
15
Discrete Dynamical Systems

Our goal in this chapter is to begin the study of discrete dynamical systems.
As we have seen at several stages in this book, it is sometimes possible to
reduce the study of the flow of a differential equation to that of an iterated
function, namely, a Poincaré map. This reduction has several advantages. First
and foremost, the Poincaré map lives on a lower dimensional space, which
therefore makes visualization easier. Secondly, we do not have to integrate
to find “solutions” of discrete systems. Rather, given the function, we simply
iterate the function over and over to determine the behavior of the orbit, which
then dictates the behavior of the corresponding solution.

Given these two simplifications, it then becomes much easier to comprehend
the complicated chaotic behavior that often arises for systems of differential
equations. While the study of discrete dynamical systems is a topic that could
easily fill this entire book, we will restrict attention here primarily to the portion
of this theory that helps us understand chaotic behavior in one dimension. In
the following chapter we will extend these ideas to higher dimensions.

15.1 Introduction to Discrete Dynamical

Systems

Throughout this chapter we will work with real functions f : R → R. As
usual, we assume throughout that f is C∞, although there will be several
special examples where this is not the case.
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Let f n denote the nth iterate of f . That is, f n is the n-fold composition of f
with itself. Given x0 ∈ R, the orbit of x0 is the sequence

x0, x1 = f (x0), x2 = f 2(x0), . . . , xn = f n(x0), . . . .

The point x0 is called the seed of the orbit.

Example. Let f (x) = x2 + 1. Then the orbit of the seed 0 is the sequence

x0 = 0

x1 = 1

x2 = 2

x3 = 5

x4 = 26

...

xn = big

xn+1 = bigger

...

and so forth, so we see that this orbit tends to ∞ as n → ∞. �

In analogy with equilibrium solutions of systems of differential equations,
fixed points play a central role in discrete dynamical systems. A point x0 is
called a fixed point if f (x0) = x0. Obviously, the orbit of a fixed point is the
constant sequence x0, x0, x0, . . ..

The analog of closed orbits for differential equations is given by periodic
points of period n. These are seeds x0 for which f n(x0) = x0 for some n > 0.
As a consequence, like a closed orbit, a periodic orbit repeats itself:

x0, x1, . . . , xn−1, x0, x1, . . . , xn−1, x0 . . . .

Periodic orbits of period n are also called n-cycles. We say that the periodic
point x0 has minimal period n if n is the least positive integer for which
f n(x0) = x0.

Example. The function f (x) = x3 has fixed points at x = 0, ±1. The func-
tion g (x) = −x3 has a fixed point at 0 and a periodic point of period 2
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at x = ±1, since g (1) = −1 and g (−1) = 1, so g 2(±1) = ±1. The
function

h(x) = (2 − x)(3x + 1)/2

has a 3-cycle given by x0 = 0, x1 = 1, x2 = 2, x3 = x0 = 0 . . .. �

A useful way to visualize orbits of one-dimensional discrete dynamical
systems is via graphical iteration. In this picture, we superimpose the curve
y = f (x) and the diagonal line y = x on the same graph. We display the orbit
of x0 as follows: Begin at the point (x0, x0) on the diagonal and draw a vertical
line to the graph of f , reaching the graph at (x0, f (x0)) = (x0, x1). Then draw a
horizontal line back to the diagonal, ending at (x1, x1). This procedure moves
us from a point on the diagonal directly over the seed x0 to a point directly
over the next point on the orbit, x1. Then we continue from (x1, x1): First
go vertically to the graph to the point (x1, x2), then horizontally back to the
diagonal at (x2, x2). On the x-axis this moves us from x1 to the next point
on the orbit, x2. Continuing, we produce a sequence of pairs of lines, each of
which terminates on the diagonal at a point of the form (xn , xn).

In Figure 15.1a, graphical iteration shows that the orbit of x0 tends to the
fixed point z0 under iteration of f . In Figure 15.1b, the orbit of x0 under g lies
on a 3-cycle: x0, x1, x2, x0, x1, . . ..

As in the case of equilibrium points of differential equations, there are
different types of fixed points for a discrete dynamical system. Suppose that x0

is a fixed point for f . We say that x0 is a sink or an attracting fixed point for f if
there is a neighborhood U of x0 in R having the property that, if y0 ∈ U , then

y�x y�x

x0 x0 x1 x2x1 x2 z0

y�f (x)

y�g (x)

(a) (b)

Figure 15.1 (a) The orbit of x0 tends to the fixed point at z0
under iteration of f, while (b) the orbit of x0 lies on a 3-cycle
under iteration of g.
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f n(y0) ∈ U for all n and, moreover, f n(y0) → x0 as n → ∞. Similarly, x0 is a
source or a repelling fixed point if all orbits (except x0) leave U under iteration
of f . A fixed point is called neutral or indifferent if it is neither attracting nor
repelling.

For differential equations, we saw that it was the derivative of the vector field
at an equilibrium point that determined the type of the equilibrium point. This
is also true for fixed points, although the numbers change a bit.

Proposition. Suppose f has a fixed point at x0. Then

1. x0 is a sink if |f ′(x0)| < 1;
2. x0 is a source if |f ′(x0)| > 1;
3. we get no information about the type of x0 if f ′(x0) = ±1.

Proof: We first prove case (1). Suppose |f ′(x0)| = ν < 1. Choose K with
ν < K < 1. Since f ′ is continuous, we may find δ > 0 so that |f ′(x)| < K for all
x in the interval I = [x0 − δ, x0 + δ]. We now invoke the mean value theorem.
Given any x ∈ I , we have

f (x) − x0

x − x0
= f (x) − f (x0)

x − x0
= f ′(c)

for some c between x and x0. Hence we have

|f (x) − x0| < K |x − x0|.
It follows that f (x) is closer to x0 than x and so f (x) ∈ I . Applying this result
again, we have

|f 2(x) − x0| < K |f (x) − x0| < K 2|x − x0|,
and, continuing, we find

|f n(x) − x0| < K n|x − x0|,
so that f n(x) → x0 in I as required, since 0 < K < 1.

The proof of case (2) follows similarly. In case (3), we note that each of the
functions

1. f (x) = x + x3;
2. g (x) = x − x3;
3. h(x) = x + x2

has a fixed point at 0 with f ′(0) = 1. But graphical iteration (Figure 15.2)
shows that f has a source at 0; g has a sink at 0; and 0 is attracting from one
side and repelling from the other for the function h. �
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f (x)�x�x3 g(x)�x�x3 h(x)�x�x2

Figure 15.2 In each case, the derivative at 0 is 1, but f has a source at 0; g
has a sink; and h has neither.

Note that, at a fixed point x0 for which f ′(x0) < 0, the orbits of nearby
points jump from one side of the fixed point to the other at each iteration. See
Figure 15.3. This is the reason why the output of graphical iteration is often
called a web diagram.

Since a periodic point x0 of period n for f is a fixed point of f n , we may
classify these points as sinks or sources depending on whether |(f n)′(x0)| < 1
or |(f n)′(x0)| > 1. One may check that (f n)′(x0) = (f n)′(xj) for any other
point xj on the periodic orbit, so this definition makes sense (see Exercise 6 at
the end of this chapter).

Example. The function f (x) = x2 − 1 has a 2-cycle given by 0 and −1.
One checks easily that (f 2)′(0) = 0 = (f 2)′(−1), so this cycle is a sink.
In Figure 15.4, we show a graphical iteration of f with the graph of f 2

superimposed. Note that 0 and −1 are attracting fixed points for f 2. �

X0 Z0

Figure 15.3 Since −1 <
f ′(z0) < 0, the orbit of x0
“spirals” toward the
attracting fixed point at z0 .
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y�x

y�xf(x)

y�xf 2(x)

�1

Figure 15.4 The graphs of f (x) = x2 −1 and
f 2 showing that 0 and −1 lie on an attracting
2-cycle for f.

15.2 Bifurcations

Discrete dynamical systems undergo bifurcations when parameters are varied
just as differential equations do. We deal in this section with several types of
bifurcations that occur for one-dimensional systems.

Example. Let fc (x) = x2 + c where c is a parameter. The fixed points for
this family are given by solving the equation x2 + c = x , which yields

p± = 1

2
±

√
1 − 4c

2
.

Hence there are no fixed points if c > 1/4; a single fixed point at x = 1/2 when
c = 1/4; and a pair of fixed points at p± when c < 1/4. Graphical iteration
shows that all orbits of fc tend to ∞ if c > 1/4. When c = 1/4, the fixed point
at x = 1/2 is neutral, as is easily seen by graphical iteration. See Figure 15.5.
When c < 1/4, we have f ′

c (p+) = 1 + √
1 − 4c > 1, so p+ is always repelling.

A straightforward computation also shows that −1 < f ′
c (p−) < 1 provided

−3/4 < c < 1/4. For these c-values, p− is attracting. When −3/4 < c < 1/4, all
orbits in the interval (−p+, p+) tend to p− (though, technically, the orbit of
−p− is eventually fixed, since it maps directly onto p−, as do the orbits of certain
other points in this interval when c < 0). Thus as c decreases through the
bifurcation value c = 1/4, we see the birth of a single neutral fixed point, which
then immediately splits into two fixed points, one attracting and one repelling.
This is an example of a saddle-node or tangent bifurcation. Graphically, this
bifurcation is essentially the same as its namesake for first-order differential
equations as described in Chapter 8. See Figure 15.5. �
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c�0.35 c�0.25 c�0.15

Figure 15.5 The saddle-node bifurcation for fc(x) = x2 + c at c = 1/4.

Note that, in this example, at the bifurcation point, the derivative at the
fixed point equals 1. This is no accident, for we have:

Theorem. (The Bifurcation Criterion) Let fλ be a family of functions
depending smoothly on the parameter λ. Suppose that fλ0(x0) = x0 and
f ′
λ0

(x0) �= 1. Then there are intervals I about x0 and J about λ0 and a smooth
function p : J → I such that p(λ0) = x0 and fλ(p(λ)) = p(λ). Moreover, fλ has
no other fixed points in I .

Proof: Consider the function defined by G(x , λ) = fλ(x) − x . By hypothesis,
G(x0, λ0) = 0 and

∂G

∂x
(x0, λ0) = f ′

λ0
x0) − 1 �= 0.

By the implicit function theorem, there are intervals I about x0 and J about
λ0, and a smooth function p : J → I such that p(λ0) = x0 and G(p(λ), λ) ≡ 0
for all λ ∈ J . Moreover, G(x , λ) �= 0 unless x = p(λ). This concludes the
proof. �

As a consequence of this result, fλ may undergo a bifurcation involving a
change in the number of fixed points only if fλ has a fixed point with derivative
equal to 1. The typical bifurcation that occurs at such parameter values is the
saddle-node bifurcation (see Exercises 18 and 19). However, many other types
of bifurcations of fixed points may occur.

Example. Let fλ(x) = λx(1 − x). Note that fλ(0) = 0 for all λ. We have
f ′
λ(0) = λ, so we have a possible bifurcation at λ = 1. There is a second fixed
point for fλ at xλ = (λ − 1)/λ. When λ < 1, xλ is negative, and when λ > 1,
xλ is positive. When λ = 1, xλ coalesces with the fixed point at 0 so there is
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a single fixed point for f1. A computation shows that 0 is repelling and xλ is
attracting if λ > 1 (and λ < 3), while the reverse is true if λ < 1. For this
reason, this type of bifurcation is known as an exchange bifurcation. �

Example. Consider the family of functions fμ(x) = μx + x3. When μ = 1
we have f1(0) = 0 and f ′

1 (0) = 1 so we have the possibility for a bifurcation.
The fixed points are 0 and ±√

1 − μ, so we have three fixed points when μ < 1
but only one fixed point when μ ≥ 1, so a bifurcation does indeed occur as μ

passes through 1. �

The only other possible bifurcation value for a one-dimensional discrete
system occurs when the derivative at the fixed (or periodic) point is equal to
−1, since at these values the fixed point may change from a sink to a source
or from a source to a sink. At all other values of the derivative, the fixed point
simply remains a sink or source and there are no other periodic orbits nearby.
Certain portions of a periodic orbit may come close to a source, but the entire
orbit cannot lie close by (see Exercise 7). In the case of derivative −1 at the
fixed point, the typical bifurcation is a period doubling bifurcation.

Example. As a simple example of this type of bifurcation, consider the family
fλ(x) = λx near λ0 = −1. There is a fixed point at 0 for all λ. When −1 <
λ < 1, 0 is an attracting fixed point and all orbits tend to 0. When |λ| > 1, 0
is repelling and all nonzero orbits tend to ±∞. When λ = −1, 0 is a neutral
fixed point and all nonzero points lie on 2-cycles. As λ passes through −1,
the type of the fixed point changes from attracting to repelling; meanwhile, a
family of 2-cycles appears. �

Generally, when a period doubling bifurcation occurs, the 2-cycles do not
all exist for a single parameter value. A more typical example of this bifurcation
is provided next.

Example. Again consider fc (x) = x2 + c , this time with c near c = −3/4.
There is a fixed point at

p− = 1

2
−

√
1 − 4c

2
.

We have seen that f ′−3/4(p−) = −1 and that p− is attracting when c is slightly
larger than −3/4 and repelling when c is less than −3/4. Graphical iteration
shows that more happens as c descends through −3/4: We see the birth of
an (attracting) 2-cycle as well. This is the period doubling bifurcation. See
Figure 15.6. Indeed, one can easily solve for the period two points and check
that they are attracting (for −5/4 < c < −3/4; see Exercise 8). �
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c = −0.65 c = −0.75 c = −0.85

Figure 15.6 The period doubling bifurcation for fc(x) = x2 + c at c = −3/4.
The fixed point is attracting for c ≥ −0.75 and repelling for c < −0.75.

15.3 The Discrete Logistic Model

In Chapter 1 we introduced one of the simplest nonlinear first-order
differential equations, the logistic model for population growth

x ′ = ax(1 − x).

In this model we took into account the fact that there is a carrying capacity
for a typical population, and we saw that the resulting solutions behaved quite
simply: All nonzero solutions tended to the “ideal” population. Now some-
thing about this model may have bothered you way back then: Populations
generally are not continuous functions of time! A more natural type of model
would measure populations at specific times, say, every year or every gen-
eration. Here we introduce just such a model, the discrete logistic model for
population growth.

Suppose we consider a population whose members are counted each year
(or at other specified times). Let xn denote the population at the end of year
n. If we assume that no overcrowding can occur, then one such population
model is the exponential growth model where we assume that

xn+1 = kxn

for some constant k > 0. That is, the next year’s population is directly
proportional to this year’s. Thus we have

x1 = kx0

x2 = kx1 = k2x0

x3 = kx2 = k3x0

...
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Clearly, xn = knx0 so we conclude that the population explodes if k > 1,
becomes extinct if 0 ≤ k < 1, or remains constant if k = 1.

This is an example of a first-order difference equation. This is an equation
that determines xn based on the value of xn−1. A second-order difference
equation would give xn based on xn−1 and xn−2. From our point of view, the
successive populations are given by simply iterating the function fk(x) = kx
with the seed x0.

A more realistic assumption about population growth is that there is a
maximal population M such that, if the population exceeds this amount, then
all resources are used up and the entire population dies out in the next year.

One such model that reflects these assumptions is the discrete logistic
population model . Here we assume that the populations obey the rule

xn+1 = kxn

(
1 − xn

M

)
where k and M are positive parameters. Note that, if xn ≥ M , then xn+1 ≤ 0,
so the population does indeed die out in the ensuing year.

Rather than deal with actual population numbers, we will instead let xn

denote the fraction of the maximal population, so that 0 ≤ xn ≤ 1. The
logistic difference equation then becomes

xn+1 = λxn (1 − xn)

where λ > 0 is a parameter. We may therefore predict the fate of the initial
population x0 by simply iterating the quadratic function fλ(x) = λx(1 − x)
(also called the logistic map). Sounds easy, right? Well, suffice it to say that
this simple quadratic iteration was only completely understood in the late
1990s, thanks to the work of hundreds of mathematicians. We will see why
the discrete logistic model is so much more complicated than its cousin, the
logistic differential equation, in a moment, but first let’s do some simple cases.

We consider only the logistic map on the unit interval I . We have fλ(0) = 0,
so 0 is a fixed point. The fixed point is attracting in I for 0 < λ ≤ 1, and
repelling thereafter. The point 1 is eventually fixed, since fλ(1) = 0. There
is a second fixed point xλ = (λ − 1)/λ in I for λ > 1. The fixed point xλ is
attracting for 1 < λ ≤ 3 and repelling for λ > 3. At λ = 3 a period doubling
bifurcation occurs (see Exercise 4). For λ-values between 3 and approximately
3. 4, the only periodic points present are the two fixed points and the 2-cycle.

When λ = 4, the situation is much more complicated. Note that f ′
λ(1/2) = 0

and that 1/2 is the only critical point for fλ for each λ. When λ = 4, we have
f4(1/2) = 1, so f 2

4 (1/2) = 0. Therefore f4 maps each of the half-intervals
[0, 1/2] and [1/2, 1] onto the entire interval I . Consequently, there exist points
y0 ∈ [0, 1/2] and y1 ∈ [1/2, 1] such that f4(yj) = 1/2 and hence f 2

4 (yj) = 1.
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1/2 1/2 1/2y0 y1 y0 y1

Figure 15.7 The graphs of the logistic function fλ(x) − λ x(1 − x) as well as
f 2
λ and f 3

λ over the interval I.

Therefore we have

f 2
4 [0, y0] = f 2

4 [y0, 1/2] = I

and

f 2
4 [1/2, y1] = f 2

4 [y1, 1] = I .

Since the function f 2
4 is a quartic, it follows that the graph of f 2

4 is as depicted
in Figure 15.7. Continuing in this fashion, we find 23 subintervals of I that are
mapped onto I by f 3

4 , 24 subintervals mapped onto I by f 4
4 , and so forth. We

therefore see that f4 has two fixed points in I ; f 2
4 has four fixed points in I ; f 3

4
has 23 fixed points in I ; and, inductively, f n

4 has 2n fixed points in I . The fixed
points for f4 occur at 0 and 3/4. The four fixed points for f 2

4 include these two
fixed points plus a pair of periodic points of period 2. Of the eight fixed points
for f 3

4 , two must be the fixed points and the other six must lie on a pair of
3-cycles. Among the 16 fixed points for f 4

4 are two fixed points, two periodic
points of period 2, and twelve periodic points of period 4. Clearly, a lot has
changed as λ varies from 3. 4 to 4.

On the other hand, if we choose a random seed in the interval I and plot
the orbit of this seed under iteration of f4 using graphical iteration, we rarely
see any of these cycles. In Figure 15.8 we have plotted the orbit of 0. 123 under
iteration of f4 using 200 and 500 iterations. Presumably, there is something
“chaotic” going on.

15.4 Chaos

In this section we introduce several quintessential examples of chaotic one-
dimensional discrete dynamical systems. Recall that a subset U ⊂ W is said
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(a) (b)

Figure 15.8 The orbit of the seed 0.123 under f4 using (a) 200
iterations and (b) 500 iterations.

to be dense in W if there are points in U arbitrarily close to any point in the
larger set W . As in the Lorenz model, we say that a map f , which takes an
interval I = [α, β] to itself, is chaotic if

1. Periodic points of f are dense in I ;
2. f is transitive on I ; that is, given any two subintervals U1 and U2 in I ,

there is a point x0 ∈ U1 and an n > 0 such that f n(x0) ∈ U2;
3. f has sensitive dependence in I ; that is, there is a sensitivity constant β

such that, for any x0 ∈ I and any open interval U about x0, there is some
seed y0 ∈ U and n > 0 such that

|f n(x0) − f n(y0)| > β.

It is known that the transitivity condition is equivalent to the existence of
an orbit that is dense in I . Clearly, a dense orbit implies transitivity, for such
an orbit repeatedly visits any open subinterval in I . The other direction relies
on the Baire category theorem from analysis, so we will not prove this here.

Curiously, for maps of an interval, condition 3 in the definition of chaos is
redundant [8]. This is somewhat surprising, since the first two conditions in
the definition are topological in nature, while the third is a metric property (it
depends on the notion of distance).

We now discuss several classical examples of chaotic one-dimensional maps.

Example. (The Doubling Map) Define the discontinuous function
D : [0, 1) → [0, 1) by D(x) = 2x mod 1. That is,

D(x) =
{

2x if 0 ≤ x < 1/2
2x − 1 if 1/2 ≤ x < 1
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Figure 15.9 The graph of the doubling map D and its higher iterates D2

and D3 on [0, 1).

An easy computation shows that Dn(x) = 2nx mod 1, so that the graph of
Dn consists of 2n straight lines with slope 2n , each extending over the entire
interval [0, 1). See Figure 15.9.

To see that the doubling function is chaotic on [0, 1), note that Dn maps any
interval of the form [k/2n , (k + 1)/2n) for k = 0, 1, . . . 2n − 2 onto the interval
[0, 1). Hence the graph of Dn crosses the diagonal y = x at some point in this
interval, and so there is a periodic point in any such interval. Since the lengths
of these intervals are 1/2n , it follows that periodic points are dense in [0, 1).
Transitivity also follows, since, given any open interval J , we may always find
an interval of the form [k/2n , (k +1)/2n) inside J for sufficiently large n. Hence
Dn maps J onto all of [0, 1). This also proves sensitivity, where we choose the
sensitivity constant 1/2.

We remark that it is possible to write down all of the periodic points for
D explicitly (see Exercise 5a). It is also interesting to note that, if you use
a computer to iterate the doubling function, then it appears that all orbits
are eventually fixed at 0, which, of course, is false! See Exercise 5c for an
explanation of this phenomenon. �

Example. (The Tent Map) Now consider a continuous cousin of the
doubling map given by

T (x) =
{

2x if 0 ≤ x < 1/2
−2x + 2 if 1/2 ≤ x ≤ 1.

T is called the tent map. See Figure 15.10. The fact that T is chaotic on [0, 1]
follows exactly as in the case of the doubling function, using the graphs of T n

(see Exercise 15).
Looking at the graphs of the tent function T and the logistic function f4(x) =

4x(1 − x) that we discussed in Section 15.3, it appears that they should share
many of the same properties under iteration. Indeed, this is the case. To
understand this, we need to reintroduce the notion of conjugacy, this time for
discrete systems.
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Figure 15.10 The graph of the tent map T and its higher iterates T 2 and
T 3 on [0, 1].

Suppose I and J are intervals and f : I → I and g : J → J . We say that f
and g are conjugate if there is a homeomorphism h : I → J such that h satisfies
the conjugacy equation h ◦ f = g ◦ h. Just as in the case of flows, a conjugacy
takes orbits of f to orbits of g . This follows since we have h(f n(x)) = g n(h(x))
for all x ∈ I , so h takes the nth point on the orbit of x under f to the
nth point on the orbit of h(x) under g . Similarly, h−1 takes orbits of g to
orbits of f . �

Example. Consider the logistic function f4 : [0, 1] → [0, 1] and the quadratic
function g : [−2, 2] → [−2, 2] given by g (x) = x2 − 2. Let h(x) = −4x + 2
and note that h takes [0, 1] to [−2, 2]. Moreover, we have h(4x(1 −
x)) = (h(x))2 − 2, so h satisfies the conjugacy equation and f4 and g are
conjugate. �

From the point of view of chaotic systems, conjugacies are important since
they map one chaotic system to another.

Proposition. Suppose f : I → I and g : J → J are conjugate via h, where
both I and J are closed intervals in R of finite length. If f is chaotic on I , then g
is chaotic on J .

Proof: Let U be an open subinterval of J and consider h−1(U ) ⊂ I . Since
periodic points of f are dense in I , there is a periodic point x ∈ h−1(U ) for f .
Say x has period n. Then

g n(h(x)) = h(f n(x)) = h(x)

by the conjugacy equation. This gives a periodic point h(x) for g in U and
shows that periodic points of g are dense in J .

If U and V are open subintervals of J , then h−1(U ) and h−1(V ) are open
intervals in I . By transitivity of f , there exists x1 ∈ h−1(U ) such that
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f m(x1) ∈ h−1(V ) for some m. But then h(x1) ∈ U and we have gm(h(x1)) =
h(f m(x1)) ∈ V , so g is transitive also.

For sensitivity, suppose that f has sensitivity constant β. Let I = [α0, α1].
We may assume that β < α1 − α0. For any x ∈ [α0, α1 − β], consider the
function |h(x + β) − h(x)|. This is a continuous function on [α0, α1 − β]
that is positive. Hence it has a minimum value β ′. It follows that h takes
intervals of length β in I to intervals of length at least β ′ in J . Then it
is easy to check that β ′ is a sensitivity constant for g . This completes the
proof. �

It is not always possible to find conjugacies between functions with equiva-
lent dynamics. However, we can relax the requirement that the conjugacy be
one to one and still salvage the preceding proposition. A continuous function h
that is at most n to one and that satisfies the conjugacy equation f ◦h = h◦g is
called a semiconjugacy between g and f . It is easy to check that a semiconjugacy
also preserves chaotic behavior on intervals of finite length (see Exercise 12).
A semiconjugacy need not preserve the minimal periods of cycles, but it does
map cycles to cycles.

Example. The tent function T and the logistic function f4 are semiconjugate
on the unit interval. To see this, let

h(x) = 1

2
(1 − cos 2πx) .

Then h maps the interval [0, 1] in two-to-one fashion over itself, except at 1/2,
which is the only point mapped to 1. Then we compute

h(T (x)) = 1

2
(1 − cos 4πx)

= 1

2
− 1

2

(
2 cos2 2πx − 1

)
= 1 − cos2 2πx

= 4

(
1

2
− 1

2
cos 2πx

)(
1

2
+ 1

2
cos 2πx

)
= f4(h(x)).

Thus h is a semiconjugacy between T and f4. As a remark, recall that we may
find arbitrarily small subintervals mapped onto all of [0, 1]by T . Hence f4 maps
the images of these intervals under h onto all of [0, 1]. Since h is continuous,
the images of these intervals may be chosen arbitrarily small. Hence we may
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choose 1/2 as a sensitivity constant for f4 as well. We have proven the following
proposition: �

Proposition. The logistic function f4(x) = 4x(1 − x) is chaotic on the unit
interval. �

15.5 Symbolic Dynamics

We turn now to one of the most useful tools for analyzing chaotic systems,
symbolic dynamics. We give just one example of how to use symbolic dynamics
here; several more are included in the next chapter.

Consider the logistic map fλ(x) = λx(1 − x) where λ > 4. Graphical iter-
ation seems to imply that almost all orbits tend to −∞. See Figure 15.11.
Of course, this is not true, because we have fixed points and other peri-
odic points for this function. In fact, there is an unexpectedly “large” set
called a Cantor set that is filled with chaotic behavior for this function, as we
shall see.

Unlike the case λ ≤ 4, the interval I = [0, 1] is no longer invariant when
λ > 4: Certain orbits escape from I and then tend to −∞. Our goal is to
understand the behavior of the nonescaping orbits. Let � denote the set of
points in I whose orbits never leave I . As shown in Figure 15.12a, there is
an open interval A0 on which fλ > 1. Hence f 2

λ (x) < 0 for any x ∈ A0 and,
as a consequence, the orbits of all points in A0 tend to −∞. Note that any
orbit that leaves I must first enter A0 before departing toward −∞. Also, the

1

Figure 15.11 Typical
orbits for the logistic
function fλ with λ > 4
seem to tend to −∞ after
wandering around the unit
interval for a while.
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A1 A1A0
(a)

I0 I1A0
(b)

Figure 15.12 (a) The exit set in I consists of a collection
of disjoint open intervals. (b) The intervals I0 and I1 lie to
the left and right of A0 .

orbits of the endpoints of A0 are eventually fixed at 0, so these endpoints are
contained in �. Now let A1 denote the preimage of A0 in I : A1 consists of
two open intervals in I , one on each side of A0. All points in A1 are mapped
into A0 by fλ, and hence their orbits also tend to −∞. Again, the endpoints
of A1 are eventual fixed points. Continuing, we see that each of the two open
intervals in A1 has as a preimage a pair of disjoint intervals, so there are four
open intervals that consist of points whose first iteration lies in A1, the second
in A0, and so, again, all of these points have orbits that tend to −∞. Call these
four intervals A2. In general, let An denote the set of points in I whose nth
iterate lies in A0. An consists of set 2n disjoint open intervals in I . Any point
whose orbit leaves I must lie in one of the An . Hence we see that

� = I −
∞⋃

n=0

An .

To understand the dynamics of fλ on I , we introduce symbolic dynamics.
Toward that end, let I0 and I1 denote the left and right closed interval respec-
tively in I − A0. See Figure 15.12b. Given x0 ∈ �, the entire orbit of x0 lies
in I0 ∪ I1. Hence we may associate an infinite sequence S(x0) = (s0s1s2 . . .)
consisting of 0’s and 1’s to the point x0 via the rule

sj = k if and only if f
j
λ (x0) ∈ Ik .

That is, we simply watch how f
j
λ (x0) bounces around I0 and I1, assigning a 0

or 1 at the jth stage depending on which interval f
j
λ (x0) lies in. The sequence

S(x0) is called the itinerary of x0.
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Example. The fixed point 0 has itinerary S(0) = (000 . . .). The fixed point xλ

in I1 has itinerary S(xλ) = (111 . . .). The point x0 = 1 is eventually fixed and
has itinerary S(1) = (1000 . . .). A 2-cycle that hops back and forth between I0
and I1 has itinerary (01 . . .) or (10 . . .) where 01 denotes the infinitely repeating
sequence consisting of repeated blocks 01.

Let � denote the set of all possible sequences of 0’s and 1’s. A “point” in
the space � is therefore an infinite sequence of the form s = (s0s1s2 . . .). To
visualize �, we need to tell how far apart different points in � are. To do this,
let s = (s0s1s2 . . .) and t = (t0t1t2 . . .) be points in �. A distance function or
metric on � is a function d = d(s, t ) that satisfies

1. d(s, t ) ≥ 0 and d(s, t ) = 0 if and only if s = t ;
2. d(s, t ) = d(t , s);
3. the triangle inequality: d(s, u) ≤ d(s, t ) + d(t , u).

Since � is not naturally a subset of a Euclidean space, we do not have a
Euclidean distance to use on �. Hence we must concoct one of our own. Here
is the distance function we choose:

d(s, t ) =
∞∑

i=0

|si − ti |
2i

.

Note that this infinite series converges: The numerators in this series are always
either 0 or 1, so this series converges by comparison to the geometric series:

d(s, t ) ≤
∞∑

i=0

1

2i
= 1

1 − 1/2
= 2.

It is straightforward to check that this choice of d satisfies the three require-
ments to be a distance function (see Exercise 13). While this distance function
may look a little complicated at first, it is often easy to compute. �

Example.

(1) d
(
(0), (1)

) =
∞∑

i=0

|0 − 1|
2i

=
∞∑

i=0

1

2i
= 2

(2) d
(
(01), (10)

) =
∞∑

i=0

1

2i
= 2

(3) d
(
(01), (1)

) =
∞∑

i=0

1

4i
= 1

1 − 1/4
= 4

3
.

�
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The importance of having a distance function on � is that we now know
when points are close together or far apart. In particular, we have

Proposition. Suppose s = (s0s1s2 . . .) and t = (t0t1t2 . . .) ∈ �.

1. If sj = tj for j = 0, . . . , n, then d(s, t ) ≤ 1/2n;
2. Conversely, if d(s, t ) < 1/2n, then sj = tj for j = 0, . . . , n.

Proof: In case (1), we have

d(s, t ) =
n∑

i=0

|si − si |
2i

+
∞∑

i=n+1

|si − ti |
2i

≤ 0 + 1

2n+1

∞∑
i=0

1

2i

= 1

2n
.

If, on the other hand, d(s, t ) < 1/2n , then we must have sj = tj for any j ≤ n,
because otherwise d(s, t ) ≥ |sj − tj |/2j = 1/2j ≥ 1/2n . �

Now that we have a notion of closeness in �, we are ready to prove the main
theorem of this chapter:

Theorem. The itinerary function S : � → � is a homeomorphism provided
λ > 4.

Proof: Actually, we will only prove this for the case in which λ is sufficiently
large that |f ′

λ(x)| > K > 1 for some K and for all x ∈ I0 ∪ I1. The reader may

check that λ > 2 + √
5 suffices for this. For the more complicated proof in the

case where 4 < λ ≤ 2 + √
5, see [25].

We first show that S is one to one. Let x , y ∈ � and suppose S(x) = S(y).
Then, for each n, f n

λ (x) and f n
λ (y) lie on the same side of 1/2. This implies that

fλ is monotone on the interval between f n
λ (x) and f n

λ (y). Consequently, all
points in this interval remain in I0 ∪ I1 when we apply fλ. Now |f ′

λ| > K > 1 at
all points in this interval, so, as in Section 15.1, each iteration of fλ expands this
interval by a factor of K . Hence the distance between f n

λ (x) and f n
λ (y) grows

without bound, so these two points must eventually lie on opposite sides of
A0. This contradicts the fact that they have the same itinerary.

To see that S is onto, we first introduce the following notation. Let J ⊂ I be
a closed interval. Let

f −n
λ (J ) = {x ∈ I | f n

λ (x) ∈ J },
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so that f −n
λ (J ) is the preimage of J under f n

λ . A glance at the graph of fλ when
λ > 4 shows that, if J ⊂ I is a closed interval, then f −1

λ (J ) consists of two
closed subintervals, one in I0 and one in I1.

Now let s = (s0s1s2 . . .). We must produce x ∈ � with S(x) = s. To that
end we define

Is0s1...sn = {x ∈ I | x ∈ Is0 , fλ(x) ∈ Is1 , . . . , f
n
λ (x) ∈ Isn }

= Is0 ∩ f −1
λ (Is1) ∩ . . . ∩ f −n

λ (Isn ).

We claim that the Is0...sn form a nested sequence of nonempty closed
intervals. Note that

Is0s1...sn = Is0 ∩ f −1
λ (Is1...sn ).

By induction, we may assume that Is1...sn is a nonempty subinterval, so that, by
the observation above, f −1

λ (Is1...sn ) consists of two closed intervals, one in I0
and one in I1. Hence Is0 ∩ f −1

λ (Is1...sn ) is a single closed interval. These intervals
are nested because

Is0...sn = Is0...sn−1 ∩ f −n
λ (Isn ) ⊂ Is0...sn−1 .

Therefore we conclude that

∞⋂
n≥0

Is0s1...sn

is nonempty. Note that if x ∈ ∩n≥0Is0s1...sn , then x ∈ Is0 , fλ(x) ∈ Is1 , etc. Hence
S(x) = (s0s1 . . .). This proves that S is onto.

Observe that ∩n≥0Is0s1...sn consists of a unique point. This follows immedi-
ately from the fact that S is one to one. In particular, we have that the diameter
of Is0s1...sn tends to 0 as n → ∞.

To prove continuity of S, we choose x ∈ � and suppose that S(x) =
(s0s1s2 . . .). Let ε > 0. Pick n so that 1/2n < ε. Consider the closed subin-
tervals It0t1...tn defined above for all possible combinations t0t1 . . . tn . These
subintervals are all disjoint, and � is contained in their union. There are
2n+1 such subintervals, and Is0s1...sn is one of them. Hence we may choose δ

such that |x − y| < δ and y ∈ � implies that y ∈ Is0s1...sn . Therefore, S(y)
agrees with S(x) in the first n + 1 terms. So, by the previous proposition,
we have

d(S(x), S(y)) ≤ 1

2n
< ε.
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This proves the continuity of S. It is easy to check that S−1 is also continuous.
Thus, S is a homeomorphism. �

15.6 The Shift Map

We now construct a map on σ : � → � with the following properties:

1. σ is chaotic;
2. σ is conjugate to fλ on �;
3. σ is completely understandable from a dynamical systems point of view.

The meaning of this last item will become clear as we proceed.
We define the shift map σ : � → � by

σ (s0s1s2 . . .) = (s1s2s3 . . .).

That is, the shift map simply drops the first digit in each sequence in �. Note
that σ is a two-to-one map onto �. This follows since, if (s0s1s2 . . .) ∈ �, then
we have

σ (0s0s1s2 . . .) = σ (1s0s1s2 . . .) = (s0s1s2 . . .).

Proposition. The shift map σ : � → � is continuous.

Proof: Let s = (s0s1s2 . . .) ∈ �, and let ε > 0. Choose n so that 1/2n < ε. Let
δ = 1/2n+1. Suppose that d(s, t ) < δ, where t = (t0t1t2 . . .). Then we have
si = ti for i = 0, . . . , n + 1.

Now σ (t ) = (s1s2 . . . sntn+1tn+2 . . .) so that d(σ (s), σ (t )) ≤ 1/2n < ε. This
proves that σ is continuous. �

Note that we can easily write down all of the periodic points of any period
for the shift map. Indeed, the fixed points are (0) and (1). The 2 cycles are (01)
and (10). In general, the periodic points of period n are given by repeating
sequences that consist of repeated blocks of length n: (s0 . . . sn−1). Note how
much nicer σ is compared to fλ: Just try to write down explicitly all of the
periodic points of period n for fλ someday! They are there and we know
roughly where they are, because we have:

Theorem. The itinerary function S : � → � provides a conjugacy between fλ
and the shift map σ .

Proof: In the previous section we showed that S is a homeomorphism. So it
suffices to show that S ◦ fλ = σ ◦ S. To that end, let x0 ∈ � and suppose
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that S(x0) = (s0s1s2 . . .). Then we have x0 ∈ Is0 , fλ(x0) ∈ Is1 , f 2
λ (x0) ∈ Is2 ,

and so forth. But then the fact that fλ(x0) ∈ Is1 , f 2
λ (x0) ∈ Is2 , etc., says that

S(fλ(x0)) = (s1s2s3 . . .), so S(fλ(x0)) = σ (S(x0)), which is what we wanted to
prove. �

Now, not only can we write down all periodic points for σ , but we can in
fact write down explicitly a point in � whose orbit is dense. Here is such a
point:

s∗ = ( 0 1︸︷︷︸
1 blocks

| 00 01 10 11︸ ︷︷ ︸
2 blocks

| 000 001 · · ·︸ ︷︷ ︸
3 blocks

| · · ·︸︷︷︸
4 blocks

).

The sequence s∗ is constructed by successively listing all possible blocks of 0’s
and 1’s of length 1, length 2, length 3, and so forth. Clearly, some iterate of
σ applied to s∗ yields a sequence that agrees with any given sequence in an
arbitrarily large number of initial places. That is, given t = (t0t1t2 . . .) ∈ �,
we may find k so that the sequence σ k(s∗) begins

(t0 . . . tn sn+1 sn+2 . . .)

so that

d(σ k(s∗), t ) ≤ 1/2n .

Hence the orbit of s∗ comes arbitrarily close to every point in �. This proves
that the orbit of s∗ under σ is dense in � and so σ is transitive. Note that
we may construct a multitude of other points with dense orbits in � by just
rearranging the blocks in the sequence s∗. Again, think about how difficult it
would be to identify a seed whose orbit under a quadratic function like f4 is
dense in [0, 1]. This is what we meant when we said earlier that the dynamics
of σ are “completely understandable.”

The shift map also has sensitive dependence. Indeed, we may choose the
sensitivity constant to be 2, which is the largest possible distance between two
points in �. The reason for this is, if s = (s0s1s2 . . .) ∈ � and ŝj denotes “not
sj” (that is, if sj = 0, then ŝj = 1, or if sj = 1 then ŝj = 0), then the point
s ′ = (s0s1 . . . sn ŝn+1ŝn+2 . . .) satisfies:

1. d(s, s ′) = 1/2n , but
2. d(σ n(s), σ n(s ′)) = 2.

As a consequence, we have proved the following:

Theorem. The shift map σ is chaotic on �, and so by the conjugacy in the
previous theorem, the logistic map fλ is chaotic on � when λ > 4. �
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Thus symbolic dynamics provides us with a computable model for the
dynamics of fλ on the set �, despite the fact that fλ is chaotic on �.

15.7 The Cantor Middle-Thirds Set

We mentioned earlier that � was an example of a Cantor set. Here we describe
the simplest example of such a set, the Cantor middle-thirds set C. As we shall
see, this set has some unexpectedly interesting properties.

To define C , we begin with the closed unit interval I = [0, 1]. The rule
is, each time we see a closed interval, we remove its open middle third.
Hence, at the first stage, we remove (1/3, 2/3), leaving us with two closed
intervals, [0, 1/3] and [2/3, 1]. We now repeat this step by removing the
middle thirds of these two intervals. We are left with four closed intervals
[0, 1/9], [2/9, 1/3], [2/3, 7/9], and [8/9, 1]. Removing the open middle thirds of
these intervals leaves us with 23 closed intervals, each of length 1/33. Continu-
ing in this fashion, at the nth stage we are left with 2n closed intervals each of
length 1/3n . The Cantor middle-thirds set C is what is left when we take this
process to the limit as n → ∞. Note how similar this construction is to that
of � in Section 15.5. In fact, it can be proved that � is homeomorphic to C
(see Exercises 16 and 17).

What points in I are left in C after removing all of these open intervals?
Certainly 0 and 1 remain in C , as do the endpoints 1/3 and 2/3 of the first
removed interval. Indeed, each endpoint of a removed open interval lies
in C because such a point never lies in an open middle-third subinterval.
At first glance, it appears that these are the only points in the Cantor set,
but in fact, that is far from the truth. Indeed, most points in C are not
endpoints!

To see this, we attach an address to each point in C . The address will be
an infinite string of L’s or R’s determined as follows. At each stage of the
construction, our point lies in one of two small closed intervals, one to the
left of the removed open interval or one to its right. So at the nth stage we
may assign an L or R to the point depending on its location left or right of
the interval removed at that stage. For example, we associate LLL . . . to 0
and RRR . . . to 1. The endpoints 1/3 and 2/3 have addresses LRRR . . . and
RLLL . . . , respectively. At the next stage, 1/9 has address LLRRR . . . since 1/9
lies in [0, 1/3] and [0, 1/9] at the first two stages, but then always lies in the
right-hand interval. Similarly, 2/9 has address LRLLL . . . , while 7/9 and 8/9
have addresses RLRRR . . . and RRLLL . . . .

Notice what happens at each endpoint of C . As the above examples indicate,
the address of an endpoint always ends in an infinite string of all L’s or all R’s.
But there are plenty of other possible addresses for points in C . For example,
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there is a point with address LRLRLR . . . . This point lies in

[0, 1/3] ∩ [2/9, 1/3] ∩ [2/9, 7/27] ∩ [20/81, 7/27] . . . .

Note that this point lies in the nested intersection of closed intervals of length
1/3n for each n, and it is the unique such point that does so. This shows that
most points in C are not endpoints, for the typical address will not end in all
L’s or all R’s.

We can actually say quite a bit more: The Cantor middle-thirds set contains
uncountably many points. Recall that an infinite set is countable if it can be
put in one-to-one correspondence with the natural numbers; otherwise, the
set is uncountable.

Proposition. The Cantor middle-thirds set is uncountable.

Proof: Suppose that C is countable. This means that we can pair each point
in C with a natural number in some fashion, say as

1 : LLLLL . . .

2 : RRRR . . .

3 : LRLR . . .

4 : RLRL . . .

5 : LRRLRR . . .

and so forth. But now consider the address whose first entry is the opposite
of the first entry of sequence 1, whose second entry is the opposite of the
second entry of sequence 2; and so forth. This is a new sequence of L’s and R’s
(which, in the example above, begins with RLRRL . . .). Thus we have created
a sequence of L’s and R’s that disagrees in the nth spot with the nth sequence
on our list. Hence this sequence is not on our list and so we have failed in our
construction of a one-to-one correspondence with the natural numbers. This
contradiction establishes the result. �

We can actually determine the points in the Cantor middle-thirds set in a
more familiar way. To do this we change the address of a point in C from a
sequence of L’s and R’s to a sequence of 0’s and 2’s; that is, we replace each
L with a 0 and each R with a 2. To determine the numerical value of a point
x ∈ C we approach x from below by starting at 0 and moving sn/3n units to the
right for each n, where sn = 0 or 2 depending on the nth digit in the address
for n = 1, 2, 3 . . . .
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For example, 1 has address RRR . . . or 222 . . . , so 1 is given by

2

3
+ 2

32
+ 2

33
+ · · · = 2

3

∞∑
n=0

1

3n
= 2

3

(
1

1 − 1/3

)
= 1.

Similarly, 1/3 has address LRRR . . . or 0222 . . . , which yields

0

3
+ 2

32
+ 2

33
+ · · · = 2

9

∞∑
n=0

1

3n
= 2

9
· 3

2
= 1

3
.

Finally, the point with address LRLRLR . . . or 020202 . . . is

0

3
+ 2

32
+ 0

33
+ 2

34
+ · · · = 2

9

∞∑
n=0

1

9n
= 2

9

(
1

1 − 1/9

)
= 1

4
.

Note that this is one of the non-endpoints in C referred to earlier.
The astute reader will recognize that the address of a point x in C with 0’s

and 2’s gives the ternary expansion of x . A point x ∈ I has ternary expansion
a1a2a3 . . . if

x =
∞∑

i=1

ai

3i

where each ai is either 0, 1, or 2. Thus we see that points in the Cantor middle-
thirds set have ternary expansions that may be written with no 1’s among the
digits.

We should be a little careful here. The ternary expansion of 1/3 is 1000 . . . .
But 1/3 also has ternary expansion 0222 . . . as we saw above. So 1/3 may be
written in ternary form in a way that contains no 1’s. In fact, every endpoint in
C has a similar pair of ternary representations, one of which contains no 1’s.

We have shown that C contains uncountably many points, but we can say
even more:

Proposition. The Cantor middle-thirds set contains as many points as the
interval [0, 1].
Proof: C consists of all points whose ternary expansion a0a1a2 . . . contains
only 0’s or 2’s. Take this expansion and change each 2 to a 1 and then think
of this string as a binary expansion. We get every possible binary expansion in
this manner. We have therefore made a correspondence (at most two to one)
between the points in C and the points in [0, 1], since every such point has a
binary expansion. �
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Finally, we note that

Proposition. The Cantor middle-thirds set has length 0.

Proof: We compute the “length” of C by adding up the lengths of the intervals
removed at each stage to determine the length of the complement of C . These
removed intervals have successive lengths 1/3, 2/9, 4/27… and so the length of
I − C is

1

3
+ 2

9
+ 4

27
+ · · · = 1

3

∞∑
n=0

(
2

3

)n

= 1.
�

This fact may come as no surprise since C consists of a “scatter” of points.
But now consider the Cantor middle-fifths set, obtained by removing the open
middle-fifth of each closed interval in similar fashion to the construction of
C . The length of this set is nonzero, yet it is homeomorphic to C . These
Cantor sets have, as we said earlier, unexpectedly interesting properties! And
remember, the set � on which f4 is chaotic is just this kind of object.

15.8 Exploration: Cubic Chaos

In this exploration, you will investigate the behavior of the discrete dynamical
system given by the family of cubic functions fλ(x) = λx − x3. You should
attempt to prove rigorously everything outlined below.

1. Describe the dynamics of this family of functions for all λ < −1.
2. Describe the bifurcation that occurs at λ = −1. Hint: Note that fλ is an

odd function. In particular, what happens when the graph of fλ crosses
the line y = −x?

3. Describe the dynamics of fλ when −1 < λ < 1.
4. Describe the bifurcation that occurs at λ = 1.
5. Find a λ-value, λ∗, for which fλ∗ has a pair of invariant intervals [0, ±x∗]

on each of which the behavior of fλ mimics that of the logistic function
4x(1 − x).

6. Describe the change in dynamics that occurs when λ increases
through λ∗.

7. Describe the dynamics of fλ when λ is very large. Describe the set of
points �λ whose orbits do not escape to ±∞ in this case.

8. Use symbolic dynamics to set up a sequence space and a corresponding
shift map for λ large. Prove that fλ is chaotic on �λ.

9. Find the parameter value λ′ > λ∗ above, which the results of the previous
two investigations hold true.

10. Describe the bifurcation that occurs as λ increases through λ′.
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15.9 Exploration: The Orbit Diagram

Unlike the previous exploration, this exploration is primarily experimental.
It is designed to acquaint you with the rich dynamics of the logistic family as
the parameter increases from 0 to 4. Using a computer and whatever software
seems appropriate, construct the orbit diagram for the logistic family fλ(x) =
λx(1 − x) as follows: Choose N equally spaced λ-values λ1, λ2, . . . , λN in the
interval 0 ≤ λj ≤ 4. For example, let N = 800 and set λj = 0. 005j . For each
λj , compute the orbit of 0. 5 under fλj and plot this orbit as follows.

Let the horizontal axis be the λ-axis and let the vertical axis be the x-axis.
Over each λj , plot the points (λj , f k

λj
(0. 5)) for, say, 50 ≤ k ≤ 250. That is,

compute the first 250 points on the orbit of 0. 5 under fλj , but display only the
last 200 points on the vertical line over λ = λj . Effectively, you are displaying
the “fate” of the orbit of 0. 5 in this way.

You will need to magnify certain portions of this diagram; one such magni-
fication is displayed in Figure 15.13, where we have displayed only that portion
of the orbit diagram for λ in the interval 3 ≤ λ ≤ 4.

1. The region bounded by 0 ≤ λ < 3. 57 . . . is called the period 1 win-
dow. Describe what you see as λ increases in this window. What type of
bifurcations occur?

2. Near the bifurcations in the previous question, you sometimes see a smear
of points. What causes this?

3. Observe the period 3 window bounded approximately by 3. 828 . . . < λ <
3. 857 . . . . Investigate the bifurcation that gives rise to this window as λ

increases.

3

x

4
λ

3.57 3.83

Figure 15.13 The orbit diagram for the logistic family with
3 ≤ λ ≤ 4.
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4. There are many other period n windows (named for the least period of
the cycle in that window). Discuss any pattern you can find in how these
windows are arranged asλ increases. In particular, if you magnify portions
between the period 1 and period 3 windows, how are the larger windows
in each successive enlargement arranged?

5. You observe “darker” curves in this orbit diagram. What are these? Why
does this happen?

E X E R C I S E S

1. Find all periodic points for each of the following maps and classify them
as attracting, repelling, or neither.

(a) Q(x) = x − x2 (b) Q(x) = 2(x − x2)
(c) C(x) = x3 − 1

9x (d) C(x) = x3 − x
(e) S(x) = 1

2 sin(x) (f) S(x) = sin(x)
(g) E(x) = ex−1 (h) E(x) = ex

(i) A(x) = arctan x (j) A(x) = −π
4 arctan x

2. Discuss the bifurcations that occur in the following families of maps at
the indicated parameter value

(a) Sλ(x) = λ sin x , λ = 1

(b) Cμ(x) = x3 + μx , μ = −1 (Hint: Exploit the fact that Cμ is an
odd function.)

(c) Gν(x) = x + sin x + ν, ν = 1

(d) Eλ(x) = λex , λ = 1/e

(e) Eλ(x) = λex , λ = −e

(f) Aλ(x) = λ arctan x , λ = 1

(g) Aλ(x) = λ arctan x , λ = −1

3. Consider the linear maps fk(x) = kx . Show that there are four open sets
of parameters for which the behavior of orbits of fk is similar. Describe
what happens in the exceptional cases.

4. For the function fλ(x) = λx(1 − x) defined on R:

(a) Describe the bifurcations that occur at λ = −1 and λ = 3.

(b) Find all period 2 points.

(c) Describe the bifurcation that occurs at λ = −1. 75.

5. For the doubling map D on [0, 1):

(a) List all periodic points explicitly.
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(b) List all points whose orbits end up landing on 0 and are thereby
eventually fixed.

(c) Let x ∈ [0, 1) and suppose that x is given in binary form as a0a1a2 . . .
where each aj is either 0 or 1. First give a formula for the binary
representation of D(x). Then explain why this causes orbits of D
generated by a computer to end up eventually fixed at 0.

6. Show that, if x0 lies on a cycle of period n, then

(f n)′(x0) =
n−1∏
i=0

f ′(xi).

Conclude that

(f n)′(x0) = (f n)′(xj)

for j = 1, . . . , n − 1.
7. Prove that if fλ0 has a fixed point at x0 with |f ′

λ0
(x0)| > 1, then there is an

interval I about x0 and an interval J about λ0 such that, if λ ∈ J , then fλ
has a unique fixed source in I and no other orbits that lie entirely in I .

8. Verify that the family fc (x) = x2 + c undergoes a period doubling
bifurcation at c = −3/4 by

(a) Computing explicitly the period two orbit.
(b) Showing that this orbit is attracting for −5/4 < c < −3/4.

9. Show that the family fc (x) = x2 + c undergoes a second period doubling
bifurcation at c = −5/4 by using the graphs of f 2

c and f 4
c .

10. Find an example of a bifurcation in which more than three fixed points
are born.

11. Prove that f3(x) = 3x(1 − x) on I is conjugate to f (x) = x2 − 3/4 on a
certain interval in R. Determine this interval.

12. Suppose f , g : [0, 1] → [0, 1] and that there is a semiconjugacy from f to
g . Suppose that f is chaotic. Prove that g is also chaotic on [0, 1].

13. Prove that the function d(s, t ) on � satisfies the three properties required
for d to be a distance function or metric.

14. Identify the points in the Cantor middle-thirds set C whose
addresses are

(a) LLRLLRLLR . . .
(b) LRRLLRRLLRRL . . .

15. Consider the tent map

T (x) =
{

2x if 0 ≤ x < 1/2
−2x + 2 if 1/2 ≤ x ≤ 1.
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Prove that T is chaotic on [0, 1].
16. Consider a different “tent function” defined on all of R by

T (x) =
{

3x if x ≤ 1/2
−3x + 3 if 1/2 ≤ x .

Identify the set of points � whose orbits do not go to −∞. What can
you say about the dynamics of this set?

17. Use the results of the previous exercise to show that the set � in
Section 15.5 is homeomorphic to the Cantor middle-thirds set.

18. Prove the following saddle-node bifurcation theorem: Suppose that fλ
depends smoothly on the parameter λ and satisfies:

(a) fλ0(x0) = x0

(b) f ′
λ0

(x0) = 1

(c) f ′′
λ0

(x0) �= 0

(d)
∂fλ
∂λ

∣∣∣∣
λ=λ0

(x0) �= 0

Then there is an interval I about x0 and a smooth function μ : I → R

satisfying μ(x0) = λ0 and such that

fμ(x)(x) = x .

Moreover, μ′(x0) = 0 and μ′′(x0) �= 0. Hint: Apply the implicit function
theorem to G(x , λ) = fλ(x) − x at (x0, λ0).

19. Discuss why the saddle-node bifurcation is the “typical” bifurcation
involving only fixed points.

�y* y*

g(�y*)

g(y*)

Figure 15.14 The graph of the
one-dimensional function g on
[−y∗, y∗].
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20. Recall that comprehending the behavior of the Lorenz system in
Chapter 14 could be reduced to understanding the dynamics of a certain
one-dimensional function g on an interval [−y∗, y∗] whose graph is
shown in Figure 15.14. Recall also |g ′(y)| > 1 for all y �= 0 and that
g is undefined at 0. Suppose now that g 3(y∗) = 0 as displayed in this
graph. By symmetry, we also have g 3(−y∗) = 0. Let I0 = [−y∗, 0) and
I1 = (0, y∗] and define the usual itinerary map on [−y∗, y∗].
(a) Describe the set of possible itineraries under g .

(b) What are the possible periodic points for g ?

(c) Prove that g is chaotic on [−y∗, y∗].
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