
Chapter 10 

Modeling the Nerve Action Potential 

10.1 Electrical Behavior of Excitable Tissue 

Excitable tissues like nerves and muscles possess the property that when 
stimulated beyond some threshold an all-or-none action potential can be 
observed. This action potential is a local depolarization of the normally 
polarized cell membrane on the axon. The local depolarization causes the 
depolarization of adjacent regions of the cell; the continuation of this 
process results in propagation of the action potential over the axon. This 
propagating action potential is an important means of information 
transmission in animals; nerve cells communicate by means of such action 
potentials propagating along axons. Information between cells is usually 
conveyed across a synapse in which the action potential from one nerve 
causes the release of a transmitter chemical which in tum generates 
excitatory or inhibitory post-synaptic potentials. Sufficient excitatory post
synaptic potential amplitude will in tum evoke another action potential in the 
receiving cell. Sensory receptors like retinal cells, touch receptors, etc., 
transduce external physical signals into depolarizations in the receptor 
ultimately resulting in action potentials which carry the information to the 
brain. On the other hand activity of neurons in the motor cortex results in 
action potentials being conveyed to spinal neurons which impinge on muscle 
fibers and evoke muscle fiber action potentials. The muscle fiber action 
potential leads to a sequence of activity which ultimately produces muscle 
contraction, force production and locomotion. The process of generation of 
action potentials in all these various types of cell is essentially the same. 

The generation of the action potential is important from the point of pure 
scientific curiosity as well as from the medical point of view where 
pathological defects of action potential propagation are to be understood and 
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treated. In this chapter we will look at some experiments on the electrical 
behavior of excitable tissue and also some models of nerve excitation 
derived from the experimental observations. 

10.1.1 Excitation of Nerves: The Action Potential 

nerve 
fiber 

stimulation 
electrodes 

synchronization signal 

recording 
electrodes 

Figure 10-1. Recording a nerve action potential. The stimulus s(t) initiates an action 
potential which is observed as a(t). 

A nerve action potential can be recorded from a section of nerve axon 
using the arrangement shown schematically in Figure 10-1. An action 
potential may be initiated quite simply by stimulating a portion of the axon 
with a rectangular pulse of current injected across the membrane. The 
propagating action potential may be recorded at another point along the 
axon. The recording may be done either by (a) placing electrodes across the 
membrane and observing the voltage signal, or (b) placing the electrodes 
externally and recording the potential difference between two closely placed 
electrodes. The first recording method is rather difficult as it will require 
placing an electrode inside the nerve axon, and hence the second one is 
usually used. A schematic of the arrangement with external electrodes is 
shown in Figure 10-1. The electrical stimulator generates a rectangular pulse 
of voltage (or current) that is applied to the nerve axon. If the strength of the 
stimulus exceeds the required threshold, then an action potential is 
generated. The action potential propagates in either side of the point of 
initiation. The region of depolarization which forms the action potential 
travels at a velocity of several meters per second away from the point of 
initiation. When the region of depolarization is sufficiently close to the 
position of the recording electrodes, an appreciable voltage is induced which 
can be observed on the recorder/display system. The entire sequence of 
events takes a few milliseconds. A synchronization signal from the 
stimulator to the recorder ensures that the recording system captures the 
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events correctly. If recording commences from the instant of stimulation, the 
time latency of the observed action potential will be the time taken for the 
propagating action potential to traverse the distance between the stimulation 
and recording electrodes. 

10.1.2 Extracellular and Intracellular Compartments 

In order to understand the generation of the nerve action potential we 
must first understand the ionic environment of the nerve that produces the 
polarization of the resting state and also the depolarization of activation. 

The nerve cell is surrounded by extracellular fluid lying outside the 
membrane. The three ions that are important from the point of this 
discussion of excitable tissues, viz., sodium, potassium and chloride are 
present in different concentrations inside and outside the cell. The 
concentration difference of sodium and potassium is maintained by an active 
(i.e., energy utilizing) molecular pump in the membrane. The ion 
concentration difference results in a potential difference across the 
membrane. This potential which is present even in the unexcited or 
unstimulated nerve is called the resting membrane potential. Since, the 
extracellular space is very large compared to the intracellular space 
movement of ions to and from any cell does not affect the extracellular 
concentrations significantly. It is therefore, common to assume the 
extracellular space to be a constant reference. The resting membrane 
potential in nerve and muscle cells is negative with respect to the 
extracellular space. When ionic movement occurs in any nerve cell the ionic 
currents result in a local potential change across the membrane with the 
inside of the cell going positive with respect to the extracellular space. 

10.1.3 Membrane Potentials 

The action potential is caused by the movement of ions across the nerve 
membrane. It is therefore of primary importance to understand the ionic 
concentrations inside as well as outside the cell. Three main ions are 
involved in the electrical activity of nerve cells, viz., Na+, K+ and cr. In a 
nerve cell at rest (no action potential) the concentrations of these ions are 
unequal inside and outside. Typical values are shown in Table 10-1. 

Table 10-1. Ion concentrations for an illustrative cell 
Ion Inside Outside 
K+ 397 rnMfl 20rnMfl 

Na+ 49rnMfl 440rnMfl 
cr 48rnMfl 480rnMfl 
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Nemst potential: For each of the ions mentioned above the concentration 
difference results in an effective electric field across the membrane. The 
Nernst potential is the potential at which the particular ion is at equilibrium 
with its diffusional force. The Nemst potential is calculated for cations c+ or 
anions A" as follows: 

R is the gas constant, R=8.314 JouleslK mole at 27°C, 
T is the absolute temperature in Kelvin 

(10.1 ) 

F is the Faraday constant, F=96487 absolute Coulombs/gram equivalent 
Z is the magnitude of the valence of the ion, 
(Z=l for all the three ions, Na\ K+ and Cr) 

[]e, []i are the extracellular and intracellular concentrations of the ion. 
This voltage is positive if the inside of the cell is more positive than the 

outside, or Vm=Vj-Ve, where the subscripts refer to extracellular and 
intracellular. Using this equation we can calculate the Nemst potentials for 
the above mentioned concentrations of the ions, K+, Na+ and cr as: 

EK = 77 mY, ENa = -57 mY, Eel = -59.5 mY 

Ionic permeabilities and conductances: The permeability of the 
membrane to a certain ion is defined as: P=D·~/d, where ~ is the partition 
coefficient or the ratio of the ion concentrations just inside the membrane to 
just outside it (at the boundary), d is the thickness of the membrane and D is 
the diffusion constant or Fick's constant. 

The relative permeability of the resting membrane to the three ions is 
approximately: PK : PNa : PC! = 1.00: 0.035 : 104. 

With a transmembrane potential of Vm, the ionic current density (current 
per unit area of membrane), J, for a monovalent (positive) ion may be 
calculated as 

(10.2) 

The conductance of the membrane is then g=J/Vm in mhos/unit area. 

Goldman equation: With all the three ions being present simultaneously, 
the total effective potential across the membrane may be calculated for the 
steady state condition using the Goldman equation, 
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(10.3) 

where PK, PNa and PC! are relative permeabilities of the three ions. Note that 
since chloride is a negative ion the intracellular concentration is in the 
numerator and the extracellular concentration in the denominator. For the 
nerve cell at rest we may use, PK : PNa : PCI = 1.00 : 0.035 : 104 
With these values the Resting Membrane Potential is Vrn = -60mV 

10.1.4 Electrical Equivalent of the Nerve Membrane 

Treating the Nemst potentials as voltage sources and the permeabilities 
as conductances an electrical equivalent of the nerve membrane can be 
drawn, Figure 10-2. The effective membrane potential can be determined 
from this electrical circuit in terms of the individual ionic Nemst potentials 
and the ionic permeabilities. The ionic current in each branch (i.e., the 
current due to each of the ions) can be calculated from this circuit. 

(Vrn-ENa)gNa 

(V rn- EdgK (lOA) 

Here, the g's represent conductances of the membrane for each ion. At 
equilibrium there is no net flow of current across the membrane and thus 
applying Kirchhoff s current law at either of the two nodes, 

Rearranging Eq.(l 0.5) we obtain 

ENa gNa + EK gK + Eel gel 

gNa + gK + gel 

(10.5) 

(l0.6) 

For a "typical" axon at rest the conductances are approximately: 
gK=0.3mmho/cm2, gNa=0.04mmho/cm2, gCI=0.5mmho/cm2. Using the above 
formula we can calculate the resting membrane potential of such a 
membrane as Vrn = -60 mY. 
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Intracellular space 

extracellular space 

Figure 10-2. Electrical equivalent of ionic potentials and conductances in a nerve cell 
membrane. 

Membrane conductance and excitability: The generation of the action 
potential involves movement of ions across the nerve cell membrane and a 
change from the resting membrane condition. This movement of ions results 
from change in the ionic conductances of the membrane. These 
conductances are found to be functions of the membrane voltage which is 
why an action potential can be initiated by an electrical pulse. The electrical 
stimulus causes a change in the ionic conductances initiating a chain of 
events observed as the action potential. 

The cell membrane capacitance: We must also note that since the cell 
membrane itself is a lipid bilayer and an insulator, its passive electrical 
property may be represented by a capacitor. If there is a potential change 
across the membrane then a capacitive current flows. Conversely, the voltage 
across the capacitor may be calculated from the current flowing through it. 

cdVm = I 
dt C 

(10.7) 

When the membrane is at rest, Ic=O and dV n/dt=O. 

Maintenance of ion concentration - Sodium-Potassium pump: We can 
see that the resting membrane potential is close to the chloride potential 
therefore the chloride ion is almost at equilibrium. Potassium and sodium on 
the other hand are not in equilibrium since the Nemst potential of these ions 
is different from the resting membrane potential. For sodium there is a 
driving potential is Vm-ENa=-117 mY, and for potassium the driving potential 
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is Vm-EK=+14 mY. The ion current that will result from this is offset by an 
active molecular pump that pumps sodium outside and potassium inside the 
cell. This molecular pump being an active mechanism consumes energy 
during its operation. This is called the sodium-potassium pump. The 
electrical equivalent circuit is expanded by including the Na-K pump and 
drawn in Figure 10-3. 

intracellular space 

I c 
~ r 

Vm Na K 

1 
pum 

Ie p 

extracellular space 

Figure 10-3. Electrical equivalent of a nerve membrane. 

The action of the sodium-potassium pump is such as to maintain the ionic 
gradients by compensating for the passive diffusion of each ion across the 
membrane. The Na-K pump current is thus equal in magnitude but opposite 
in direction to the passive flow of each ion across the membrane, resulting in 
a net zero current. (The ratio of sodium to potassium transported by the Na
K pump is found to be 3 :2). Therefore, the Na-K pump as well as the passive 
movement of ions across the membrane is ignored in further discussion. 

Movement of chloride ion: We can see that the chloride ion is almost at 
equilibrium at rest, since ECl :::0 Vrest • The concentration of chloride ion inside 
the cell is also very small; which means that even large percentage changes 
of chloride ion (to achieve large changes in ECI) require only very small 
quantities of actual flow of the ions; i.e., ICI is always quite small. In sum, the 
contribution of the chloride ions to the resting membrane potential as well as 
to the membrane current is negligible. 

Conceptual model of the action potential: Assuming that the influence of 
the chloride ions on the action potential generation is negligible, a block 
schematic of the membrane behavior may be drawn highlighting the role of 
the sodium and potassium ions and the membrane capacitance. If an external 
current is injected across the membrane then the net ionic current will equal 
the injected current. The total current in the membrane including any 
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externally injected current can be determined by extending Eqs.(lO.S) and 
(l0.7) suitably as follows: 

lK + INa +lc =ls 

Ie =ls -UK + INa) 

Is 

Injected + 
current 

membrane 
vonage 

(l0.8) 

(10.9) 

Figure 10-4. Block schematic of the main components contributing to current flow 
across a nerve membrane. 

This conceptual model of the electrical behavior of the nerve membrane 
is shown schematically in Figure 10-4. An important aspect of the diagram 
in Figure 10-4 is the separation of the sodium and potassium conductances. 
This is a key assumption made by Hodgkin and Huxley in their investigation 
of the nerve action potential, that the sodium and potassium conductances 
are independent of each other. 

10.2 The Voltage Clamp Experiment 

Since the action potential is generated because of the voltage sensitive 
nature of the cell membrane's ionic conductances, it is of interest to study 
the characteristics of these ionic conductances. This can be done by varying 
the cell membrane voltage and then observing the resulting change in the 
ionic currents. If a step signal is input and the ionic current is observed, then 
the membrane conductance can be calculated. However, any net current 
flowing through the capacitor will tend to change the membrane voltage. 
This problem is solved by the Voltage-Clamp experiments devised by 
Hodgkin and Huxley. 
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10.2.1 Opening the Feedback Loop of the Membrane 

The voltage clamp apparatus maintains a constant membrane voltage at 
any desired level by injecting a transmembrane current that will compensate 
for any change in membrane voltage from the desired value. This is achieved 
by closed loop control as indicated schematically in Figure 10-5. This 
voltage clamp apparatus was used by Hodgkin and Huxley to apply a 
precisely controlled step change of voltage across a nerve membrane. 

Comparing the voltage clamp schematic of Figure 10-5 with the earlier 
block diagram in Figure 10-4 showing the membrane conductances and 
capacitance, we see that the main goal of the voltage clamp apparatus is to 
open the loop between the membrane current and the membrane voltage; i.e., 
dissociate the membrane voltage from the membrane current. This is 
achieved by injecting a current Is=/K+INa so that Ic=O and consequently 
d~n/dt=O, and the membrane voltage is held constant at the desired clamp 
voltage Vc. The experimental arrangement used by Hodgkin and Huxley for 
the nerve membrane voltage clamp (on the giant axon of the squid, Aplysia) 
is shown schematically in Figure 10-6. As seen in Figure 10-6 a current 
injecting electrode and a voltage sensing electrode are inserted into the nerve 
axon. The giant axon of the squid is almost 1 mm in internal diameter 
permitting the insertion of these electrodes. Another electrode in the 
extracellular medium acts as the reference. Using this closed loop control 
arrangement any desired input signal can be applied as the membrane 
voltage. Recording the membrane current will give the ionic current flow 
resulting from this input signal. The current recording is not shown explicitly 
in Figure 10-6 in order to keep the schematic simple. The current may be 
recorded by a number of different ways, viz., it may be obtained from the 
voltage-to-current converter, or it may be deduced from the voltage drop 
across a known resistance placed in the current path. The latter method was 
used in the Hodgkin-Huxley experiment. 

Vc + voltage to 
current 
converter 

cell 
membrane 

Figure 10-5. Block schematic of the experiment for voltage clamping a membrane. 
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Figure 10-6. Schematic of the voltage clamp experiment. 
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Immediately after the application of the step change in membrane 
potential there will be a large capacitive current as the membrane capacitor 
assumes the new voltage Vc; since Ve=Vrn+dVrnldt=Vrn+IJC. This large 
current is seen as a large spike in the current recording. This initial spike is 
ignored in further analysis since it is not related to the sodium and potassium 
currents. After this large spike, the voltage clamp apparatus acts to inject a 
current Is=INa+IK so that Ic?4). Note that since the voltage-to-current converter 
generates a non-zero current Is during the course of the voltage clamp, the 
input to this voltage-to-current converter, Ve-Vrn, is not exactly equal to zero 
but has a very small value. This variation in Ve is negligibly small. In order 
for the initial current spike to be very brief in duration and also for the 
variation in clamp value to be small the voltage-to-current converter must be 
a good one - i.e., it must have a fast response time and adequately large gain. 

10.2.2 Results of the Hodgkin-Huxley Experiments 

The following discussion uses the same membrane as mentioned above 
with ENa = -57 mY, and Vrest = -60 mY. Application ofa step voltage, Ve, of 
step amplitude, say, 56 mV (Ve-Vrest=56 mY), and recording the current gives 
the total current due to potassium and sodium ions. In other words, this 
produces the step response, to a 56mV step, of the sodium+potassium 
conductances (Figure 10-7a). In order to observe only one of the two 
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conductances, Hodgkin and Huxley replaced 90% of the extracellular 
sodium with choline. This makes ENa ~ -1 m V and a step of 56 m V makes Vrn 
- ENa ~ 0 and therefore, sodium being essentially at equilibrium there is 
negligible sodium current. The observed current response to the voltage 
clamp step is then solely due to potassium (Figure 1 0-7b). The sodium 
current response to the 56 mV step voltage input can be deduced by simply 
subtracting the potassium current from the total current (Figure 1 0-7c). 

(a) 

o 
time (ms) 10 

(b) 

o 
time (ms) 10 

(c) 

time (ms) 

0~------------~~====~10 

Figure 10-7. Voltage clamped membrane currents. (a) potassium and sodium current, 
(b) potassium current, (c) sodium current calculated as the difference of the first two. 
(Adapted from A.L.Hodgkin and A.F.Huxley, A quantitative description of 
membrane current and its application to conduction and excitation in nerve, 
J.Physiol. 117: 500-544, 1972.) 

The ionic conductance can be calculated from these graphs simply as 

(10.10) 
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10.3 Interpreting the Voltage-Clamp Experimental Data 

10.3.1 Step Responses of the Ionic Conductances 

First we should determine functions that will describe the step responses 
of the potassium conductance and the sodium conductance. From experience 
with simple first and second order systems we can see that these step 
responses can be approximated by combinations of exponentials. 

Potassium conductance: The potassium conductance step response is 
approximately of the familiar form, 

(10.11) 

This is a first order step response. The main difference between this 
function and the actual data is the gradual and delayed rise at the onset. The 
delay can be incorporated using a simple time shift but this will not account 
for the gradual rise of the actual data. Moreover, as explained later the 
coefficients CK and 1:K are not constant which makes such a linear function 
approach untenable. 

Sodium conductance: The sodium step response has a rising and falling 
portion each of which may be described by an exponential Thus the sodium 
conductance step response may be expressed as the product of two 
exponentials, one a rising exponential and the other a falling exponential, 

(10.12) 

Again the main difference between these functions and the actual data is 
the slow onset of the actual data in contrast to the abrupt rise of the proposed 
function. The delay can be incorporated with a time shift, but this does not 
adequately model the behavior of the sodium conductance, since the 
coefficients are voltage dependent. Again, apart from the inadequate 
accounting of the slow onset, the coefficients c), C2, 1:) and 1:2 are not 
constants, making the linear function approach useless. 

Extending the above model: The above proposed simple functions can be 
extended to have a slow onset. In addition, further experiments by Hodgkin 
and Huxley indicated that the magnitude coefficients C and the time 
constants 1: are voltage dependent. Thus, the resulting expanded model 
developed by Hodgkin and Huxley is a nonlinear model. 
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10.3.2 Hodgkin and Huxley's Nonlinear Model 

Hodgkin and Huxley used the results of the voltage clamp experiments 
obtained from the large axon of the squid to develop a model of nerve 
excitation. The model proposed by Hodgkin and Huxley (H-H model) is 
explained below. 

Potassium conductance: In the Hodgkin-Huxley model the potassium 
conductance step response is represented by a function of the form selected 
above, raised to the fourth power, 

(10.13) 

Raising to the fourth power ensures that the rise of the function is gradual 
as seen in the experimental data. Figure 10-8 shows the potassium 
conductance for a 56 m V step fit to a first order function and also its fourth 
power. Note how n(t) rises abruptly from 1=0 whereas using n4(t) introduces 
a slower rise, with an inflection and more accurately represents the actual 
potassium conductance step response. A physical explanation for the first 
order expression raised to the fourth power can be assumed by considering 
four first order responses that act in combination. Each first order term 
represents the solution to a first order process. The potassium conductance 
can be explained in physical terms of potassium gates whose opening 
permits the passage of potassium ions and therefore changes the ionic 
conductance. If, as Hodgkin and Huxley did, we assume that each potassium 
channel contains four sub-gates each of which has a first order response then 
the opening and closing of each sub-gate may be represented as 

a 
Closed 4----.... Open 

Let n(t) be the fraction of the total number of sub-gates that are open; or, 
we may say that n(t) is the probability of a particular sub-gate being open. 
The rate of gate opening can be written as 

dn(t) 
-- = [l-n(t)]a - n(t)13 

dt n n 

dn(t) + [a + A ]n(t) 
dt n I-'n 

= an (10.14) 
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The steady state solution (step response) for this differential equation is 
of the form, 

(10.15) 

time (ms) 10 

Figure 10-8. Potassium conductance following a step change ofvoItage. 

In order for a particular potassium channel to be open, all four sub-gates 
must be open. Therefore, the total probability of a particular gate being open 
is the product of the probabilities of all its four component sub-gates being 
open, i.e., n4(t). (It is also assumed that all four sub-gates have identical 
properties). Thus the potassium conductance in the H-H model is represented 
by the following equation (with GK being a constant scale factor): 

(10.16) 

Sodium conductance: We saw that the sodium conductance during the 
voltage clamp can be expressed as the product of a rising exponential and a 
falling exponential. Hodgkin and Huxley used a similar form with the 
extension that the rising exponential was raised to the third power in order to 
account for the slow rise, i.e., 

SNa (t) = c) [1- e-t1tl ]3 . [c2 + e-t1t2 ]. u(t) 

=m\t)·h(t) 

where m(t) and h(t) represent the two first order responses. 

(10.17) 
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The sodium conductance functions m(t) and h(t) for a voltage clamp 
experiment using VI = Vrest =-60 mV and V2 = Vrest+56 mV are shown in 
Figure 10-9. The product m3(t)h(t) is shown in Figure 10-10 (vertical scales 
are different from Figure 10-9) and its shape is clearly a good description of 
the sodium conductance. Again the biophysical explanation for these four 
terms can be obtained by assuming four sub-gates in each sodium channel, 
three of which open in the step response (rising exponential produced by 
sub-gates m) and the fourth closes in the step response (falling exponential 
produced by sub-gate h). 

Figure 10-9. Components of sodium conductance following a step change in 
membrane voltage. 

The step responses of both sub-gate h and sub-gate m can be construed 
as solutions of first order behavior described by the rate equations, 

dm(t) 
--+ [am + J3m]' m(t) = am 

dt 
(10.18) 

The steady state solutions (step responses) of these first order differential 
equations are of the form, 

(10.19) 
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The probability of a sodium ion channel with its four sub-gates being 
open is then the cumulative probability of each sub-gate being open. The 
sodium conductance is thus expressed by the H-H model as 

(10.20) 

where GNa is a constant scale factor and m(t) and h(t) represent the 
probability of each sub-gate being open. 

lime (ms) 10 

Figure 10-10. Function describing the sodium conductance following a step change 
in membrane voltage. 

Calculation of the function parameters: The voltage clamp involves 
change of the membrane voltage from VI to V2 at 1=0. 

1;5;0 

t~O 
(10.21) 

Each of the terms, n(t), m(t) and h(t) has two coefficients to be 
determined. From the experimental data an amplitude constant and a time 
constant can be determined. These constants are uniquely related to the 
biochemical reaction rates a and ~. 

a 
C=--, 

a+p 
1 

't=--
a +P 

(10.22) 
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From the experimental data the functions n(t), m(t) and h(t), which are 
the first order step responses, are estimated and the c's calculated as: 
n(OO)=Cn(V2), m(OO)=Cm(V2), h(OO)=Ch(V2)' The 1:'S at V2 are obtained from the 
rise and fall rates of the curves. 

10.3.3 The Voltage Dependent Membrane Constants 

Proceeding as outlined above Hodgkin and Huxley obtained values for 
the membrane constants Cn, Cm, Ch, 1:n, 1:m, 1:h for different values of Vm. These 
are drawn as functions of the membrane voltage in Figure 10-11 and Figure 
10-12. 

The coefficients a and 13 are related to C and 1: as follows: 

(10.23) 

From the curves obtained for a and 13, Hodgkin and Huxley used 
analytical functions to describe them. 

a (V )= -0.01(58+Vm) , A n(Vm)=0.125e-(Vm+6S )/SO 
n m e -(5S+Vm)/lO _ 1 I-' 

(10.24) 

a (V)= -0.1(43+Vm) , A m(Vm)=4e-(Vm+6S)/lS 
m m e-(43+Vm)/IO_1 I-' 

(10.25) 

(10.26) 

These functions are, of course, specific to the membrane studied by 
Hodgkin and Huxley; they will be different for membranes from different 
types of cells although the general form may be expected to be similar. 
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Figure 10-11. The amplitude constants plotted against the membrane voltage. 
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Figure 10-12. The time constants plotted against membrane voltage. 

10.3.4 Simulation of the Hodgkin-Huxley Model 

Using the first order differential equation describing the ion channel 
dynamics, the values of the functions net), met) and h(t) can be recursively 
calculated for any given set of initial conditions. The differential equation 
can be solved for consecutive values of time as follows (with time 
increments of /1t). Rearranging Eq.(10.l4) using !J.n=dn and !J.t=dt we have 
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t..n(l) = M· {[1- n(l)] ·an (Vm (I)) -n(t)·I\ (V m (I))) 

n(l + .M) = n(l) + t..n(t) 

227 

(10.27) 

where we have also made explicit that the membrane voltage Vrn is also a 
function of time. Similarly, for the sodium conductance functions m and h, 

t..m(t) = M· {[l- m(t)]· am (V m (I)) - m(t)'l3m (V m (I))) 

m(t + M) = m(t) + t..m(t) 

t..h(t) = M· {[l- h(t)] ·ah (Vm (t)) - h(t)'l3h (V m (t))) 

h(t + M) = h(t) + t..h(t) 

(10.28) 

(10.29) 

For these equations the values of a and 13 are calculated for the current 
membrane voltage Vrn using the empirical functions determined by Hodgkin 
and Huxley. Once the gate probabilities are known the conductances may be 
calculated. Using the conductances the ionic currents may be calculated 
using the electrical network model. The total current through the capacitor 
will be the sum of the ionic currents and the stimulus current injected from 
an external source. Finally, the new membrane voltage is calculated as the 
solution to the differential equation describing the capacitor. That is, 

dVrn (I) =! f Ie (t)dt 
dt C 

Discretizing Eq.(l 0.30) we get 

(10.30) 

(10.31) 

The voltage at the next point in time can be calculated using this t..Vrn . 

(10.32) 

This sequence of calculations IS repeated for the duration of the 
simulation. 


