + b + wab] w > −1



Modeling Using Fuzzy Systems 573

  where the symbol, o, denotes the composition operation. Modus ponens deduction 
can also be used for the compound rule, IF A, THEN B, ELSE C, where this com-
pound rule is equivalent to the relation:

 = =′ ′(   ) (   ) or  max(min( ,  ),  min( ,  ))R A x B U A x C R A B A C

  This is also called max–min compositional rule. There are various other composi-
tional rules also, which are given in Table 11.10 (Chaturvedi, 2008).

 8. Selection of defuzzifi cation methods
  In the modeling and simulation of systems, the output of a fuzzy model needs to 

be a single scalar quantity, as opposed to a fuzzy set. The conversion of a fuzzy 
quantity to a precise quantity is called defuzzifi cation, just as fuzzifi cation is the 
conversion of a precise quantity to a fuzzy quantity. There are a number of meth-
ods in the literature, among them many that have been proposed by investigators 
in recent years, are popular for defuzzifying fuzzy outputs (Yager, 1993).

   The fuzzy logic system development software works as shown in Figure 11.34.

TABLE 11.9

List of Fuzzy Implications

Year Name of Implication Implication Function

1973 Zadeh max[1 − a, min(a, b)]

1969 Gaines–Rascher 1 if a ≤ b
0 if a > b

1976 Godel 1 if a ≤ b
0 if a > b

1969 Goguen 1 if a ≤ b
b/a if a > b

1938, 1949 Kleene–Dienes max (1 − a, b)

1920 Lukasiewicz min(1, 1 − a + b)

1987 Pseudo–

Lukasiewicz–1

min[1, {1 − a + (1 + w)b}/(1 + wa)] 

w > −1

1987 Pseudo–

Lukasiewicz–2

min[1, (1 − aw + bw)1/w] w > 0

1935 Reichenbach 1 − a + ab
1980 Willmott min[max(1 − a), max(a, 1 − a), 

max(b, 1 − b)]

1986 Wu 1 if a ≤ b
min(1 − a, b) if a > b

1980 Yager 1 if a = b = 0

ba others

1994 Klir and Yaun–1 1 − a + a2b
1994 Klir and Yaun–2 b if a = 1

1 − a if a ≠ 1, b ≠ 1

1 if a ≠ 1, b = 1

Mamdani min(a, b)

Stochastic min(1, 1 − a + ab)

Correlation product a*b
1993 Vadiee max(ab, 1 − a)



574 Modeling and Simulation of Systems Using MATLAB and Simulink

11.15 Steady State DC Machine Model

The schematic diagram of a dc machine is shown in Figure 11.35. It consists of three ports, 
that is, armature port, fi eld port, and shaft port. The measurements are done at each port 
for the pair of complementary terminal variables with associated positive reference direc-
tions. In the motoring mode of operation of the dc machine at the fi eld port, the fi eld cur-
rent is kept constant.

The steady state model of the dc machine contains fewer variables as compared to the 
transient model. In the case of a dc machine steady state model, suppose that we want 

TABLE 11.10

Compositional Rule

1. Max–min b = max{min(a, r)}

2. Min–max b = min{max(a, r)}

3. Min–min b = min{min(a, r)}

4. Max–max b = max{max(a, r)}

5. Godel r = 1 if a ≤ r
r = r otherwise

b = max(1, r)

6. Max–product (max–dot) b = max(a, r)

7. Max–average b = max( (a + r)/2)

8. Sum–product b = f(Σ(a, r) )

Note: a, b, and r are the membership values, μa(x), 

μb(y), and μr(x, y); f is a function.

Selection of number of input–output variables

Selection of number of linguistic values for each variable

Selection of appropriate shape for each linguistic value

Selection of appropriate aggregation operators

Selection of implication and compositional operators

Selection of defuzzification method

De-normalization of output

0–1 –1–1 0.1–0.9 –0.9–0.9 etc.

0–1 –1–1 0.1–0.9 –0.9–0.9 etc.

MOM
LM
MM
WAM

COG

Max

Triangular Trapezoid Sigmoid Gaussian

0

31 5 7 9

10 20 30 50 75 90

Min Sum Prod Av. Comp.

Min–max
Min–min
Max–max

Max–min

Determination appropriate overlapping between fuzzy sets

Acquiring knowledge and defining fuzzy rule base

Selection of normalization range for each variable

FIGURE 11.34
Different windows of a fuzzy system.



Modeling Using Fuzzy Systems 575

T, ω
Vf

If

Va

Ia

FIGURE 11.35
Schematic diagram of a dc machine.

Speed, ω
Load

torque
FIGURE 11.36
Negative causal relationship.

to fi nd the effect of load torque on motor speed. Then speed and load torque are the 
variables of interest. Hence, the causal relationship is identifi ed between these variables. 
As load torque increases, machine speed reduces (see Figure 11.36), assuming that other 
variables are constant.

The causal relationships (links) are fuzzy in nature; hence, a fuzzy logic system could 
help in incorporating the beliefs and the perception of the modeler in a scientifi c way. 
It also provides a methodology for the qualitative analysis of system dynamics models. 
Since most of the concepts in natural language are fuzzy, a fuzzy set theoretic approach 
provides the best solution for such problems. It is also quite an effective way of dealing 
with complex situations. Hence, a model with an integrated fuzzy logic approach and the 
system dynamics technique is a natural choice for dealing with these types of circum-
stances. The system dynamics technique helps in identifying the relationship between 
variables and fuzzy logic helps in modeling these fuzzy-related variables.

Step 1 Identifying linguistic variables

The very fi rst step in the modeling and simulation of this integrated approach is to iden-
tify variables for the given situation and then determine the causal links (relationships) 
between them keeping the remaining system variables unchanged.

For dc machine modeling under steady state conditions, the variables will be load torque, 
speed, and armature current.

Step 2 Defi ning ranges of linguistic variables

Once the variables are identifi ed, the next step is to fi nd the possible meaningful range 
of variation of these variables. This could be obtained by the experimental results or an 
operator’s experience. The operator can easily tell about the variable range for a particular 
application and specifi c context. The typical range of variables is given in Table 11.10.

Step 3 Defi ning linguistic values for variables

Linguistic values for linguistic variables, that is, load torque (TL), speed (ω), and armature 
current (Ia), have to be defi ned. Each of these variables are subdivided into an optimal 
number of linguistic values. In the case of a steady state model of a dc machine, fi ve lin-
guistic values are considered for each of these variables, such as very low (VL), low (L), 
medium (M), high (H), and very high (VH). The linear shape (membership function) of 
these linguistic values can be represented in the form of Table 11.11. Graphically, it can be 
shown in Figure 11.37.



576 Modeling and Simulation of Systems Using MATLAB and Simulink

Speed, ω

Armature
current, Ia

Rule 1 if TL is VL then ω is VH elseif TL is
L then ω is H elseif TL is M then ω is M
elseif TL is H then ω is L elseif TL is VH

then ω is VL.

Rule 2 if TL is VL then Ia is VL elseif TL is
L then  Ia is L elseif TL is M then  Ia is M
elseif TL is H then  Ia is H elseif TL is VH

then  Ia is VH.

(a)

(b)

–

+

Load torque,
TL

Load torque,
TL

FIGURE 11.38
Causal links for a dc machine model and the corresponding fuzzy rules. (a) Negative causal link and 

(b) positive causal link.

Load torque (N-m)

M
em

be
rs

hi
p 

va
lu

e

TL = 4.55 Nm

0

0.1

0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
VL
L
M
H
VH

1

2 4 6 8 10 12

FIGURE 11.37
Fuzzifi cation process.

TABLE 11.11

Range of Variables for a Steady State DC Machine 
Model 

Load 

Torque Speed

Armature 

Current

Min value 0 150.88 3.0484

Max value 12 156.85 18.286



Modeling Using Fuzzy Systems 577

Step 4 Defi ning   rules

In the case of a dc machine, the causal link between variables may be drawn as shown in 
Figure 11.38. The arrow of the causal link represents the direction of infl uence and + or − 
signs show the effect. Depending on the signs, causal links can be categorized as positive 
or negative causal links.

Let us derive the fuzzy relational matrix for Rule 1 after max–min operations.

  Rule 1 = R(TL, ω)

 ω ω ω ω ω= + + + +TL TL TL TL TLVL  VH       VH  VLx L x H M x M H x L x  

Rule 1

 

+ + + + × + +⎡ ⎤⎣ ⎦

+ + + + + + + ×⎤ ⎡⎦ ⎣

+ + + + + + + +⎤ ⎡⎦ ⎣

+ ×

1/0 0.75/1 0.5/2 0.25/3 0/4 [0/156.12 0.5/156.75 1/157.35

0.5/158.04 0/158.85 0/2 0.50/3 1.0/4 0.50/5 0/6] [0/154.96

0.5/155.56 1/156.12 0.5/156.75 0/157.35 0/4 0.50/5 1.0/6 0.50/7 

0/7] 0 + + + + +⎡ ⎤⎣ ⎦

+ + + + × + + +

+ + + + + +

/153.71 0.5/154.33 1/154.96 0.5/155.56 0/156.12 [0/6

0.50/7 1.0/8 0.5/9 0/10] [0/152.22 0.5/153.00 1/153.71 0.5/154.33 

0/154.96] [0/8 0.25/9 0.5/10 0.75/11 1/12]
             

1/150.88 0.75/151.46 0.5/152.22 0.25/153.00 0/153.71 ;× + + + +⎡ ⎤⎣ ⎦

Rule 1 =

150.88 151.46 152.22 153.00 153.71 154.33 154.96     155.56 156.12 156.75 157.35 158.04 158.85

0 0.25 0.5 0.75 1.00

1 0.25 0.5 0.75 0.75

2 0.25 0.5 0.5 0.5

3 0.5000 0.5000 0.5000 0.2500 0.2500 0.2500

4 0.5 1 1

5 0.5000 0.5 0.5 0.5

6 0.

7

8

9

10

11

12

5 1 0.5

0.5 0.5 0.5 0.5 0.5

0.5 1 0.5

0.2500 0.2500 0.5000 0.5000 0.5000 0.5000

0.5 0.5 0.25 0.25

0.75 0.75 0.5 0.25

1 0.75 0.5 0.25

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦



578 Modeling and Simulation of Systems Using MATLAB and Simulink

Similarly, other relational matrices can also be determined as given below:
Rule 2 R(TL, Ia)

       3.0484 4.3210 5.5905 6.8601 8.1271 9.3944 10.664 11.933 13.202 14.471 15.747 17.0151 18.286 

0 1 0.75 0.5 0.25

1 0.75 0.75 0.5 0.25

2 0.5 0.5 0.5 0.25

3 0.2500 0.2500 0.2500 0.5000 0.5000 0.5000

4 0.5 0.5 0.5

5 0.5 0.5 0.5000

6

7

8

9

10

11

12

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

0.5000 0.5

0.5 1 0.5

0.5 0.5 0.5 0.5 0.5

0.5 1 0.5

0.2500 0.2500 0.2500 0.5000 0.5000 0.5000

0.25 0.25 0.5 0.5

0.25 0.5 0.75 0.75

0.25 0.5 0.75 1

Analysis

Let us take an example where the modeler is interested in studying the effect of load 
torque (say 4.55 N-m) on dc motor back EMF and armature current. First of all fuzzify the 
given crisp torque value into fuzzy linguistic values (fuzzifi cation). Project TL = 4.55 N-m 
to fi nd the percentage of fuzzy linguistic terms.

Fuzzy load torque belongs to low and medium categories. It is 0.775 low and 0.275 
medium torque, as shown in Figure 11.39.

 

= + + + + + + + +

+ + +

LFuzzy( ) [0/0 0/1 0/2 0.5/3 0.75/4 0.5/5 0.25/6 0.25/7 0/8

+0/9 0/10 0/11 0/12]

T

From these torque values, speed can be inferred from Rule 1.

 ω = LFuzzy( ) Fuzzy( ) o Rule 1T

 

= + + + + +

+ + + +

[0.25/153.00 0.25/153.71 0.5/154.33 0.5/154.96 0.5/155.56/ 0.75/

156.12 0.75/156.75 0.25/157.35 0.25/158.04 0.25/158.85]

Load torque(a) (b)
0150

152

154

156

158

160

5 10 15
Load torque

Actual
fuzzy

System

0
150

152

154

156

158

160

5 10 15

FIGURE 11.39
Study of different connectives with the Mamdani implication: (a) Yager connective (w = 0.9) and (b) max–min 

connective.



Modeling Using Fuzzy Systems 579

This fuzzifi ed speed output is defuzzifi ed using the weighted average method, as shown 
below:

=

=

∑
∑

1

1

Crispspeed =

n
i ii

n
ii

W X

W

 
= + + +

+ + + +

+ + + + + + +

+ + + +

(0.25 * 153.00 0.25 * 153.71 0.5 * 154.33 0.5 * 154.96

0.5 * 155.56 0.75 * 156.12 0.75 * 156.75 0.25 * 157.35

0.25 * 158.04 0.25 * 158.85)/(0.25 0.25 0.5 0.5 0.5 0.75

0.75 0.25 0.25 0.25)

 155.8388 rev/s=

Similarly, armature current can also be determined for the given load torque using Rule 2:

 ≥ =L a aRule 2 ( , ) 8.98 AR T I I

11.16 Transient Model of a DC Machine

A transient model provides information on the variation of different variables with 
respect to time in a system (transient behavior). Hence, the transient model needs to cap-
ture the dynamics of the system. To do that one needs to develop all possible causal links 
in the system and combine them to get a causal-loop diagram. The causal-loop diagram 
is the fi rst step in modeling system dynamics using the system dynamics technique 
(Forrester, 1943). The causal-loop diagram for a dc machine is given in Chaturvedi (1993) 
and shown in Figure 11.40.

Field port variables are constant for a dc machine (basic commutating machines) in the 
electromechanical transducer mode of operation. Hence, the causal-loop diagram reduces 
to have only three causal loops after removing the causal loop of the fi eld port (bottom 
portion of Figure 11.40). The reduced causal-loop diagram consists of two level variables, 
that is, armature current and angular speed; two rate variables (state variables), namely, 
rates of change of armature current and angular acceleration; exogenous variables, such 
as applied voltage and load torque; and machine parameters, like armature inductance, 
armature resistance, moment of inertia, and the damping coeffi cient of the machine. From 
this causal-loop diagram, fuzzy knowledge rules can be developed:

Rule 1 if Ia is VL then 
o

aI  is VH elseif Ia is L then 
o

aI  is H elseif Ia is M then 
o

aI  is M elseif Ia is 

H then 
o

aI  is L elseif Ia is VH then 
o

aI  is VL

Rule 2 if w is VL then ¢w  is VH elseif w is L then ¢w is H elseif w is M then ¢w is M elseif w is H 
then ¢w  is L elseif w is VH then ¢w is VL

Rule 3 if Va is VL then 
o

aI  is VL elseif VA is L then 
o

aI  is L elseif Va is M then 
o

aI  is M elseif Va is 

H then 
o

aI  is H elseif Va is VH then 
o

aI  is VH



580 Modeling and Simulation of Systems Using MATLAB and Simulink

Rule 4 if Ia is VL then ¢w is VL elseif Ia is L then ¢w  is L elseif Ia is M then ¢w  is M elseif Ia is 

H then ¢w  is H elseif Ia is VH then ¢w  is VH

Rule 5 if TL is VL then ¢w  is VH elseif TL is L then ¢w is H elseif TL is M then ¢w is M elseif TL 

is H then ¢w is L elseif TL is VH then ¢w is VL

Rule 6 if w is VL then 
o

aI  is VH elseif w is L then 
o

aI  is H elseif w is M then 
o

aI  is M elseif w is H 

then 
o

aI  is L elseif w is VH then 
o

aI  is VL

Rule 7 if 
o

aI  is VL then AC is VL elseif 
o

aI  is L then Ia is L elseif 
o

aI  is M then Ia is M elseif 
o

aI  is 

H then AC is H elseif 
o

aI  is VH then Ia is VH

Rule 8 if ¢w is VL then w is VL elseif ¢w is L then w is L elseif ¢w is M then w is M elseif ¢w  is H 
then w is H elseif ¢w is VH then w is VH

Field
inductance, Lf

Field
voltage, Vf

+

+

+

+

+

+

+
+

+
+

+

+

++

+

+

– –

–

–

–
–

–

–

–(–)

(–)

(–)

+Field
current If

Armature
current, Ia

Armature
voltage, Va

Armature
inductance, La

Angular
velocity, ω

Rate of change of
armature current,

B. ω
K

K. If . ω

K. If . Ia

K

B

dt

Ia Ra

Ra

Rf

If Rf

dIa

dt
dIf

Angular
acceleration,

Torque, T

Moment of
inertia, J

Rate of change of
field current,

dω
dt

FIGURE 11.40
Causal-loop diagram for a dc machine with four negative causal loops.



Modeling Using Fuzzy Systems 581

The above-developed fuzzy logic model for a dc machine has been simulated for the 
machine parameters given in Table 11.12.

 1. Study of different connectives
  The fuzzy logic model is simulated for different t-norms and t-conorms, as given in 

the literature (Dubois and Prade, 1980, 85, 92; Klir, 1989, 95; Zimmerman, 1991), for 
example, Yager, Weber, Yu, Dubois and Prade, Hamcher, etc., with the Mamdani 
implication. The results are compared with actual results. All except Weber con-
nectives are found to give satisfactory results in the range of load torque from 
4 to 8 N-m. Dubois and Prade connectives perform better in the range from 1 to 
11 N-m of load torque, but not in the complete range. It is considered expedient to 
try compensatory operators as connective. Hence, simulation has been performed 
for compensatory operators with the Gaines–Rascher implication and max–min 
compositions.

 2. Study of different implication methods
  The dc machine fuzzy logic model is simulated for different implication methods 

such as Goguen, Kleene-Dienes, Godel, and Wu.

 3. Different compositional rules
  The effects of different compositional rules on the fuzzy model simulation of a dc 

machine have been studied. The results obtained for various compositional rules 
are tabulated in Tables 11.13 through 11.16.

 4. Different defuzzifi cation methods
  A defuzzifi cation method gives a crisp output from a fuzzy output. The effects 

of different defuzzifi cation methods can be studied for a dc machine model with 
a compensatory operator as a connective, the Gaines–Rascher implication, and a 
max–min composition.

TABLE 11.12

Membership Function Values of Linguistic Variables

Linguistic Variables Linguistic Values

TL w Ia Very Low Low Medium High Very High

0 150.88 3.0484 1 0 0 0 0

1 151.46 4.3210 0.75 0 0 0 0

2 152.22 5.5905 0.5 0 0 0 0

3 153.00 6.8601 0.25 0.5 0 0 0

4 153.71 8.1271 0 1.0 0 0 0

5 154.33 9.3944 0 0.5 0.5 0 0

6 154.96 10.664 0 0 1 0 0

7 155.56 11.933 0 0 0.5 0.5 0

8 156.12 13.202 0 0 0 1.0 0

9 156.75 14.471 0 0 0 0.5 0.25

10 157.35 15.747 0 0 0 0 0.5

11 158.04 17.0151 0 0 0 0 0.75

12 158.85 18.286 0 0 0 0 1.0



582 Modeling and Simulation of Systems Using MATLAB and Simulink

TABLE 11.13

Machine Parameters of a DC Machine

Armature resistance Ra = 0.40 ohm

Armature 

inductance

La = 0.1 H

Damping coeffi cient B = 0.01 N-ms

Moment of inertia J = 0.0003 N-m s2

Torque constant K = 13

Operating conditions

Applied voltage Va = 125 V

Load torque TL = 1 N-m

TABLE 11.14

Effects of Compositional Rules for Load Torque = 1 N-m

Composition

Speed (Actual 

Value = 158.04)

Armature Current 

(Actual Value = 4.321)

max(a, b) − min(a, b) 157.5641 10.67

max(a, b) − product(a, b) 156.8617 7.3117

max(a, b) − max(0, a + b − 1) 158.23083 3.9428

max(a + b − ab) − min(a, b) 157.0845 7.7276

min(1, a + b) − min(a, b) 157.4973 7.8753

min(1, a + b) − product(a, b) 158.339 5.985

TABLE 11.15

Effects of Compositional Rules for Load Torque = 4.55 N-m

Composition

Speed (Actual 

Value = 155.76)

Armature Current 

(Actual Value = 8.7647)

max(a, b) − min(a, b) 155.805 8.98

max(a, b) − product(a, b) 155.9298 8.7244

max(a, b) − max(0, a + b − 1) 155.13403 8.12858

max(a + b − ab) − min(a, b) 155.7086 10.2293

min(1, a + b) − min(a, b) 155.635 10.6725

min(1, a + b) − product(a, b) 155.7437 8.84

 5. Effects of overlapping between membership functions
  The effects of different degrees of overlap between fuzzy sets have been studied 

and the simulation results are summarized in Table 11.17. It is found that for a 
fuzzy set, a slope of 0.5 and a membership variation of 0.1 give relatively better 
results.

Once the system model is developed, the system is controlled using a fuzzy controller. 
Fuzzy logic controllers are appropriate for systems with the following situations:



Modeling Using Fuzzy Systems 583

 1. One or more continuous variables are present, which need to be controlled.

 2. An exact mathematical model of the system does not exist. If it does exist then 
it is too complex to use for on-line controls.

 3. Serious nonlinearities and delays are present in the system, which make the 
system model computationally expensive.

 4. The system is time varying.

TABLE 11.16

Effects of Compositional Rules for Load Torque = 6.55 N-m

Composition

Speed (Actual 

Value = 154.46)

Armature Current 

(Actual Value = 11.304)

max(a, b) − min(a, b) 154.2701 10.67

max(a, b) − product(a, b) 154.6919 13.095

max(a, b) − max(0, a + b − 1) 154.7079 10.6642

max(a + b − ab) − min(a, b) 154.3165 11.09594

min(1, a + b) − min(a, b) 154.5325 9.345

min(1, a + b) − product(a, b) 154.610 11.334

FIGURE 11.41
Block diagram for adaptive fuzzy control.

SYSTEM

Fuzzy inference DefuzzificationFuzzification

Desired

Fuzzy knowledge
base

Defuzzification rules

Scaling factor

Universe of discourse

Compositional rules

Membership function

Fuzzy control rules

Tuning module

Performance measure



584 Modeling and Simulation of Systems Using MATLAB and Simulink

 5. The system requires an operator’s intervention.

 6. A written database of system information is not suffi ciently available, but sys-
tem expertise are available (i.e., a mental database is present). Hence, quantita-
tive modeling is not possible, but a qualitative model could be developed.

In a fuzzy logic controller, the adaptation mechanism is to adjust the approximator caus-
ing it to match with some unknown nonlinear controller that will stabilize the plant and 
make a closed-loop system to achieve its performance objective, as shown in Figure 11.42. 

TABLE 11.17

Effects of Different Degrees of Overlap and Supports 
of Fuzzy Sets on Fuzzy Models

Slope of Fuzzy Set

Membership 

Variation Speed

Armature 

Current

(a) Load torque = 1 N-m

0.25     0–1 158.0175 4.3447

0.5     0–1 158.002 4.3452

0.375 0.25–1 157.8051 3.9294

0.25  0.5–1 157.653 3.7149

0.1875 0.25–1 157.4557 5.4967

0.125  0.5–1 157.3017 5.7984

(b) Load torque = 4.55 N-m

0.25     0–1 155.48 9.4932

0.5     0–1 155.825 8.7613

0.375 0.25–1 155.707 9.015

0.25  0.5–1 155.6383 9.1841

0.1875 0.25–1 155.2684 9.93936

0.125  0.5–1 155.1192 10.2529

(c) Load torque = 6.55 N-m

0.25     0–1 154.766 11.002

0.5     0–1 154.6325 11.2985

0.375 0.25–1 154.5292 11.5117

0.25  0.5–1 154.4275 11.7215

0.1875 0.25–1 154.8207 10.8849

0.125  0.5–1 154.8794 10.7594

Plant

Control
(approximator)

FIGURE 11.42
Direct adaptive control.



Modeling Using Fuzzy Systems 585

Note that we call this scheme a “direct” adaptation scheme, since there is a direct  adjustment 
of the parameters of the controller without identifying a model of the plant. This type of 
control is quite popular.

Neural networks and fuzzy systems can be used as “approximators” in the adaptive 
scheme. Neural networks are used for mapping nonlinear functions. Their parameters, 
for instance, weights and biases, are adjusted to map different shaped nonlinearities, as 
shown in Figure 11.43.

In recent years, the ANN (Guan, 1996; Liu, 2003) and the fuzzy set theoretic approaches 
(Gibbard, 1988; Hsu, 1990; Hassan, 1991; Ortmeyer, 1995; Wang, 1995; Gawish, 1999; 
Hosseinzadeh, 1999; Swaroop, 2005) have been proposed for many modeling and con-
trol applications. Both these techniques have their own advantages and disadvantages. 
The integration of these approaches can give improved results. Fuzzy sets can represent 
knowledge in an interpretable manner. Neural networks (Chaturvedi, 2004a,b,c) have the 
capability of interpolation over the entire range for which they have been trained, and also 
possess the capability of adaptability not possessed by fi xed parameter devices designed 
and tuned for one operating condition. A generalized neuron-based PSS (Chaturvedi, 
2004a,b,c, 2005) has been proposed to overcome the problems of the conventional ANN, 
and combining the advantages of self-optimizing adaptive control strategy and the quick 
response of the GN, make it more suitable for modeling complex systems. The main issue 
of ANN models is their training. To properly train an ANN, one needs suffi cient and accu-
rate data for training, effi cient training algorithms, and an optimal structure of the ANN. 
It is really diffi cult to get appropriate and accurate training data for real-life problems. It is 
also diffi cult to select an optimal size of the ANN for a particular problem.

To overcome these problems, fuzzy logic models are proposed where no numerical train-
ing data is required and the operator’s experience can be used. This makes fuzzy logic 
models very attractive for ill-defi ned systems or systems with uncertain parameters. With 
the help of fuzzy logic concepts, an expert’s knowledge can be used directly to design a 
model. Fuzzy logic allows one to express the knowledge with subjective concepts, such as 
very big, too small, moderate, and slightly deviated, which are mapped to numeric ranges 
(Zadeh, 1973). Fuzzy logic applications for power system problems have been reported in 
the literature (Gibbard, 1988; Hsu, 1990; Hassan, 1991; Ortmeyer, 1995; Wang, 1995; Gawish, 
1999; Hosseinzadeh, 1999; Swaroop, 2005). Due to its lower computation burden and its 
ability to accommodate uncertainties in the plant model, fuzzy logic appears to be suitable 
for implementation. Fuzzy models can be implemented through simple microcomputers 
with A/D and D/A converters (Hiyama, 1993; El-Metwally, 1996).

Example—Cooling Control of Air Conditioners

In the air-conditioning system shown in Figure 11.43, the temperature sensor output is given to the 
FKBS. The preprocessing of data from the temperature sensor is done for normalization. The pre-
processed data is given to the fuzzifi cation block for the conversion of crisp input values to fuzzy 
input values. A fuzzy membership function is defi ned for temperature and cooling, representing 
the meaning of the linguistic value of input and output variables of the system. The next step is 
to defi ne the fuzzy rules, which form the relationship between temperature and cooling. In the 
problem, temperature is antecedent and cooling is consequent. After rule formation, individual 

FIGURE 11.43
Cooling control for air conditioners.

Temperature CoolingAir-conditioning
system



586 Modeling and Simulation of Systems Using MATLAB and Simulink

rule-based inference is done to compute the overall value of cooling on the individual contribu-
tion of each rule in the rule base. The last step applied is defuzzifi cation, to convert the set of 
fuzzy inference cooling output into crisp cooling output as shown in Figure 11.44. The MATLAB 
code is written to perform each step in the fuzzy system clearly.

%Matlab Program for Cooling control system for Air Conditioners
x = [10:.01:50]; % Temperature
y = [0:.01:10]; % cooling
% Temperature membership function
cool_mf = trapmf(x,[10 10 17.5 25]);
moderate_mf = trimf(x,[20 30 40]);
hot_mf = trapmf(x,[35 42.5 50 50]);
antecedent_mf = [cool_mf;moderate_mf;hot_mf];
figure(1);
grid on;
plot(x,antecedent_mf)
title(‘Cool, Moderate and Hot Temperatures’)
xlabel(‘Temperature’)
ylabel(‘Membership’)

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
10 15 20 25 30 35 40 45 50

Temperature(a)

M
em

be
rs

hi
p

Cool, moderate, and hot temperatures
1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4 5 6 7 8 9 10

Cooling(b)

Low, medium, and high cooling

M
em

be
rs

hi
p

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4 5 6 7 8 9 10

Cooling(c) (d)

M
em

be
rs

hi
p

Consequent fuzzy set
1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4 5 6 7 8 9 10

Cooling

M
em

be
rs

hi
p

Output fuzzy set

FIGURE 11.44
(a) Membership function of input “temperature.” (b) Membership function of output “cooling.” (c) Outputs 

of two rules that are fi red. (d) Aggregated output of a fuzzy system with one input “temperature.”



Modeling Using Fuzzy Systems 587

% cooling
low_mf = trapmf(y,[0 0 2 5]);
medium_mf = trapmf(y,[2 4 6 8]);
high_mf = trapmf(y,[5 8 10 10]);
consequent_mf = [low_mf;medium_mf;high_mf];
figure(2);
grid on;
plot(y,consequent_mf)
title(‘Low, Medium and High high cooling’)
xlabel(‘cooling’)
ylabel(‘Membership’)

temp=38
antecedent1 = cool_mf(find(x==temp) );
antecedent2 = moderate_mf(find(x == temp) );
antecedent3 = hot_mf(find(x == temp) );
antecedent = [antecedent1;antecedent2;antecedent3]

consequent1 = low_mf.*antecedent1;
consequent2 = medium_mf.*antecedent2;
consequent3 = high_mf.*antecedent3;
figure(3);
plot(y,[consequent1;consequent2;consequent3])
axis([0 10 0 1.0])
title(‘Consequent Fuzzy Set’)
xlabel(‘cooling’)
ylabel(‘Membership’)

Output_mf=max([consequent1;consequent2;consequent3]);
figure(4);
plot(y,Output_mf)
axis([0 10 0 1])
title(‘Output Fuzzy Set’)
xlabel(‘cooling’)
ylabel(‘Membership’)

output=sum(Output_mf.*y)/sum(Output_mf);
output;
hold on;
stem(output,1);

The fuzzy system for the air conditioner has given a cooling output of 7.07 at 38°C using centroid 
defuzzifi cation. If we are interested in the output for the complete range of temperature from 1°C 
to 50°C, then we have to implement a loop, as shown in the MATLAB code. In the given case, 
we have increased the range of the membership function for the temperature as per requirement 
as shown in Figure 11.45.

% Fuzzy model for cooling system
x = [0:1:60]; % Temperature
y = [0:1:10]; % cooling
% Temperature membership function
cool_mf = trapmf(x,[0 0 17.5 25]);
moderate_mf = trimf(x,[20 30 40]);
hot_mf = trapmf(x,[35 42.5 60 60]);
antecedent_mf = [cool_mf;moderate_mf;hot_mf];
figure(1);
grid on;



588 Modeling and Simulation of Systems Using MATLAB and Simulink

plot(x,antecedent_mf)
title(‘Cool, Moderate and Hot Temperatures’)
xlabel(‘Temperature’)
ylabel(‘Membership’)

% cooling
low_mf = trapmf(y,[0 0 2 5]);
medium_mf = trapmf(y,[2 4 6 8]);
high_mf = trapmf(y,[5 8 10 10]);
consequent_mf = [low_mf;medium_mf;high_mf];
figure(2);
grid on;
plot(y,consequent_mf)
title(‘Low, Medium and High high cooling’)
xlabel(‘cooling’)
ylabel(‘Membership’)

outputs=zeros(size([1:1:50]) );
for temp=1:1:50
antecedent1 = cool_mf(find(x==temp) );

FIGURE 11.45
(a) Membership functions of input “temperature.” (b) Membership functions of output “cooling.” (c) Input–

output relationship.

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0 10 20 30 40 50 60

Temperature(a) (b)

(b)

M
em

be
rs

hi
p

Cool, moderate, and hot temperatures
1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0 0 1 2 3 4 5 6 7 8 9 10
Cooling

M
em

be
rs

hi
p

Low, medium, and high cooling

9

8

7

6

5

4

3

2

1
0 5 10 15 20 25 30 35 40 45 50

Temperature

Co
ol

in
g

Fuzzy system input–output relationship



Modeling Using Fuzzy Systems 589

antecedent2 = moderate_mf(find(x == temp) );
antecedent3 = hot_mf(find(x == temp) );
antecedent = [antecedent1;antecedent2;antecedent3]

consequent1 = low_mf.*antecedent1;
consequent2 = medium_mf.*antecedent2;
consequent3 = high_mf.*antecedent3;
figure(3);
plot(y,[consequent1;consequent2;consequent3])
axis([0 10 0 1.0])
title(‘Consequent Fuzzy Set’)
xlabel(‘cooling’)
ylabel(‘Membership’)

Output_mf=max([consequent1;consequent2;consequent3]);
figure(4);
plot(y,Output_mf)
axis([0 10 0 1])
title(‘Output Fuzzy Set’)
xlabel(‘cooling’)
ylabel(‘Membership’)
output=sum(Output_mf.*y)/sum(Output_mf);
outputs(temp)=output;
end
plot([1:1:50],outputs)
title(‘Fuzzy System Input Output Relationship’)
xlabel(‘Temperature’)
ylabel(‘cooling’)

Considering the same system but with two input variables, which are temperature and humidity, 
the rule-based system changes (ref. Figures 11.46 and 11.47).

FIGURE 11.46
Cooling control system with two inputs.

Cooling

Humidity

Temperature

Air-conditioning
system

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
10 15 20 25 30 35 40 45 50

Temperature(a) (b)

M
em

be
rs

hi
p

Low, medium, and high
1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Humidity

M
em

be
rs

hi
p

Low, medium, and high humidity

FIGURE 11.47
(a) Membership functions of input “temperature.” (b) Membership functions of input “humidity.”

(continued)



590 Modeling and Simulation of Systems Using MATLAB and Simulink

%MATLAB Program for simulation Cooling system using Fuzzy
x = [10:.01:50]; % Temperature
y = [0:.001:1]; % humidity
z = [0:.001:1]; %cooling

% Membership functions for Temperature
templow_mf = trapmf(x,[10 10 17.5 25]);
tempmed_mf = trimf(x,[20 30 40]);
temphigh_mf = trapmf(x,[35 42.5 50 50]);
antecedent_mf = [templow_mf;tempmed_mf;temphigh_mf];
figure(1);
grid on;
plot(x,antecedent_mf)
title(‘low, medium and high’)
xlabel(‘Temperature’)
ylabel(‘Membership’)

% Membership functions for humidity
humlow_mf = trimf(y,[0 .15 .3]);
hummed_mf = trimf(y,[.2 .5 .8]);
humhigh_mf = trimf(y,[.7 .85 1]);

FIGURE 11.47 (continued)
(c) Membership functions of output. (d) Outputs of two rules that are fi red. (e) Final output of fuzzy system.

(c) (d)

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Cooling speed

M
em

be
rs

hi
p

Low, medium, and high cooling speeds
1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Cooling
M

em
be

rs
hi

p

Consequent fuzzy set

(e)

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Cooling

Output fuzzy set

M
em

be
rs

hi
p



Modeling Using Fuzzy Systems 591

antecedent_mf = [humlow_mf;hummed_mf;humhigh_mf];
figure(2);
grid on;
plot(y,antecedent_mf)
title(‘low, medium, and high humidity’)
xlabel(‘humidity’)
ylabel(‘Membership’)

% Membership functions for cooling
coollow_mf = trapmf(z,[0 0 .15 .3]);
coolmediumlow_mf = trimf(z,[.2 .35 .5]);
coolmedium_mf = trimf(z,[.4 .5 .6]);
coolmediumhigh_mf= trimf(z,[.5 .65 .8]);
coolhigh_mf=trapmf(z,[.7 .85 1 1]);
consequent_mf = 
[coollow_mf;coolmediumlow_mf;coolmedium_mf;coolmediumhigh_mf;coolhigh_
mf];
figure(3);
grid on;
plot(z,consequent_mf)
title(‘Low, Medium and High cooling Speeds’)
xlabel(‘cooloing Speed’)
ylabel(‘Membership’)

temp=46
humid=.78
% Fuzzy Rule base
antecedent1 = min(templow_mf(find(x==temp) ),humlow_mf(find(y==humid) ) );
antecedent2 = min(templow_mf(find(x==temp) ),hummed_mf(find(y==humid) ) );
antecedent3 = min(templow_mf(find(x==temp) ),humhigh_mf(find(y==humid) ) );

antecedent4 = min(tempmed_mf(find(x==temp) ),humlow_mf(find(y==humid) ) );
antecedent5 = min(tempmed_mf(find(x==temp) ),hummed_mf(find(y==humid) ) );
antecedent6 = min(tempmed_mf(find(x==temp) ),humhigh_mf(find(y==humid) ) );

antecedent7 = min(temphigh_mf(find(x==temp) ),humlow_mf(find(y==humid) ) );
antecedent8 = min(temphigh_mf(find(x==temp) ),hummed_mf(find(y==humid) ) );
antecedent9 = min(temphigh_mf(find(x==temp) ),humhigh_mf(find(y==humid) ) );

antecedent = 
[antecedent1;antecedent2;antecedent3;antecedent4;antecedent5;antecedent6;
antecedent7;antecedent8;antecedent9]

consequent1 = coollow_mf.*antecedent1;
consequent2 = coollow_mf.*antecedent2;
consequent3 = coolmediumlow_mf.*antecedent3;

consequent4 = coolmediumlow_mf.*antecedent4;
consequent5 = coolmedium_mf.*antecedent5;
consequent6 = coolmediumhigh_mf.*antecedent6;

consequent7 = coolmediumhigh_mf.*antecedent7;
consequent8 = coolhigh_mf.*antecedent8;
consequent9 = coolhigh_mf.*antecedent9;

figure(4);
plot(z,[consequent1;consequent2;consequent3;consequent4;consequent5;cons
equent6;consequent7;consequent8;consequent9])



592 Modeling and Simulation of Systems Using MATLAB and Simulink

axis([0 1 0 1.0])
title(‘Consequent Fuzzy Set’)
xlabel(‘Cooling’)
ylabel(‘Membership’)

Output_mf=max([consequent1;consequent2;consequent3;consequent4;consequen
t5;consequent6;consequent7;consequent8;consequent9]);
figure(5);
plot(z,Output_mf)
axis([0 1 0 1])
title(‘Output Fuzzy Set’)
xlabel(‘Cooling’)
ylabel(‘Membership’)

output=sum(Output_mf.*y)/sum(Output_mf);
output;
hold on;
stem(output,1);

11.17 Fuzzy System Applications for Operations Research

Engineers and scientists are sometimes required to select, from among a set of feasible 
solutions, the solution that is best in some sense, such as the least expensive solution or the 
solution with the highest accuracy and the best performance. This process is referred to as 
optimal solution or simply optimization.

This section is intended to present the state of the art concerning the application of fuzzy 
sets to operations research, such as optimization. The conceptual framework for optimiza-
tion in a fuzzy environment is reviewed and particularized to fuzzy linear programming. 
Optimization models in operations research assume that data are precisely known, that 
constraints delimit a crisp set of feasible decisions, and that criteria are well defi ned and 
easy to formalize. However, in the real world, such assumptions are not true. Hence, the 
simple linear programming method of optimization is not quite effective. Fuzzy linear 
programming is described in this section.

 1. Problem formulation
  Let X be a set of alternatives that contains the solution of a given multi-criteria 

optimization problem. Bellman and Zadeh pointed out that in a fuzzy environ-
ment, goals and constraints formally have the same nature and can be represented 
by fuzzy sets on X. Let Ci be the fuzzy domain delimited by the ith constraint 
(i = 1, …, m) and Gj the fuzzy domain associated with the jth goal (j = l, …, n). Gj is, 
for instance, the optimizing set of an objective function, gj. When goals and con-
straints have the same importance, Bellman and Zadeh (1970) called the fuzzy set 
(D) on X, as the fuzzy decision:

 
= =

⎛ ⎞⎛ ⎞
= ∩ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
∩ ∩
1,... 1,...

i i

i m j n

D C G  (11.37)

  that is,

 = =

⎡ ⎤∀ ∈ μ = μ μ⎢ ⎥⎣ ⎦1, 1,
, ( ) min min ( ),min ( )ix D C Gj

i m j n
X x x x

 
(11.38)



Modeling Using Fuzzy Systems 593

  A fuzzy decision is shown in Figure 11.48 that corresponds to a constraint 
“x should be substantially greater than xo” and an objective function, g, whose 
optimizing set is G.

   The fi nal decision, xf, can be chosen in the set

 = μ ≥ μ ∀ ∈{( ,  ( ) ( ),  )}f f D f D xM x x x X

  Mf is called the maximal decision set.
   When criteria and constraints have unequal importance, membership functions 

can be weighted by x-dependent coeffi cients, αi and βj, such that

 =
∀ ∈ α + β =∑ ∑

i=1 1

,  ( ) ( ) 1
m n

i j
j

x X x x
 

(11.39)

  and according to Bellman and Zadeh (1970)

 
= =

μ = α μ + β μ∑ ∑
1 1

( ) ( ) ( ) ( ) ( )
m n

D i Ci j Gj
i j

x x x x x  (11.40)

  Note that D satisfi es the property:

 

= = = =

⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞
∩ ⊆ ⊆ ∪⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠∪ ∪∩ ∩

1, 1, 1, 1,

i j i j

i m j n j m j n

C G D C G

  However, other aggregation patterns for the μCi and the μGj may be worth consid-
ering. When criteria and constraints refer to different sets, X and Y, respectively, 
and there is some causal link between X and Y, a fuzzy decision can still be con-
structed. X is, for instance, a set of causes constrained by Ci, i = 1, …, m, and Y a set 
of effects on which is defi ned a set of fuzzy goals, Gj, j = 1, …, n. Let R be a fuzzy 
relation on X × Y. The fuzzy decision, D, can be defi ned on X by aggregation of the 
fuzzy domains, Ci, and the fuzzy goals, Gj o R–1, induced from Gj.

   The defi nition of an optimal decision by maximizing μD (in the sense of Equation 
11.37) is not always satisfactory, especially when μD(xf) is very low. It indicates 
that goals and constraints are more or less contradictory, and thus xf cannot be a 
good solution. For such a situation, Asai et al. (1975) have proposed the following 
approach: Choose an alternative that better satisfi es the constraints and substitutes 

1

0
μD

μG
μC

x
FIGURE 11.48
Fuzzy decision.



594 Modeling and Simulation of Systems Using MATLAB and Simulink

an attainable short-range goal for the unattainable original one. More specifi cally, 
we must fi nd a pair, (xc, xG), where xc is a short-range optimal decision and XG a 
short-range estimated goal, and (xc, xG) maximizes:

 μ = μ μ μ′ ′ ′( ,  ) min( ( ),  ( ),  ( , ))D c G Rx x x x x x  (11.41)

  C and G are, respectively, the fuzzy constrained domain and the fuzzy goal (we 
take m = n = 1 for simplicity), and R expresses a fuzzy tolerance on the discrepancy 
between the immediate optimal decision, xc, and the fuzzy goal, G; xG is the most 
reasonable objective because it is a trade-off between a feasible decision and G.
Asai et al. (1975) discussed the choice of R and found that a likeness relation was 
most suitable with respect to some natural intuitive assumptions. The authors gen-
eralized their approach to the N-period case where N short-range decisions must 
be chosen together with N short-range goals and μc and μG may be time dependent 
(see Asai et al., 1975). Some defi nitions pertaining to time dependency in fuzzy set 
theory in the scope of planning may be found in Lientz (1972).

 2. Fuzzy linear programming

 a. Soft constraints

  We start with the following problem:

Minimize Z = gx

Subjected to Ax ≤ b, x ≥ 0

where
g is a vector of coeffi cients of the objective function
b is a vector of constraints
A is the matrix of coeffi cients of constraints

  The fuzzy version of this problem is (Zimmermann, 1976, 1978)

 ≤ ≤ ≥0, , 0xgx Z A b x  (11.42)

  The symbol ≤ denotes a relaxed version of < and assumes the existence of a vector, 
μ, of membership functions, μi, i = 0, …, m, defi ned as follows: Let aij and bi be the 
coeffi cients of A and b, respectively; then, for I = 0, …, m:

 

=

= = =

=

⎧
≤⎪

⎪
⎪⎛ ⎞ ⎪μ = − − ≤ ≤ +⎨⎜ ⎟

⎝ ⎠ ⎪
⎪
⎪ > +
⎪⎩

∑

∑ ∑ ∑

∑

1

1 1 1

1

1 for

1
1 ( ) for

0 for

n

ij j i
j

n n n

i ij j ij j i i ij j i i
j j j

n

ij j i i
j

a x b

a x a x b b a x b d
d

a x b d

  with b0 = Z0 and aoj = gj (ref. Figure 11.49). di is a subjectively chosen constant 
expressing a limit of the admissible violation of the constraint, i. Z0 is a constant to 
be determined.



Modeling Using Fuzzy Systems 595

   The fuzzy decision of Equation 11.42 is D, such that

 =

⎛ ⎞
μ = μ α⎜ ⎟⎝ ⎠∑

1

( ) min
m

D i ij j
i

i

x x

  The maximization of μD is equivalent to the linear program:
   Maximize xn + 1

 
+

=

⎛ ⎞
≤ μ α =⎜ ⎟⎝ ⎠∑1

1

Subjected to where 0, ...,
n

n i ij j
i

x x i m
 

(11.43)

  The constant, Z0 + d0, is determined by solving the above equation (Equation 11.43) 
without the constraint, I = 0; let x be its solution. We state Z0 + d0 = gx and Z0 is 
defi ned as the optimal value of the objective function in which b is replaced by 
bi + di, ∀i . The constraints, Ax > b or Ax = b, can be softened in a similar way 
(Sommer and Pollatschek, 1976; Sularia, 1977).

 3. Fuzzy constraints with fuzzy coeffi cients
  What happens to a linear constraint, Aix = bi, when the coeffi cients, aij and bi, become 

fuzzy numbers Ãix can be calculated by means of extended addition. The symbol 
= can be understood in two different ways:

 a. As a strict equality between Aix and bi (equality of the membership functions). 
This equality can be weakened into an inclusion, ⊆ix iA b , which also reduces 
to an equality in the nonfuzzy case; the fuzziness of bi is interpreted as a maxi-
mum tolerance for the fuzziness of Aix.

 b. As an approximate equality between Aix and b.

Both points of view will be successively investigated. We assume here that the variables 
are positive (x > 0), and aij and bi are fuzzy numbers.

 a. Tolerance constraints
  Consider the system of linear fuzzy constraints:

 , 1,i iA x b i m⊆ =

1

0 t

μi

bi bi + di
FIGURE 11.49
Fuzzy constraint.



596 Modeling and Simulation of Systems Using MATLAB and Simulink

  Since the coeffi cients are fuzzy numbers, we can write symbolically:

 = (  )i i i iA A A A

  where Ai, Ai, and iA  are vectors of mean values and left and right spreads. Since Ti 
are positive, the system is equivalent to

 = ≤ < = ≥…,  ,  ,  1, ,  ,  0ix i ix i ix iA b A b A b i m x

  which is an ordinary linear system of equalities and inequalities. According to the 
value of m and the number, n, of variables involved, it may or may not have solu-
tions. Owing to this result, the “robust programming problem” (Negoita, 1976) is

  Maximize gx

  Subjected to ⊆ = > …, 1,  , ; 0i iA x b i m x

  which can be turned into a classical linear programming. This approach seems 
more tractable than that of Negoita (1976).

 b. Approximate equality constraints
Let a and b be two fuzzy numbers such that a is greater than b, denoted a > b, as 
soon as a − b > a + b. a is said to be approximately equal to b if and only if neither 
a ≥ b nor b ≥ a holds.

A system of approximate equalities in the above sense can be considered, i.e.:

 ,  1, ,  i iÃ x b i m≈ = …

where Ai is a vector of fuzzy numbers, bi, which are R-L fuzzy numbers in which “≈” 
denotes approximate equality. This fuzzy system is equivalent to the nonfuzzy one:

 − ≤ + ≤ − when  i i i i i ib A x b A x O b A x

 − ≤ + ≤ − when   i i i i i iA x b b A x O A x b

The above approach assumes the existence of an equality threshold.
An alternative approach can be, as in a, to defi ne the constraint domain associ-

ated with an approximate equality, Aix ≈ bi, by the membership function, mi, such that 
μ = ∩( ) hgt( ).i i ix A x b  More specifi cally:

 −⎧ − ≥⎪ +⎪μ = ⎨ −⎪ − ≥
⎪ +⎩

if 0

( )

if 0

i i
i i

i i
i

i i
i i

i i

b A x
R b A x

b A x
x

A x b
L A x b

b A x

The problem of fi nding xf, maximizing min i = 1, …, m μi(x), the optimal decision with 
respect to the m fuzzy constraints, can be thus reduced to a nonlinear program.

This approach can be extended to fuzzy linear objective functions and to linear approxi-
mate inequality constraints.



Modeling Using Fuzzy Systems 597

Example—Students’ Performance Evaluation System Using ANFIS

In this example, we deal with the analysis of students’ performance based on students’ atten-
dance, and their internal and external scores. This information is used to train the ANN and the 
mathematical operation is performed by fuzzy logic. It is implemented for the real-time evaluation 
of students and has found the trends of students’ performances quite close to the actual trend.

Inputs Outputs

Attendance Internal External Performance

8.24 7.96 3.32 6.1
8.84 8.44 3.06 5.95
7.6 7.64 3.16 5.57
9.36 8.8 4.18 6.93
9.24 7.9 6.2 8.15
8.45 7.54 5.3 7.9
8.65 9.4 4.2 6.9
8.05 7.88 3.1 5.56
7.6 7.6 4.1 6.42
7.5 8.1 5.2 7.36
8.84 9.24 4.6 7.11
8.13 7.12 2.58 5.39
8.16 7.68 2.98 5.8
9.4 9.52 4.6 7.2
9.14 9.16 4.1 7.14
9.2 8.4 4.7 7.25
8.5 8.9 5.2 7.34
8.46 8.12 2.9 5.95
9.55 9.64 4.7 7.63

8.42 8.69 6.1 8.1
8.33 8.1 5.7 7.6
8.1 8.2 5.3 7.7
7.6 7.3 4.2 6.7
8.95 8 2.82 5.62
8.7 8.6 4.3 7.62

To start ANFIS on the MATLAB, we type anfi sedit on the command prompt of MATLAB. The 
ANFIS window appears on screen, as shown in Figure 11.50.

To load training data in the ANFIS environment, select the type training and press the load data 
option. The following window appears, as shown in Figure 11.51.

The loaded data are displayed in the ANFIS window as small circles, as shown in Figure 11.52. 
These data are used for training the system.

The next step is to generate the fuzzy system, as shown in Figure 11.53.
After defi ning the rules for the membership function, we set the parameters for training, using a 

neural network. Therefore, a neural network is used for generalization while a fuzzy one is used 
for specialization. The training error is shown in Figure 11.54.

The original training data and the ANFIS output are checked and shown in Figure 11.55.
We can predict any evaluation outputs for different inputs using fuzzy rules, as shown in 

Figure 11.56.
The ANFIS surfaces to show the effects of different pairs of inputs on students’ performances are 

shown in Figures 11.57 through 11.59.



598 Modeling and Simulation of Systems Using MATLAB and Simulink

FIGURE 11.51
ANFIS editor with load data.

FIGURE 11.50
ANFIS window.



Modeling Using Fuzzy Systems 599

FIGURE 11.53
ANFIS editor with ANN structure window.

FIGURE 11.52
Training data.



600 Modeling and Simulation of Systems Using MATLAB and Simulink

FIGURE 11.55
Training and checking data plot.

FIGURE 11.54
ANFIS training performance.



Modeling Using Fuzzy Systems 601

FIGURE 11.56
Rule viewer of ANFIS.

FIGURE 11.57
3D surface showing effects of attendance and internal evaluation of performances.

Attendance
7.57.5

8
8.5

9
9.5

1

2
3
4

5

8
8.5

9
9.5

Internal

Pe
rfo

rm
an

ce

FIGURE 11.58
3D surface showing effects of attendance and external evaluation of performances.

Attendance
7.52

3
4

2

4

6

8
8.5

9
9.5

External

Pe
rfo

rm
an

ce



602 Modeling and Simulation of Systems Using MATLAB and Simulink

11.18 Review Questions

 1. Consider a simple fi rst-order plant model given by

 = +�( ) ( ) ( )x t Ax t bu t

  where values of A and B are dependent on system parameters, and u(t) is the input 
vector.

Develop a fuzzy logic controller for this simple system and compare its perfor-
mance with a conventional PI controller.

 2. Explain qualitatively the infl uence of a membership function, crossover points, 
and the method of defuzzifi cation, on fuzzy controllers.

 3. Discuss the roles of normalization and scaling in generating a set of rules for the 
knowledge base.

 4. List out various steps involved in the development of a fuzzy logic model for a 
given system.

 5. Distinguish between self-organizing and fi xed rules-based fuzzy logic approaches 
for modeling.

 6. Explain the following rule:

If PE = NB and CPE = not 
(NB or NM)

and SE = ANY

and CSE =ANY then HC = PB

elseif PF = NB or NM and CPE = NS and SE = ANY

and CSE = ANY then HC = PM

 (a) Represent the rule using max and min operators.

 (b) Represent the rule in a narrative style.

Internal
7.52

3
4

2

4

6

8
8.5

9
9.5

External

Pe
rfo

rm
an

ce

FIGURE 11.59
3D surface showing effects of internal and external evaluations of performances.



Modeling Using Fuzzy Systems 603

11.19 Bibliography and Historical Notes

Prof. Lotfi  A. Zadeh is the father of fuzzy logic. He fi rst coined the word “fuzzy” by pub-
lishing a seminal paper on fuzzy sets in 1965. Research progress in fuzzy logic is nicely 
summarized in a collection edited by Gupta, Saridis, and Gaines. E. Mamdani, which gives 
a survey of fuzzy logic control and discusses several important issues in design, develop-
ment, and analysis of the fuzzy logic controller. Bart Kasko introduced the geometric inter-
pretation of fuzzy sets and investigated the related issues in the late 1980s.

Fuzzy logic offers the option to try to model the nonlinearity of the functioning of the 
human brain when several pieces of evidence are combined to make an inference. There 
are several publications available on fuzzy aggregation operators, of which a few notable 
ones are Yager (1977, 1981, 1988, 1991, 1996), Trillas (1983), Czogala (1984), Dubois and 
Prade (1985, 1992), Combettes (1993), Cubillo (1995), Bandemer (1995), Klir and Yuan (1995), 
Bloch (1996), Radko (2000), Kaymak and Sousa (2003), Mendis (2006), and Ai-Ping (2006). 
The different compositional operators are described in Zeng (2005) and Wang (2006).

Fuzzy implication rules and the GMP were fi rst introduced by Zadeh in 1975. This area 
soon became one of the most active research topics for fuzzy logic researchers. Gains (1976, 
1983, 1985) described a wide range of issues regarding fuzzy logic reasoning, including 
fuzzy implications.

A book edited by T. Terano, M. Sugeno, and Y. Tuskamoto (1984) contains a chapter that 
describes several good applications of fuzzy expert systems. Negoita (1985) also wrote a 
book on fuzzy expert systems.

Pin (1993) implemented fuzzy behavioral approaches to mobile robot navigation, using 
special-purpose fuzzy inference chips.

The literature dealing with the use of neural networks for learning membership func-
tions and inference rules is rapidly growing; the following are a few relevant references: 
Takagi and Hayashi (1991), Wang and Mendel (1992), Jang (1993), and Wang (1994). The 
overview of the role of fuzzy sets in approximate reasoning was prepared by Dubois and 
Prade (1991), and Nakanishi et al. (1993).

Fuzzy computer hardware is also one of the most growing areas. There is long list of 
publications in computer hardware (Gupta and Yamakawa, 1988; Diamond et al.). An 
important contribution to fuzzy logic hardware is a design and implementation of a fuzzy 
memory to store one-digit fuzzy information by Hirota and Ozawa (1989).

In the area of communication, the fuzzy set theoretic approach is used as fuzzy adaptive 
fi lters for nonlinear channel equalization (Wang and Mandel, 1993) and signal detection 
(Saade and Schwarzlander, 1994).

It is also used for the analysis of fuzzy cognitive maps (Styblinski and Meyer, 1991), and 
in robotics (Palm, 1992; Nedugadi, 1993; Chung, 1994), vision, identifi cation, reliability and 
risk analysis, and medical diagnosis.



This page intentionally left blank 



605

12
Discrete-Event Modeling and Simulation

12.1 Introduction

There are many systems which respond to environmental changes in different ways such 
as the aircraft and factory systems. The movement of the aircraft occurs smoothly, whereas 
the changes in the factory occur discontinuously. The ordering of raw materials or the 
completion of a product, for example, occurs at specifi c points in time.

Systems such as the aircraft, in which the changes are predominantly smooth, are called 
continuous systems. Systems like the factory, in which changes are predominantly discon-
tinuous, are called discrete systems. Few systems are wholly continuous or discrete. The 
aircraft, for example, may make discrete adjustments to its trim as altitude changes, while, 
in the factory examples, machining proceeds continuously, even though the start and fi nish 
of a job are discrete changes. However, in most systems one type of change predominates so 
that systems can usually be classifi ed as being discrete.

In addition, in the factory system, if the number of parts is suffi ciently large, there may 
be no point in treating the number as a discrete variable. Instead, the number of parts 
might be represented by a continuous variable with the machining activity controlling the 
rate at which parts fl ow from one state to another. This is, in fact, the approach of a model-
ing technique called system dynamics.

There are also systems that are intrinsical but information about them is only available 
at discrete points in time. These are called sampled-data system. The study of such sys-
tems includes, the problem of determining the effects of the discrete sampling, especially 
when the intention is to control the system on the basis of information gathered by the 
sampling.

This ambiguity in how a system might be represented illustrates an important point. 
The description of a system, rather than the nature of the system itself determines what 
type of model will be used. A distinction needs to be made because the general program-
ming methods are used to simulate continuous models and discrete models differently. 
However, no specifi c rules can be given as to how a particular system is to be represented. 
The purpose of the model, coupled with the general principle that a model should not be 
more complicated than it is needed, will determine the level of detail, and the accuracy 
with which a model needs to be developed. Weighing these factors and drawing on the 
experience of knowledgeable people will decide the type of model needed.

The rapid evolution of computing, communication, and sensor technologies has brought 
about the proliferation of “new” dynamic systems, mostly technological and often highly 
complex. Examples are all around us: air traffi c control systems; automated manufactur-
ing systems; computer and communication networks; embedded and networked systems; 
and software systems. The “activity” in these systems is governed by operational rules 



606 Modeling and Simulation of Systems Using MATLAB and Simulink

designed by humans; their dynamics are therefore characterized by asynchronous occur-
rences of discrete events. These features lend themselves to the term discrete event system 
(DES) for this class of dynamic systems. So what is meant by a DES?

A DES is defi ned as a dynamic system which evolves in accordance with the occur-
rence of physical events. This kind of system requires control and coordination to ensure 
the orderly fl ow of events. Many DES models have already been reported in literature, 
for example, Markov chains and Markov jump processes, Petri nets, queuing networks, 
fi nitely recursive processes, models based on minmax algebra, discrete-event simulation, 
and generalized semi-Markov processes (Cao and Ho, 1990).

Discrete-event models can further be distinguished along at least two dimensions from 
traditional dynamic system models—how they treat passage of time (stepped vs event-
driven) and how they treat coordination of component elements (synchronous vs asyn-
chronous). Some event-based approaches enable more realistic representation of loosely 
coordinated semiautonomous processes, while classical models such as differential equa-
tions and cellular automata tend to impose strict global coordination on such components. 
Event-based simulation is inherently effi cient since it concentrates processing attention on 
events signifi cant changes in states that are relatively rare in space and time, rather than 
continually processing every component at every time step.

Discrete-event modeling is a mathematical procedure that is created to describe a 
dynamic process. Then the model is simulated so that it predicts possible situations that 
can be used to evaluate and improve system performance. Discrete-event modeling and 
simulation is used to create predictions of the system states during time intervals, which 
can be modifi ed to examine what and if situations. For example, a common use is to 
 evaluate a waiting line, called a queue. The question that is often asked is how long on 
average would a customer have to wait in a line to get to the service and if the wait time is 
excessively high how it can be reduced. Adding additional servers is one solution but how 
many servers should be used is another common question. Modeling and simulation can 
help answer these questions without actually creating a physical situation that has to be 
measured, which could be an expensive process.

In stochastic discrete-event simulation paradigm, the dynamics of a complex system are 
captured by discrete (temporal) state variables, where an event is a combined process of 
a large number of state transitions between a set of state variables accomplished within 
the event execution time. The key idea is to segregate the complete state space into a dis-
joint set of independent events that can be executed simultaneously without any interac-
tion. The application of discrete event-based system modeling techniques in large-scale 
computer and communication networks has demonstrated the accuracy of this approach 
for higher order system dynamics within the limits of input data, state partitioning algo-
rithms, uncertainty of information propagation, and highly mobile entities.

12.2 Some Important Definitions

As per the consideration of the different views, a system in general can be described as a 
set of objects that depend on each other or interact with each other in some way to fulfi ll 
some task. While doing this, the system might be infl uenced by the system’s environment. 
So it is very essential to set a distinction between the system and its environment and 
hence it is worthwhile to defi ne some important terms.



Discrete-Event Modeling and Simulation 607

Entity: An entity is an object of interest in the system, whereby the selection of the object of 
interest depends on the purpose and level of abstraction of the study.

Attribute: Attributes are used to describe the properties of the system’s entities.
An entity may have attributes that pertain to that entity alone. Thus, attributes should 

be considered as local values. In the example, an attribute of the entity could be the time of 
arrival. Attributes of interest in one investigation may not be of interest in another inves-
tigation. Thus, if red parts and blue parts are being manufactured, the color could be an 
attribute. However, if the time in the system for all parts is of concern, the attribute of color 
may not be of importance.

State: The state of the system is a set of variables that is capable of characterizing the system 
at any time.

Event: An event is an instantaneous incidence that might result in a state change. Events 
can be endogenous (generated by the system itself) or exogenous (induced by the system’s 
environment).

Systems can be classifi ed as continuous-state or as discrete-state systems (Banks et al., 
2001). In continuous-state systems, the state variables change continuously over time. By 
contrast, the state of discrete-state systems only changes at arbitrary but instantaneous 
points in time.

Resources: A resource is an entity that provides service to dynamic entities. The resource can 
serve one or more than one dynamic entity at the same time, that is, operates as a parallel 
server. A dynamic entity can request one or more units of a resource. If denied, the request-
ing entity joins a queue or takes some other action (i.e., diverted to another resource, ejected 
from the system). (Other terms for queues include fi les, chains, buffers, and waiting lines.) If 
permitted to capture the resource, the entity remains for a time, then releases the resource.

There are many possible states of resource. Minimally, these states are idle and busy. But 
other possibilities exist including failed, blocked, or starved states.

List processing: Entities are managed by allocating them to resources that provide service, 
by attaching them to event notices thereby suspending their activity into the future, or by 
placing them into an ordered list. Lists are used to represent queues.

Lists are often processed according to FIFO (fi rst-in-fi rst-out), but there are many other 
possibilities. For example, the list could be processed by LIFO (last-in-fi rst-out), according to 
the value of an attribute, or randomly, to mention a few. An example where the value of an 
attribute may be important is in SPT (shortest processing time) scheduling. In this case, the 
processing time may be stored as an attribute of each entity. The entities are ordered accord-
ing to the value of that attribute with the lowest value at the head or front of the queue.

Activities and delays: An activity is duration of time whose duration is known prior to com-
mencement of the activity. Thus, when the duration begins, its end can be scheduled. The 
duration can be a constant, a random value from a statistical distribution, the result of an 
equation, input from a fi le, or computed based on the event state. For example, a service 
time may be a constant 10 min for each entity; it may be a random value from an exponen-
tial distribution with a mean of 10 min; it could be 0.9 times a constant value from clock 
time 0 to clock time 4 h, and 1.1 times the standard value after clock time 4 h; or it could 
be 10 min when the preceding queue contains at most four entities and 8 min when there 
are fi ve or more in the preceding queue.

A delay is an indefi nite duration that is caused by some combination of system condi-
tions. When an entity joins a queue for a resource, the time that it will remain in the queue 
may be unknown initially since that time may depend on other events that may occur. 
An example of another event would be the arrival of a rush order that preempts the 



608 Modeling and Simulation of Systems Using MATLAB and Simulink

resource. When the preemption occurs, the entity using the resource relinquishes its con-
trol instantaneously. Another example is a failure necessitating repair of the resource.

Discrete-event simulations contain activities that cause time to advance. Most discrete-
event simulations also contain delays as entities wait. The beginning and ending of an 
activity or delay is an event.

Table 12.1 shows the entities, attributes, and activities for different systems.

Deterministic vs. stochastic activates: If the outcome of an activity can be described com-
pletely in terms of its input, the activity is called deterministic. Often the activity is a part 
of the system environment because the exact outcome at any point of time is not known. 
For example, consider a manufacturing industry. The production of items depends on a 
number of factors like random power failure, worker strikes, machine failure, etc. If the 
activity is truly stochastic, there is no known explanation for its randomness. Sometimes, it 
requires too much details to describe an activity fully, the activity is said to be stochastic.

Exogenous vs. endogenous activities: Endogenous activities are those which are occurring 
within the system and exogenous activities describe the activities in the environment that 
affect the system. If a system has no exogenous activities, it is called a closed system, while 
an open system is one that has exogenous activities. Consider an example of a factory, 
which receives the orders. The arrival of orders may be considered to be outside to the 
infl uence of the factory and therefore part of environment. Hence it may be considered as 
an exogenous activity.

Discrete-event simulation model: Discrete-event simulation model can be defi ned as one in 
which the state variables change only at those discrete points in time at which events 
occur. Events occur as a consequence of activity times and delays. Entities may compete 
for system resources, possibly joining queues while waiting for an available resource. 
Activity and delay times may “hold” entities for durations of time.

A discrete-event simulation model is conducted over time (“run”) by a mechanism that 
moves simulated time forward. The system state is updated at each event along with cap-
turing and freeing of resources that may occur at that time.

An orthogonal classifi cation of systems is based on the distinction whether the progress 
of the dynamic system state is pushed forward by time or by the occurrence of events 
(Cassandras and Lafortune, 1999). While in time-driven systems all state changes are syn-
chronized by the system clock, in event-driven systems events occur asynchronously and 
possibly concurrently/simultaneously.

Thus, a DES is a discrete state, event-driven (not time-driven) system, that is, the state 
changes of the system depend completely on the appearance of discrete events over time.

Modeling techniques: Various approaches to the modeling of (discrete-event) dynamic sys-
tems exist (Ramadge and Wonham, 1989). These approaches can be divided into logical 

TABLE 12.1

Entities, Attributes, and Activities for Different Systems

Systems Entities Attributes Activities

Market Customer Shopping items Checking out

Telephone system Messages Length Transmission

Bank Customer Balance status Depositing or 

withdrawing money

Traffi c Cars Speed and distance Driving

Quality control system Products Quality Checking

Factory system Products Orders remain Arrival of orders



Discrete-Event Modeling and Simulation 609

models and timed models. The latter are also known as performance models and can 
 further be split into the classes of deterministic (or nonstochastic) and stochastic models.

Logical models and nonstochastic timed models are primarily used in control theory 
(Thistle, 1994). These models mainly consider the logical aspects of the system, for exam-
ple, the order of events.

Evaluation techniques: Various evaluation techniques exist for the modeling techniques 
mentioned in Bolch et al. (2006). These evaluation techniques include analytical/numeri-
cal methods (e.g., Markovian analysis, algorithms for product-form queuing networks) as 
well as (discrete-event) simulation.

Especially when dealing with very complex systems, the following drawbacks can be 
observed:

 1. With Markovian analysis, it is necessary to create the whole state space (e.g., in the 
form of generator matrices of continuous-time Markov chains). Due to the fi nite 
memory of computer systems, the calculation of results heavily suffers from state 
space explosion. Furthermore, Markovian analysis can only be done for models 
that fulfi ll the Markovian property (i.e., state sojourn times have to be memory-
less, i.e., have to be exponentially or geometrically distributed).

 2. Algorithms for product-form queuing networks require queuing network models 
in product form, which is a hard constraint. Furthermore, queuing networks lack 
means for handling synchronization and concurrency of system components.

 3. To get narrow confi dence intervals, it is necessary to simulate complex systems 
with long simulation runs and/or with a large number of simulation runs, espe-
cially in the presence of rare events. Thus, although simulation is a versatile tool 
because it can handle stochastic processes that fall into the class of generalized 
semi-Markov processes, it is a very time-consuming method for deriving results.

Of course, workarounds have been presented to these and further problems (Trivedi et al., 
1994; Wuechner et al., 2005; Bolch et al., 2006). These include largeness avoidance, state space 
truncation, lumping, decomposition, fl uid models, stiffness avoidance, stiffness tolerance, 
phase approximations, and simulation speedup techniques.

12.3 Queuing System

An important application of discrete system simulation is in studying the dynamics of 
waiting line queues as shown in Figure 12.1. It is often observed in many real-life  situations, 
for example buying tickets, stopping at red traffi c light, standing in a queue to pay money 
at a supermarket cash counter, etc. Therefore, many systems contain queue as subsystems. 
There are many reasons to study a queuing system as mentioned below:

 1. To determine the optimal usage of service facility

 2. Waiting time for the customers which is a cause for their dissatisfaction

 3. Number of persons in the queue at a particular time to decide the waiting space 
required

 4. Number of customers served



610 Modeling and Simulation of Systems Using MATLAB and Simulink

There are two important attributes which determine the properties of a waiting queue, 
namely, arrival rate and service rate. The arrival rate of customers is the average num-
ber of customers who join the queue per unit time and the service rate is the average 
number of customers served in per unit time by the server. Customers normally refers 
to people, machine, trucks, patients, pallets, airplanes, cases, orders, dirty clothes, etc., 
and the server refers to receptionist, repair person, mechanics, clerk at counter, doctor, 
automatic packer, CPU of computer, washing machine, etc.

Calling population•  is the population where the customers are coming, may be fi nite 
or infi nite (based on their arrival rate is defi ned).

System capacity•  is the maximum number of customers in the queue. Sometimes it 
is limited, sometimes unlimited.

Arrival process•  characterizes by inter-arrival times of successive customers. Inter-
arrival time may be scheduled time or random time (probability distribution). 
Scheduled arrival like patients to physician after appointment, scheduled airline 
fl ight arrival to airport. Random arrivals like arrival of people to restaurant, banks, 
PCO, arrival of demand, orders etc.

Queue behavior

This refers to customer action in queue.• 

 Leave when line is too long (Balk)

 Leave after sometimes when see that line is too slow (Renege)

 Move from one line to another (Jockey)

Measure of performance

Average time spent in system• 

Server utilization• 

Waiting time/customer• 

Number of customers served• 

FIGURE 12.1
Queuing system.

Calling
population

Waiting queue Server



Discrete-Event Modeling and Simulation 611

There are two kinds of queuing system simulation:

 1. Discrete time-oriented simulation

 2. Discrete event-oriented simulation

The discrete time-oriented simulation refers to the simulation for equal slices of time and 
the discrete event-oriented simulation examines only major events.

12.4 Discrete-Event System Simulation

In this simulation, each event occurs at an instant in time and marks a change of state in 
the system. The methods for analysis of the simulation models are numerical methods 
rather than by analytical methods, that is, analyzing a model is opposed to the analyti-
cal approach, where the method of analyzing the system is purely theoretical. Analytical 
methods employ the deductive reasoning of mathematics to “solve” the model. For exam-
ple, some inventory models employ differential calculus to determine the minimum-cost 
policy. Numerical methods employ computational procedures to “solve” mathematical 
models, that is, execution of a computer program that gives information about the system 
being investigated. In these simulation models which employ numerical methods, mod-
els are “run” rather than solved. An artifi cial history of the system is generated based on 
the assumptions, and observations are collected to be analyzed and to estimate the true 
system performance measures. A common exercise is to build discrete-event simulations 
model for a customer arriving at a bank to be served by a teller.

A common exercise in learning how to build discrete-event simulations is to model a 
queue, such as day-to-day operation of a customer arriving at a bank to be served by 
a teller. In this example, the system entities are customer-queue and tellers. The system 
events are customer-arrival and customer-departure. (The event of teller-begins-service 
can be part of the logic of the arrival and departure events.) The system states, which 
are changed by these events, are number-of-customers-in-the-queue (an integer from 
0 to n) and teller-status (busy or idle). The random variables that need to be charac-
terized to model this system stochastically are customer-inter-arrival-time and teller-
service-time.

12.5 Components of Discrete-Event System Simulation

 1. Clock
 The simulation should keep track of the current simulation time, in whatever units 

the measurement is being done for the system being modeled. In discrete-event 
simulations, as opposed to real time simulations, time “hops” between events as 
they are instantaneous—the clock skips to the next event start time as the simula-
tion proceeds.



612 Modeling and Simulation of Systems Using MATLAB and Simulink

 2. Events list
 The simulation maintains the events list. There are pending simulated events 

which need to be simulated themselves. The events are modeled as sequences of 
events giving the starting time and ending time of discrete event. The pending list 
is removed in a chronological order regardless of the way in which the statistics 
are entered. In the case of the bank, the event customer arrival at instant of time t 
would, if the customer queue was empty and teller was idle, include the creation 
of the subsequent event customer departure to occur at time t + s, where s is a 
number generated from the service-time distribution.

 3. Random-number generators
 The simulation needs to generate random variables of variety of distributions 

depending on the system model. This is carried out by one or more pseudoran-
dom number generators. The pseudorandom numbers as opposed to true random 
numbers benefi ts the simulation when there is a need to rerun with exactly the 
same behavior. The event-based random number generates random numbers from 
a specifi c distribution parameter and initial seed. It generates a random number in 
an event-based manner each time an entity arrives for simulation. The seed is reset 
to the value of the initial seed parameter each time a simulation starts making the 
random behavior repeatable.

 4. Statistics
 The simulation particularly keeps track of the system’s statistics, which quan-

tify the aspects of interest. For instance, in the case of the bank, it is of interest to 
track the mean service times.

 5. Ending condition
Theoretically a discrete-event simulation could keep running forever. So, the simula-
tion designer has to decide when the simulation will end. Typical choices are “at time 
instant t” or “after processing n number of events” or, more generally, “when statisti-
cal measure X reaches the value x.”

The main loop of a discrete-event simulation begins with the “Start” command in which 
it initializes simulation, state variables, clock, and schedule an initial event. The “Do loop” 
or “While loop” execution is the simulation when the case is FALSE and it includes setting of 
clock to next event time, executing next event and removing from the events list and fi nally 
updating statistics as shown in Figure 12.2. When the “End” command is executed, it will 
print the results.

Example 12.1: Simulate a Cash Withdrawal at an ATM Counter

Consider the ATM counter for discrete system simulation. The following components may be 
taken for this system.

 1. System states
Q(t)—Number of customers in waiting line
S(t)—Server status at time t

 2. Entities—The customer and server explicitly modeled
 3. Events

A—Arrival
D—Departure
E—Stopping event



Discrete-Event Modeling and Simulation 613

 4. Event Notice
(A, t)—An arrival event to occur at future time t
(D, t)—A customer departure at future time t
(E, Tsim)—The simulation stop event at future time Tsim

 5. Activities
Inter-arrival time, service time has to be defi ned

 6. Delay—Customer time spent in the system

The life cycle of a customer at an ATM counter is shown in Figure 12.3

FIGURE 12.2
Flow chart of discrete-event simulation.

Start

True

Initialize simulation

Simulation
termination

condition

Change system state if
event has occurred

Collect statistics

Increment clock by Δt

Print

End

FIGURE 12.3
Life cycle of a customer at an ATM counter.

Begin
service

Begin
service

End
service

End
service

Time
Activity

Activity TimeDelay

Delay

ith arrival

(i + 1)th arrival



614 Modeling and Simulation of Systems Using MATLAB and Simulink

 The Pseudo-code for arrival event is written below:

 % Pseudo code for arrival event
  Arrival event occur at Clock =t
  If S(t) ==1 then
   Q=Q+1;

  Else
   S(t) = 1
   Generate service time Ts
   Schedule new departure at t+Ts

  End
  Generate Inter-arrival time Ta
  Schedule next arrival at t+Ta
  Collect statistics

  Time advance control routine
Return

Similarly departure event Pseudo-code may also be written as follows:

 % Pseudo code for departure event
     departure event occur at Clock =t
     If Q(t) >0 then
       Q=Q−1;

TABLE 12.2

Inter-Arrival Time and Their Service 
Time of Customers

Inter-arrival time 0 5 3 1 1

Service time 3 2 1 2 1

TABLE 12.3

Simulation Results for an ATM Counter

States Cumulative Statistics

DescriptionClock Q(t) S(t) B MQ

0 0 1 0 0 First arrival at Ta = 0

Service time = 3

3 0 0 3 0 First departure

5 0 1 3 0 Second arrival Ta = 5

Service time Ts = 2

7 0 0 5 0 Second departure

8 0 1 5 0 Third arrival Ta = 8

Service time Ts = 1

9 0 1 6 0 Third departure

9 0 1 6 Fourth arrival Ta = 9

Service time Ts = 2

10 1 1 8 1 Fifth arrival Ta = 10

Service time Ts = 1

11 0 1 8 1 Fourth departure

12 0 0 9 1 Fifth departure



Discrete-Event Modeling and Simulation 615

       Generate service time Ts
       Schedule new departure at t+Ts
     Else
       S(t) = 0
     End
     Collect statistics
     Time advance control routine
Return

Let us consider the inter-arrival time of customers and their service time as shown in 
Table 12.2. For these input data, the discrete system simulation results of ATM machine 
are shown in Table 12.3.

12.6 Input Data Modeling

Input data collection and analysis require major time and resource commitment in 
 discrete-event simulation. In the simulation of a queuing system, typical input data are 
the distribution of time between arrivals and service time. In real-life applications, deter-
mining appropriate distributions for input data is a major task from the standpoint of time 
and resource requirements. Wrong or faulty input data lead to wrong results and mislead 
the modeler. The procedure used for input data modeling is as follows:

 1. Data collection—Collect the data for real-life system. Unfortunately, sometimes 
it is not possible to collect suffi cient data due to system limitations or many other 
reasons. In such situations expert knowledge and opinion is used to develop some 
fuzzy systems to generate useful and good data.

 2. Identify the distribution of data—When data are collected or obtained, develop a 
frequency distribution or histogram of data.

 3. Select the most appropriate distribution family and their parameters.

 4. Check the goodness of fi t.

12.7 Family of Distributions for Input Data

The exponential, normal, and Poisson distributions are frequently used. There are literally 
hundreds of distributions that may be created. Some of them are

 1. Binomial distribution

 2. Negative binomial distribution

 3. Poisson distribution

 4. Normal distribution

 5. Lognormal distribution

 6. Exponential distribution

 7. Gamma distribution



616 Modeling and Simulation of Systems Using MATLAB and Simulink

 8. Beta distribution

 9. Erlang distribution

 10. Weibull distribution

 11. Discrete or uniform distribution

 12. Triangular distribution

 13. Empirical distribution

Never ignore physical characteristics of the system/process while selecting distribution 
function such as the system or process is bounded or unbounded; discrete or continuous 
valued, etc.

The last step in the process is the testing of the distribution hypothesis. The Kolomogrov–
Smirnov (K–S) and chi-square goodness of fi t tests can be applied to many distribution 
assumptions. When a distributional assumption is rejected, another distribution is tried. 
When all else fails, the empirical distribution may be used in the model.

12.8 Random Number Generation

Random numbers are useful for simulating discrete system simulation. Random sequences 
with a variety of statistical properties can be generated using different techniques.

12.8.1 Uniform Distribution

The simplest type of random sequence is a sequence of numbers as interval [a b] where each 
number in the interval is likely to occur. A sequence of this form is said to be uniformly 
distributed. The probability density function p(x) for a uniform distribution is shown in 
Figure 12.4.

The area under a section of the probability density function is the probability that a 
random number will fall in the segment. The most widely used numerical method for 
generating a sequence of uniform distributed random integer is the linear congruential 
method based on the formula given in Equation 12.1.

 + = α + γ1 ( )%k ku u b
 (12.1)

where % denotes the modulo operator. That is, a%b is the remainder after dividing a by b. 
The integers α, β, and γ are called multiplier, increment, and modulus, respectively.

a

1/(b – a)

b
FIGURE 12.4
Probability density of a uniform distribution.



Discrete-Event Modeling and Simulation 617

Pseudo code for uniform rand number generator
Pick n>>1 and seed the random number generator, RAND
For k=1 to n

  { Set zk=RAND }
For k=1 to m do
{ p=1+nRAND/(umax+1)
Xk=a+(b−a)zp/umax
Zp=RAND
}

In MATLAB® there is a built-in function for uniform random number generation

>>rand(1); % single value
>>rand(1,50); % one dimension array
>>rand(10); % square matrix

Then a uniform distribution is used to generate a pair of random numbers x and y using 
MATLAB function rand(2500,2) and plotted on x–y plane, as shown in Figure 12.5.

12.8.2 Gaussian Distribution of Random Number Generation

Although uniform distribution of random number is useful in many applications, there 
are other instances where it is more appropriate to generate random numbers, which are 
not restricted to an interval of fi nite length. Nonuniform distribution of random numbers 
can be constructed from a uniform distribution over the interval [0, 1].

The most widely used nonuniform distribution of random numbers is the Gaussian 
distribution, also called the normal distribution. The probability distribution in two 
dimensional space is shown in Figure 12.6.

FIGURE 12.5
Uniform distribution in two-dimensional space.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

y

0 0.1 0.2 0.3 0.4 0.5 0.6
x

0.7 0.8 0.9 1



618 Modeling and Simulation of Systems Using MATLAB and Simulink

 

⎡ ⎤− −μ= ⎢ ⎥σ π σ⎣ ⎦

2

2

( )1( ) exp
2 2

x
p x

 

(12.2)

where
μ is the mean of distribution of random number
σ is the standard deviation of distribution of random number

The mean is the point about which the bell-shaped curve is centered, and standard 
deviation is the measure of spread of random numbers about the mean. It is possible to 
transform a uniform distribution into a Gaussian distribution using the following pair of 
random numbers with the Box–Muller method.

 1 2 1cos(2 ) 2lnx u u= π −
 

(12.3)

 1 2 1sin(2 ) 2lnx u u= π −
 

(12.4)

In MATLAB, randn is a built-in function for generating normal random number genera-
tion. Then a uniform distribution is used to generate a pair of random numbers x and y 
using MATLAB function randn(2500,2) and plotted on x–y plane, as shown in Figure 12.7.

FIGURE 12.6
Probability density of Gaussian distribution. –a

P 
(x

)

0 a

FIGURE 12.7
Gaussian distribution function in two-dimensional space.

4

3

2

1

0y

–1

–2

–3

–4
–4 –3 –2 –1 0

x
1 2 3 4



Discrete-Event Modeling and Simulation 619

12.9 Chi-Square Test

Suppose that Ni is the number of events observed in the ith bin, and that ni is the number 
expected according to some known distribution. Note that the Nis are integer, while the nis 
may not be. Then the chi-square test is

 

−= ∑
2

2 ( )i i

ii

N n
x

n
 

(12.5)

A large value of x2 indicates that the hypothesis is null.

12.10 Kolomogrov–Smirnov Test

The K–S test is applicable to unbinned distributions that are functions of single indepen-
dent variable, that is, to data sets where each data point can be associated with single 
number. The list of data points can be easily converted to an unbiased estimator SN(x) of 
cumulative distribution function of probability distribution form which it was drawn:

If N events are located at values xi, where i = 1, 2, …, N, then SN(x) is the function  giving the 
fraction of data points to the left of a given value x. This function is the obvious  constant 
between consecutive (i.e., sorted in ascending order) xi’s, and jumps by the same constant 
1/N at each xi.

The K–S test is a simple measure of the maximum value of the absolute and difference 
between two cumulative distribution functions. Thus, for comparing one data set’s SN(x) 
to a known cumulative distribution function P(x), the K–S statistic is

 
max ( ) ( )N

c
D S x P x

−∞< <∞
= −

 
(12.6)

12.11 Review Questions

 1. Explain discrete system simulation.

 2. Classify discrete system simulation.

 3. Explain the following terms:

 a. Clock

 b. Event

 c. Entity

 d. Attribute

 4. What do you mean by input data modeling in discrete-event models.

 5. Write a MATLAB program for arrival and departure activities of a discrete system 
simulation.

 6. Write a MATLAB program for drawing the histogram for gamma distribution.



This page intentionally left blank 



621

Appendix A

A.1 What Is MATLAB®?

MATLAB is a high-performance language for technical computing. It integrates computation, 
visualization, and programming in an easy-to-use environment where problems and 
solutions are expressed in a familiar mathematical notation. Typical uses include

Math and computation• 

Algorithm development• 

Modeling, simulation, and prototyping• 

Data analysis, exploration, and visualization• 

Scientifi c and engineering graphics• 

Application development, including graphical user interface building• 

MATLAB is an interactive system whose basic data element is an array that does not 
require dimensioning. This allows you to solve many technical computing problems, 
especially those with matrix and vector formulations, in a fraction of the time it would 
take to write a program in a scalar noninteractive language such as C or Fortran. The 
name MATLAB stands for matrix laboratory. In industry, MATLAB is the tool of choice for 
high-productivity research, development, and analysis. MATLAB features a family of 
application-specifi c solutions called toolboxes. Very important to most users of MATLAB, 
toolboxes allow learning and applying specialized technology. Toolboxes are comprehen-
sive collections of MATLAB functions (M-fi les) that extend the MATLAB environment 
to solve particular classes of problems. Areas in which toolboxes are available include 
signal processing, control systems, neural networks, fuzzy logic, wavelets, simulation, 
and many others.

A.2 Learning MATLAB

Learning MATLAB is just like learning how to drive a car. You can learn all the rules but to 
become a good driver you have to get out on the road and drive. The easiest and best way 
to learn MATLAB is to use MATLAB.

A.3 The MATLAB System

The MATLAB system consists of fi ve main parts:



622 Appendix A

A.3.1 Development Environment

This is the set of tools and facilities that help to you use MATLAB functions and fi les. 
Many of these tools are graphical user interfaces. It includes the MATLAB desktop and 
Command Window, a command history, and browsers for viewing help, the workspace, 
fi les, and the search path.

A.3.2 The MATLAB Mathematical Function Library

This is a vast collection of computational algorithms ranging from elementary func-
tions like sum, sine, cosine, and complex arithmetic, to more sophisticated functions like 
matrix inverse, matrix eigenvalues, Bessel functions, and fast Fourier trans forms, etc.

A.3.3 The MATLAB Language

This is a high-level matrix/array language with control fl ow statements, functions, data 
structures, input/output, and object-oriented programming features. It allows both 
“programming in the small” to rapidly create quick and dirty throwaway programs, 
and “programming in the large” to create complete large and complex application 
programs.

  

A.3.4 Handle Graphics

This is the MATLAB graphics system. It includes high-level commands for two-dimensional 
(2-D) and three-dimensional (3-D) data visualization, image processing, animation, and 
presentation graphics. It also includes low-level commands that allow to fully customize 
the appearance of graphics as well as to build complete graphical user interfaces on your 
MATLAB applications.



Appendix A 623

A.3.5 The MATLAB Application Program Interface (API)

This is a library that allows us to write C and Fortran programs that interact with 
MATLAB. It include facilities for calling routines from MATLAB (dynamic linking), call-
ing MATLAB as a computational engine, and for reading and writing MAT-fi les.

A.4 Starting and Quitting MATLAB

On a Microsoft Windows platform, to start MATLAB, double-click the MATLAB shortcut 
icon on your Windows desktop. On a UNIX platform, to start MATLAB, type MATLAB at 
the operating system prompt.

To end your MATLAB session, select Exit MATLAB from the File menu in the desktop, 
or type quit in the Command Window. To execute specifi ed functions each time MATLAB 
quits, such as saving the workspace, we can create and run a fi nish .m script.

A.5 MATLAB Desktop

When MATLAB starts, the MATLAB desktop appears, containing tools (graphical user 
interfaces) for managing fi les, variables, and applications associated with MATLAB. The 
fi rst time MATLAB starts, the desktop appears as shown in the following illustration, 
although your Launch Pad may contain different entries. You can change the way your 
desktop looks by opening, closing, moving, and resizing the tools in it. You can also move 
tools outside of the desktop or return them back inside the desktop (docking). All the 
desktop tools provide common features such as context menus and keyboard shortcuts. 
You can specify certain characteristics for the desktop tools by selecting Preferences from 
the File menu. For example, you can specify the font characteristics for the Command 
Window text. For more information, click the Help button in the Preferences dialog 
box.

A.6 Desktop Tools

This section provides an introduction to MATLAB’s desktop tools. You can also use 
MATLAB functions to perform most of the features found in the desktop tools.

A.6.1 Command Window

Use the Command Window to enter variables and run functions and M-fi les as shown in 
Figure A1.



624 Appendix A

A.6.2 Command History

Lines you enter in the Command Window are logged in the Command History window. 
In the Command History, you can view previously used functions, and copy and execute 
selected lines.

A.6.2.1 Running External Programs

External programs can run from the MATLAB Command Window. The exclamation point 
character! is a shell escape and indicates that the rest of the input line is a command to the 
operating system. This is useful for invoking utilities or running other programs without 
quitting MATLAB. On Linux, for example, !emacs magik.m invokes an editor called emacs 
for a fi le named magik.m. When you quit the external program, the operating system 
returns control to MATLAB.

FIGURE A1
Command Window.

FIGURE A2
Command History Window.



Appendix A 625

A.6.2.2 Launch Pad

MATLAB’s Launch Pad provides easy access to tools, demos, and documentation as shown 
in Figure A3.

A.6.2.3 Help Browser

Use the Help browser to search and view documentation for all MathWorks products. The 
Help browser is a Web browser integrated into the MATLAB desktop that displays HTML 
documents. To open the Help browser, click the help button in the toolbar, or type help 
browser in the Command Window.

The Help browser consists of two panes, the Help Navigator, which you use to fi nd infor-
mation, and the display pane, where you view the information as shown in Figure A4.

FIGURE A3
Launch Pad.

FIGURE A4
Help Browser.



626 Appendix A

A.6.2.4 Current Directory Browser

MATLAB fi le operations use the current directory and the search path as reference points. 
Any fi le you want to run must either be in the current directory or on the search path. 
A quick way to view or change the current directory is by using the Current Directory 
fi eld in the desktop toolbar.

To search for, view, open, and make changes to MATLAB-related directories and fi les, 
use the MATLAB Current Directory browser. Alternatively, you can use the functions dir, 
cd, and delete.

A.6.2.5 Workspace Browser

The MATLAB workspace consists of the set of variables (named arrays) built up during a 
MATLAB session and stored in memory. We may add variables to the workspace by using 
functions, running M-fi les, and loading saved workspaces. To view the workspace and 
information about each variable, use the Workspace browser as shown in Figure A5 or use 
the functions who and whos. To delete variables from the workspace, select the variable 
and select Delete from the Edit menu. Alternatively, use the clear function. The workspace 
is not maintained after you end the MATLAB session. To save the workspace to a fi le 
that can be read during a later MATLAB session, select Save Workspace As from the File 
menu, or use the save function. This saves the workspace to a binary fi le called a MAT-fi le, 
which has a .mat extension. There are options for saving to different formats. To read in a 
MAT-fi le, select Import Data from the File menu or use the load function.

A.6.2.6 Array Editor

Double-click on a variable in the Workspace browser to see it in the Array Editor as shown in 
Figure A6. Use the Array Editor to view and edit a visual representation of 1-D or 2-D numeric 
arrays, strings, and cell arrays of strings that are in the workspace, change values of array 
elements, change the display format.

FIGURE A5
Workspace Window.



Appendix A 627

A.6.2.7 Editor/Debugger

Use the Editor/Debugger to create and debug M-fi les, which are programs you write to 
run MATLAB functions. The Editor/Debugger provides a graphical user interface for 
basic text editing, as well as for M-fi le debugging. Any text editor can be used to create 
M-fi les, such as Emacs, and can use preferences (accessible from the desktop File menu) 
to specify that editor as the default. If another editor is used, still the MATLAB Editor/
Debugger can be used for debugging. To view contents of an M-fi le, one can display it in 
the Command Window by using the type function.

A.6.2.8 Other Development Environment Features

Additional development environment features are

Importing and Exporting Data: Techniques for bringing data created by other • 
applications into the MATLAB workspace, including the Import Wizard, and 
packaging MATLAB workspace variables for use by other applications.

Improving M-File Performance: The Profi ler is a tool that measures where an • 
M-fi le is spending its time. Use it to help you make speed improvements.

Interfacing with Source Control Systems: Access your source control system from • 
within MATLAB, Simulink, and State fl ow.

Using Notebook: Access MATLAB’s numeric computation and visualization soft-• 
ware from within a word processing environment (Microsoft Word).

A.7 Entering Matrices

The best way to get started with MATLAB is to learn how to handle matrices. Start 
MATLAB and follow along with each example. The matrices can be entered into MATLAB 
in several different ways:

FIGURE A6
Array Editor.



628 Appendix A

Enter an explicit list of elements• 

Load matrices from external data fi les• 

Generate matrices using built-in functions• 

Create matrices with your own functions in M-fi les• 

Start by entering matrix as a list of its elements. You have only to follow a few basic 
conventions:

Separate the elements of a row with blanks or commas• 

Use a semicolon (;) to indicate the end of each row• 

Surround the entire list of elements with square brackets, [ ]. To enter a matrix, • 
simply type in the Command Window

 A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14]

MATLAB displays the matrix you just entered.

A = 
 16  3  2 13
 5 10 11  8
 9  6  7 12
 4 15 14  1

  

This exactly matches the numbers in the engraving. Once the matrix is entered, it is auto-
matically remembered in the MATLAB workspace. You can refer to it simply as A. Now that 
you have A in the workspace, take a look at what makes it so interesting. Why is it magic?

sum, transpose, and diag

There are some special properties magic square matrix such as ways of summing its ele-
ments. If you take the sum along any row or column, or along either of the two main 



Appendix A 629

diagonals, you will always get the same number. Let’s verify that using MATLAB. The fi rst 
statement to try is sum(A) MATLAB replies with ans = 34 34 34 34.

When you do not specify an output variable, MATLAB uses the variable ans, short for 
answer, to store the results of a calculation. You have computed a row vector  containing 
the sums of the columns of A. Sure enough, each of the columns has the same sum, 
the magic sum, 34. How about the row sums? MATLAB has a preference for work-
ing with the columns of a matrix, so the easiest way to get the row sums is to trans-
pose the matrix, compute the column sums of the transpose, and then transpose the 
result. The transpose operation is denoted by an apostrophe or single quote, ‘. It fl ips 
a matrix about its main diagonal and it turns a row vector into a column vector. So A’ 
produces

ans = 
 16  5  9  4
 3 10  6 15
 2 11  7 14
 13  8 12  1

And

sum(A¢)¢ produces a column vector containing the row sums

ans = 
 34
 34
 34
 34

The sum of the elements on the main diagonal is easily obtained with the help of the 
diag function, which picks off that diagonal.

diag(A) produces

ans = 
 16
 10
  7
  1

and sum(diag(A)) produces

 ans = 34

The other diagonal, the so-called antidiagonal, is not so important mathematically, so 
MATLAB does not have a readymade function for it. But a function originally intended for 
use in graphics, fl iplr, fl ips a matrix from left to right.

 sum(diag(fliplr(A) ) )
 ans = 34



630 Appendix A

A.8 Subscripts

The element in row i and column j of A is denoted by A(i,j). For example, A(4,2) is the 
number in the fourth row and second column. For our magic square, A(4,2) is 15. So it is 
possible to compute the sum of the elements in the fourth column of A by typing

 A(1,4) +  A(2,4) +  A(3,4) +  A(4,4)

This produces ans = 34
But this is not the most elegant way of summing a single column. It is also possible to 

refer to the elements of a matrix with a single subscript, A(k). This is the usual way of ref-
erencing row and column vectors. But it can also apply to a fully 2-D matrix, in which case 
the array is regarded as one long column vector formed from the columns of the original 
matrix. So, for our magic square, A(8) is another way of referring to the value 15 stored in 
A(4,2). If you try to use the value of an element outside of the matrix, it is an error.

t = A(4,5)

Index exceeds matrix dimensions.
On the other hand, if you store a value in an element outside of the matrix, the size 

increases to accommodate the newcomer.

X = A;
X(4,5) = 17
3-7
X =  
 16  3  2 13  0
  5 10 11  8  0
  9  6  7 12  0
  4 15 14  1 17

A.9 The Colon Operator

The colon ( : ) is one of MATLAB’s most important operators. It occurs in several different 
forms. The expression 1:10 is a row vector containing the integers from 1 to 10.

1 2 3 4 5 6 7 8 9 10

To obtain non-unit spacing, specify an increment. For example, 100:−7:50 is

100 93 86 79 72 65 58 51
and 0:pi/4:pi is 0 0.7854 1.5708 2.3562 3.1416

Subscript expressions involving colons refer to portions of a matrix. A(1:k,j) is the fi rst k 
elements of the jth column of A. So sum(A(1:4,4) ) computes the sum of the fourth column. 
But there is a better way. The colon by itself refers to all the elements in a row or column of 



Appendix A 631

a matrix and the keyword end refers to the last row or column. So sum(A(:,end) ) computes 
the sum of the elements in the last column of A.

ans = 34

Why is the magic sum for a 4-by-4 square equal to 34? If the integers from 1 to 16 are 
sorted into four groups with equal sums, that sum must be sum(1:16)/4 which, of course, is

ans = 34

A.10 The Magic Function

MATLAB actually has a built-in function that creates magic squares of almost any size. 
Not surprisingly, this function is named magic.

B = magic(4)
B =  
 16  2  3 13
  5 11 10  8
  9  7  6 12
  4 14 15  1

This matrix is almost the same as the one in the engraving and has all the same “magic” 
properties; the only difference is that the two middle columns are exchanged. To make this 
B into A, swap the two middle columns.

A = B(:,[1 3 2 4])

This says “for each of the rows of matrix B, reorder the elements in the order 1, 3, 2, 4.” 
It produces

A =
 16  3  2 13
  5 10 11  8
  9  6  7 12
  4 15 14  1

Why would he go to the trouble of rearranging the columns when he could have used 
MATLAB’s ordering? No doubt he wanted to include the date of the engraving, 1514, at the 
bottom of his magic square.

A.11 Expressions

Like most other programming languages, MATLAB provides mathematical expressions, 
but unlike most programming languages, these expressions involve entire matrices. The 
building blocks of expressions are



632 Appendix A

Variables• 

Numbers• 

Operators• 

Functions• 

A.11.1 Variables

MATLAB does not require any of type declarations or dimensional statements. When 
MATLAB encounters a new variable name, it automatically creates the variable and allo-
cates the appropriate amount of storage. If the variable already exists, MATLAB changes 
its contents and, if necessary, allocates new storage. For example, num_students = 25 cre-
ates a 1-by-1 matrix named num_students and stores the value 25 in its single element. 
Variable names consist of a letter, followed by any number of letters, digits, or underscores. 
MATLAB uses only the fi rst 31 characters of a variable name. MATLAB is case sensitive; it 
distinguishes between uppercase and lowercase letters. A and a are not the same variable. 
To view the matrix assigned to any variable, simply enter the variable name.

A.11.2 Numbers

MATLAB uses conventional decimal notation, with an optional decimal point and leading 
plus or minus sign, for numbers. Scientifi c notation uses the letter e to specify a power-
of-ten scale factor. Imaginary numbers use either i or j as a suffi x. Some examples of legal 
numbers are

3 -99 0.0001
9.6397238 1.60210e-20 6.02252e23
1i -3.14159j 3e5i

All numbers are stored internally using the long format specifi ed by the IEEE fl oating-
point standard. Floating-point numbers have a fi nite precision of roughly 16 signifi cant 
decimal digits and a fi nite range of roughly 10–308 to 10+308.

A.11.3 Operators

Expressions use familiar arithmetic operators and precedence rules.

A.11.4 Functions

MATLAB provides a large number of standard elementary mathematical functions, 
including abs, sqrt, exp, and sin. Taking the square root or logarithm of a negative num-
ber is not an error; the appropriate complex result is produced automatically. MATLAB 
also provides many more advanced mathematical functions, including Bessel and gamma 
functions. Most of these functions accept complex arguments. For a list of the elementary 
mathematical functions like +, −, *, /, \, ∧ etc., type

 help elfun

For a list of more advanced mathematical and matrix functions, type

 helps specfun



Appendix A 633

Some of the functions, like sqrt and sin, are built-in. They are part of the MATLAB core 
so they are very effi cient, but the computational details are not readily accessible. Other 
functions, like gamma and sinh, are implemented in M-fi les. You can see the code and 
even modify it if you want. Several special functions provide values of useful constants. 
Infi nity is generated by dividing a nonzero value by zero, or by evaluating well-defi ned 
mathematical expressions that overfl ow, that is, exceed realmax. Not a number is gener-
ated by trying to evaluate expressions like 0/0 or Inf-Inf that do not have well-defi ned 
mathematical values. The function names are not reserved. It is possible to overwrite any 
of them with a new variable, such as eps = 1.e–6 and then use that value in subsequent 
calculations. The original function can be restored with clear eps.

 pi 3.14159265…
 i Imaginary unit, √−1
 j Same as i
 eps Floating-point relative precision,  2-52

 realmin Smallest floating-point number,  2-1022

 realmax Largest floating-point number, (2-ε)21023
 Inf Infinity
 NaN Not-a-number

A.11.4.1 Generating Matrices

MATLAB provides four functions that generate basic matrices.
Here are some examples.

Z = zeros(2,4)
Z =  
 0 0 0 0
 0 0 0 0
F = 5*ones(3,3)
F =
 5 5 5
 5 5 5
 5 5 5
N = fix(10*rand(1,10))
N =
 4 9 4 4 8 5 2 6 8 0
A = randn(4,4)
A =
 1.0668 0.2944 −0.6918 −1.4410
 0.0593 −1.3362 0.8580 0.5711
 −0.0956 0.7143 1.2540 −0.3999
 −0.8323 1.6236 −1.5937 0.6900

A.12 The Load Command

The load command reads binary fi les containing matrices generated by earlier MATLAB 
sessions, or reads text fi les containing numeric data. The text fi le should be organized as 
a rectangular table of numbers, separated by blanks, with one row per line, and an equal 
number of elements in each row. Store the fi le under the name fi lename.dat. Then the com-
mand load fi lename.dat reads the fi le and creates a variable, x.



634 Appendix A

M-fi les

You can create your own matrices using M-fi les, which are text fi les containing MATLAB 
code. Use the MATLAB Editor or another text editor to create a fi le containing the same 
statements you would type at the MATLAB command line. Save the fi le under a name that 
ends in .m. Store the fi le under the name fi lename.m. Then the statement fi lename reads 
the fi le and creates a variable, contained by the fi le.

Concatenation

Concatenation is the process of joining small matrices to make bigger ones. The pair of 
square brackets, [ ], is the concatenation operator. For an example, start with the 4-by-4 
magic square, A, and form B = [A A+32; A+48 A+16].

Deleting rows and columns

Any rows and columns can be deleted from a matrix using just a pair of square brackets. 
Start with

 X = A;

Then, to delete the second column of X, use

 X(:,2) = []

If you delete a single element from a matrix, the result isn’t a matrix anymore. So, expres-
sions like X(1,2) = [ ] result in an error.

Adding a matrix to its transpose produces a symmetric matrix.
A + A′
The determinant of this particular matrix happens to be zero, indicating that the matrix 

is singular.

d = det(A)
X = inv(A) Inverse of Matrix A.
RCOND = 1.175530e−017.
e = eig(A)→ Eigenvalues of Matrix A.
poly(A)→ the coefficients in the characteristic polynomial

mu = mean(D)→ Average value of each column of matrix D
sigma = std(D)→ Standard deviation of each column of matrix D
B = A − 8.5 → A scalar is subtracted from a matrix A by subtracting it from each element

Controlling command window input and output

So far, you have been using the MATLAB command line, typing commands and expressions, 
and seeing the results printed in the Command Window. This section describes how to

Control the appearance of the output values• 

Suppress output from MATLAB commands• 

Enter long commands at the command line• 

Edit the command line• 



Appendix A 635

A.13 The Format Command

The format command controls the numeric format of the values displayed by MATLAB. 
The command affects only how numbers are displayed, not how MATLAB computes or 
saves them.

 x = [4/3 1.2345e−6]
format short

 1.3333 0.0000

format short e

 1.3333e+000 1.2345e−006
format short g

 1.3333 1.2345e−006
format long

 1.33333333333333 0.00000123450000

format long e

 1.333333333333333e+000 1.234500000000000e−006
format long g

 1.33333333333333 1.2345e−006
format bank

 1.33 0.00

format rat

 4/3 1/810045
format hex

 3ff5555555555555 3eb4b6231abfd271

If you want more control over the output format, use the sprintf and fprintf functions.

A.14 Suppressing Output

If you simply type a statement and press Return or Enter, MATLAB automatically dis-
plays the results on screen. However, if you end the line with a semicolon, MATLAB per-
forms the computation but does not display any output. This is particularly useful when 
you generate large matrices. For example,

A = magic(100);

A.15 Entering Long Command Lines

If a statement does not fi t on one line, use three periods, …, followed by Return or Enter to 
indicate that the statement continues on the next line. For example,

s = 1 −  1/2 + 1/3 −  1/4 + 1/5 − 1/6 + 1/7 …
 − 1/8 + 1/9 − 1/10 + 1/11 − 1/12;



636 Appendix A

A.16 Basic Plotting

MATLAB has extensive facilities for displaying vectors and matrices as graphs, as well as 
annotating and printing these graphs. This section describes a few of the most important 
graphics functions and provides examples of some typical applications.

A.16.1 Creating a Plot

The plot function has different forms, depending on the input arguments. If y is a vector, 
plot(y) produces a piecewise linear graph of the elements of y versus the index of the ele-
ments of y. If you specify two vectors as arguments, plot(x,y) produces a graph of y versus x. 
For example, these statements use the colon operator to create a vector of x values ranging 
from zero to 2π, compute the sine of these values, and plot the result.

 x = 0:pi/100:2*pi;
 y = sin(x);
 plot(x,y)

Now label the axes and add a title. The characters \pi create the symbol π.

 xlabel(‘x = 0:2\pi’)
 ylabel(‘Sine of x’)
 title(‘Plot of the Sine Function’,‘FontSize’,12)

A.16.2 Multiple Data Sets in One Graph

Multiple x–y pair arguments create multiple graphs with a single call to plot. MATLAB 
automatically cycles through a predefi ned (but user settable) list of colors to allow discrim-
ination between each set of data. For example, these statements plot three related functions 
of x, each curve in a separate distinguishing color.

 y2 = sin(x-.25);
 y3 = sin(x-.5);
 plot(x,y,x,y2,x,y3)

The legend command provides an easy way to identify the individual plots.

 legend(‘sin(x)’,‘sin(x-.25)’,‘sin(x-.5)’)

A.16.3 Plotting Lines and Markers

If you specify a marker type but not a line style, MATLAB draws only the marker. For 
example, plot(x,y,‘ks’) plots black squares at each data point, but does not connect the 
markers with a line. The statement plot(x,y,‘r:+’) plots a red dotted line and places plus sign 
markers at each data point. You may want to use fewer data points to plot the markers than 
you use to plot the lines. This example plots the data twice using a different number of 
points for the dotted line and marker plots.

x1 = 0:pi/100:2*pi;
x2 = 0:pi/10:2*pi;
plot(x1,sin(x1),‘r:’,x2,sin(x2),‘r+’)



Appendix A 637

Imaginary and complex data

When the arguments to plot are complex, the imaginary part is ignored except when plot 
is given a single complex argument. For this special case, the command is a shortcut for 
a plot of the real part versus the imaginary part. Therefore, plot(Z) where Z is a complex 
vector or matrix, is equivalent to plot(real(Z),imag(Z) ).

For example

t = 0:pi/10:2*pi;
plot(exp(i*t),‘-o’)
axis equal

A.16.4 Adding Plots to an Existing Graph

The hold command enables to add plots to an existing graph. When you type hold on, 
MATLAB does not replace the existing graph when you issue another plotting command; it 
adds the new data to the current graph, rescaling the axes if necessary. For example, these 
statements fi rst create a contour plot of the peaks function, then superimpose a pseudocolor 
plot of the same function.

[x,y,z] = peaks;
contour(x,y,z,20,‘k’)
hold on
pcolor(x,y,z)
shading interp
hold off

The hold on command causes the pcolor plot to be combined with the contour plot in 
one fi gure.

 

3

2

1

0

–1

–2

–3
–3 –2 –1 0 1 2 3 

A.16.5 Multiple Plots in One Figure

The subplot command enables you to display multiple plots in the same window or print 
them on the same piece of paper. Typing subplot(m,n,p) partitions the fi gure window 
into an m-by-n matrix of small subplots and selects the pth subplot for the current plot. 



638 Appendix A

The plots are numbered fi rst along the top row of the fi gure window, then the second 
row, and so on. For example, these statements plot data in four different subregions of 
the fi gure window.

t = 0:pi/10:2*pi;
[X,Y,Z] = cylinder(4*cos(t) );
subplot(2,2,1); mesh(X)
subplot(2,2,2); mesh(Y)
subplot(2,2,3); mesh(Z)
subplot(2,2,4); mesh(X,Y,Z)

A.16.6 Setting Grid Lines

The grid command toggles grid lines on and off. The statement grid on turns the grid lines 
on and grid off turns them back off again.

A.16.7 Axis Labels and Titles

The xlabel, ylabel, and zlabel commands add x-, y-, and z-axis labels. The title command 
adds a title at the top of the fi gure and the text function inserts text anywhere in the 
fi gure. A subset of TeX notation produces Greek letters. You can also set these options 
interactively.

t = -pi:pi/100:pi;
y = sin(t);
plot(t,y)

axis([-pi pi −1 1])
xlabel(‘-\pi \leq {\itt} \leq \pi’)
ylabel(‘sin(t)’)
title(‘Graph of the sine function’)
text(1,-1/3,‘{\itNote the odd symmetry.}’)

A.16.8 Saving a Figure

To save a fi gure, select Save from the File menu. To save it using a graphics format, such 
as TIFF, for use with other applications, select Export from the File menu. You can also 
save from the command line—use the saveas command, including any options to save the 
fi gure in a different format.

A.16.9 Mesh and Surface Plots

MATLAB defi nes a surface by the z-coordinates of points above a grid in the x–y plane, 
using straight lines to connect adjacent points. The mesh and surf plotting functions dis-
play surfaces in three dimensions. mesh produces wireframe surfaces that color only the 
lines connecting the defi ning points. surf displays both the connecting lines and the faces 
of the surface in color.

[X,Y] = meshgrid(−8:.5:8);
R = sqrt(X.^2 + Y.^2) + eps;



Appendix A 639

Z = sin(R)./R;
mesh(X,Y,Z,‘EdgeColor’,‘black’)

By default, MATLAB colors the mesh using the current colormap. However, this example 
uses a single-colored mesh by specifying the EdgeColor surface property. See the surface 
reference page for a list of all surface properties. You can create a transparent mesh by 
disabling hidden line removal. hidden off.

Example—Colored Surface Plots

A surface plot is similar to a mesh plot except the rectangular faces of the surface are col-
ored. The color of the faces is determined by the values of Z and the colormap (a colormap 
is an ordered list of colors). These statements graph the sinc function as a surface plot, 
select a colormap, and add a color bar to show the mapping of data to color.

surf(X,Y,Z)
colormap hsv
colorbar

See the colormap reference page for information on colormaps.

Surface plots with lighting

Lighting is the technique of illuminating an object with a directional light source. In cer-
tain cases, this technique can make subtle differences in surface shapes that are easier to 
see. Lighting can also be used to add realism to 3-D graphs. This example uses the same 
surface as the previous examples, but colors it red and removes the mesh lines. A light 
object is then added to the left of the “camera” (that is the location in space from where you 
are viewing the surface). After adding the light and setting the lighting method to phong, 
use the view command to change the view point so you are looking at the surface from a 
different point in space (an azimuth of −15 and an elevation of 65°). Finally, zoom in on the 
surface using the toolbar zoom mode.

surf(X,Y,Z,‘FaceColor’,‘red’,‘EdgeColor’,‘none’);
camlight left; lighting phong
view(−15,65)

 

0

2

1

 



640 Appendix A

A.17 Images

2-D arrays can be displayed as images, where the array elements determine brightness or 
color of the images. For example, the statements load durer whos

Name Size Bytes Class

X 648 × 509 2,638,656 double array

caption     2 × 28 112 char array

map 128 × 3 3,072 double array

load the fi le durer.mat, adding three variables to the workspace. The matrix X is a 648-by-509 
matrix and the map is a 128-by-3 matrix that is the colormap for this image.

A.18 Handle Graphics

When we use a plotting command, MATLAB creates the graph using various graphics 
objects, such as lines, text, etc. All graphics objects have properties that control the appear-
ance and behavior of the object. MATLAB enables to query the value of each property and 
set the value of most properties. Whenever MATLAB creates a graphics object, it assigns 
an identifi er (called a handle) to the object. Handle Graphics is useful if you want to

Modify the appearance of graphs• 

Create custom plotting commands by writing M-fi les that create and manipulate • 
objects directly

A.18.1 Setting Properties from Plotting Commands

Plotting commands that create lines or surfaces enable you to specify property name/
property value pairs as arguments. For example, the command

plot(x,y,‘LineWidth’,1.5)

plots the data in the variables x and y using lines having a LineWidth property set to 
1.5 points (one point = 1/72 in.). You can set any line object property this way.

A.18.2 Different Types of Graphs

MATLAB supports a variety of graph types that enable you to present information 
effectively. The type of graph you select depends, to a large extent, on the nature of data. 
The following list can help you select the appropriate graph:

Bar and area graphs are useful to view results over time, comparing results, and • 
displaying individual contribution to a total amount.

Pie charts show individual contribution to a total amount.• 

Histograms show the distribution of data values.• 



Appendix A 641

Stem and stairstep plots display discrete data.• 

Compass, feather, and quiver plots display direction and velocity vectors.• 

Contour plots show equivalued regions in data.• 

Interactive plotting enables you to select data points to plot with the pointer.• 

Animations add an addition data dimension by sequencing plots.• 

A.18.2.1 Bar and Area Graphs

Bar and area graphs display vector or matrix data. These types of graphs are useful 
for viewing results over a period of time, comparing results from different datasets, 
and showing how individual elements contribute to an aggregate amount. Bar graphs 
are suitable for displaying discrete data, whereas area graphs are more suitable for 
displaying continuous data.

Function Description

bar Displays columns of m-by-n matrix as m groups of n vertical bars

barh Displays columns of m-by-n matrix as m groups of n horizontal bars

bar3 Displays columns of m-by-n matrix as m groups of n vertical 3-D bars

bar3h Displays columns of m-by-n matrix as m groups of n horizontal 3-D bars

area Displays vector data as stacked area plots graphs

Types of bar graphs

MATLAB has four specialized functions that display bar graphs. These functions display 
2- and 3-D bar graphs, and vertical and horizontal bars.

Function Description MATLAB Command

Two-dimensional bar

Two-dimensional horizontal barh

Three-dimensional vertical bar3

Three-dimensional horizontal bar3h

Grouped bar graph

By default, a bar graph represents each element in a matrix as one bar. Bars in a 2-D bar 
graph, created by the bar function, are distributed along the x-axis with each element in a 
column drawn at a different location. All elements in a row are clustered around the same 
location on the x-axis.

Pie charts

Pie charts display the percentage that each element in a vector or matrix contributes to the 
sum of all elements. pie and pie3 create 2-D and 3-D pie charts.

Example—Pie Chart

Here is an example using the pie function to visualize the contribution that three products 
make to total sales. Given a matrix X where each column of X contains yearly sale fi gures 
for a specifi c product over a 5 year period.



642 Appendix A

X = [19.3 22.1 51.6; 34.2 70.3 82.4; 61.4 82.9 90.8; 50.5 54.9 59.1; 
 29.4 36.3 47.0];

Sum each row in X to calculate total sales for each product over the 5 year period.

x = sum(X);

You can offset the slice of the pie that makes the greatest contribution using the explode 
input argument. This argument is a vector of zero and nonzero values. Nonzero values 
offset the respective slice from the chart.

First, create a vector containing zeros.

explode = zeros(size(x) );

Then fi nd the slice that contributes the most and set the corresponding explode 
element to 1.

[c,offset] = max(x);
explode(offset) = 1;

The explode vector contains the elements [0 0 1]. To create the exploded pie chart, use 
the statement

h = pie(x,explode); colormap summer

Removing a piece from a pie chart

When the sum of the elements in the fi rst input argument is equal to or greater than 1, pie 
and pie3 normalize the values. So, given a vector of elements x, each slice has an area of 
xi/sum(xi), where xi is an element of x. The normalized value specifi es the fractional part 
of each pie slice.

When the sum of the elements in the fi rst input argument is less than 1, pie and pie3 do 
not normalize the elements of vector x. They draw a partial pie.

For example

x = [.19 .22 .41];
pie(x)

 
41%

22%

20%

 



Appendix A 643

Histograms

MATLAB’s histogram functions show the distribution of data values. The functions that 
create histograms are hist and rose.

Function Description

hist Displays data in a Cartesian coordinate system

rose Displays data in a polar coordinate system

The histogram functions count the number of elements within a range and display each 
range as a rectangular bin. The height (or length when using rose) of the bins represents 
the number of values that fall within each range.

Histograms in Cartesian coordinate systems

The hist function shows the distribution of the elements in Y as a histogram with equally 
spaced bins between the minimum and maximum values in Y. If Y is a vector and is the 
only argument, hist creates up to 10 bins. For example,

yn = randn(10000,1);
hist(yn)

generates 10,000 random numbers and creates a histogram with 10 bins distributed along 
the x-axis between the minimum and maximum values of yn.

A typical 3-D graph

This table illustrates typical steps involved in producing 3-D scenes containing either data 
graphs or models of 3-D objects. Example applications include pseudocolor surfaces illus-
trating the values of functions over specifi c regions and objects drawn with polygons and 
colored with light sources to produce realism. 

Step Typical Code

 1. Prepare your data Z = peaks(20);

 2. Select window and position figure(1) plot region within window 
 subplot(2,1,2)

 3. Call 3-D graphing function h = surf(Z);

 4. Set colormap and shading colormap hot algorithm shading interp 
 set(h,‘EdgeColor’,‘k’)

 5. Add lighting
 light(‘Position’,[−2,2,20]) lighting phong material([0.4,0.6,0.5,30])
 set(h,‘FaceColor’,[0.7 0.7 0],…
 ‘BackFaceLighting’,‘lit’)

 6. Set viewpoint
 view([30,25]) set(gca,‘CameraViewAngleMode’,‘Manual’)

 7. Set axis limits and tick marks
 axis([5 15 5 15 −8 8]) set(gca‘ZTickLabel’,‘Negative||Positive’)



644 Appendix A

 8. Set aspect ratio set(gca,‘PlotBoxAspectRatio’,[2.5 2.5 1])

 9. Annotate the graph with axis
 xlabel(‘X Axis’) labels, legend, and text
 ylabel(‘Y Axis’)
 zlabel(‘Function Value’)
 title(‘Peaks’)

 10. Print graph set(gcf,‘PaperPositionMode’,‘auto’)

 print dps2

Line plots of 3-D data

The 3-D analog of the plot function is plot3. If x, y, and z are three vectors of the same 
length, plot3(x,y,z) generates a line in 3-D through the points whose coordinates are the 
elements of x, y, and z and then produces a 2-D projection of that line on the screen. For 
example, these statements produce a helix.

t = 0:pi/50:10*pi;
plot3(sin(t),cos(t),t)
axis square; grid on

A.19 Animations

MATLAB provides two ways of generating moving, animated graphics:

Continually erase and then redraw the objects on the screen, making incremental • 
changes with each redraw.

Save a number of different pictures and then play them back as a movie.• 

A.20 Creating Movies

If you increase the number of points in the Brownian motion example to something like 
n = 300 and s = 0.02, the motion is no longer very fl uid; it takes too much time to draw each 
time step. It becomes more effective to save a predetermined number of frames as bitmaps 
and to play them back as a movie. First, decide on the number of frames, say

nframes = 50;

Next, set up the fi rst plot as before, except using the default EraseMode (normal).

x = rand(n,1)−0.5;
y = rand(n,1)−0.5;
h = plot(x,y,‘.’);
set(h,‘MarkerSize’,18);
axis([−1 1 −1 1])
axis square
grid off



Appendix A 645

Generate the movie and use getframe to capture each frame.

for k = 1:nframes
x = x + s*randn(n,1);
y = y + s*randn(n,1);
set(h,‘XData’,x,‘YData’,y)
M(k) = getframe;
end

Finally, play the movie 30 times.

movie(M,30)

A.21 Flow Control

MATLAB has several fl ow control constructs:

I• f statements

S• witch statements

F• or loops

W• hile loops

C• ontinue statements

B• reak statements

A.21.1 If

The if statement evaluates a logical expression and executes a group of statements when 
the expression is true. The optional elseif and else keywords provide for the execution of 
alternate groups of statements. An end keyword, which matches the if terminates the last 
group of statements. The groups of statements are delineated by the four keywords—no 
braces or brackets are involved. MATLAB’s algorithm for generating a magic square of 
order n involves three different cases: when n is odd, when n is even but not divisible by 4, 
or when n is divisible by 4. This is described by

 if rem(n,2) ~= 0
  M = odd_magic(n)
 elseif rem(n,4) ~= 0
  M = single_even_magic(n)
 else
  M = double_even_magic(n)
 end

In this example, the three cases are mutually exclusive, but if they were not, the fi rst true 
condition would be executed. It is important to understand how relational operators and 
if statements work with matrices. To check for equality between two variables, we might 
use

if A == B, …



646 Appendix A

This is legal MATLAB code, and does what you expect when A and B are scalars. But 
when A and B are matrices, A == B does not test if they are equal, it tests where they are 
equal; the result is another matrix of 0s and 1s showing element-by-element equality. In 
fact, if A and B are not the same size

then A == B is an error.

The proper way to check for equality between two variables is to use the isequal 
function:

if isequal(A,B), …

A.21.2 Switch and Case

The switch statement executes groups of statements based on the value of a variable or 
expression. The keywords case and otherwise delineate the groups. Only the fi rst match-
ing case is executed. There must always be an end to match the switch.

The logic of the magic squares algorithm can also be described by

 switch (rem(n,4)= =0) + (rem(n,2)= =0)
  case 0
   M = odd_magic(n)
  case 1
   M = single_even_magic(n)
  case 2
   M = double_even_magic(n)
  otherwise
   error(‘This is impossible’)
 end

Note: Unlike the C language switch statement, MATLAB’s switch does not fall through. 
If the fi rst case statement is true, the other case statements do not execute. So, break state-
ments are not required.

A.21.2.1 For

The for loop repeats a group of statements a fi xed, predetermined number of times. 
A matching end delineates the statements.

 for n = 3:32
  r(n) = rank(magic(n) );
 end
 r

The semicolon terminating the inner statement suppresses repeated printing, and the 
“r” after the loop displays the fi nal result. It is a good idea to indent the loops for readabil-
ity, especially when they are nested.

 for i = 1:m
  for j = 1:n
   H(i,j) = 1/(i+j);
  end
 end



Appendix A 647

A.21.2.2 While

The while loop repeats a group of statements an indefi nite number of times under con-
trol of a logical condition. A matching end delineates the statements. Here is a complete 
program, illustrating while, if, else, and end, that uses interval bisection to fi nd a zero of 
a polynomial.

 a = 0; fa = -Inf;
 b = 3; fb = Inf;
 while b-a > eps*b
  x = (a+b)/2;
  fx = x^3-2*x−5;
  if sign(fx) = = sign(fa)
   a = x; fa = fx;
  else
   b = x; fb = fx;
  end
 end
 x

The result is a root of the polynomial x3 − 2x − 5, namely

 x =
 2.09455148154233

The cautions involving matrix comparisons that are discussed in the section on the if 
statement also apply to the while statement.

A.21.2.3 Continue

The continue statement passes control to the next iteration of the ‘for’ or ‘while’ loop in which it 
appears, skipping any remaining statements in the body of the loop. In nested loops, continue 
passes control to the next iteration of the for or while loop enclosing it. The example below 
shows a continue loop that counts the lines of code in the fi le, magic.m, skipping all blank 
lines and comments. A continue statement is used to advance to the next line in magic.m 
without incrementing the count whenever a blank line or comment line is encountered.

 fid = fopen(‘magic.m’,‘r’);
 count = 0;
 while ~feof(fid)
  line = fgetl(fid);
  if isempty(line) | strncmp(line,‘%’,1)
   continue
  end
  count = count + 1;
 end
 disp(sprintf(‘%d lines’,count) );

A.21.2.4 Break

The break statement is used to exit early from a for or while loop. In nested loops, break 
exits from the innermost loop only. Here is an improvement on the example from the pre-
vious section. Why is this use of break a good idea?



648 Appendix A

 a = 0; fa = -Inf;
 b = 3; fb = Inf;
 while b-a > eps*b
 x = (a+b)/2;
 fx = x^3–2*x−5;
 if fx = = 0
 break
 elseif sign(fx) = = sign(fa)
 a = x; fa = fx;
 else
 b = x; fb = fx;
 end
 end
 x

A.22 Other Data Structures

This section introduces you to some other data structures in MATLAB including

Multidimensional arrays• 

Cell arrays• 

Characters and text• 

Structures• 

A.22.1 Multidimensional Arrays

Multidimensional arrays in MATLAB are arrays with more than two subscripts. They 
can be created by calling zeros, ones, rand, or randn with more than two arguments. For 
example,

 R = randn(3,4,5);

creates a 3-by-4-by-5 array with a total of 3 × 4 × 5 = 60 normally distributed random 
elements. A 3-D array might represent 3-D physical data, say the temperature in a 
room, sampled on a rectangular grid. Or, it might represent a sequence of matrices, 
A(k), or samples of a time-dependent matrix, A(t). In these latter cases, the (i, j)th 
element of the kth matrix, or the tkth matrix, is denoted by A(i,j,k). MATLAB’s and 
Dürer’s versions of the magic square of order 4 differ by an interchange of two col-
umns. Many different magic squares can be generated by interchanging columns. The 
statement

p = perms(1:4);

generates the 4! = 24 permutations of 1:4. The kth permutation is the row

vector, p(k,:). Then
 A = magic(4);



Appendix A 649

 M = zeros(4,4,24);
 for k = 1:24
 M(:,:,k) = A(:,p(k,:) );
 end

stores the sequence of 24 magic squares in a 3-D array, M. The size of M is
size(M)

ans = 4 4 24

It turns out that the third matrix in the sequence is Dürer’s.

M(:,:,3)
ans =
 16  3  2 13
  5 10 11  8
  9  6  7 12
  4 15 14  1

The statement

sum(M,d)

computes sums by varying the dth subscript. So

sum(M,1)

is a 1-by-4-by-24 array containing 24 copies of the row vector
34 34 34 34
and

sum(M,2)

is a 4-by-1-by-24 array containing 24 copies of the column vector
34
34
34
34
Finally

S = sum(M,3)

adds the 24 matrices in the sequence. The result has size 4-by-4-by-1, so it looks
like a 4-by-4 array.

S =  
 204 204 204 204
 204 204 204 204
 204 204 204 204
 204 204 204 204



650 Appendix A

A.22.2 Cell Arrays

Cell arrays in MATLAB are multidimensional arrays whose elements are copies of other 
arrays. A cell array of empty matrices can be created with the cell function. But, more 
often, cell arrays are created by enclosing a miscellaneous collection of things in curly 
braces, {}. The curly braces are also used with subscripts to access the contents of various 
cells. For example,

C = {A sum(A) prod(prod(A) )}

produces a 1-by-3 cell array. The three cells contain the magic square, the row vector of 
column sums, and the product of all its elements. When C is displayed, you see

C =
[4×4 double] [1×4 double] [20922789888000]

This is because the fi rst two cells are too large to print in this limited space, but the 
third cell contains only a single number, 16!, so there is room to print it. Here are two 
important points to remember. First, to retrieve the contents of one of the cells, use sub-
scripts in curly braces. For example, C{1} retrieves the magic square and C{3} is 16!. Second, 
cell arrays contain copies of other arrays, not pointers to those arrays. If you subsequently 
change A, nothing happens to C. 3-D arrays can be used to store a sequence of matrices 
of the same size. Cell arrays can be used to store a sequence of matrices of different sizes. 
For example,

M = cell(8,1);
for n = 1:8
M{n} = magic(n);
end
M
produces a sequence of magic squares of different order.
M =
 [ 1]
 [ 2×2 double]
 [ 3×3 double]
 [ 4×4 double]
 [ 5×5 double]
 [ 6×6 double]
 [ 7×7 double]
 [ 8×8 double]

A.22.3 Characters and Text

Enter text into MATLAB using single quotes. For example,

s = ‘Hello’

The result is not the same kind of numeric matrix or array we have been dealing with up 
to now. It is a 1-by-5 character array.

Internally, the characters are stored as numbers, but not in fl oating-point format. The 
statement



Appendix A 651

a = double(s)

converts the character array to a numeric matrix containing fl oating-point representations 
of the ASCII codes for each character. The result is

a =  
 72 101 108 108 111

The statement

s = char(a)

reverses the conversion. Converting numbers to characters makes it possible to inves-
tigate the various fonts available on computer. The printable characters in the basic 
ASCII character set are represented by the integers 32:127. (The integers less than 32 
represent nonprintable control characters.) These integers are arranged in an appropri-
ate 6-by-16 array with

F = reshape(32:127,16,6)′;

The printable characters in the extended ASCII character set are represented by F+128. 
When these integers are interpreted as characters, the result depends on the font currently 
being used. Type the statements

char(F)
char(F+128)

and then vary the font being used for the MATLAB Command Window. Select Preferences 
from the File menu. Here is one example of the kind of output you might obtain.

Concatenation with square brackets joins text variables together into larger strings. The 
statement

h = [s, ‘ world’]
joins the strings horizontally and produces
h =
 Hello world
The statement
v = [s; ‘world’]

joins the strings vertically and produces

v =  
 Hello
 world

Note that a blank has to be inserted before the “w” in h and that both words in “v” need 
to have the same length. The resulting arrays are both character arrays:

h is 1-by-11 and v is 2-by-5.

To manipulate a body of text containing lines of different lengths, you have two choices—
a padded character array or a cell array of strings. The char function accepts any number 
of lines, adds blanks to each line to make them all the same length, and forms a character 
array with each line in a separate row. For example,



652 Appendix A

S = char(‘A’,‘rolling’,‘stone’,‘gathers’,‘momentum.’)

produces a 5-by-9 character array.

S =  
 A
 rolling
 stone
 gathers
 momentum.

There are enough blanks in each of the fi rst four rows of S to make all the rows the same 
length. Alternatively, you can store the text in a cell array. For example,

C = {‘A’;‘rolling’;‘stone’;‘gathers’;‘momentum.’}

is a 5-by-1 cell array.

C =
 ‘A’
 ‘rolling’
 ‘stone’
 ‘gathers’
 ‘momentum.’

You can convert a padded character array to a cell array of strings with

C = cellstr(S)

and reverse the process with

S = char(C)

Structures

Structures are multidimensional MATLAB arrays with elements accessed by textual fi eld 
designators. For example,

S.name = ‘Ed Plum’;
S.score = 83;
S.grade = ‘B+’

creates a scalar structure with three fi elds.

S =
name: ‘Ed Plum’
score: 83
grade: ‘B+’

Like everything else in MATLAB, structures are arrays, so you can insert additional ele-
ments. In this case, each element of the array is a structure with several fi elds. The fi elds 
can be added one at a time



Appendix A 653

S(2).name = ‘Toni Miller’;
S(2).score = 91;
S(2).grade = ‘A-’;

or an entire element can be added with a single statement.

S(3) = struct(‘name’,‘Jerry Garcia’,…
‘score’,70,‘grade’,‘C’)

Now the structure is large enough that only a summary is printed.

S =
1×3 struct array with fields:
name
score
grade

There are several ways to reassemble the various fi elds into other MATLAB arrays. They 
are all based on the notation of a comma separated list. If you type

S.score

it is the same as typing

S(1).score, S(2).score, S(3).score

This is a comma separated list. Without any other punctuation, it is not very useful. 
It assigns the three scores, one at a time, to the default variable ans and dutifully prints 
out the result of each assignment. But when you enclose the expression in square 
brackets,

 [S.score]

it is the same as

 [S(1).score, S(2).score, S(3).score]

which produces a numeric row vector containing all of the scores.

ans =  
 83 91 70

Similarly, typing

S.name

just assigns the names, one at time, to ans. But enclosing the expression in curly braces,

{S.name}



654 Appendix A

creates a 1-by-3 cell array containing the three names.

ans =
 ‘Ed Plum’ ‘Toni Miller’ ‘Jerry Garcia’
 And
 char(S.name)

calls the char function with three arguments to create a character array from the name 
fi elds

ans =
 Ed Plum
 Toni Miller
 Jerry Garcia

A.23 Scripts and Functions

MATLAB is a powerful programming language as well as an interactive computational 
environment. Files that contain code in the MATLAB language are called M-fi les. You can 
create M-fi les using a text editor, then use them as you would any other MATLAB function 
or command. There are two kinds of M-fi les:

Scripts, which do not accept input arguments or return output arguments. They • 
operate on data in the workspace.

Functions, which can accept input arguments and return output arguments. Internal • 
variables are local to the function. If you are a new MATLAB programmer, just cre-
ate the M-fi les that you want to try out in the current directory. As you develop 
more of your own M-fi les, you will want to organize them into other directories 
and personal toolboxes that you can add to MATLAB’s search path. If you duplicate 
function names, MATLAB executes the one that occurs fi rst in the search path. To 
view the contents of an M-fi le, for example, myfunction.m, use type myfunction.

A.23.1 Scripts

When you invoke a script, MATLAB simply executes the commands found in the fi le. 
Scripts can operate on existing data in the workspace, or they can create new data on 
which to operate. Although Scripts do not return output arguments, any variables that 
they create remain in the workspace, to be used in subsequent computations. In addition, 
Scripts can produce graphical output using functions like plot. For example, create a fi le 
called magicrank.m that contains these MATLAB commands.

% Investigate the rank of magic squares
r = zeros(1,32);
for n = 3:32
r(n) = rank(magic(n) );
end
r
bar(r)
Typing the statement
magicrank



Appendix A 655

This fi le causes MATLAB to execute the commands, compute the rank of the fi rst 30 magic 
squares, and plot a bar graph of the result. After execution of the fi le is complete, the vari-
ables n and r remain in the workspace.

A.23.2 Functions

Functions are M-fi les that can accept input arguments and return output arguments. The 
name of the M-fi le and of the function should be the same. Functions operate on variables 
within their own workspace, separate from the workspace you access at the MATLAB 
command prompt. A good example is provided by rank. The M-fi le rank.m is available in 
the directory toolbox/matlab/matfun. The fi le rank is:

function r = rank(A,tol)
  s = svd(A);
  if nargin= =1
   tol = max(size(A)¢) * max(s) * eps;
  end
  r = sum(s > tol);

The fi rst line of a function M-fi le starts with the keyword function. It gives the func-
tion name and order of arguments. In this case, there are up to two input arguments and 
one output argument. The next several lines, up to the fi rst blank or executable line, are 
comment lines that provide the help text. These lines are printed when you type help 
rank. The fi rst line of the help text is the H1 line, which MATLAB displays when you use 
the lookfor command or request help on a directory. The rest of the fi le is the executable 
MATLAB code defi ning the function. The variable s introduced in the body of the func-
tion, as well as the variables on the fi rst line, r, A, and tol, are all local to the function; 
they are separate from any variables in the MATLAB workspace. This example illustrates 
one aspect of MATLAB functions that is not ordinarily found in other programming 
languages—a variable number of arguments. The rank function can be used in several 
different ways.

rank(A)
 r = rank(A)
 r = rank(A,1.e-6)

Many M-fi les work this way. If no output argument is supplied, the result is stored 
in ans. If the second input argument is not supplied, the function computes a default 
value. Within the body of the function, two quantities named nargin and nargout are 
available which tell you the number of input and output arguments involved in each 
particular use of the function. The rank function uses nargin, but does not need to use 
nargout.

A.23.2.1 Global Variables

If you want more than one function to share a single copy of a variable, simply declare 
the variable as global in all the functions. Do the same thing at the command line if 
you want the base workspace to access the variable. The global declaration must occur 
before the variable is actually used in a function. Although it is not required, using 
capital letters



656 Appendix A

for the names of global variables helps distinguish them from other variables. For example, 
create an M-fi le called falling.m.

function h = falling(t)
global GRAVITY
h = 1/2*GRAVITY*t.^2;
Then interactively enter the statements
global GRAVITY
GRAVITY = 32;
y = falling( (0:.1:5)′);

The two global statements make the value assigned to GRAVITY at the command prompt 
available inside the function. You can then modify GRAVITY interactively and obtain new 
solutions without editing any fi les.

A.23.2.2 Passing String Arguments to Functions

You can write MATLAB functions that accept string arguments without the parentheses 
and quotes. That is, MATLAB interprets

foo a b c as
foo(‘a’,‘b’,‘c’)

However, when using the unquoted form, MATLAB cannot return output arguments. 
For example, legend apples oranges creates a legend on a plot using the strings apples and 
oranges as labels. If you want the legend command to return its output arguments, then 
you must use the quoted form.

[legh,objh] = legend(‘apples’,‘oranges’);

In addition, you cannot use the unquoted form if any of the arguments are not strings.

A.23.2.3 Constructing String Arguments in Code

The quoted form enables you to construct string arguments within the code.
The following example processes multiple data fi les, August1.dat, August2.dat, and so on. 

It uses the function int2str, which converts an integer to a character, to build the fi lename.

for d = 1:31
s = [‘August’ int2str(d) ‘.dat’];
load(s)
% Code to process the contents of the d-th file
end

A.23.2.4 A Cautionary Note

While the unquoted syntax is convenient, it can be used incorrectly without causing 
MATLAB to generate an error. For example, given a matrix A

A =  
  0 −6  −1
  6  2 −16
 −5 20 −10

The eig command returns the eigenvalues of A.



Appendix A 657

eig(A)
ans =
 −3.0710
 −2.4645+17.6008i
 −2.4645−17.6008i

The following statement is not allowed because A is not a string; however, MATLAB 
does not generate an error.

eig A
ans =
 65

MATLAB actually takes the eigenvalues of ASCII numeric equivalent of the letter A 
(which is the number 65).

A.23.2.5 The Eval Function

The eval function works with text variables to implement a powerful text macro facility. 
The expression or statement eval(s) uses the MATLAB interpreter to evaluate the expres-
sion or to execute the statement contained in the text string s. The example of the previous 
section could also be done with the following code, although this would be somewhat less 
effi cient because it involves the full interpreter, not just a function call.

for d = 1:31
s = [‘load August’ int2str(d) ‘.dat’];
eval(s)
% Process the contents of the d-th file
End

A.23.2.6 Vectorization

To obtain the most speed out of MATLAB, it is important to vectorize the algorithms in 
M-fi les. Where other programming languages might use for or DO loops, MATLAB can use 
vector or matrix operations. A simple example involves creating a table of logarithms.

x = .01;
for k = 1:1001
 y(k) = log10(x);
 x = x + .01;
end

A vectorized version of the same code is

x = .01:.01:10;
y = log10(x);

For more complicated code, vectorization options are not always so obvious. When speed 
is important, however, you should always look for ways to vectorize your algorithms.



658 Appendix A

A.23.2.7 Preallocation

If vectorization is not possible for a piece of code, then for loops can be made faster by 
preallocating any vectors or arrays in which output results are stored. For example, this 
code uses the function zeros to preallocate the vector created in the for loop. This makes 
the for loop execute signifi cantly faster.

r = zeros(32,1);
for n = 1:32
 r(n) = rank(magic(n) );
end

Without the preallocation in the previous example, the MATLAB interpreter enlarges 
the r vector by one element each time through the loop. Vector preallocation eliminates 
this step and results in faster execution.

A.23.2.8 Function Handles

You can create a handle to any MATLAB function and then use that handle as a means of 
referencing the function. A function handle is typically passed in an argument list to other 
functions, which can then execute, or evaluate, the function using the handle. Construct 
a function handle in MATLAB using the at sign, @, before the function name. The follow-
ing example creates a function handle for the sin function and assigns it to the variable 
fhandle.

fhandle = @sin;

Evaluate a function handle using the MATLAB feval function. The function plot_fhan-
dle, shown below, receives a function handle and data, and then performs an evaluation of 
the function handle on that data using feval.

function x = plot_fhandle(fhandle, data)
plot(data, feval(fhandle, data) )

When you call plot_fhandle with a handle to the sin function and the argument shown 
below, the resulting evaluation produces a sine wave plot.

plot_fhandle(@sin, -pi:0.01:pi)

A.23.2.9 Function Functions

A class of functions, called “function functions,” works with nonlinear functions of a 
scalar variable. That is, one function works on another function. The function functions 
include

Zero fi nding• 

Optimization• 

Quadrature• 

Ordinary differential equations• 



Appendix A 659

MATLAB represents the nonlinear function by a function M-fi le. For example, here is a 
simplifi ed version of the function humps from the MATLAB/demos directory.

function y = humps(x)
y = 1./( (x-.3).^2 + .01) + 1./( (x-.9).^2 + .04) − 6;

Evaluate this function at a set of points in the interval 0 ≤ x ≤ 1 with
x = 0:.002:1;

 

35

30

25

20

15

10

5

0
0 5 10 15 20 25 30 35 

 

100

90

80

70

60

50

40

30

20

10

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

y = humps(x);

Then plot the function with

plot(x,y)



660 Appendix A

The graph shows that the function has a local minimum near x = 0.6. The function 
fminsearch fi nds the minimizer, the value of x where the function takes on this minimum. 
The fi rst argument to fminsearch is a function handle to the function being minimized 
and the second argument is a rough guess at the location of the minimum.

p = fminsearch(@humps,.5)
p =  
 0.6370

To evaluate the function at the minimizer

humps(p)
ans =
 11.2528

Numerical analysts use the terms quadrature and integration to distinguish between 
numerical approximation of defi nite integrals and numerical integration of ordinary dif-
ferential equations. MATLAB’s quadrature routines are quad and quadl. The statement

Q = quadl(@humps,0,1)

computes the area under the curve in the graph and produces

Q =
 29.8583

Finally, the graph shows that the function is never zero on this interval. So, if
you search for a zero with

z = fzero(@humps,.5)

you will fi nd one outside of the interval

z =
 −0.1316



661

Appendix B: Simulink

B.1 Introduction

Simulink® is a software package used for modeling, analyzing, and simulating a wide 
variety of dynamic systems. Simulink provides a graphical interface for constructing the 
models. It has a library of standard components, which makes block diagram representa-
tion easier and quicker. Simulink is a ready-access learning tool for simulating operational 
problems found in the real world because simulation algorithms and parameters can be 
changed in the middle of simulation with intuitive results. It is particularly useful for 
studying the effect of nonlinearities on the behavior of the system.

B.2 Features of Simulink

 1. A comprehensive library for creating linear, nonlinear, discrete, or multi-input/
output systems.

 2. Mask facility for creating custom blocks.

 3. Unlimited hierarchical model structure.

 4. Scalar and vector connections.

 5. Interactive simulations with live display.

 6. One can easily perform what-if analyses by changing model parameters.

 7. Simulink block library can be extended with special purpose block sets.

 8. Custom blocks and block libraries can be created by using your own icons and 
user interfaces from MATLAB®, FORTRAN, or C code.

B.3 Simulation Parameters and Solvers

First select the simulation parameters from the simulation dialog box, as shown in 
Figure B1.



662 Appendix B

 1. Solver page: The solver page allows to

Set the start and stop times.• 

Choose the solver and specify solver parameters—one can select between vari-• 
able step and fi xed step solvers.

Output options—It helps in controlling the simulation output. These are refi ne • 
output, produce additional output, and produce specifi ed output only.

Simulink parameter dialog box is displayed, which uses four pages to manage simulation 
parameters as shown in Figure B2.

FIGURE B2
Simulink parameter selection window.

FIGURE B1
Simulink editor.



Appendix B 663

 2. Workspace input/output page: It allows

Loading input from the workspace• 

Saving the output to the workspace• 

 3. Diagnostics page: It allows to select the level of warning messages displayed during 
a simulation.

 4. Advanced page: It is used for advanced settings such as optimization and model 
verifi cation blocks control.

B.4 Construction of Block Diagram

On clicking the Simulink icon, the Simulink block library containing seven icons and fi ve 
pull down and fi ve pull down menus head appears. The model of the system, the input 
of the system, and the output of the system must be specifi ed. For better understanding, 
consider the following examples.

Example 1

Model the equation that converts Celsius temperature to Fahrenheit. Obtain a display of Fahrenheit–
Celsius temperature graph over a range of 0°C–100°C.

Tf = 9/5 * Tc + 32
The blocks needed to build the model as shown in Figure B3 are

Ramp block to input the temperature signal• 
A constant block for 32• 
A gain block to multiply the input signal by 9/5• 
A sum block to add the quantities• 
A scope block to display the output. The construction of Simulink model is shown in Figures • 
B4 and B5

When click Simulink icon or write Simulink on command prompt in MATLAB Simulink 
browser opens as shown in Figures B6 and B7. The example of continous system simula-
tion model and its response is shown in Figures B8 and B9 respectively.

Simulink: Model analysis and construction functions.

FIGURE B3
Fahrenheit-Celsius temperature converter model.

Ramp

9/5 ++

Scope
Gain

32

Constant



664 Appendix B

FIGURE B4
Simulink model.

FIGURE B5
Simulink model for Example 1.

Simulation

sim—Simulate a Simulink model.
sldebug—Debug a Simulink model.
simset—Defi ne options to SIM options structure.
simget—Get SIM options structure.

Linearization and trimming

linmod—Extract linear model from continuous-time system.
linmod2—Extract linear model, advanced method.
dlinmod—Extract linear model from discrete-time system.
trim—Find steady state operating point.



Appendix B 665

FIGURE B6
Simulink library browser.

FIGURE B7
Simulink library browser of continuous system blocks.

Model construction

close_system—Close model or block.
new_system—Create new empty model window.
open_system—Open existing model or block.



666 Appendix B

FIGURE B8
Simulink model system simulation.

5

4

3

2

1

0

–1

–2

–3

–4

–50 1 2 3 4 5 6 7 8 9 10

FIGURE B9
Simulation results.

load_system—Load existing model without making model visible.
save_system—Save an open model.
add_block—Add new block.
add_line—Add new line.
delete_block—Remove block.
delete_line—Remove line.
fi nd_system—Search a model.
hilite_system—Hilite objects within a model.
replace_block—Replace existing blocks with a new block.
set_param—Set parameter values for model or block.
get_param—Get simulation parameter values from model.
add_param—Add a user-defi ned string parameter to a model.



Appendix B 667

delete_param—Delete a user-defi ned parameter from a model.
bdclose—Close a Simulink window.
bdroot—Root level model name.
gcb—Get the name of the current block.
gcbh—Get the handle of the current block.
gcs—Get the name of the current system.
getfullname—Get the full path name of a block.
slupdate—Update older 1.x models to 3.x.
addterms—Add terminators to unconnected ports.
boolean—Convert numeric array to boolean.
slhelp—Simulink user’s guide or block help.

Masking

hasmask—Check for mask.
Hasmaskdlg—Check for mask dialog.
hasmaskicon—Check for mask icon.
iconedit—Design block icons using ginput function.
maskpopups—Return and change masked block’s popup menu items.
movemask—Restructure masked built-in blocks as masked subsystems.

Library

libinfo—Get library information for a system.

Diagnostics

sllastdiagnostic—Last diagnostic array.
sllasterror—Last error array.
sllastwarning—Last warning array.
sldiagnostics—Get block count and compile stats for a model.

Hardcopy and printing

frameedit—Edit print frames for annotated model printouts.
print—Print graph or Simulink system; or save graph to M-fi le.
printopt—Printer defaults.
orient—Set paper orientation.

B.5 Review Questions

 1. Describe the main features of the MATLAB simulation method.

 2. Discuss the basics of the MATLAB simulation method with reference to any six of 
the following main features:

 a. Entering simple matrix

 b. Statements and variables

 c. WHO and permanent variables

 d. Numbers and arithmetic expressions

 e. Complex numbers and matrices



668 Appendix B

 f. Output format

 g. The help facility

 h. Quitting and saving the workspace

 i. Matrix operations and functions

 j. Relational and logical operations

 k. Control fl ow construct

 l. M-fi le and functions

 m. Other features–graphics, running external programs

 3. Explain the following command lines written in MATLAB:

 a. A = [1 4 7 ; 2 5 8; 3 6 9]

 b. A = [1 2 ; 3 4] + i*[5 7; 6 8]

 c. format long x = [2/3 1.3215e-6]

 d. save temp x y z

 e. load

 f. x = [1 2]; y = [4 5];z = x./y

 g. [v,d] = daig(A)

 h. A(1:5,:)

 i. n = 1 while prod(1:n) < 1.0e20, n = n+1; end

 j. x.j. if y = [0 0.4 0.8 1.5 2.0 0.7 0.1] plot(y)

` 4. Write the name of any fi ve toolboxes available in MATLAB.

 5. If x = [1 4 7 4; 3 9 6 5; 2 5 8 7; 2 9 5 6], then what will be the output of following 
commands:

A = x(:, 2:3)

B = x(1,:) + x(3,: )

 6. Write the syntax in MATLAB for fi nding the following mathematical expression: 
2 2 2 34 2 2sinF x y x y= + + +

 7. Find the output for the following MATLAB program:

  X = [1 2 3];
  Y = [2; 1; 5];
  Z = [2 1 0];
  A = X + Z
  C = X .* Z
  D=X./Y’
  E=X’.Y

 8. Write the syntax for the following operations:

 a. Single command for eigen value and eigen vector

 b. Convolution for two polynomial a and b

 c. Clear all variables and functions from workspace

 d. Clear command window, command history is lost

 e. Command for displaying text on command window



Appendix B 669

 f. Generate random matrix of size 3 × 4

 g. Generate identity matrix of order 4 × 4

 h. For fi nding the exponential of x2

 9. What will be the answer of 4\3 in MATLAB when format short? How is it different 
from 4/3?

 10. What will be the output on the screen for the following MATLAB program:

  for I=1:3

  for J=1:3

  A(I,J)=(Iˆ2+J);

  end

  end

  A1=A*eye(3)



This page intentionally left blank 



671

Appendix C: Glossary

C.1 Modeling and Simulation

Adaptive control: A control methodology in which control parameters are continu-
ously and automatically adjusted in response to be measured/estimated process 
 variables to achieve near-optimum system performance.

Adaptive model: A model whose parameters or properties are adjusted online (continu-
ously during execution) to satisfy an objective.

Admittance: The reciprocal of the impedance of an electric circuit.
Analog-to-digital converter (ADC): A device that converts analog input voltage signals 

into digital form.
Attribute: Attributes are used to describe the properties of the system’s entities.
Bit error rate (BER): The probability of a single transmitted bit being incorrectly deter-

mined upon reception.
Bounded-input bounded-output (BIBO): A signal that has a certain value at a certain 

instant in time, and this value does not equal infi nity at any given instant of time. 
A bounded output is the signal resulting from applying the bounded-input signal 
to a stable system.

CASE: Computer-aided software engineering. A general term for tools that automate 
 various phases of the software engineering life cycle.

Chaos theory: Where the response and development of systems are studied under changes 
of their initial conditions.

Chaos: Erratic and unpredictable dynamic behavior of a deterministic system that never 
repeats itself. Necessary conditions for a system to exhibit such behavior are that 
it be nonlinear and have at least three independent dynamic variables.

Chaotic behavior: A highly nonlinear state in which the observed behavior is very depen-
dent on the precise conditions that initiated the behavior. The behavior can be 
repeated (i.e., it is not random), but a seemly insignifi cant change, such as voltage, 
current, noise, temperature, and rise times will result in dramatically different 
results, leading to unpredictability. The behavior may be chaotic under all condi-
tions, or it may be well behaved (linear to moderately nonlinear) until some para-
metric threshold is exceeded, at which time the chaotic behavior is observed. In a 
mildly chaotic system, noticeable deviations resulting from small changes in the 
initial conditions may not appear for several cycles or for relatively long periods. 
In a highly chaotic system, the deviations are immediately apparent.

Characteristics equation: The relation formed by equating to zero the denominator of a 
transfer function.

Closed-loop system: Any system having two separate paths inside it. The fi rst path conducts 
the signal fl ow from the input of that system to the output of that same system (for-
ward path). The second path conducts the signal fl ow from the output to the input 
of the system (feedback path), thus establishing a feedback loop for the system.

Common-mode rejection ratio (CMRR): A measure of quality of an amplifi er with dif-
ferential inputs and defi ned as the ratio between the common-mode gain and the 
differential gain.



672 Appendix C

Complexity: The intricate pattern of interwoven parts and knowledge required.
Computer prototype: To refi ne idea or decision on the computer before implementing it 

in the real world. In the early 1990s, Boeing used computer simulations to rapid-
prototype its 777 aircraft without building a physical prototype in order to save 
time and money. The consequence was that the new product will be built faster, 
better, and cheaper than the previously developed one.

Computer simulation: A set of computer programs that allows one to model the impor-
tant aspects of the behavior of the specifi c system under study. Simulation can aid 
the design process by, for example, following one to determine appropriate system 
design parameters or aid the analysis process by, for example, allowing one to 
estimate the end-to-end performance of the system under study.

Computer simulation: A set of computer programs that allows one to model the impor-
tant aspects of the behavior of the specifi c system under study. Simulation can aid 
the design process by, for example, allowing one to determine appropriate system 
design parameters or aid the analysis process by, for example, allowing one to 
estimate the end-to-end performance of the system under study.

Controllability: A property that in the linear system case depends upon the A, B matrix 
pair which ensures the existence of some control input that will drive any arbi-
trary initial state to zero in fi nite time.

Co-tree: The complement of a tree in a network.
Cut set: A minimal subsystem, the removal of which cuts the original system into two 

connected subsystems.
Damped oscillation: It is an oscillation in which the amplitude decreases with time.
Damping: A characteristic built into systems that prevents rapid or excessive corrections 

that may lead to instability or oscillatory conditions.
Damping coeffi cient: For a simple mechanical viscous damper (dashpot), the force F may 

be related to the velocity v by F = –cv, where c is the viscous damping coeffi cient, 
given in units of newton-seconds per meter.

Data: Any information, represented in binary that a computer receives, processes, or outputs.
Data model: An integrated set of tools to describe the data and its structure, data relation-

ships, and data constraints.
Database computer: A special hardware and software confi guration aimed primarily at 

handling large databases and answering complex queries.
Database management system (DBMS): A software system that allows for the defi nition, 

construction, and manipulation of a database.
Database: A shared pool of interrelated data.
Decomposition: An operation performed on a complex system whose purpose is to sepa-

rate its constituent parts or subsystems in order to simplify the analysis or design 
procedures. Decomposition is performed to make their model traceable, for exam-
ple, by dividing them into smaller parts.

Decomposition: An operation performed on a complex system whose purpose is to sepa-
rate its constituent parts or subsystems in order to simplify the analysis or design 
procedures. For optimization algorithms, decomposition is reached by resolving 
the objective function or constraints into smaller parts, for example, by partitioning 
the matrix of constrains in linear programs followed by the solution of a number 
of low dimensional linear programs and coordination by Lagrange multipliers.

Delay: The time required for an information, signal, or object to propagate along a defi ned 
path.

Detectability: A linear system is said to be detectable if its unstable part is observable.



Appendix C 673

Digital computer: A collection of digital devices including an arithmetic logic unit (ALU), 
read-only memory (ROM), random-access memory (RAM), and control and interface 
hardware.

Direct memory access (DMA): The process of sending data from an external device into 
the computer memory with no involvement of the computer’s central processing 
unit.

Discrete time approximation: An approximation used to obtain the time response of a 
system based on division of time into small increments.

Distributed database: A collection of multiple, logically interrelated databases distributed 
over a computer network.

Disturbance signal: An unwanted input signal that affects the system’s output signal.
Dominant poles (roots): The poles of a system (roots of the characteristics equation) that 

cause the dominant transient response of the system.
Eigenvalue: The multiplicative scalar associated with an eigen function or an eigenvector. 

It is the root of the characteristic equation |λiI − A| = 0.
Eigenvector: For a linear system A, any vector x whose direction is unchanged when oper-

ated upon by A.
Entity: An entity is an object of interest in the system, whereby the selection of the object 

of interests depends on the purpose and level of abstraction of the study.
Error: The occurrence of an incorrect value in some unit of information within a 

system.
Essential model: A software engineering model which describes the behavior of a 

 proposed software system independent of implementation aspects.
Event: An event is an instantaneous incidence that might result in a state change. Events 

can be endogenous (generated by the system itself) or exogenous (induced by the 
system’s environment).

Expert systems: A computer program that emulates a human expert in a well-bounded 
domain of knowledge.

Failure rate: The failure rate, λ, is the (predicted or measured) number of failures per unit 
time for a specifi ed part or system operating in a given environment. It is usually 
assumed to be constant during the working life of a component or system.

Failure: A deviation in the expected performance of a system.
Fault avoidance: A technique that attempts to prevent the occurrence of faults.
Fault tolerance: The ability to continue the correct performance of functions in the pres-

ence of faults.
Fault: A physical defect, imperfection, or fl aw that occurs in hardware or software.
Feedback control: The regulation of a response variable of a system in a desired manner 

using measurements of that variable in the generation of the strategy of manipula-
tion of the controlling variables.

Gaussian noise: A noise process that has a Gaussian distribution for the measured value 
at any time instant.

Hedges: Linguistic terms that intensify, dilute, concentrate, or complement a fuzzy set.
Homogeneous solution: A system of linear constant-coeffi cient differential equations has 

a complete solution that consists of the sum of a particular solution and a homoge-
neous solution. The homogeneous solution satisfi es the original differential equation 
with the input set to zero. Analogous defi nitions exist for difference equations.

Implementation model: A software engineering model which describes the technical 
aspects of a proposed system within a particular implementation environment.

Impulse response: The response of a system when the input is an impulse function.



674 Appendix C

Information model: A software engineering model which describes an application domain 
as a collection of objects and relationships between those objects.

Maintainability, M(t): The probability that an inoperable system will be restored to an 
operational state within the time t.

Mapping: A transformation, particularly between abstract spaces.
Mathematical model: Description of the behavior of a system using mathematical 

equations.
Mean time to failure: This fi gure is used to give an expected working lifetime for a given 

part, in a given environment.

 If the failure rate λ. is constant, then λ= 1MTTF .

Mean time to repair: The MTTR fi gure gives a prediction for the amount of time taken to 
repair a given part or system.

Module structure chart: A component of the implementation model; it describes the archi-
tecture of a single computer program.

Negative feedback: The output signal is fed back so that it is subtracted from the input 
signal.

Nonlinear model: A model that includes nonlinear differential equations.
Nonlinear response: The characteristic of certain physical systems that some output prop-

erty changes in a manner more complex than linear in response to some applied 
input.

Nonlinear Schrödinger equation: The fundamental equation describing the propagation 
of short optical pulses through a nonlinear medium, so called because of a formal 
resemblance to the Schrödinger equation of quantum mechanics.

Nonlinear system: A system that does not obey the principle of superposition and 
homogeneity.

Normal tree: A tree that contains all the independent across sources, the maximum num-
ber of storage type, the minimum number of delay type, and none of the indepen-
dent through sources.

Object collaboration model: A component of the essential model; it describes how 
objects exchange messages in order to perform the work specifi ed for a proposed 
system.

Object: An “entity” or “thing” within the application domain of a proposed software 
system.

Objective function: When optimizing a structure toward a certain result, that is, dur-
ing optimization routines, the objective function is a measure of the performance 
which should be maximized or minimized (to be extremized).

Observability: The property of a system that ensures the ability to determine the ini-
tial state vector by observing system outputs for a fi nite time interval. For lin-
ear systems, an algebraic criterion that involves system and output matrices 
can be used to test this property. A linear system is said to be observable if its 
state vector can be reconstructed from fi nite-length observations of its input 
and output.

Observer (or estimator): A linear system whose state output approximates the state vector 
of a different system, rejecting noise and disturbances in the process.

Off-line testing: Testing process carried out while the tested circuit is not in use.
Online testing: Concurrent testing to detect errors while circuit is in operation.
Open circuit impedance: The impedance into an N-port device when the remaining ports 

are terminated in open circuits.



Appendix C 675

Open loop system: A system in which the output does not have any infl uence on the input 
given to that system.

Parameter estimation: The procedure of estimation of model parameters based on the 
model’s response to certain test inputs.

Performability, P(L, t): The probability that a system is performing at or above some level 
of performance, L, at the instant of time t.

Physical prototype: They could be mock-ups of future products carved out of foam to give 
designers and users an idea of how the fi nished product might function and an 
intuition for how it might feel.

Positive feedback: The output signal is fed back so that it adds to the input signal.
Positive-(semi)defi nite: A positive-(semi)defi nite matrix is a symmetric matrix A such 

that for any nonzero vector x, the quadratic form xTAx is positive (nonnegative).
Reliability, R(t): The conditional probability that a system has functioned correctly 

throughout an interval of time, [t0, t], given that the system was performing 
 correctly at time t0.

Reliability: Reliability r(t) is the probability that a component or system will function 
without failure over a specifi ed time period under stated conditions.

Resources: A resource is an entity that provides service to dynamic entities.
Risk: Uncertainty embodied in the system produce unintended consequences.
Robust control: Control of a dynamical system so that the desired performance is main-

tained despite the presence of uncertainties and modeling inaccuracies.
Robustness of model: A mathematical model is said to be robust if small changes in the 

parameter lead to small changes in the behavior of model. The decision is made by 
using sensitivity analysis for the models.

Root-mean-squared (RMS) error: The square root of the mean squared error.
Safety, S(t): The probability that a system will either perform its functions correctly or will 

discontinue its functions in a well-defi ned, safe manner.
Sensitivity: A property of a system indicating the combined effect of component toler-

ances on overall system behavior, the effect of parameter variations on signal 
perturbations, and the effect of model uncertainties on system performance and 
stability. For example, in radio technology, sensitivity is the minimum input sig-
nal required by the receiver to produce a discernible output. The sensitivity of a 
control system could be measured by a variety of sensitivity functions in time, 
frequency, or performance domains. A sensitivity analysis of the system may be 
used in the synthesis stage to minimize the sensitivity and thus aim for insensi-
tive or robust design.

Signal-to-noise ratio (SNR): The ratio between the signal power and the noise power at a 
point in the signal traveling path.

Simulation: It is imitation of operation of a real-world process or system over time. This is 
done by iterative process of developing model and conducting experiments on it.

Singular value: Singular values are nonnegative real numbers that measure the mag-
nifi cation effect of an operator in the different basis directions of the operator’s 
space.

Stabilizable: A system is stabilizable if all its unstable modes are controllable.
State equation: The equation that describes the relationship between the derivation of the 

state variables as a function of the state variables, inputs, and parameter are called 
state equation.

State transition matrix: Matrix operation which determines the transition of any initial 
state x(0) at t = 0 to a state x(t) at time t is known as state transition matrix.



676 Appendix C

State variables: A set of variables that completely summarize the system’s status in the 
following sense. If all states xi are known at time t0, then the values of all states 
and outputs can be determined uniquely for any time t1 > t0, provided the inputs 
are known from t0 onward. State variables are components in the state vector. State 
space is a vector space containing the state vectors.

State: The state of the system is a set of variables that is capable of characterizing the 
 system at any time.

Steady state error: The difference between the desired reference signal and the actual 
signal in steady state, that is, when time approaches infi nity.

Steady state response: That part of the response which remains as time approaches 
infi nity.

String theory: Where the physicists are trying to develop a “theory of everything.”
Synthesis: The process by which new physical confi gurations are created. The combining 

of separate elements or devices to form a coherent whole.
Systems engineering: An approach to the overall life cycle evolution of a product or sys-

tem. Generally, the systems engineering process comprises a number of phases. 
There are three essential phases in any systems engineering life cycle: formula-
tion of requirements and specifi cations, design and development of the system or 
product, and deployment of the system. Each of these three basic phases may be 
further expanded into a larger number. For example, deployment generally com-
prises operational test and evaluation, maintenance over an extended operational 
life of the system, and modifi cation and retrofi t (or replacement) to meet new and 
evolving user needs.

Time domain: The mathematical domain that incorporates the time response and the 
description of a system in terms of time.

Time varying systems: A system for which one or more parameters may vary with time.
Transfer function: The ratio of system output to system input in frequency domain 

(s-domain).
Transient response: That part of the response which vanishes as time approaches 

infi nity.
Transient response: The response of a system as a function of time.
Transition matrix F(t): The matrix exponential function that describes the unforced 

response of the system.
Validation: It is a process in which model behavior is compared with the actual system 

and error is reduced to an acceptable level. It is also called calibration. This tells us 
whether the model is faithful or not?

Verifi cation: Verifi cation is concerned with “Is the model implemented correctly?”
Zero-input response: That part of the response due to the initial condition only.
Zero-state response: That part of the response due to the input only.

C.2 Artificial Neural Network

Activation/threshold function: It is a function which controls the neuron output.
Adaptive: A system that can be modifi ed during operation to meet specifi ed criteria.
Artifi cial neural network: A set of nodes called neurons and a set of connections between 

the neurons that form a network is called aritifi cal neural network.



Appendix C 677

Artifi cial neuron: An elementary analog of a biological neuron with weighted inputs, an 
internal threshold, and a single output. When the activation of the neuron equals 
or exceeds the threshold, the output takes the value C1, which is an analog of the 
fi ring of a biological neuron. When the activation is less than the threshold, the 
output takes on the value 0 (in the binary case) or −1 (in the bipolar case) represent-
ing the quiescent state of a biological neuron. It mimics the behavior of biological 
neuron with the help of an electronic circuit.

Axon: Output channel.
Back propagation: ANN models where error at output layer is propagated back to modify 

the weights.
Bias: It is the connection strength for a fi xed input.
Biological neuron: The tiny processing cell in the human brain.
Cell body: Accumulator (with threshold function).
Dendrites: Input receptors in neuron.
Epoch/iteration: A cycle of processing in a neural network, which contains forward cal-

culation for determining neural output as well as backward calculation to update 
the weights.

Global minima: There is no other value of x in the domain of the function f, where the 
value of the function is smallest.

Gradient descent system: A system that attempts to reach its stable state by moving con-
sistently down the steepest portion of its energy surface.

Hamming distance: The number of digit positions in which the corresponding digits 
of two binary words of the same length differ. The minimum distance of a 
code is the smallest Hamming distance between any pair of code words. For 
example, if the sequences are 1010110 and 1001010, then the Hamming distance 
is 3.

Hidden layer: A layer of neurons in a multilayer perceptron network that is intermediate 
between the output layer and the input layer.

Hidden layer: An array of neurons positioned between the input and output layers.
Input layer: An array of neurons to which an external input or signal is presented.
 It is intended to perform intellectual operations in a manner not unlike that of the 

neurons in the human brain. In particular, artifi cial neural networks have been 
designed and used for performing pattern recognition operations.

Local minima: During learning of ANN the network could not reach to its absolute min-
ima, which is called local minima.

Noise: A distortion of an input.
Output layer: An array of neurons to which output from the network is taken.
Perceptron: A single-layer neural network that that can solve only the linearly separable 

problems.
Simulated annealing: The process of introducing and then reducing the amount of ran-

dom noise introduced into the weights and inputs of a neural network. The pro-
cess is analogous to methods used in solidifi cation, where the system starts with a 
high temperature to avoid local energy minima, and then gradually the tempera-
ture is lowered according to a particular algorithm.

Supervised learning: A learning process where the output for the given input is known 
and used for modifying the weights. In this learning, examples are used.

Training: The process of changing weights or rather refi ning weights is called learning/
training.

Unsupervised learning: Learning in the absence of external information on outputs.



678 Appendix C

Weight: It is connection strength between different neurons situated at different layers.
Working memory: A component or a place of computer system where the intermediate 

results of intelligent system are temporarily stored.

C.3 Fuzzy Systems

Adaptive fuzzy system: A fuzzy system that does not require rules from a human expert; 
it generates and tunes its own rules. A neuro-fuzzy system or fuzzy neural system 
are adaptive fuzzy systems.

Antecedent: The clause that implies the other clause in a conditional statement, that is, the 
if part in the if-then rule.

Approximate reasoning: An inference procedure used to derive conclusions from a set of 
fuzzy if-then rules and some conditions (facts). The most used approximate rea-
soning methods are based on the generalized modus ponens.

Artifi cial intelligence: The discipline devoted to produce systems that perform tasks 
which would require “intelligence” if performed by a human being.

Automatic knowledge acquisition: A branch of machine learning devoted to explicating 
the principles of the induction of rule bases.

Backtracking: The process of backing up through a series of inferences in the face of unac-
ceptable results.

Backward chaining: An inference mechanism which works from a goal and attempts to 
satisfy a set of initial conditions. Also referred to as goal-directed chaining.

Cognition: An intelligent process by which knowledge is gained about perceptions or 
ideas.

Consequent: The resultant clause in a conditional statement, that is, the then part in the 
if-then rule.

Convex fuzzy set: Fuzzy sets whose α cuts are crisp sets for all α ε [0,1].
Crisp set: The classical or crisp set is the collection of items and the items can be member 

or nonmember of that set.
Database system: A system which marries the properties of database systems with the 

properties of expert systems.
Defuzzifi cation: The process of transforming a fuzzy set into a crisp set or a real-valued 

number.
Degree of membership: An expression of confi dence or certainty that an element 

belongs to a fuzzy set. It varies from 0 (no membership) to 1 (complete 
membership).

Domain expert: The person who provides the expertise on which a knowledge base is 
modifi ed.

Domain: A bounded area of knowledge. A pool of values used to defi ne columns of a 
relation.

Equivalence relation: Relation that is refl exive, symmetric, and transitive.
Expert system: A computer system that achieves high levels of performance in areas that 

for human beings require large amounts of expertise.
Expert system: A computer program that emulates a human expert in a well-bounded 

domain of knowledge.
Expertise: A set of capabilities underlying skilled performance in some task area.



Appendix C 679

Fact: A relationship between objects.
Forward chaining: An inference mechanism that works from a set of initial conditions to 

a goal. Also referred to as a data-directed chaining. Making inferences by match-
ing the condition sides of the IF-THEN rules to the facts at hand. It works from 
facts to conclusions; it also called antecedent mode, event-driven mode, or data-
driven mode of inference.

Fuzzifi cation: Changing crisp number or set to a fuzzy number or set.
Fuzzifi er: A fuzzy system that transforms a crisp (nonfuzzy) input value in a fuzzy set. 

The most used fuzzifi er is the singleton fuzzifi er, which interprets a crisp point as a 
fuzzy singleton. It is normally used in fuzzy control systems.

Fuzziness: The degree or extent of imprecision that is naturally associated with a prop-
erty, process, or concept.

Fuzzy aggregation operator: It is an operator which aggregated two or more fuzzy sets. 
Boundary conditions for fuzzy aggregation operator are h[0, 0, 0, … 0] = 0 and 
h[1, 1, 1. …, 1] = 1. h[0,1]n → [0,1], where n ≥ 2 and h is a continuous monotonically 
increasing aggregation function.

Fuzzy identification: A process of determining a fuzzy system or a fuzzy model. 
A typical example is identification of fuzzy dynamic models consisting of 
determination of the number of fuzzy space partitions, determination of 
membership functions, and determination of parameters of local dynamic 
models.

Fuzzy input–output model: Input–output models involving fuzzy logic concepts. A typi-
cal example is a fuzzy dynamic model consisting of a number of local linear trans-
fer functions connected by a set of nonlinear membership functions.

Fuzzy logic: A logic that deals with the variables, which is not restricted to binary states 
(0 or 1 only), but has a degree of truth between 0 and 1.

Fuzzy modeling: Combination of available mathematical description of the system 
dynamics with its linguistic description in terms of IF-THEN rules. In the early 
stages of fuzzy logic control, fuzzy modeling meant just a linguistic description 
in terms of IF-THEN rules of the dynamics of the plant and the control objective. 
Typical examples of fuzzy models in control application include Mamdani model, 
Takagi–Sugeno–Kang model, and fuzzy dynamic model.

Fuzzy modifi er: An added description of a fuzzy set that leads to an operation that changes 
the shape (mainly the width and position) of a membership function.

Fuzzy parameter estimation: A method that uses fuzzy interpolation and fuzzy extrap-
olation to estimate fuzzy grades in a fuzzy search domain based on a few clus-
ter center grade pairs. An application of this method is to estimate mining 
deposits.

Fuzzy relation: A relation which has degree of membership between 0 (not relation) and 1 
(fully related). It is a subset of Cartesian product of several crisp sets.

Fuzzy sets: A set that allows its elements to have degrees of membership. An ultra fuzzy 
set has its membership function itself as a fuzzy set.

Fuzzy systems: A system whose variable (fuzzy) values are linguistic terms.
Heuristic: A rule of thumb. A mechanism with no guarantee of success.
Inference engine: A device or component carrying out the operation of fuzzy inference, 

that is, combining fuzzy IF-THEN rules in a fuzzy rule base into a mapping from 
a fuzzy set in the input universe of discourse to a fuzzy set in the output universe 
of discourse. It is a part of knowledge base system that makes inferences from the 
knowledge base.



680 Appendix C

Inference: The process of generating conclusions from conditions or new facts from known 
facts.

Information: It is the interpreted data. Information is data with attributed meaning in 
context.

Knowledge base system: A system containing knowledge which can perform tasks that 
require intelligence if done by human beings.

Knowledge base: An artifi cial intelligence database that is made up not merely of fi les 
of uniform content, but of facts, inferences, and procedures corresponding to the 
type of information needed for problem solution.

Knowledge engineering: A person, analogous to the system analyst in traditional com-
puting, who builds a knowledge base system. This is the process of developing an 
expert system.

Knowledge representation: The process of mapping the knowledge of some domain into 
a computational medium.

Knowledge source: Any source for knowledge—documents, manuals, tape recording, etc.
Knowledge: It is derived from information by integrating information with existing knowl-

edge. The same data may be interpreted differently by different people depending 
on their existing knowledge.

Linguistic variables: Common language expression used to describe a condition or a situ-
ation such as “hot,” “cold,” etc. It can be expressed using fuzzy set defi ned by the 
designer.

Membership function: The mapping that associates each element in a set with its degree 
of membership. It can be expressed as discrete values or as continuous functions. 
The commonly used membership functions are triangular, sigmoid, Gaussian, 
and trapezoidal.

Natural language processing: Processing of natural language (English, for example) by 
a computer to facilitate human communication with the computer—or for other 
purposes, such as language translation.

Parallel processing: Simultaneous processing, as opposed to the sequential processing in 
a conventional (Von-Neumann) type of computer architecture.

Production rules: An IF-THEN rule having a set of conditions and a set of consequent 
conclusions.

Rule: A mechanism for generating new facts.
Singleton: A set that has one member only.
Syllogism: A deductive argument in logic whose conclusion is supported by two premises.

C.4 Genetic Algorithms

Allele: One of a pair or series of alternative genes that occur at a given locus in chromo-
some: one constraining form of genes (bit value or feature value).

Carriers: A heterozygous individual with both recessive and dominant alleles in allelic pair.
Chromosome: Microscopically observable thread-like structures that are the main carri-

ers of hereditary information (coded string).
Crossover: A genetic process which results in gene exchange by combining the different 

chromosomes selected from previous generation (parents).



Appendix C 681

Deoxyribonucleic acid (DNA): A chemical known as genetic material from which the 
genes are composed.

Diploid: An organism or cell having a set of two genomes.
Dominance: Applied one member of an allelic pair that has the ability to manifest itself at 

the exclusion of the expression of the other alleles.
Fitness: Survivability of a living being in a particular environment. It is the objective func-

tion value.
Gametes: They are reproductive cells.
Gene: A hereditary determiner specifying a biological function; a unit of inheritance 

located in a fi xed place on chromosome. It has feature, character, or detector.
Genetic algorithm: An optimization technique that searches for parameter values by 

mimicking natural selection and the laws of genetics. A genetic algorithm takes 
a set of solutions to a problem and measures the “goodness” of those solutions. 
It then discards the “bad” solutions and keeps the “good” solutions. Next, one or 
more genetic operators, such as mutation and crossover, are applied to the set of 
solutions. The “goodness” metric is applied again and the algorithm iterates until 
all solutions meet a certain criteria or a specifi c number of iterations have been 
completed.

Genome: A complete set of chromosomes inherited as a unit from one parent. It is the 
complete string of all variables.

Genotype: Actual gene constitution for a trait (string structure).
Heterozygous: An organism carrying unlike alleles in an allelic pair.
Homozygous: An organism carrying same alleles in an allelic pair.
Lethals: An allele that has an infl uence on viability of an organism in such a way that the 

organism is unable to live, known as lethal gene. (String which disappears under 
specifi ed conditions.)

Mutation: Sudden change in genetic material or gene in chromosome. It is just fl ipping a 
bit within a string.

Phenotype: Visible expression of traits. In GA, it is the set of parameters or a decoded 
string.

Bibliography

Al-Baiyat, S.A. and Bettayeb, M. (1993), A new model reduction scheme for k-power bilinear  systems. 

Proceedings of the IEEE Conference on Decision and Control, San Antonio, TX.

Al-Baiyat, S.A., Bettayeb, M., and Al-Saggaf, U.M. (1994), New model reduction scheme for bilinear 

systems. International Journal of Systems Science, 25:1631–1642.

Alexander, B. (2000), The defi nition of system. Kybernetes, 29(4):444–451.

Alligood, K.T., Sauer, T.D., and Yorke, J.A. (1997), Chaos: An Introduction to Dynamical Systems. 

New York: Springer-Verlag.

Amizadeh, F. and Jamshidi, M. (1994), Soft Computing, Fuzzy Logic, Neural Networks, and Distributed 
Artifi cial Intelligence, vol. 4. Englewood Cliffs, NJ: Prentice Hall.

Antsaklis, P.J. and Passino, K.M. (Eds.) (1993), An Introduction to Intelligent and Autonomous Control. 
Norwell, MA: Kluwer Academic Publishers.

Aoki, M. (1968), Control of large dynamic system by aggregation, IEEE Transactions on Automatic 
Control, AC-13:246–256.



682 Appendix C

Arbib, M.A. (Ed.) (2003), Handbook of Brain Theory and Neural Networks, 2nd edn. Cambridge, MA: 

MIT Press.

Aris, R. (1999), Mathematical Modeling: A Chemical Engineer’s Perspective. San Diego, CA: Academic 

Press.

Armstrong, D. (1981), What is consciousness? In The Nature of Mind. Ithaca, NY: Cornell University 

Press.

Asai, K., Tanaka, H., and Okuda, T. (1975), Decision-making and its goal in a fuzzy environment. 

In Zadeh, L.A., Fu, K.S., Tanaka, K., and Shimura, M. (Eds.), International Fuzzy Sets and Their 
Applications to Cognitive and Decision Processes. New York: Academic Press, pp. 227–256.

Auger, P.M. (1991), Introduction to the special issue on hierarchy theory and its applications, 

International Journal of General Systems, 18(3):189–190.

Badii, R. and Politi, A. (1997), Complexity: Hierarchical Structures and Scaling in Physics. Cambridge, 

U.K.: Cambridge University Press.

Bahm, A. (1981), Five types of systems philosophy, International Journal of General Systems, 

6(4):233–238.

Bailey, K.D. (1994), Sociology and the New Systems Theory: Toward a Theoretical Synthesis. New York: 

State of New York Press.

Baker, G.L. (1996), Chaos, Scattering and Statistical Mechanics. Cambridge, U.K.: Cambridge University 

Press.

Bandler, J.W., Markettos, N.D., and Sinha, N.K. (1973), Optimal system modeling using recent gradi-

ent method, International Journal of Systems Science, 4:257–262.

Banerjee, S. (1999), National AIDS Control Programme, National Journal on Social Welfare, 3:15–20.

Banks, J., Carson II, J.S., Nelson, B.L., and Nicol, D.M. (2001), Discrete-Event System Simulation, 

3rd edn. Englewood Cliffs, NJ: Prentice Hall.

Beer, S. (1985), Diagnosing the System for Organization. New York: John Wiley & Sons.

Beltrami, E. (1987), Mathematics for Dynamic Modeling. New York: Academic Press.

Bender, E.A. (2000), An Introduction to Mathematical Modeling, Mineola, NY: Dover.

Bernhard, J.A. and Marios, C.A. (2000), System dynamics modelling in supply chain management: 

Research review, Proceedings of the 32nd Conference on Winter Simulation. Orlando, FL.

Berr, J.S., Burghes, D.N., Huntley, I.D., and Moscardini, A.O. (1987), Mathematical Modeling Course. 

New York: John Wiley & Sons.

Bertalanffy, L. von. (1969a), General System Theory. New York: George Braziller, pp. 39–40.

Bezdek, J.C. (1993), Fuzzy models—What are they and why?, IEEE Transactions on Fuzzy Systems, 

1(1):1–6, February.

Bhat, N., Minderman, P., McAvoy, T., and Wang, N. (1990), Modeling chemical process systems via 

neural network computation, IEEE Control Systems Magazine, 10(3):24.

Bird, R.J. (2003), Chaos and Life: Complexity and Order in Evolution and Thought. New York: Columbia 

University Press, 352 pp.

Bolch, G., Greiner, S., de Meer, H., and Trivedi, K. (2006), Queuing Networks and Markov Chains, 

2nd edn. New York: John Wiley & Sons.

Bowden, K. (1991), On general physical systems theories, International Journal of General Systems, 

18(1):61–79.

Buckley, W.F. (1967), Sociology and Modern Systems Theory. Englewood Cliffs, NJ: Prentice Hall.

Burkhardt, H. (1981), The Real World and Mathematics. Glasgow, Scotland: Blackie.

Cannon, R.H., Jr. (1967), Dynamics of Physical Systems. New York: McGraw-Hill.

Cao, X.-R. and Ho, Y.-C. (1990), Models of discrete event dynamic systems, IEEE Control Systems 
Magazine, 10(4):69–76, June.

Carpenter, G.A. and Grossberg, S. (1996), Learning, categorization, rule formation, and prediction by 

fuzzy neural networks. In Chen, C.H. (Ed.), Fuzzy Logic and Neural Network Handbook. New York: 

McGraw-Hill, Inc., pp. 1.3–1.45.

Cassandras, C.G. and Lafortune, S. (1999), Introduction to Discrete Event Systems. Dodrecht, the 

Netherlands: Kluwer Academic Publishers, September.

Chalmers, D. (1996), The Conscious Mind. Oxford, U.K.: Oxford University Press.



Appendix C 683

Chaturvedi, D.K. (1992), Modelling and simulation of power systems: An alternative approach, 

Doctoral thesis. Dayalbagh Educational Institute (Deemed University), Dayalbagh, Agra, India.

Chaturvedi, D.K. (1997), Modelling and simulation of electrical power systems: An alternative approach, 

Doctoral thesis. Dayalbagh Educational Institute (Deemed University), Dayalbagh, Agra, India.

Chaturvedi, D.K. (2005), Dynamic model of HIV/AIDS population of Agra region, International 
Journal of Environmental Research and Public Health, USA, 2(3):420–429.

Chaturvedi, D.K. (2008), Soft Computing Techniques and Its Applications to Electrical Engineering. 

Germany: Springer-Verlag.

Chaturvedi, D.K. and Gupta, B.R. (1995), Simulation of temperature variation in parachute infl ation, 

Journal of the Institution of Engineers (India), AS, 76:29–31, September.

Chaturvedi, D.K. and Malik, O.P. (2005), A generalized neuron based adaptive power system stabi-

lizer for multimachine environment, IEEE Transactions on Power Systems, 20(1):358–366.

Chaturvedi, D.K. and Neeraj, V. (1995), Modelling and Simulation of Production Distribution System, National 
Systems Conference. Coimbatore, India: PSG College of Technology, pp. 620–623, December 14–16.

Chaturvedi, D.K. and Satsangi, P.S. (1992), System dynamics modelling and simulation of basic 

commutating electric machines: An alternative approach, Journal of the Institution of Engineers 
(India), EL, 73:6–10, April.

Chaturvedi, D.K. and Satsangi, P.S. (1993), Innovative approach for predicting the performance char-

acteristics of synchronous generators, Journal of the Institution of Engineers (India), El, 74:109–113, 

November.

Chaturvedi, D.K. and Sharma, R.K. (1996), Modeling and simulation of force generated in stanchion 

system of aircraft arrester barrier system, International Journal of Modeling, Measurements, and 
Control, France, B, 64(2):33–51.

Chaturvedi, D.K. and Sharma, R.K. (1996), Modelling and simulation of force generated in stanchion 

system of aircraft arrester barrier system, AMSE Journal on Modelling, Measurements and Control, 
France, B, 64(2):33–51.

Chaturvedi, D.K., Satsangi, P.S., and Kalra, P.K. (1997), Short term load forecasting using generalized 

neural network (GNN) approach, Journal of the Institute of Engineers (India), 78:83–87, August.

Chaturvedi, D.K., Satsangi, P.S., and Kalra, P.K. (1998), A fuzzy simulation model of basic commu-

tating electrical machines, International Journal of Engineering Intelligent Systems, 6(4):225–236, 

December.

Chaturvedi, D.K., Satsangi, P.S., and Kalra, P.K. (1999a), Applications of generalized neural network 

to load frequency control problem, Journal of the Institution of Engineers (India), EL, 80:41–47, 

August.

Chaturvedi, D.K., Satsangi, P.S., and Kalra, P.K. (1999b), Development of fuzzy simulator for DC 

machine modelling, Journal of the Institution of Engineers (India), EL, 80:53–58, August.

Chaturvedi, D.K., Satsangi, P.S., and Kalra, P.K. (1999c), Flexible neural network models for electrical 

machine, Journal of the Institution of Engineers (India), EL, 80:13–16, May.

Chaturvedi, D.K., Satsangi, P.S., and Kalra, P.K. (1999d), Load frequency control: A generalized neu-

ral network approach, Electric Power and Energy Systems, Elsevier Science, 21:405–415.

Chaturvedi, D.K., Satsangi, P.S., and Kalra, P.K. (1999e), New neuron model for simulating rotating 

electrical machines and load forecasting problems, International Journal on Electric Power System 
Research, Elsevier Science, Ireland, 52:123–131.

Chaturvedi, D.K., Mohan, M., and Saxena, A.K. (2001a), Development of HIV infected population 

model using system dynamics technique, International Journal of Modeling, Measurements, and 
Control, France, 22(2):1–14.

Chaturvedi, D.K., Singh, P., Mohan, M., Gaur, S.K., and Mishra, D.S. (2001b), Development of HIV 

model and its simulation, Journal of Health Management, 3(1):65–84.

Chaturvedi, D.K., Satsangi, P.S., and Kalra, P.K. (2001c), Fuzzifi ed neural network approach for load 

forecasting problems, International Journal on Engineering Intelligent Systems, CRL Publishing, 
U.K., 9(1):3–9, March.

Chaturvedi, D.K., Malik, O.P., and Kalra, P.K. (2004a), Experimental studies of generalized neuron 

based power system stabilizer, IEEE Transactions on Power Systems, 19(3):1445–1453, August.



684 Appendix C

Chaturvedi, D.K., Malik, O.P., and Kalra, P.K. (2004b), A generalized neuron based adaptive power 

system stabilizer, IEE Proceedings of Generation, Transmission & Distribution, 15(2):213–219, March 

2004.

Chaturvedi, D.K., Malik, O.P., and Kalra, P.K. (2004c), A generalized neuron based PSS in a 

multi-machine power system, IEEE Transactions on Energy Conversions, USA, 19(3):625–632, 

September.

Chaturvedi, D.K., Malik, O.P., and Kalra, P.K. (2004d), Application of generalized neuron based 

power system stabilizer in a multi-machine power system (research note), International Journal 
of Engineering Transactions B, Iran, 17(2):131–140, July 2004.

Checkland, P.B. (1997), Systems Thinking, Systems Practice. Chichester, U.K.: John Wiley & Sons, Ltd.

Checkland, P.B. (1999), Soft Systems Methodology in Action. Chichester, U.K.: John Wiley & Sons Ltd.

Checkland, P.B. (2006), Learning for Action: A Short Defi nitive Account of Soft Systems Methodology, and 
Its Use Practitioners, Teachers and Students. Chichester, U.K.: Wiley (with John Poulter).

Checkland, P.B. and Winter, M.C. (2000), The Relevance of Soft Systems Thinking, Human Resource 
Development International, 3(3):411–417.

Chen, C.F. (1974), Model reduction of multivariable control system by means of matrix continued 

fraction, International Journal of Control, 29(2):225–238.

Chen, C.F. and Shieh, L.S. (1969), Continued fraction inversion by Routh algorithm, IEEE Transactions 
on Circuit Theory, CT-16(2):197–202.

Chen, C.F. and Shieh, L.S. (1972), A novel approach to linear model simplifi cation, International 
Journal of Control, 22(2):231–238.

Cochin, I. (1980), Analysis and Design of Dynamic Systems. New York: Harper & Row.

Contwell, A. (1991), AIDS: The Mystery and the Solution. Los Angeles, CA: Aries Rising Press.

Cox, E. (1998), The Fuzzy Systems Handbook—A Practitioner’s Guide to Building, Using, and Maintaining, 
Fuzzy Systems, 2nd edn. Boston, MA: AP Professional.

Croall, I.F. and Mason, J.P. (Eds.) (1991), Industrial Applications of Neural Networks. New York: Springer-

Verlag.

Cumberbatch, E. and Fitt, A. (2001), Mathematical Modeling: Case Studies from Industry. Cambridge, 

U.K.: Cambridge Press.

D’Agostino, R.B., Shuman, L.J., and Wolfe, H. (1984), Mathematical Modeling: Applications in Emergency 
Health Services. New York: Haworth Press.

D’Souza, A. (1988), Design of Control Systems. Englewood Cliffs, NJ: Prentice Hall.

Davison, E.J. (1968), A new method for simplifying large linear dynamic system, IEEE Transactions on 
Automatic Control, AC-13:214–215, April.

Dayal, B. and Satsangi, P.S. (2008), Managing complexity in systems through neutral processes of 

nominal group technique and interpretive structural modelling: A novel application from liter-

ary fi eld, National Systems Conference (NSC 2008), I.I.T. Roorkee, India.

Dayal, B. and Srivastava, M. (2008), Variety management in modelling a system: A case study of 

fi ctional system representation by the Hindi Movie “Sarkar Raj,” National Systems Conference 
(NSC 2008), I.I.T. Roorkee, India.

Dayhoff, J. (1991), Neural Network Architectures: An Introduction. New York: Van Nostrand 

Reinhold.

Dennett, D.C. (1978), Brainstorms. Cambridge, MA: MIT Press.

Dennett, D.C. (1984), Elbow Room: The Varieties of Free Will Worth Having. Cambridge, MA: MIT 

Press.

Dennett, D.C. (1991), Consciousness Explained. Boston, MA: Little, Brown and Company.

Dennett, D.C. (2003), Freedom Evolves. New York: Viking.

Devaney, R.L. (2003), An Introduction to Chaotic Dynamical Systems, 2nd edn. Boulder, CO: Westview 

Press.

Douglas, K.L. and Euel, W.E. (Ed.) (1997), Chaos Theory in the Social Sciences: Foundations and 
Applications. Ann Arbor, MI: University of Michigan Press.

Dubois, D. and Prade, H. (1980), Fuzzy Sets and Systems: Theory and Applications. New York: Academic 

Press.



Appendix C 685

Dubois, D. and Prade, H. (1991), Fuzzy sets in approximate reasoning, Part I and II: Inference with 

possibility distributions, Fuzzy Sets and Systems, 40(1):143–202.

Duda, R., Hart, P., and Stork, D. (2001), Pattern Classifi cation, 2nd edn. New York: John Wiley & Sons.

Dudai, Y. (1989), The Neurobiology of Memory, Oxford, U.K.: Oxford University Press.

Dullerud, G.E. and Paganini, F.A. (2000), Course in Robust Control Theory: A Convex Approach. Berlin: 

Springer.

Eyechoff, P. (1974), System Identifi cation: Parameter and State Estimation. London, England: Wiley.

Feldman, D.A. and Johnson, T.M. (Eds.) (1986), The Social Dimensions of AIDS: Methods and Theory. 

New York: Praeger Publisher.

Feldmann, P. and Freund, R.W. (1995), Effi cient linear circuit analysis by Pade approximation via the 

Lanczos process, IEEE Transactions CAD, 14:639–649.

Fielding, C. and Flux, P.K. (2003), Non Linearities in Flight Control Systems. Warton, U.K.: Royal 

Aeronautical Society.

Fishman, G.S. (1978), Principles of Discrete Event Simulation. New York: John Wiley.

Flood, R.L. (1999), Rethinking the Fifth Discipline: Learning within the Unknowable. London, U.K.: 

Routledge.

Forrester, J.W. (1968), Principles of System. Cambridge, MA: Wright Allen Press, Inc.

Forrester, J.W. (1968), Industrial Dynamics, Cambridge, MA: MIT Press, 1968.

Fujimoto, R.M., (2003), Parallel simulation: Distributed simulation systems, Workshop on Parallel and 
Distributed Simulation, 97.

Franklin, G.F. and Powell, J.D. (1986), Feedback Control of Dynamic Systems. Reading, MA: Addison-

Wesley.

Genesio, R. and Milaness, M. (1976), A note on the derivation can use of reduced order models, IEEE 
Transactions on Automatic Control, AC-21(1):118–122, February.

George, J.K. (1969), Approach to General Systems Theory. New York: Van Nostrand Reinhold Co.

Gershenfeld, N. (1998), The Nature of Mathematical Modeling. Cambridge, U.K.: Cambridge University 

Press.

Glavaski, S., Marsden, J.E., and Murray, R.M. (1998), Model reduction, centering, and the Karhunen–

Loeve expansion. Proceedings of the IEEE Conference on Decision and Control, Tampa, FL, 37: 

2071–2076.

Glover, K. (1984), All optimal Hankel-norm approximations of linear multivariable systems and their 

L-infi nity error bounds, International Journal of Control, 39:1115–1193.

Gollub, J.P. and Baker, G.L. (1996), Chaotic Dynamics. Cambridge, U.K.: Cambridge University 

Press.

Gong, V. (Ed.) (1985), Understanding AIDS: A Comprehensive Guide. New Brunswick, NJ: Rutgers 

University Press.

Goodman, M.R. (1983), Study Notes on System Dynamics. London, England: The MIT Press.

Gray, W.S. and Mesko, J. (1998), Energy functions and algebraic gramians for bilinear systems. 

Proceedings of the 4th IFAC Nonlinear Control Systems Design Symposium, Enschede, the 

Netherlands.

Gruca, A. and Bertrand, P. (1978), Approximation of high order systems by low order models with 

delays, International Journal of Control, 28(6):953–965.

Gupta, S. (Ed.) (1986), AIDS: Associated Syndromes. New York: Plenum Press.

Gutman, P.O., Mannerfelt, C.F., and Monlander, P. (1982), Contribution to the model reduction prob-

lem, IEEE Transactions on Automatic Control, AC-27(2):454–455.

Gutzwiller, M. (1990), Chaos in Classical and Quantum Mechanics. New York: Springer-Verlag.

Hadamard, J. (1898), Les surfaces à courbures opposées et leurs lignes géodesiques, Journal de 
Mathématiques Pures et Appliquées, 4:27–73.

Hanselman, D. and Littlefi eld, B. (2000), Mastering Matlab 6: Comprehensive Tutorial and Reference. 

Englewood Cliffs, NJ: Prentice Hall.

Haykin, S. (1998), Neural Networks. New Delhi, India: Pearson Education.

Hickin, J.D. and Sinha, N.K. (1980), A new method for reducing multivariable systems, IEEE 
Transactions on Automatic Control, AC-25:1121–1127.



686 Appendix C

Hipel, K.W. and Fraser, N.M. (1980), Metagame analysis of the garrison confl ict, Water Resources 
Research, 16:629–637.

Hoover, W.G. (1999), Time Reversibility, Computer Simulation, and Chaos. Singapore: World Scientifi c.

Hristu-Varsakelis, D. and Kyrtsou, C. (2008), Evidence for nonlinear asymmetric causality in US 

infl ation, metal and stock returns, Discrete Dynamics in Nature and Society, Article ID 138547, 7, 

doi:10.1155/2008/138547.

Hritonenko. N. et al. (2003), Applied Mathematical Modelling of Engineering Problems. Dordrecht, the 

Netherlands: Kluwer Academic Publisher.

Hsu, C.S. and Hou, D. (1991), Reducing unstable linear control systems via real Schur transforma-

tion, Electronics Letters, 27(11):984–986.

Humpert, B. (1994), Improving backpropagation with a new error function, Neural Network, 

7(8):1191–1192.

Ives, R.L. (1958), Neon oscillator rings, Electronics, 31:108–115, October.

Jamshidi, M. (1983), Large Scale System Modelling and Control, New York: North Holland.

Jang, J.S. and Sun, C. (1995), Neuro-fuzzy modeling and control, Proceedings of IEEE 83(3):378–406.

Jang, J.-S.R., Sun, C.-T., and Mizutani, E. (1996), Neuro-Fuzzy and Soft Computing. New York: Prentice Hall.

Jin, Y. (2000), Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretabil-

ity improvement. IEEE Transactions on Fuzzy Systems, 8(2):212–221.

Jones, W.P. and Hoskins, J. (1987), Backpropagation: A generalized delta rule, Byte, 12:155–163, October.

Jose, M.B. et al. (Eds.) (2003), Advances in Soft Computing: Engineering Design and Manufacturing. 

Germany: Springer Verlag, August 22, 2003.

Kailath, T. (1980), Linear Systems. Englewood Cliffs, NJ: Prentice Hall.

Kaku, M. (2008), Physics of Impossible. New York: Doubleday.

Kalra, P.K. and Batra, J.L. (1990), Management of fl exible manufacturing—An expert systems 

approach. In Lal, G.K. and Singh, L.P. (Eds.), Challenges of Change. New Delhi: Tata McGraw-

Hill Publishing Company, 56–76.

Kalra, P.K. and Srivastav, S.C. (1990), Application of expert system for electric energy management 

system: A feasibility study. In Lal, G.K. and Singh, L.P. (Eds.), Challenges of Change. New Delhi: 

Tata McGraw-Hill Publishing Company, 76–84.

Kalra, P.K., Srivastava, S.C., and Chaturvedi, D.K. (1992), Possible applications of neural nets 

to power system operation and control, International Journal of Power System Research, 
25:83–90.

Kerns, K.J. and Yang, A.T. (1998), Stable and effi cient reduction of large, multi-port rc network by 

pole analysis via congruence transformations, IEEE Transactions on Computer-Aided Design of 
Integrated Circuits and Systems, 16(7):734–744, July.

Kiel, L.D. and Elliott, E.W. (1997), Chaos Theory in the Social Sciences. Cambridge, MA: Perseus 

Publishing.

Klir, G.J. (1969), An approach to general systems theory, New York: Van Nostrand Reinhold Co.

Klir, G.J. and Folger, T.A. (2000), Fuzzy Sets, Uncertainty and Information. New Delhi: Prentice Hall of 

India.

Koenig, H.E. and Blackwell, W.A. (1961), Electromechanical System Theory. New York: McGraw-Hill 

Book Company.

Koenig, H.E., Tokad, Y., and Kesavan, H.K. (1966), Analysis of Discrete Physical Systems. New York: 

McGraw-Hill Book Company.

Kosko, B. (1997), Fuzzy Engineering. Upper Saddle River, NJ: Prentice Hall.

Kumar, S. and Satsangi, P.S. (1992), System dynamics simulation of Hopfi eld neural networks, 

International Journal of Systems Science, 23(9):1517–1525.

Kumar, A. and Singh, V. (1978), An improved algorithm for continued fraction inversion, IEEE 
Transactions on Automatic Control, AC-23(5):938–940.

Kuo, B.C. (1990), Automatic Control Systems. New Delhi, India: Prentice Hall of India.

Kyrtsou, C. (2008), Re-examining the sources of heteroskedasticity: The paradigm of noisy chaotic 

models, Physica A, 387:6785–6789.



Appendix C 687

Lal, M. and Mitra, R. (1974), Simplifi cation of large system dynamic using a moment evaluation 

algorithm, IEEE Transactions on Automatic Control, 19(5):602–603, October.

Lathi, B.P. (1965), Signals, Systems, and Communication. New York: Wiley.

Lathi, B.P. (1987), Signals and Systems. Carmichael, CA: Berkeley–Cambridge Press.

Leigh, J.R. (1985), Applied Digital Control. Englewood Cliffs, NJ: Prentice Hall.

Leitch, R.R. (1989), A review of the approaches to the qualitative modelling of complex systems. 

In Linkens, D.A. (Ed.), Trends in Information Technology. London, U.K.: Peter Peregrinus.

Lentz, B.P. (1972), On time-dependent fuzzy sets. Information Science, 4:367–376.

Lin, C.C. and Segel, L.A. (1988), Mathematics Applied to Deterministic Problems in the Natural Sciences. 

Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM).

Lipmann, R.P. (1989), Pattern classifi cation using neural networks, IEEE Communications Magazine, 

27(11):47–54, November.

Ljung, L. (1999), System Identifi cation. Englewood Cliffs, NJ: Prentice Hall.

Lorenz, E.N. (1963), Deterministic non-periodic fl ow, Journal of the Atmospheric Sciences, 20:130–141.

Lorenz, E. (1996), The Essence of Chaos. Seattle, WA: University of Washington Press.

Luenberger, D.G. (1979), Introduction to Dynamic Systems. New York: Wiley.

Maki, D.P. (1973), Applications, With Emphasis on the Social, Life, and Management Sciences, Prentice 

Hall.

Maki, D.P. and Thomson, M. (1973), Mathematical Models and Applications: With Emphasis on the Social 
Life and Management Sciences. Englewood Cliffs, NJ: Prentice Hall.

Mamdani, E.H. (1974), Application of fuzzy algorithms for control of simple dynamic plant, 

Proceedings of IEEE, 121(12):1585–1588.

Mamdani, E.H. (1976), Advances in the linguistic synthesis of fuzzy controller, International Journal of 
Man–Machine Studies, 8(6):669–678.

Mamdani, E.H. and Assilian, S. (1975), An experiment in linguistic synthesis with a fuzzy logic con-

troller, International Journal of Man–Machine Studies, 7(1):1–13.

Mohan, M., Chaturvedi, D.K., and Kalra, P.K. (2003a), Development of new neuron structure for 

short term load forecasting, International Journal of Modeling and Simulation, AMSE Periodicals, 

46(5):31–52.

Mohan, M., Chaturvedi, D.K., Satsangi, P.S., and Kalra, P.K. (2003b), Neuro-fuzzy approach for devel-

opment of new neuron model, International Journal of Soft Computing—A Fusion of Foundations, 
Methodologies and Applications, Springer-Verlag, 8(1):19–27, October.

Mark, M.M. (2007), Mathematical Modeling. Amsterdam, the Netherlands: Elsevier.

Marshel, S.A. (1966), An approximation method for reducing the order of a large system, Control 
Engineering, 10:642–648.

McLean, D. (1999), Aircraft fl ight control system, Department of Aeronautics and Astronautics, The 
Aeronautical Journal, 103:159–165.

Michalewiccz, Z. (1992), Genetic Algorithms + Data Structure = Evolution Programs. Berlin, Germany: 

Springer-Verlag.

Minsky, M.L. and Papert, S.A. (1969), Perceptron. Cambridge, MA: MIT Press.

Mishra, R.N. and Wilson, D.A. (1980), A new algorithm for optimal reduction of multivariable 

 systems, International Journal of Control, 31(3):443–466.

Moon, F. (1990), Chaotic and Fractal Dynamics. New York: Springer-Verlag.

Moore, B.C. (1981), Principal component analysis in linear systems: Controllability, observability, 

and model reduction. IEEE Transactions on Automatic Control, 26(1):17–32.

Murray, S.K. (1987), Mathematical Modelling: Classroom Notes in Applied Mathematics. Philadelphia, PA: 

Society for Industrial and Applied Mathematics (SIAM).

Nagrath, I.J. and Gopal, M. (2001), Control System Engineering. New Delhi, India: New Age 

International (P) Limited.

Nakamura, S. (1993), Applied numerical methods in C, Englewood Cliffs, Prentice Hall, NJ.

Negoita, C.V. and Sularia, M. (1976), On fuzzy programming and tolerances in planning, Economic 
Computation and Economic Cybernatics Studies and Research, l:3–14.



688 Appendix C

Newman, A.J. and Krishnaprasad, P.S. (1998a), Nonlinear model reduction for RTCVD. Proceedings of 
the 32nd Conference on Information Sciences and Systems, Princeton, NJ.

Newman, A.J. and Krishnaprasad, P.S. (1998b), Computation for nonlinear balancing. Proceedings of 
the IEEE Conference on Decision and Control, Tampa, FL, pp. 4103–4104.

Odabasioglu, A., Celik, M., and Pileggi, L.T. (1998), PRIMA: Passive reduced-order interconnect mac-

romodeling algorithm, IEEE Transactions on CAD, 17(8):645–654.

Ogata, K. (1990), Modern Control Engineering, 2nd edn. Englewood Cliffs, NJ: Prentice Hall.

Ott, E. (2002), Chaos in Dynamical Systems. New York: Cambridge University Press.

Padulo, L. and Arbib, M.A. (1974), System Theory. Philadelphia, PA: Saunders.

Panos, D. (1988), AIDS and the Third World. London, U.K.: Panos Institute.

Parathasarthy, R. and Harpreet, S. (1975), On continued fraction inversion by Routh’s algorithm, 

IEEE Transactions on Automatic Control, AC-20:278–279.

Pavel, L. and Fairman, F.W. (1997), Controller reduction for nonlinear plants—An L2 approach, 

International Journal of Robust and Nonlinear Control, 7:475–505.

Pedrycz, W. (1984), Identifi cation in fuzzy systems, IEEE Transactions on Systems, Man, and Cybernetics, 

14:361–366.

Peierls, R. (1980), Model-making in physics, Contemporary Physics, 21(1):3–17.

Peng, L. and Pileggi, L.T. (2003), NORM: Compact model order reduction of weakly nonlinear 

 systems, IEEE/ACM Design Automation Conference, Anaheim, CA, pp. 427–477.

Phillips, J.R., Daniel, L., and Silveira, L.M. (2003), Guaranteed passive balanced transformation for 

model order reduction, IEEE Transactions on Computer-Aided Design of Integrated Circuits and 
Systems, 22(8):1027–1041.

Poincaré, J.H. (1890), Sur le problème des trois corps et les équations de la dynamique. Divergence 

des séries de M. Lindstedt, Acta Mathematica, 13:1–270.

Pouvreau, D. and Drack, M. (2007), On history of Ludwig von Beranlanffy’s “General Systemology” 

and on its relationship to cybernetics, International Journal of General Systems, 36(3):281–337.

Prasad, R., Pal, J., and Pant, A.K. (1995), Multivariable system approximation using polyno-

mial derivates, Journal of the Institution of Engineers (India), Electrical Engineering Division, 

76:186–188.

Ramadge, P.J.G. and Wonham, W.M. (1989), The control of discrete event systems, Proceedings of the 
IEEE, 77(1):81–98.

Renee, S. (Ed.) (1988), Blaming Others: Prejudice, Race and World-Wide AIDS. London, U.K.: Panos 

Institute.

Roe, P.H. (2009), Creation, the universe, and systems, International Journal on Literature and Theory, 
Literary Paritantra (Systems), 1(1 and 2):25–28.

Ross, T.J. (1995), Fuzzy Logic with Engineering Applications. New York: McGraw-Hill, Inc.

Rowley, C.W. and Marsden, J.E. (2000), Reconstruction equations and the Karhunen–Loeve expan-

sion for systems with symmetry, Physica D, 142:1–19.

Roychowdhury, J. (1999), Reduced-order modeling of time-varying systems, IEEE Transactions on 
Circuits and Systems II: Analog and Digital Signal Processing, 46(10):1273–1288.

Rozsa, P. and Sinha, N.K. (1974), Effi cient algorithm for irreducible realization of a rational matrix, 

International Journal of Control, 21:273–284.

Sage, A.P. (1977), Methodology for Large Scale System. New York: McGraw-Hill Book Company.

Sage, A.P. (Ed.) (1990), Concise Handbook on Information Systems Challenges of Change. New Delhi, India: 

Tata McGraw-Hill Publishing Company, pp. 171–181.

Saini, A., Chaturvedi, D.K., and Saxena, A.K. (2006), Optimal load fl ow: A GA-fuzzy system approach, 

International Journal of Emerging Electrical Power System Research, 5(2):1–21.

Salthe, S.N. (1991), Two forms of hierarchy theory in western discourses, International Journal of 
General Systems, 18(3):251–264.

Sanchez, E. (1976), Resolution of composite fuzzy relation equations, Information and Control, 
30:38–48.

Sandefur, J.T. (1993), Discrete Dynamical Modeling, McGraw-Hill.

Satsangi, P.S. (1985), Management by qualitative systems analysis, Prabandh, 1:11–24.



Appendix C 689

Satsangi, P.S. (2006), Generalizing physical systems through applied systems research from “real 

physical” systems through “conceptual” socio-economic-environmental systems to “esoteric” 

creational systems, International Journal of General Systems, 35(2):127–167.

Satsangi, P.S. (2008), Generalized physical system theory for applies systems research, National 
Systems Conference (NSC 2008), I.I.T. Roorkee, India.

Satsangi, P.S. (2009), Linear graph theoretic system paradigm—A learning system modeling 

methodology, International Journal on Literature and Theory, Literary Paritantra (Systems), 
1(1 and 2):1–16.

Satsangi, P.S. and Ellis, J.B. (1971), General systems from network systems: A philosophy of model-

ling, International Journal of Systems Science, 2(1):1–16.

Scherpen, J.M.A. (1993), Balancing for nonlinear systems, Systems and Control Letters, 

21(2):143–153.

Scherpen, J.M.A. (1996), H-infi nity balancing for nonlinear systems, International Journal of Robust and 
Nonlinear Control, 6:645–668.

Scherpen, J.M.A. and van der Schaft, A.J. (1994), Normalized co-prime factorizations and balancing 

for unstable nonlinear-systems, International Journal of Control, 60(6):1193–1222.

Schilling, R.J. and Harris, S.L. (2000), Applied Numerical Methods for Engineers Using Matlab and 
C. Pacifi c Grove, CA: Brooks/Cole.

Schmidt, J.W. and Taylor, R.E. (1970), Simulation and Analysis of Industrial Systems. Homewood, IL: 

Richard D. Irwin.

Shamash, Y. (1974), Order reduction of linear systems by Pade approximation methods, IEEE 
Transactions on Automatic Control, AC-19:615–616.

Shieh, L.S. and Goldman, M.J. (1974), Continued fraction expansion and inversion of the Cauer third 

form, IEEE Transactions Circuits and Systems, CAS 21:341–345.

Singh, M.G. and Titlied, A. (1979), Handbook of Large Scale Systems Engineering Applications. New York: 

North Holland.

Sinha, N.K. and Bereznai, G.T. (1977), Optimal approximation of high order systems by low order 

models, International Journal of Control, 13(3):88–90, February.

Skyttner, L. (2006), General Systems Theory: Problems, Perspective, Practice. Singapore: World Scientifi c 

Publishing Company, ISBN:9-812-56467-5.

Smith, P. (1998), Explaining Chaos. Cambridge, U.K.: Cambridge University Press.

Sommer, G. and Pollatschek, M.A. (1978), A fuzzy programming approach to an air pollution 

regulation problem, in R. Trap et al. (eds.): Progress of Cybernetics and Systems Research, Vol. 

III, pp. 303–313, Hemisphere Publ. Corp., Washington, D.C.

Sprott, J.C. (2003), Chaos and Time-Series Analysis. Oxford, U.K.: Oxford University Press.

Srinivasa Rao, S.R. (2003), Mathematical modeling of AIDS epidemic in India, Current Science, 

84(9):1192–1197.

Stachowicz, M.S. and Kochanska, M.E. (1986), Analysis of the application of fuzzy relations in mod-

eling, Proceedings of the North American Fuzzy Information Society ‘86, New Orleans, LA.

Stachowicz, M.S. and Kochanska, M.E. (1987), Fuzzy modeling of the process, Proceedings of Second 
International Fuzzy Systems Association Congress, Tokyo, Japan.

Sterman, J.D. (2000), Business Dynamics: Systems Thinking and Modeling for a Complex World. New York: 

McGraw-Hill.

Stewart, I. (1990), Does God Play Dice?: The Mathematics of Chaos. Cambridge, MA: Blackwell 

Publishers.

Stewart, R. (2004), Simulation—The Practice of Model Development and Use. Chichester, U.K.: Wiley.

Strogatz, S.H. (1994), Nonlinear Dynamics and Chaos. Reading, MA: Addison Wesley.

Strogatz, S. (2000), Nonlinear Dynamics and Chaos. Cambridge, MA: Perseus Publishing.

Sugeno, M. and Yasukawa, T. (1993), A fuzzy logic based approach to qualitative modelling, IEEE 
Transactions on Fuzzy Systems, 1:7–31.

Sularia, M. (1977), On fuzzy programming in planning, Kyhernetr, 6:229–230.

Tagaki, T. and Sugeno, M. (1985), Fuzzy identifi cation of systems and its applications to modeling 

and control, IEEE Transactions on Systems, Man, and Cybernetics, 15:116–132.



690 Appendix C

Tan, S.X.-D. and He, L. (2007), Advanced Model Order Reduction Techniques in VLSI Design. New York: 

Cambridge University Press.

Tél, T. and Gruiz, M. (2006), Chaotic Dynamics: An Introduction Based on Classical Mechanics. Cambridge, 

U.K.: Cambridge University Press.

Thayer, R.H. (1990), Software System Engineering, E80304-6/90/0000/00TI. IEEE CS Press, Los 

Alamitos, CA, pp. 77–116.

Thistle, J.G. (1994), Logical aspects of control of discrete event systems: A survey of tools and tech-

niques. In Cohen, G. and Quadrat, J.-P. (Eds.), International Conference on Analysis and Optimization 
of Systems—Discrete Event Systems, ser. Lecture Notes in Control and Information Sciences, 199. 

Berlin: Springer-Verlag, pp. 3–15, June.

Thomas, G. (1994), AIDS in India. Jaipur, India: Rawat Publications.

Thompson, C.W.N. (1991), Systems analysis, engineering and management program of Northwestern 

University, International Journal of General Systems, 19(1):25 and 30.

Tong, R.M. (1978), Synthesis of fuzzy models for industrial processes—Some recent results, 

International Journal of General Systems, 4:143–163.

Towill, D.R. (1963), Low order modelling techniques, tools or toys, Conference on Computer Aided 
Control System Design, University of Cambridge, Cambridge, U.K., April.

Trivedi, K.S., Ciardo, G., Malhotra, M., and Garg, S. (1994), Dependability and performability analysis 

using stochastic Petri nets. In Cohen, G., and Quadrat, J.-P. (Eds.), Proceedings of 11th International 
Conference on Analysis and Optimization of Systems—Discrete Event Systems, ser. Lecture Notes in 
Control and Information Sciences, 199. Berlin: Springer-Verlag, pp. 144–157, June.

Tufi llaro, N.B., Abbott, T., and Reilly, J. (1992), An Experimental Approach to Nonlinear Dynamics and 
Chaos. New York: Addison-Wesley.

Uvarova, L.A. (2001), Mathematical Modeling—Problems, Methods, Applications, 1st edn., Springer.

Uvarova, L.A. and Latyshev, A.V. (2001), Mathematical Modeling: Problems, Methods, Applications. 

New York: Kluwer Academic/Plenum Publishers.

van der Pol, B. and van der Mark, J. (1927), Frequency demultiplication, Nature, 120:363–364.

Vester, F. (2007), The Art of Interconnected Thinking. Ideas and Tools for Tackling with Complexity, MCB-Verlag 

Munchen.
Warfi eld, J.N. (1974), Toward interpretation of complex structural models, IEEE Transaction on S.M.C., 

4(5):405–417.

Warfi eld, J.N. (1990), A Science of Generic Design: Managing Complexity through Systems Design, vol. 1. 

Salinas, CA: Intersystem Publications.

Warfi led, J.N. (2006), An Introduction to Systems Science. Singapore: World Scientifi c Company.

Weinberg, G.M. (2001—revised), An Introduction to General Systems Thinking. New York: Dorset House, 

ISBN 0-932-63349-8.

(1993, 1994), AIDS Manual, 1st and 2nd edn. WHO Geneva, Switzerland: World Health 

Organization.

Wills, M.J. (1999), Proportional-Integral-Derivative (PID) Controls. Newcastle upon Tyne, U.K.: 

Department of Chemical Process Engineering, University of Newcastle.

Wilson, B. (1984), System Concepts, Methodologies and Applications. Chichester, U.K.: John Wiley & 

Sons.

Wilson, B. (1990), Systems: Concepts, Methodologies and Applications, 2nd edn. Chichester, U.K.: Wiley, 

ISBN 0-471-92716-3.

Wilson, B. (2001), Soft Systems Methodology: Conceptual Model Building and Its Contribution. Chichester, 

U.K.: Wiley, ISBN 0-471-89489-3.

Wilson, D.A. and Mishra, R.N. (1979), Optimal reduction of multivariable systems, International 
Journal of Control, 29(2):267–278.

Winter, M.C. and Checkland, P.B. (2003), Soft systems: A fresh perspective for project management, 

Civil Engineering, 156(4):187–192.

Wu, F., Yang, X.H., Packard, A., and Becker, G. (1996), Induced L-norm control for LPV systems 

with bounded parameter variation rates, International Journal of Robust and Nonlinear Control, 
6(9–10):983–998.



Appendix C 691

Wuechner, P., de Meer, H., Barner, J., and Bolch, G. (2005), MOSEL-2—A compact but versatile model 

description language and its evaluation environment. In Wolfi nger, B. and Heidtmann, K. 

(Eds.), Proceedings of MMBnet’05, University of Hamburg, Hamburg, pp. 51–59, September.

Yager, R.R. and Filev, D.P. (2002), Essentials of Fuzzy Modelling and Control. New York: John Wiley & 

Sons, Inc.

Yang, X.-S. (2008), Mathematical Modelling for Earth Sciences. Edinburgh, Scotland: Dudedin 

Academic.

Zadeh, L.A. (1965), Fuzzy sets, Information and Control, 8:338–353.

Zadeh, L.A. (1969), Systems Theory. New Delhi, India: Tata McGraw-Hill.

Zadeh, L.A. (1975a), The concept of a linguistic variable and its applications to approximate 

reasoning—I, Information Sciences, 8:199–249.

Zadeh, L.A. (1975b), The concept of a linguistic variable and its applications to approximate 

reasoning—II, Information Sciences, 8:301–357.

Zadeh, L.A. (1975c), The concept of a linguistic variable and its applications to approximate 

reasoning—III, Information Sciences, 9:43–80.

Zadeh, L.A. (1983), The role of fuzzy logic in the management of uncertain in expert system, Fuzzy 
Sets and Systems, 118:199–227.

Zadeh, L. and Desoer, C. (1963), Linear System Theory: The State Space Approach, W. Linvill, L.A. Zadeh, 

and G. Dantzia, Eds., McGraw-Hill Series in System Science, New York: McGraw-Hill.

Zaslavsky, G.M. (2005), Hamiltonian Chaos and Fractional Dynamics. Oxford, U.K.: Oxford University 

Press.

Zimmerman, H.J. (1987), Fuzzy Sets, Decision Making and Expert Systems. Boston, MA: Kluwer 

Academic.

Zimmermann, H. (1991), Fuzzy Set Theory and Its Applications. Boston, MA: Kluwer Academic 

Publishers.

Zimmerman, H.J. (1992), Fuzzy Mathematical Programming. New York: John Wiley & Sons.

Zurada, J. (1992), Introduction to Artifi cial Neural Systems. St. Paul, MN: West Publishing Co.



This page intentionally left blank 



693

Index

A

Abstract model, 35–36

Adams–Bashforth method, 178–180

Adams–Bashforth predictor multistep method, 

412–413

Adams–Moulton corrector method, 413

Adaptive neuro-fuzzy inferencing systems

causal-loop diagram, 568

compositional rules, 572–573

defuzzifi cation methods, 573–574

development models, 568

fl owchart, 568–569

implication methods, 572, 573

intersection operators, 571

linguistic variable, 570

logic system development, 573–574

max–min rule, 573, 574

overlapping, 571

parameter identifi cation, 568

T-Conorms, 571–572

T-Norms, 571

union operators, 571–572

Aggregation method, 228–232

AIDS/HIV population modeling

awareness level, 365, 366

causal links, 365, 366

causal loop, 366, 367

dynamo model, 368, 369

fl ow diagram, 368

time profi le, 369, 370

variable identifi cation, 365

variable list, 366, 367

Aircraft arrester barrier system

aircraft energy absorbing system, 385, 386

dynamic model

causal loop, 390

net area, 389, 390

experimental data vs. simulated data, 391, 

393

fl ow diagram, 390, 391

MATLAB program, 393–394

subsystems, 385–386

system dynamic technique

stages of, 387

stanchion systems, forces, 387, 389

tension time profi le, 391–393

Analogical reasoning, 28

Analysis of systems, 18

ANFIS

ANN structure window, 597, 599

3D surface showing effects, 600–601

load data, 597–598

original training data, 600

real-time evaluation, 596–597

rule viewer, 600

training data, 597–598

training performance, 597, 599

window, 597

ANN, see Artifi cial neural network

Application program interface (API), 623

Applied systems engineering, 29

Aristotelian’s view, 19

Artifi cial neural network (ANN)

artifi cial neuron, 504–505

biological neuron, 503–504

testing phase

back propagation, 509

building model, 508–509

model, 506–508

neural network application, 510–512

physical system’s modeling, 

512–515

rainfall prediction, 523–525

teacher evaluation system, 517–523

training algorithm, 509–510

weighing machine model, 516–517, 518, 

519, 520

training phase

error minimization process, 506

neuron characteristics, 505

pattern and preprocessing, 506

stopping criteria, 506

topology, 505

Atomism, 25

B

Backlash effects

constant input, 443, 447

pilots control column, 442–443

ramp input, 443, 449

sinusoidal input, 443, 449

step input, 443, 448

waveform generator input, 443, 450



694 Index

Balanced realization-based reduction method

controllability and observability grammians, 

236–237

models, 237–238

properties of, 238

Balanced truncation, 238–244

Bertalanffy’s contribution, 18–19

Box–Muller method, 618

Business system environment, 4

Butterworth fi lter, 428–429

C

Calay Hamilton method, 172

Cartesian product, 541–542

Cascaded systems, 7

Cauer’s fi rst form, 255–259

Cause–effect relationships

negative causal links

ambient temperature, 336, 337

heat transfer, 335, 336

positive causal links

negative causal loop, 337, 338

positive causal loop, 337–338

S-shaped growth, 338–339

Cell arrays, 650

CFE, see Continued fraction expansion

Chaotic system

defi nition, 479–480

fi rst-order continuous-time system

autonomous time invariant system, 484

function trajectory vs. x, 484–485

linearization, 485–486

historical prospective

analysis and prediction, 484

cryptography, 482

dynamics and chaos, 481

Henri Poincaré, 481

linear and nonlinear systems, 483

orbits and periodicity, 482

stabilization and control, 483

synthesis, 484

vs. systematic knowledge handling, 

481–482

meaning, 478

scientifi c meaning, 478–479

Chemical reactor, 425–426

Chi-square test, 619

Classical reduction method (CRM), 234

Classifi cation of system

complexity, 6

interactions, 6–7

nature and type of components, 7

time frame, 5–6

uncertainty

linear vs. nonlinear systems, 8–9

static vs. dynamic systems, 8

Colon (:) operator, 630–631

Command History

Array Editor, 626–627

current directory browser, 626

editor debugger, 627

environment features, 627

launch pad, 625

running external programs, 624

workspace Window, 626

Command Window, 623–624

Commutating machine

armature current vs. time, 375

basic machine model, 371

causal loop, 372

dynamo equation, 373

fl ow diagram, 372, 373

MATLAB program, 373–374

operation modes, 371–372

rate of change of armature current (RAC), 

375, 376

speed vs. time, 375

Conceptual systems, 6

component postulate, 121

four-terminal component, 119, 120

fundamental axiom, 121

system postulate

circuit, 124–127

cutset, 122–124

system graph, 121–122

vertex, 127

three-terminal component, 119, 120

two-terminal component, 119, 121

Connectionist system, 28–29

Continued fraction expansion (CFE), 

252–259

Continuous system

defi nition, 5

simulation

demand of, 424–425

MATLAB program, 423–424

model development, 423

net volume, 424

solution, 423

water reservoir system, 422–423

Continuous-time and discrete-time systems, 

13–14

Continuous vs. discrete models, 37–38

Controllability, state space model, 180–181

Coupled systems, 7



Index 695

CRM, see Classical reduction method

Cushioned package system

cushioned package response, 287, 288

f–v analogy, 285

MATLAB program, 286

D

D’Alembert’s principle, 277–278

Data structures

cell arrays, 650

characters and text

ASCII codes, 651

cell array, 652

char function, 654

comma separated list, 653

fl oating-point format, 650–651

padded character array, 651–652

scalar structures, 652–653

single quotes, 650

square brackets, 651

multidimensional arrays, 648–649

Dead-zone nonlinearities

comparison, 440–441

constant input, 441, 443

ramp input, 441, 443

Simulink model, 441

sinusoidal input, 441–442

step input, 441–442

Decision function

cause–effect relationships

negative causal links, 335–337

positive causal links, 337–338

computing sequence

level equations, 341

rate equations, 342

straight line approximation, 340

dynamo equations, 339–340

interconnected network, 338–340

Defuzzifi cation methods, 554–555, 

573–574

Degenerative system model development

electrical system

components, 145

state space model, 148–151

system graph and f-tree, 144–146

mechanical system, 160–162

model development, 146–148

multiterminal components, 157–159

nondegenerative systems, 151–157

time varying and nonlinear components, 

162–166

Descriptive model, 36

Deterministic systems, 7

vs. stochastic activates, 608

vs. stochastic models/systems, 15–16, 37

Diagonalization, 170–171

Differentiation method

approximation criterion, 265–266

MATLAB program, 267

results comparison, 264

Simulink model, 267, 268

system responses, 267, 268, 270–273

Discrete-event modeling and simulation

chi-square test, 619

components

clock, 611

events list and random-number 

generators, 612

fl ow chart, 613

life cycle, ATM counter, 613–614

Pseudo-code, 614–615

statistics and ending condition, 612

defi nitions

activities and delays, 607–608

deterministic vs. stochastic 

activates, 608

discrete-event simulation (DES) 

model, 608

entity and attribute, 607

evaluation techniques, 609

exogenous vs. endogenous activities, 608

list processing, 607

modeling techniques, 609

state, resources and event, 607

distributions, 615–616

input data modeling, 615

Kolomogrov–Smirnov test, 619

queuing system, 609, 610–611

random number generation

Gaussian distribution, 617–618

uniform distribution, 616–617

sampled-data system, 605

Discrete-event simulation (DES) 

model, 608

Discrete models/systems, 5, 37–38

Discrete-time systems, 13–14

Discretization error, 418–419

Distributed parameter systems, 13

Dominant eigenvalue method

characteristic roots’ locations, 225

limitations of, 228

vs. nondominant eigenvalues, 226

poles locations effects, 225

system stability, 224

Dynamic system modeling, 8, 37, 565–566



696 Index

Dynamo equations

AIDS/HIV population modeling

awareness level, 365, 366

causal links, 365, 366

causal loop, 366, 367

dynamo model, 368, 369

fl ow diagram, 368

time profi le, 369, 370

variable identifi cation, 365

variables list, 366, 367

commutating machine

armature current vs. time, 375

basic machine model, 371

causal loop, 372

dynamo equation, 373

fl ow diagram, 372, 373

MATLAB program, 373–374

operation modes, 371–372

rate of change of armature current (RAC), 

375, 376

speed vs. time, 375

heroin addiction modeling

addiction rate vs. time characteristic, 346, 

347

causal loop, 346

fl ow diagram, 346

infected population modeling

causal loop, 354

fl ow diagram, 354, 355

MATLAB program, 355

simulation model, 356

inventory control system

causal loop, 348, 349

fl ow diagram, 348, 350

inventory responses, 350

order rate responses, 350, 351

market advertising interaction model

aims of, 356

causal loop, 357

dynamo equations, 358–359

fl ow diagram, 357, 358

postevaluation criterion, 356–357

population problem modeling

fl ow diagram, 347, 348

net birth rate vs. time, 347, 349

positive causal loop, 347, 348

production distribution system

causal loop, 360, 361

departments of, 359, 360

dynamo equations, 362–363

fl ow diagram, 360, 362

production rate, 363, 364

rate variables vs. time, 363, 364

rat population

casual loop, 352

death rate, 353

dynamo equation, 352

fl ow diagram, 352

rat birth rate (RBR), 352, 353

E

Electrical systems

components, 112

degenerative system model

components, 145

state space model, 148–151

system graph and f-tree, 144–146

mathematical models

components, 78–79

expression derivation, 83–84

Kirchhoff’s current and voltage 

laws, 79

state model, 80–82

Electromechanical systems, 84–87

Emerqentism, 25

Empirical balanced truncation, 246

Empirical model, 248–249

Esoteric systems, 6

Euler’s method, 175–177

Exogenous vs. endogenous activities, 608

Expert system, 28

F

Fahrenheit-Celsius temperature

construction, 663, 665

converter model, 663

diagnostics, 665

hardcopy and printing, 665

library browser, 663, 666

linearization and trimming, 664

masking and library, 664

simulation, 663–664, 667

FCS, see Flight control system

Feedback model, 37

First-order continuous-time system

autonomous time invariant system, 484

function trajectory vs. x, 484–485

linearization, 485–486

Flight control system (FCS)

backlash effects

constant input, 443, 447

pilots control column, 442–443

ramp input, 443, 449

sinusoidal input, 443, 449



Index 697

step input, 443, 448

waveform generator input, 443, 450

basic control surfaces, 435, 436

components, 437

cumulative effects, 443, 450, 451

dead-zone nonlinearities

comparison, 440–441

constant input, 441, 443

ramp input, 441, 443

Simulink model, 441

sinusoidal input, 441–442

step input, 441–442

fuzzy controller

basic structure, 461

components, 462–469

modeling, 438–439

PID controller

cascade system, 454–456

P, I, D, PD, PI, PID and fuzzy controllers, 

456–461, 470–472

root locus method, 445–447, 449–454

principle, 435–436

saturation nonlinearity effects

constant input, 442, 447

ramp input, 442, 445

servo amplifi er, 441–442

Simulink model, 442, 444

sinusoidal input, 442, 446

step input, 442, 445

waveform generator input, 442, 446

Simulink model, 440

tuned fuzzy system, 469, 472

fuzzy rules table, 473, 475

input-1 membership function, 469, 473

input-2 membership function, 469, 474

output membership function, 469, 474

rule format, 469, 475

surface view, 473, 476

Flow control statement

break statement, 647–648

continue statement, 647

if statement, 645–646

for loop, 646

switch and case, 646

while loop, 647

Flow-rate variables, 334–335

Fluid systems, 44–46, 87–92

Force–current (f–i) analogous drawing rule

analogous quantities, 279

cushioned package system

cushioned package response, 287, 288

f–v analogy, 285

MATLAB program, 285

equations of motion

d’Alembert’s principle, 280

f–i analogy, 280–281

f–v analogy, 280

lever-type coupling, 283–284

log chippers

combined constraint equation, 292–293

f–v and f–i analogy, 295, 296

Gauss–Jorden elimination, 292

incidence matrix, 292

log chipping system, 290

lumped model, 290, 291

mechanical network, 295, 296

reduced incidence matrix, 292

Simulink model, 294, 295

space equation, 294

terminal equation, 293–294

topological constraints, 291–292

variable identifi cation, 290–291

mechanical coupling devices

friction wheel, 281

f–v and f–v analogy, 281–283

translatory motion, 282

speedometer cable

f–i and f–v analogy, 297, 298

lumped model, 297

mechanical network, 297, 298

truck–trailer system

f–i analogy, 288, 289

f–v analogy, 288, 290

systematic and equivalent mechanical 

system, 287, 289

Force–voltage (f–v) analogous drawing rule, 

278–279

Frequency domain simplifi cation techniques

balanced realization-based reduction 

method

controllability and observability 

grammians, 236–237

models, 237–238

properties of, 238

balanced truncation

Lyapunov equations, 239

properties of, 241

theorems, 241–243

unstable systems reduction, 243–244

classical reduction method (CRM), 234

continued fraction expansion (CFE), 235

continued fraction inversion, 255–258

Routh array, 253

differentiation method

approximation criterion, 265–266

MATLAB program, 267



698 Index

results comparison, 264

Simulink model, 267, 268

system responses, 267, 268, 270–273

frequency-weighted balanced model 

reduction

empirical balanced truncation, 246

empirical model, 248–249

linearized model, 247–248

mechanical system, 246–247

steady state matching, 246

moment-matching method, 235

Pade approximation method, 234

routh stability criterion

denominator stability array, 260

model response comparison, 262

numerator stability array, 260

stability criterion method (SCM), 234

stability preservation method (SPM), 234

time moment matching

responses comparison, 252

Routh array, 250

Frequency-weighted balanced models

empirical balanced truncation, 246

empirical model, 248–249

linearized model, 247–248

mechanical system, 246–247

steady state matching, 246

Friction, 434

Fundamental axiom, 121

Fuzzy controller

basic structure, 461

components, 462–463

application results, 466, 469

3D characteristics, 463

defuzzifi cation, 464–465, 466, 468–469

P, I, D, PD, PI and fuzzy controllers, 

469–472

rule base, 464

rule editor and viewer, 464, 467

rule format, 464–465, 467

surface view, 466, 468

Fuzzy knowledge-based system (FKBS), 556

Fuzzy systems, 8

adaptive neuro-fuzzy inferencing systems

causal-loop diagram, 568

compositional rules, 572–573

defuzzifi cation methods, 573–574

development models, 568

fl owchart, 568–569

implication methods, 572, 573

intersection operators, 571

linguistic variable, 570

logic system development, 573–574

max–min rule, 573, 574

overlapping, 571

parameter identifi cation, 568

T-Conorms, 571–572

T-Norms, 571

union operators, 571–572

applications, 558–559

multiple input multiple output systems, 

566–567

multiple input single output (MISO) 

systems, 564–566

single input single output (SISO) systems, 

559–564

approximate reasoning

classical implication, 547

compositional rule, 548–549

conjunction rule, 546

disjunction rule, 546

entailment rule, 546

fuzzy relation schemes, 549–550

generalized modus ponens (GMS) 

tautology, 547–548

inference rule, 545

Larsen’s product operator, 553–554

Mamdani’s minimum operator, 550–551

membership function, 546

negation rule, 547

projection rule, 546

simple crisp inference, 545–546

steps, 550

Tsukamoto inference, 551–553

Zadeh theory, 545–546

Cartesian product, 541–542

characteristics, 540

defuzzifi cation methods, 554–555

features, 531–532

fuzzy relation

composition, 543–545

inverse relation, 543

matrices, 543

R, binary relation, 542

fuzzy sets

characteristic (membership) 

function, 531

degree of truth, 528–530

list of elements, 530

rule method, 531

operations

bounded sum, 536–537

complement, 532–533

concentration, 533–534

dilation, 534–535

intensifi cation, 535–536

intersection, 532

linguistic hedges, 538–539



Index 699

strong α-cut, 537–538

union, 532

operations research

ANFIS, 596–602

coeffi cients, 595–596

linear programming, 594–595

optimization models, 592

problem formulation, 592–593

properties, 541

rule-based systems, 556–558

steady state DC machine model

analysis, 578–579

causal relationships, 575

defi nition rule, 576–578

defuzzifi cation process, 576

identifying linguistic variables, 575

Mamdani implication, 579

range defi nition, 575

schematic diagram, 574–575

values, 575–576

Takagi–Sugeno–Kang models, 567–568

transient models

air-conditioning system, 585–591

ANN models, 585

causal-loop diagram, 579–580

closed-loop system, 584–585

compositional rules, 581–582

connectives, 581

defuzzifi cation methods, 581

direct adaptive control, 584

implication methods, 581

knowledge rules, 579–580

linguistic variables, 581

overlapping effects, 582–584

G

Gaussian distribution, 617–618

Generalized modus ponens (GMS) tautology, 

547–548

Graph theory

cycle, 305–306

interaction graph, 302, 303

net and loop, 305

nondirected interaction graph, 302

parallel lines, 306

properties of relations, 306–307

self-interaction matrix, 301, 302

simple antenna and servomechanism, 302, 303

H

Hankel matrix method, 233–234

Hankel–Norm model order reduction, 234

Hard and soft systems, 16–17

Heat generated modeling, parachute

causal loop, 383, 384

dynamo equations, 384–385

fl ow diagram, 383, 384

utility decelerator packing press facility, 383

Henri Poincaré, 481

Heroin addiction modeling

addiction rate vs. time characteristic, 

346, 347

causal loop, 346

fl ow diagram, 346

Hierarchically nested set of systems, 2–3

Holism, 25

Homogeneity, 10

Hooke’s law, 8–9

Hybrid system, 5–6

Hydraulic system

components, 112, 134

f-circuit equation, 136–137

f-cutset equation, 134–136

mathematical model

capacitance, 88

dynamic response, 44–46

inertance, 88–89

liquid level system, 89–92

resistance, 87

open-circuit and short-circuit parameters 

measurement, 105–107

short circuit parameters, 108–109

system graph and formulation tree, 134

system identifi cation, 133

terminal graph, 105–106

Hysteresis, 435

I

Independent systems, 7

Infected population modeling

causal loop, 354

fl ow diagram, 354, 355

MATLAB program, 355

simulation model, 356

Intent structure system

edge adjacency matrix, 312

edge digraph, 313

reachability matrix, 311

Interconnected components of system, 2

Interpretive structural modeling (ISM)

contextual relation SSIM

edge adjacency graph, 317, 318

edge adjacency matrix, 317

interpretive structural model, 317, 318

reachability matrix, 316



700 Index

graph theory

cycle, 305–306

directed interaction graph, 302, 303

loop and net, 305

nondirected interaction graph, 302

parallel lines, 306

properties of relations, 306–307

self-interaction matrix, 301, 302

simple antenna and servomechanism, 

302, 303

intent structure system

edge adjacency matrix, 312

edge digraph, 313

reachability matrix, 311

lower triangularization method, 317, 319

model exchange isomorphism (MEI), 

307–308

paternalistic family system

adjacency matrix, 321, 322

edge adjacency matrix, 321, 322

interpretive structural from, 321, 323

lower triangular matrix, 321

SSIM form, 320, 321

structured self-interaction matrix (SSIM), 

310–311

system directed graphs, 313–314

system subordinate matrix, 308–310

system undirected graphs, 314, 315

Inventory control system

causal loop, 348, 349

fl ow diagram, 348, 350

inventory responses, 350

order rate responses, 350, 351

Iterated function system (IFS), 479

K

Kolomogrov–Smirnov test, 619

L

Laplace method, 171–172

Large and complex applied system 

engineering

analogical reasoning, 28

artifi cial intelligence, 28

attributes, 26

connectionist representations, 28–29

management control system, 27

metagame theory, 27

process control system, 27

qualitative models, 28

software system engineering, 29

subsystems, 26–27

systems philosophy, 25

Large-scale system, 2, 26

Larsen’s product operator, 553–554

Lever-type coupling, 283–284

Liapunov stability, 184–186

Linear differential equation, 10–11

Linear graph theoretic approach

current and voltage equations, 115

defi nitions

branch and chord/link, 117

circuit/loop, 117

coforest, 118

complement of subgraph, 117

connected graph and cotree, 117

cutest, 118

degree of vertex, 117

edge and edge sequence, 116

edge train, 117

forest, 118

fundamental circuit (f-circuit), 118

fundamental cutset (f-cutset), 118–119

incidence set, 116, 119

isomorphism, 116

Lagrangian tree, 118

linear graph and multiplicity, 116

nullity, 118

path, 117

rank, 118

separate part, 117

subgraph, 116

system graph, 118

terminal graph, 117

tree, 117

vertex, 116

force/torque equation, 115

Linear perfect couplers, 110–111

Linear systems

homogeneity, 10

mathematical viewpoint

linear differential equation, 10–11

nonlinear differential equations, 11

vs. nonlinear systems, 8–9

superposition theorem, 9–10

Linear systems analogous

advantages of, 277

d’Alembert’s principle, 277–278

dual networks, 277, 278

force–current (f–i) analogous drawing rule

analogous quantities, 279–281

cushioned package system, 284–288

equations of motion, 279–281

lever-type coupling, 283–284



Index 701

log chippers, 290–296

mechanical coupling devices, 281–283

speedometer cable, 296–298

truck–trailer system, 287–290

force–voltage (f–v) analogous drawing rule, 

278–279

Linear time invariant systems, 186

Linear vs. nonlinear system, 434

Load command

concatenation, 634

fi lename.dat, 633

input and output, 634

M-fi les, 634

rows and columns, 634

Log chippers

combined constraint equation, 292–293

f–v and f–i analogy, 295, 296

Gauss–Jorden elimination, 292

incidence matrix, 292

log chipping system, 290

lumped model, 290, 291

mechanical network, 295, 296

reduced incidence matrix, 292

Simulink model, 294, 295

space equation, 294

terminal equation, 293–294

topological constraints, 291–292

variable identifi cation, 290–291

Lower triangularization method, 317, 319

Lumped vs. distributed parameter systems, 13

M

Machine computation, 170

Mamdani’s minimum operator, 550–551

Managerial and socioeconomic system, 327–328

Market advertising interaction model

aims of, 356

causal loop, 357

dynamo equations, 358–359

fl ow diagram, 357, 358

postevaluation criterion, 356–357

Markovian analysis, 609

Mathematical modeling

electrical systems, 78–84

electromechanical systems, 84–87

fl uid systems, 44–46, 87–92

mechanical systems

rotational, 64–77

translational motion, 46–64

output equation, 44

state-variables, equation, 43–44

thermal systems, 92–99

Mathematical vs. descriptive model, 36

MATLAB

air-conditioning system, 586–591

aircraft arrester barrier system, 393–394

airplane braking using parachute, 98–99

animations, 644

application program interface (API), 623

basic plotting

add plots to an existing graph, 637

axis labels and titles, 638

colored surface plots, 639

creation, 636

grid lines, 638

light source, 639

lines and markers, 636–637

mesh and surface plots, 638–639

multiple data sets in one graph, 636

multiple plots in one fi gure, 637–638

save, 638

Butterworth fi lter, 428

chemical reaction, 426

colon (:) operator, 630–631

commutating machine, 373–374

continuous system simulation, 423–424

creating movies, 644–645

cushioned package system, 286

data structures

cell arrays, 650

characters and text, 650–654

multidimensional arrays, 648–649

desktop, 623

development environment, 622

differentiation method, 267

dynamic response, 46

eighth-order system, 263

entering matrices

elements, 628

steps, 627–628

sum, transpose and diag, 628–629

workspace, 628

expressions

functions, 632–633

numbers, 632

operators, 632

variables, 631–632

fl ow control statement

break statement, 647–648

continue statement, 647

if statement, 645–646

for loop, 646

switch and case, 646

while loop, 647

format command, 635



702 Index

functions

cautionary note, 656–657

construct string arguments, 656

eval function, 657

function functions, 658–660

function handles, 658

global variables, 655–656

M-fi le rank.m, 655

passing string arguments, 656

preallocation, 658

vectorization, 657

fuzzy toolbox, 560

graphics system, 622

handle graphics

bar and area graphs, 641

histogram functions, 643

line plots, 644

pie chart, 641–642

properties, 640

types, 640–641

typical 3-D graph, 643–644

images, 640

infected population modeling, 355

language, 622

learning, 621

load command

concatenation, 634

fi lename.dat, 633

input and output, 634

M-fi les, 634

rows and columns, 634

long command lines, 635

magic function, 630–631

mathematical function library, 622

meaning, 621

mechanical coupler, 61

mechanical system

with three masses, two springs, 

and dashpot, 63–64

translational system, 50

with two masses and two springs, 54–55

pendulum problem, 420–421

Piston–Crank mechanism, 97

randn, 618–619

rocket dynamics, 427

root locus method, 447

rotational mechanical system, 66–67

scripts, 654–655

simple mass–dashpot and spring system, 

476–477

Simpson’s rule, 408

simulation, 494, 495, 496

starting and quitting, 623

state model

electrical system, 80–81

mechanical system, 51–53

state space model, 207

subscripts, 630

suppressing output, 635

system stability, 486

thermal system, 94–95

tools

Command History, 624–627

Command Window, 623–624

train systems, 58–59

water reservoir system, 423–424

weighing machine model, 517

Mechanical coupling devices

friction wheel, 281

f–v and f–v analogy, 281–283

translatory motion, 282

Mechanical systems

degenerative system model development, 

160–162

rotational models

capacitor size determination, 73–75

car velocity, 71–72

3-D projectile trajectory, 72–73

equation derivation, 65–67

fl ight of model rocket, 75–77

gear-train systems, 68–70

mathematical model, 67–68

torsional spring, 64–65

translational models

dashpot, 48

mass, 48–49

mathematical model, 49–50

springs, 47–48

state model, 50–53

three masses, two springs, and dashpot, 

62–64

train systems, 56–61

two masses and two springs, 53–55

Metagame theory, 27

Modeling

aircraft models, 38–39

characteristics, 38

classifi cation

continuous vs. discrete models, 37–38

deterministic vs. stochastic models, 37

mathematical vs. descriptive model, 36

open vs. feedback model, 37

physical vs. abstract model, 35–36

pictorial representation, 36

static vs. dynamic model, 37

steady state vs. transient model, 37



Index 703

component postulate, 40

component terminal equation, 45

conservation laws, 45

defi nition, 32–33, 38–39

evaluation, 41

fundamental axiom, 40

inputs, 38–39

mathematical modeling

electrical systems, 78–84

electromechanical systems, 84–87

fl uid systems, 44–46, 87–92

hydraulic system, 44–46

mechanical systems, 46–77

output equation, 44

state, state variables and state equation, 

43–44

thermal systems, 92–99

methods, complex systems, 34–35

necessity, 33–34

n-terminal component graph, 40

process, 39

two-terminal components

accumulator type, 42–43

delay type elements, 42

different systems comparison, 41–42

dissipater type, 41–42

sources/drivers, 43

variables, 40

Model order reduction

applications of, 273

large-scale systems, 219–220

methods of

frequency domain, 234–273

time domain simplifi cation techniques, 

223–234

vs. model simplifi cation, 220–221

need of, 221

principle of, 221–222

Moment-matching method, 235

Multidimensional arrays, 648–649

Multi-input multi-output (MIMO) system, 141

Multiple input multiple output systems, 

566–567

Multiple input single output (MISO) systems, 

564–566

Multi-terminal components, 113–114

N

Neural network applications

data mining, 510–511

fi nancial risk, 511–512

HR management, 512

industrial applications, 511

medical, science and marketing, 512

operational analysis and energy, 512

Nondegenerative systems, 151–157

Nonlinear differential equations, 11

Nonlinear system

fl ight control system (FCS)

backlash effects, 442–443, 447, 448, 449, 

450

basic control surfaces, 435, 436

components, 437

cumulative effects, 443, 450, 451

dead-zone nonlinearities, 440–441, 442, 

443

fuzzy controller, 461–469

modeling, 438–439

PID controller, 445–461

principle, 435–436

saturation nonlinearity effects, 441–442, 

444, 445, 446, 447

Simulink model, 440

tuned fuzzy system, 469–473, 474–476

linear vs. nonlinear system, 8–9, 434

system dynamics techniques, 328

simple mass–dashpot and spring system, 

475–478

types, 434–435

Numerical methods

Adams–Bashforth predictor multistep 

method, 412–413

Adams–Moulton corrector method, 413

characteristics, 413

comparison, 413–414

discretization error, 418–419

multistep function, 405–406

one-step Euler’s method, 410

rectangle rule, 406

round off error, 415–418

Runge–Kutta fourth-order method, 411–412

Runge–Kutta methods, 410–411

Simpson’s rule, 407–410

single-step methods, 405

step size vs. error, 418

trapezoid and tangent formulae, 406–407

truncation error, 414–415

O

Observability, state space model, 181–182

Ohm’s law, 8–9

One-step Euler’s method, 410

Open vs. feedback model, 37

Operations research



704 Index

ANFIS, 596–602

coeffi cients, 595–596

linear programming, 594–595

optimization models, 592

problem formulation, 592–593

Optimal order reduction, 233

Organicism, 25

P

Pade approximation method, 234

Parachute deceleration device

canopies, 376

canopy stress distribution, 378

functional phases, 376

infl ation

circular parachutes, 378

stages of, 377

trajectory

causal loop, 378, 379

dynamo equations, 379–383

fl ow diagram, 379, 380

Philosophy, systems

Aristotle’s investigations, 19

Bertalanffy’s contribution, 18–19

method of science, 20

Newtonian mechanics, 19–20

problems of science, 20–21

teleology, 19

types, 25

Physical systems

defi nition, 6

modeling

automobile modeling, 512–513

comparison, 513–514

electrical systems, 78–84

electromechanical systems, 84–87

error, 513, 515

fl uid systems, 87–92

hydraulic system, 44–46

Laplace transform, 513

linear perfect coupler, 128

mechanical systems, 46–77

output equation, 44

pseudo power or quasi power, 129–131

speed profi le, 513

state-variables, equation, 43–44

steps, 127–128

thermal systems, 92–99

theory, 103

Physical vs. abstract model, 35–36

PID controller

cascade system

arrangement and comparation, 455, 456

comments, 455

oscillations (Ter), 455

Routh array, 454

stable operation, 455

P, I, D, PD, PI, PID, and fuzzy controllers

arrangement and results, 460–461

integral controller, 457–458

linear and nonlinear systems, 456–457

proportional controller, 457, 458

proportional-derivative controller, 

459–460

proportional-integral controller, 457, 459

root locus method

characteristic equation, 446, 449–450

comments, 454

compensated system, 449

compensator, 449, 452

MATLAB, 447

proportional controller, 446

specifi cations, 445

stability check, 453–454

steady state behavior, 451–452

Pitch control system

Backlash effects

constant input, 443, 447

pilots control column, 442–443

ramp input, 443, 449

sinusoidal input, 443, 449

step input, 443, 448

waveform generator input, 443, 450

components

altitude controller, 437

block diagram, 437

rate gyro, 437

servo unit, 437

vertical gyro, 437

cumulative effects, 443, 450, 451

dead-zone nonlinearities

comparison, 440–441

constant input, 441, 443

ramp input, 441, 443

Simulink model, 441

sinusoidal input, 441–442

step input, 441–442

modeling, 438–439

PID controller

cascade system, 454–456

P, I, D, PD, PI, PID, and fuzzy controllers, 

456–461, 470–472

root locus method, 445–447, 449–454

saturation nonlinearity effects

constant input, 442, 447

ramp input, 442, 445

servo amplifi er, 441–442



Index 705

Simulink model, 442, 444

sinusoidal input, 442, 446

step input, 442, 445

waveform generator input, 442, 446

servomotor, 438

Simulink model, 440–441

Population problem modeling

fl ow diagram, 347, 348

net birth rate vs. time, 347, 349

positive causal loop, 347, 348

Production distribution system

causal loop, 360, 361

departments of, 359, 360

dynamo equations, 362–363

fl ow diagram, 360, 362

production rate, 363, 364

rate variables vs. time, 363, 364

Proportional-integral-derivative (PID), 435

Q

Qualitative models, 28

Queuing system, 609, 610–611

R

Rainfall prediction, neural network, 523–525

Rat population

casual loop, 352

death rate, 353

dynamo equation, 352

fl ow diagram, 352

rat birth rate (RBR), 352, 353

Real-world chaotic systems, 480

Reductionism, 20–22

Refutation, 20

Repeatability, 20

Rocket dynamics, 427–428

Rotary mechanical system, 112

Round off error, 415–418

Routh stability criterion

denominator stability array, 260

model response comparison, 262

numerator stability array, 260

Runge–Kutta fourth-order method, 411–412

Runge–Kutta methods, 410–411

S

Saturation nonlinearity effects

constant input, 442, 447

ramp input, 442, 445

servo amplifi er, 441–442

Simulink model, 442, 444

sinusoidal input, 442, 446

step input, 442, 445

type, 435

waveform generator input, 442, 446

SCM, see Stability criterion method

Sensitivity, state space model, 182–184

Simple mass–dashpot and spring system

damping equations, 475

MATLAB program, 476–477

results, 477–478

system equations, 476

Simpson’s rule, 407–410

Simulation

advantages, 402

analysis and decision making, 404

applications, 404–405

Butterworth fi lter, 428–429

chemical reactor, 425–426

continuous system simulation

demand, water, 424–425

MATLAB program, 423–424

model development, 423

net volume, 424

solution, 423

water reservoir system, 422–423

effectiveness, 404

effi ciency, 403

infected population modeling, 356

numerical methods

Adams–Bashforth predictor multistep 

method, 412–413

Adams–Moulton corrector method, 413

characteristics, 413

comparison, 413–414

discretization error, 418–419

multistep function, 405–406

one-step Euler’s method, 410

rectangle rule, 406

round off error, 415–418

Runge–Kutta fourth-order method, 

411–412

Runge–Kutta methods, 410–411

Simpson’s rule, 407–410

single-step methods, 405

step size vs. error, 418

trapezoid and tangent formulae, 

406–407

truncation error, 414–415

pendulum problem

case study, 421

force equation, 419

MATLAB functions, 420–421

results, 421–422

Simulink model, 421–422



706 Index

risk reduction, 404

rocket dynamics, 427–428

uses, 403

water pollution problem, 429–430

Simulink

dead-zone nonlinearities, 441

differentiation method, 267, 268

Fahrenheit-Celsius temperature

construction, 663, 665

converter model, 663

diagnostics, 665

hardcopy and printing, 665

library browser, 663, 666

linearization and trimming, 664

masking and library, 664

simulation, 663–664, 667

features, 661

fl ight control system (FCS), 440

log chipper modeling, 294, 295

pendulum problem, 421–422

pitch control system, 440–441

simulation parameters and solvers, 

661–663

Single input single output (SISO) systems

algorithm, 561

develop fuzzy rules, 564

hysteresis curve, 559

input variables, 563

Mamdani fuzzy model, 560, 562

MATLAB fuzzy toolbox, 560

membership functions, 560–561, 562

output variables, 564

Single port and multiport systems

elements, 109

linear perfect couplers, 110–111

mathematical representation, 109–110

multiterminal components, 113–114

two-terminal components, 112–113

Soft operations research (OR), 17

Soft systems, 16–17

Soft systems methodology (SSM), 16–17

Software system engineering, 29

Spreading activation process, 28

Stability criterion method (SCM), 234

Stability preservation method (SPM), 

234

Stanchion system modeling, see Aircraft 

arrester barrier system

State equations solutions, 173–175; see also State 

transition matrix

State of system, 1

State space model

automobile motion, 142–144

using computer program

input data preparation, 187

state equations formulation, 187–192

conceptual system

component postulate, 121

four-terminal component, 119, 120

fundamental axiom, 121

system postulate, 121–127

three-terminal component, 119, 120

two-terminal component, 119, 121

controllability, 180–181

degenerative system

electrical system, 144–146, 148–151

mechanical system, 160–162

model development, 146–148

multiterminal components, 157–159

nondegenerative systems, 151–157

time varying and nonlinear components, 

162–166

element information, 187

hydraulic system

components, 134

f-circuit equation, 136–137

f-cutset equation, 134–136

system graph and formulation tree, 134

system identifi cation, 133

incidence matrix, priority level, 187

Liapunov stability, 184–186

linear time invariant systems, 186

multi-input multi-output (MIMO) system, 141

observability, 181–182

parameters computation, 105–109

physical systems

linear perfect coupler, 128

pseudo power or quasi power, 129–131

steps, 127–128

theory, 103

sensitivity, 182–184

single port and multiport systems

elements, 109

linear perfect couplers, 110–111

mathematical representation, 109–110

multiterminal components, 113–114

two-terminal components, 112–113

standard elements, 187, 193

state equations solutions, 173–175 (see also 

State transition matrix)

subassembly, mechanical system, 137–138

system analysis techniques

free body diagram method, 115

Lagrangian technique, 115

linear graph theoretic approach, 115–119

system structure, 114



Index 707

system components and interconnections, 

103–105

theorems, 138–141

topological restrictions

accumulator or storage type elements, 

132–133

across driver, 133

delay type elements, 132

dissipater type elements, 132

gyrator, 131

open circuit element (“A” type), 132

perfect coupler, 131

short circuit element (“A” type), 132

through driver, 133

State transition matrix

Adams–Bashforth method, 178–180

classical method of solution, 166–167

coeffi cient matrix, 173

computation

Calay Hamilton method, 172

diagonalization, 170–171

Laplace method, 171–172

machine computation, 170

defi nition, 167

Euler’s method, 175–177

nonhomogenous state equation, 167–168

properties, 168–169

time response, 168–169

Static vs. dynamic models/systems, 8, 37

Steady state DC machine model, fuzzy 

systems

analysis, 578–579

causal relationships, 575

defi nition rule, 576–578

defuzzifi cation process, 576

identifying linguistic variables, 575

Mamdani implication, 579

range defi nition, 575

schematic diagram, 574–575

values, 575–576

Steady state matching, 246

Steady state vs. transient model, 37

Step size vs. error, 418

Stochastic systems/models, 7, 37, 15–16

Structuralism, 25

Structured self-interaction matrix (SSIM), 

310–311

Subspace projection method, 232

Superposition theorem, 9–10

Synthesis of systems, 18

System analysis techniques

free body diagram method, 115

Lagrangian technique, 115

linear graph theoretic approach, 115–119

system structure, 114

Systematic knowledge handling vs. Chaotic 

system, 481–482

System components and interconnections, 

103–105

System dynamic (SD) model structure

characteristics, 333–334

decision function

cause–effect relationships, 335–338

computing sequence, 340–342

dynamo equations, 339–340

interconnected network, 338–339

fl ow-rate variables

defi nition of, 334

four concepts, 335

level variables, 334

System dynamics techniques

advantages of, 332–333

aircraft arrester barrier system

aircraft energy absorbing system, 385, 386

dynamic model, 389–390

experimental data vs. simulated data, 391, 

393

fl ow diagram, 390, 391

MATLAB program, 393–394

subsystems, 385–386

system dynamic technique, 387–389

tension time profi le, 391–393

dynamo equations

AIDS/HIV population modeling, 363–371

commutating machine, 371–376

heroin addiction problem modeling, 

346–347

infected population modeling, 354–356

inventory control problem, 348–351

market advertising interaction model, 

356–360

population problem modeling, 346–349

production distribution system, 359–364

rat population, 351–354

fl ow diagrams symbols

auxiliary variables, 345

information takeoff, 345

levels, 344

parameters, 345, 346

source and sinks, 344, 345

heat generated modeling, parachute

causal loop, 383, 384

dynamo equations, 384–385

fl ow diagram, 383, 384

utility decelerator packing 

press facility, 383



708 Index

managerial and socioeconomic system, 

327–328

parachute deceleration device

canopy stress distribution, 378

functional phases, 376

parachute canopies, 376

parachute infl ation, 377–378

parachute trajectory, 378–383

sources of information

mental database, 329

numerical database, 330

written/spoken database, 330

strength of

decision-making processes, 332

information feedback control theory, 

331–332

system dynamics (SD) methodology, 331

system analysis, 332

system dynamic (SD) model structure

characteristics, 333–334

decision function, 335–342

fl ow-rate variables, 334–335

level variables, 334

traditional management, 328

types of equations

auxiliary equations, 343–344

level equation, 342

rate equation, 343

Systems

analysis, 18

boundary, 3

classifi cation

complexity, 6

interactions, 6–7

nature and type of components, 7

time frame, 5–6

uncertainty, 7–9

components and their interactions, 3–4

continuous-time and discrete-time systems, 

13–14

defi nition, 1

deterministic vs. stochastic systems, 15–16

environment, 4–5

examples, 2

hard and soft systems, 16–17

hierarchically nested set, 2–3

interconnected components, 2

large and complex applied system 

engineering

analogical reasoning, 28

artifi cial intelligence, 28

attributes, 26

connectionist representations, 28–29

management control system, 27

metagame theory, 27

process control system, 27

qualitative models, 28

software system engineering, 29

subsystems, 26–27

systems philosophy, 25

linear systems

homogeneity, 10

mathematical viewpoint, 10–11

superposition theorem, 9–10

lumped vs. distributed parameter systems, 

13

modeling (see Modeling)

philosophy, 18–21

synthesis, 18

systems thinking

Bertalanffy’s articulates, 21

defi nitions, 22–23

examples, 22–24

magic vs. science, 21

time-varying vs. time-invariant systems, 12

System state model (SYSMO), 187, 193

T

Takagi–Sugeno–Kang models, 567–568

T-Conorms, 571–572

Teacher evaluation system

ANN model, 519, 521–522

block diagram, 518, 521

comparison, 519, 523

current education system, 517, 520

training error, 519, 523

Thermal systems

components, 112

mathematical models

airplane deceleration with brake 

parachute, 97–99

capacitance, 92–93

Piston-Crank mechanism, 96–97

resistance, 92

supplied heat vs. room temperature, 

93–95

Three-terminal components, 119, 120

Time domain simplifi cation techniques

aggregation method

cases, 230

limitations of, 232

dominant eigenvalue method

characteristic roots’ locations, 225

limitations of, 228

vs. nondominant eigenvalues, 226



Index 709

poles locations effects, 225

system stability, 224

Hankel matrix method, 233–234

Hankel–Norm model order reduction, 234

optimal order reduction, 233

subspace projection method, 232

Time moment matching

responses comparison, 252

Routh array, 250

Time varying and nonlinear components, 

162–166

Time-varying vs. time-invariant systems, 12

T-Norms, 571

Transient models

air-conditioning system, 585–591

ANN models, 585

causal-loop diagram, 579–580

closed-loop system, 584–585

compositional rules, 581–582

connectives, 581

defuzzifi cation methods, 581

direct adaptive control, 584

implication methods, 581

knowledge rules, 579–580

linguistic variables, 581

overlapping effects, 582–584

vs. steady state, 37

Translational mechanical system models

dashpot, 48

mass, 48–49

spring, mass and dashpot

mathematical model, 49–50

state model, 50–53

springs, 47–48

three masses, springs and dashpot, 62–64

train systems

free body diagram and Newton’s law, 

56–57

mechanical coupler, 59–61

simulation results, 58

state-variable and output equations, 

57–59

two masses and two springs, 53–55

Translatory motion mechanical system, 112

Truck–trailer system

f–i analogy, 288, 289

f–v analogy, 288, 290

systematic and equivalent mechanical 

system, 287, 289

Truncation error, 414–415

Tsukamoto inference, 551–553

Tuned fuzzy system, 469, 472

fuzzy rules table, 473, 475

input-1 membership function, 469, 473

input-2 membership function, 469, 474

output membership function, 469, 474

rule format, 469, 475

surface view, 473, 476

Two-terminal components, 112

V

Vandermonde’s matrix, 170–171

W

Water pollution problem, 429–430

Water reservoir system, see Continuous system 

simulation

Weighing machine models

data fi tting, 517, 519

displacement vs. force, 517, 518

error reduction, 517, 518

Laplace transform, 516

prediction, 517, 520

random input force, 516–517

Z

Zadeh theory, 545–554 


	Cover
	Title Page
	Copyright
	Contents
	Preface
	Acknowledgments
	Author
	1. Introduction to Systems
	1.1 System
	1.1.1 System Boundary
	1.1.2 System Components and Their Interactions
	1.1.3 Environment

	1.2 Classification of Systems
	1.2.1 According to the Time Frame
	1.2.2 According to the Complexity of the System
	1.2.3 According to the Interactions
	1.2.4 According to the Nature and Type of Components
	1.2.5 According to the Uncertainties Involved

	1.3 Linear Systems
	1.3.1 Superposition Theorem
	1.3.2 Homogeneity
	1.3.3 Mathematical Viewpoint of a Linear System

	1.4 Time-Varying vs. Time-Invariant Systems
	1.5 Lumped vs. Distributed Parameter Systems
	1.6 Continuous-Time and Discrete-Time Systems
	1.7 Deterministic vs. Stochastic Systems
	1.7.1 Complexity of Systems

	1.8 Hard and Soft Systems
	1.9 Analysis of Systems
	1.10 Synthesis of Systems
	1.11 Introduction to System Philosophy
	1.11.1 Method of Science
	1.11.2 Problems of Science and Emergence of System

	1.12 System Thinking
	1.13 Large and Complex Applied System Engineering: A Generic Modeling
	1.14 Review Questions
	1.15 Bibliographical Notes

	2. Systems Modeling
	2.1 Introduction
	2.2 Need of System Modeling
	2.3 Modeling Methods for Complex Systems
	2.4 Classification of Models
	2.4.1 Physical vs. Abstract Model
	2.4.2 Mathematical vs. Descriptive Model
	2.4.3 Static vs. Dynamic Model
	2.4.4 Steady State vs. Transient Model
	2.4.5 Open vs. Feedback Model
	2.4.6 Deterministic vs. Stochastic Models
	2.4.7 Continuous vs. Discrete Models

	2.5 Characteristics of Models
	2.6 Modeling
	2.6.1 Fundamental Axiom (Modeling Hypothesis)
	2.6.2 Component Postulate (First Postulate)
	2.6.3 Model Evaluation
	2.6.4 Generic Description of Two-Terminal Components

	2.7 Mathematical Modeling of Physical Systems
	2.7.1 Modeling of Mechanical Systems
	2.7.2 Modeling of Electrical Systems
	2.7.3 Modeling of Electromechanical Systems
	2.7.4 Modeling of Fluid Systems
	2.7.5 Modeling of Thermal Systems

	2.8 Review Questions
	2.9 Bibliographical Notes

	3. Formulation of State Space Model of Systems
	3.1 Physical Systems Theory
	3.2 System Components and Interconnections
	3.3 Computation of Parameters of a Component
	3.4 Single Port and Multiport Systems
	3.4.1 Linear Perfect Couplers
	3.4.2 Summary of Two-Terminal and Multiterminal Components
	3.4.3 Multiterminal Components

	3.5 Techniques of System Analysis
	3.5.1 Lagrangian Technique
	3.5.2 Free Body Diagram Method
	3.5.3 Linear Graph Theoretic Approach

	3.6 Basics of Linear Graph Theoretic Approach
	3.7 Formulation of System Model for Conceptual System
	3.7.1 Fundamental Axioms
	3.7.2 Component Postulate
	3.7.3 System Postulate

	3.8 Formulation of System Model for Physical Systems
	3.9 Topological Restrictions
	3.9.1 Perfect Coupler
	3.9.2 Gyrator
	3.9.3 Short Circuit Element (“A” Type)
	3.9.4 Open Circuit Element (“B” Type)
	3.9.5 Dissipater Type Elements
	3.9.6 Delay Type Elements
	3.9.7 Accumulator Type Elements
	3.9.8 Across Drivers
	3.9.9 Through Drivers
	3.10 Development of State Model of Degenerative System

	3.11 Solution of State Equations
	3.12 Controllability
	3.13 Observability
	3.14 Sensitivity
	3.15 Liapunov Stability
	3.16 Performance Characteristics of Linear Time Invariant Systems
	3.17 Formulation of State Space Model Using Computer Program (SYSMO)
	3.17.1 Preparation of the Input Data
	3.17.2 Algorithm for the Formulation of State Equations

	3.18 Review Questions
	3.19 Bibliographical Notes

	4. Model Order Reduction
	4.1 Introduction
	4.2 Difference between Model Simplification and Model Order Reduction
	4.3 Need for Model Order Reduction
	4.4 Principle of Model Order Reduction
	4.5 Methods of Model Order Reduction
	4.5.1 Time Domain Simplification Techniques
	4.5.2 Model Order Reduction in Frequency Domain

	4.6 Applications of Reduced-Order Models
	4.7 Review Questions
	4.8 Bibliographical Notes

	5. Analogous of Linear Systems
	5.1 Introduction
	5.1.1 D’Alembert’s Principle

	5.2 Force–Voltage (f–v) Analogy
	5.2.1 Rule for Drawing f–v Analogous Electrical Circuits

	5.3 Force–Current (f–i) Analogy
	5.3.1 Rule for Drawing f–i Analogous Electrical Circuits

	5.4 Review Questions

	6. Interpretive Structural Modeling
	6.1 Introduction
	6.2 Graph Theory
	6.2.1 Net
	6.2.2 Loop
	6.2.3 Cycle
	6.2.4 Parallel Lines
	6.2.5 Properties of Relations

	6.3 Interpretive Structural Modeling
	6.4 Review Questions
	6.5 Bibliographical Notes

	7. System Dynamics Techniques
	7.1 Introduction
	7.2 System Dynamics of Managerial and Socioeconomic System
	7.2.1 Counterintuitive Nature of System Dynamics
	7.2.2 Nonlinearity
	7.2.3 Dynamics
	7.2.4 Causality
	7.2.5 Endogenous Behavior

	7.3 Traditional Management
	7.3.1 Strength of the Human Mind
	7.3.2 Limitation of the Human Mind

	7.4 Sources of Information
	7.4.1 Mental Database
	7.4.2 Written/Spoken Database
	7.4.3 Numerical Database

	7.5 Strength of System Dynamics
	7.6 Experimental Approach to System Analysis
	7.7 System Dynamics Technique
	7.8 Structure of a System Dynamic Model
	7.9 Basic Structure of System Dynamics Models
	7.9.1 Level Variables
	7.9.2 Flow-Rate Variables
	7.9.3 Decision Function

	7.10 Different Types of Equations Used in System Dynamics Techniques
	7.10.1 Level Equation
	7.10.2 Rate Equation (Decision Functions)
	7.10.3 Auxiliary Equations

	7.11 Symbol Used in Flow Diagrams
	7.11.1 Levels
	7.11.2 Source and Sinks
	7.11.3 Information Takeoff
	7.11.4 Auxiliary Variables
	7.11.5 Parameters (Constants)

	7.12 Dynamo Equations
	7.13 Modeling and Simulation of Parachute Deceleration Device
	7.13.1 Parachute Inflation
	7.13.2 Canopy Stress Distribution
	7.13.3 Modeling and Simulation of Parachute Trajectory

	7.14 Modeling of Heat Generated in a Parachute during Deployment
	7.14.1 Dynamo Equations

	7.15 Modeling of Stanchion System of Aircraft Arrester Barrier System
	7.15.1 Modeling and Simulation of Forces Acting on Stanchion System Using System Dynamic Technique
	7.15.2 Dynamic Model
	7.15.3 Results

	7.16 Review Questions
	7.17 Bibliographical Notes

	8. Simulation
	8.1 Introduction
	8.2 Advantages of Simulation
	8.3 When to Use Simulations
	8.4 Simulation Provides
	8.5 How Simulations Improve Analysis and Decision Making?
	8.6 Application of Simulation
	8.7 Numerical Methods for Simulation
	8.7.1 The Rectangle Rule
	8.7.2 The Trapezoid and Tangent Formulae
	8.7.3 Simpson’s Rule
	8.7.4 One-Step Euler’s Method
	8.7.5 Runge–Kutta Methods of Integration
	8.7.6 Runge–Kutta Fourth-Order Method
	8.7.7 Adams–Bashforth Predictor Method
	8.7.8 Adams–Moulton Corrector Method

	8.8 The Characteristics of Numerical Methods
	8.9 Comparison of Different Numerical Methods
	8.10 Errors during Simulation with Numerical Methods
	8.10.1 Truncation Error
	8.10.2 Round Off Error
	8.10.3 Step Size vs. Error
	8.10.4 Discretization Error

	8.11 Review Questions

	9. Nonlinear and Chaotic System
	9.1 Introduction
	9.2 Linear vs. Nonlinear System
	9.3 Types of Nonlinearities
	9.4 Nonlinearities in Flight Control of Aircraft
	9.4.1 Basic Control Surfaces Used in Aircraft Maneuvers
	9.4.2 Principle of Flight Controls
	9.4.3 Components Used in Pitch Control
	9.4.4 Modeling of Various Components of Pitch Control System
	9.4.5 Simulink Model of Pitch Control in Flight
	9.4.6 Study of Effects of Different Nonlinearities on Behavior of the Pitch Control Model
	9.4.7 Designing a PID Controller for Pitch Control in Flight
	9.4.8 Design of Fuzzy Controller
	9.4.9 Tuning Fuzzy Controller

	9.5 Conclusions
	9.6 Introduction to Chaotic System
	9.6.1 General Meaning
	9.6.2 Scientific Meaning
	9.6.3 Definition

	9.7 Historical Prospective
	9.8 First-Order Continuous-Time System
	9.9 Bifurcations
	9.9.1 Saddle Node Bifurcation
	9.9.2 Transcritical Bifurcation
	9.9.3 Pitchfork Bifurcation
	9.9.4 Catastrophes

	9.10 Second-Order System
	9.11 Third-Order System
	9.11.1 Lorenz Equation: A Chaotic Water Wheel

	9.12 Review Questions
	9.13 Bibliographical Notes

	10. Modeling with Artificial Neural Network
	10.1 Introduction
	10.1.1 Biological Neuron
	10.1.2 Artificial Neuron

	10.2 Artificial Neural Networks
	10.2.1 Training Phase
	10.2.2 Testing Phase

	10.3 Review Questions

	11. Modeling Using Fuzzy Systems
	11.1 Introduction
	11.2 Fuzzy Sets
	11.3 Features of Fuzzy Sets
	11.4 Operations on Fuzzy Sets
	11.4.1 Fuzzy Intersection
	11.4.2 Fuzzy Union
	11.4.3 Fuzzy Complement
	11.4.4 Fuzzy Concentration
	11.4.5 Fuzzy Dilation
	11.4.6 Fuzzy Intensification
	11.4.7 Bounded Sum
	11.4.8 Strong α-Cut
	11.4.9 Linguistic Hedges

	11.5 Characteristics of Fuzzy Sets
	11.5.1 Normal Fuzzy Set
	11.5.2 Convex Fuzzy Set
	11.5.3 Fuzzy Singleton
	11.5.4 Cardinality

	11.6 Properties of Fuzzy Sets
	11.7 Fuzzy Cartesian Product
	11.8 Fuzzy Relation
	11.9 Approximate Reasoning
	11.10 Defuzzification Methods
	11.11 Introduction to Fuzzy Rule-Based Systems
	11.12 Applications of Fuzzy Systems to System Modeling
	11.12.1 Single Input Single Output Systems
	11.12.2 Multiple Input Single Output Systems
	11.12.3 Multiple Input Multiple Output Systems

	11.13 Takagi–Sugeno–Kang Fuzzy Models
	11.14 Adaptive Neuro-Fuzzy Inferencing Systems
	11.15 Steady State DC Machine Model
	11.16 Transient Model of a DC Machine
	11.17 Fuzzy System Applications for Operations Research
	11.18 Review Questions
	11.19 Bibliography and Historical Notes

	12. Discrete-Event Modeling and Simulation
	12.1 Introduction
	12.2 Some Important Definitions
	12.3 Queuing System
	12.4 Discrete-Event System Simulation
	12.5 Components of Discrete-Event System Simulation
	12.6 Input Data Modeling
	12.7 Family of Distributions for Input Data
	12.8 Random Number Generation
	12.8.1 Uniform Distribution
	12.8.2 Gaussian Distribution of Random Number Generation

	12.9 Chi-Square Test
	12.10 Kolomogrov–Smirnov Test
	12.11 Review Questions

	Appendix A
	A.1 What Is MATLAB®?
	A.2 Learning MATLAB
	A.3 The MATLAB System
	A.3.1 Development Environment
	A.3.2 The MATLAB Mathematical Function Library
	A.3.3 The MATLAB Language
	A.3.4 Handle Graphics
	A.3.5 The MATLAB Application Program Interface (API)

	A.4 Starting and Quitting MATLAB
	A.5 MATLAB Desktop
	A.6 Desktop Tools
	A.6.1 Command Window
	A.6.2 Command History

	A.7 Entering Matrices
	A.8 Subscripts
	A.9 The Colon Operator
	A.10 The Magic Function
	A.11 Expressions
	A.11.1 Variables
	A.11.2 Numbers
	A.11.3 Operators
	A.11.4 Functions

	A.12 The Load Command
	A.13 The Format Command
	A.14 Suppressing Output
	A.15 Entering Long Command Lines
	A.16 Basic Plotting
	A.16.1 Creating a Plot
	A.16.2 Multiple Data Sets in One Graph
	A.16.3 Plotting Lines and Markers
	A.16.4 Adding Plots to an Existing Graph
	A.16.5 Multiple Plots in One Figure
	A.16.6 Setting Grid Lines
	A.16.7 Axis Labels and Titles
	A.16.8 Saving a Figure
	A.16.9 Mesh and Surface Plots

	A.17 Images
	A.18 Handle Graphics
	A.18.1 Setting Properties from Plotting Commands
	A.18.2 Different Types of Graphs

	A.19 Animations
	A.20 Creating Movies
	A.21 Flow Control
	A.21.1 If
	A.21.2 Switch and Case

	A.22 Other Data Structures
	A.22.1 Multidimensional Arrays
	A.22.2 Cell Arrays
	A.22.3 Characters and Text

	A.23 Scripts and Functions
	A.23.1 Scripts
	A.23.2 Functions


	Appendix B: Simulink
	B.1 Introduction
	B.2 Features of Simulink
	B.3 Simulation Parameters and Solvers
	B.4 Construction of Block Diagram
	B.5 Review Questions

	Appendix C: Glossary
	C.1 Modeling and Simulation
	C.2 Artificial Neural Network
	C.3 Fuzzy Systems
	C.4 Genetic Algorithms
	Bibliography

	Index

