
Chapter 3
Urine Concentration

Abstract During water deprivation, the kidney of a mammal can conserve water
by producing a urine that is more concentrated than blood plasma. That hypertonic
urine is produced when water is reabsorbed, in excess of solutes, from the collecting
ducts and into the renal vasculature, thereby concentrating the collecting duct fluid,
which eventually emerges as urine. In this chapter, we introduce mathematical
models that simulate the urine concentrating process. To learn how to build those
models, we first derive equations that represent tubular flow, transmural water flux,
and transmural solute fluxes along a renal tubule. We then develop models that
simulate countercurrent multiplication in a loop, and we study factors that affect
the efficiency of the concentrating mechanism.

3.1 Biological Background: How Does an Animal Produce
a Concentrated Urine?

When a mammal is deprived of water, its kidney can conserve water by increasing
solute concentration (or, osmolality) in urine to a level well above that of blood,
so that solutes are excreted in excess of water. This process of urine concentration
occurs in the renal medulla, and has the effect of stabilizing blood plasma osmo-
lality. Some animals can concentrate urine better than others. Maximum reported
urine osmolalities in several animals are shown in Table 3.1. For comparison, blood
plasma osmolality is �300 mOsm/kg H2O. The values in Table 3.1 indicate that the
human kidney can produce a urine that is �4.8 times more concentrated than that
of plasma. Note that is the maximum value ever measured, so it is fair to say that
most of us don’t do that well. That human maximum urine osmolality value is also
the reason that one should refrain from drinking sea water to quench thirst, given
that sea water osmolality ranges from 2,000 to 2,400 mOsm/kg H2O. The kidney of
an Australian hopping mouse, which lives in the desert, can produce an amazingly
concentrated urine that has an osmolality >30 times above that of blood plasma.
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44 3 Urine Concentration

Table 3.1 Maximum
measured urine osmolalities
in selected animals. For
comparison, blood plasma
osmolality is about
300 mOsm/kg H2O

Urine osmolality
Animal mOsm/kg H2O

Domestic pig 1,075
Human 1,430
Rat 2,849
Mouse 2,950
Chinchilla 7,599
Australian hopping mouse 9,374

A urine that has an osmolality higher than blood plasma is said to be hyper-
tonic. A hypertonic urine is concentrated in the final stages of urine production:
water is absorbed, in excess of solutes, from the collecting ducts and into the
vasculature of the medulla, thus increasing the osmolality of the collecting duct
fluid—fluid that is called urine after it emerges from the collecting ducts. In
the outer medulla, water absorption from the collecting ducts is driven by the
active transepithelial transport of NaCl from the water-impermeable thick ascending
limbs into the surrounding interstitium, where the NaCl promotes, via osmosis,
water absorption from collecting ducts, descending limbs, and some blood ves-
sels. The countercurrent configuration of renal tubules and blood vessels in the
outer medulla augments this concentrating effect, as a function of depth, along
the cortico-medullary axis, so that an osmolality gradient is generated along all
the structures of the outer medulla, from the cortico-medullary boundary to the
outer-inner medullary boundary. Although this concentrating mechanism is well-
established in the outer medulla—by both physiological experiments and theoretical
investigation—the nature of the concentrating mechanism in the inner medulla
remains to be elucidated.

3.2 Modeling Flow Along a Renal Tubule

In this section, we will derive equations that model tubular flow and transmural
fluxes along a renal tubule. The system is assumed to be at steady state.

3.2.1 Mass Conservation Equations

We will derive the differential equations that describe the conservation of water and
solutes along a renal tubule. We will first consider water transport along the tubule,
which extends from x D 0 to x D L, as shown in Fig. 3.1. For simplicity, we assume
that the tubule is rigid. Of course, technically speaking, tubular walls are comprised
of cells that are, to some extent, flexible. However, the structures surrounding the
tubules in vivo likely reduce that degree of compliance, which makes the rigid-wall
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Fig. 3.1 Schematic drawing
for model renal tubule,
illustrating water flow (FV ),
water flux (JV ), and solute
flux (JS )

assumption reasonable. It is also reasonable to describe the flow in the tubules as
plug flow (i.e., flow with no radial component and constant velocity across any
cross-section).

To derive a differential equation that describes water conservation along the
tubule, consider the tubular segment in Fig. 3.1. The change in water flow rate must
equal the sum of the water flux out of (or into) the tubule through its walls between
x D 0 and x D L. This reasoning can be written as

FV .L/ D FV .0/C 2�r
Z L

0

JV .x/ dx; (3.1)

where r denotes tubular radius, assumed constant. FV .x/ denotes the volume flow
rate along the tubule, the units of which are typically nl/min for renal tubules. JV .x/
denotes water flux through the tubular walls, taken positive into the tubule. JV is
computed at a point along the circumference of the tubule, hence the multiplication
by the factor 2�r . Rewriting Eq. (3.1) in differential form, we get

@

@x
FV .x/ D 2�rJV .x/: (3.2)

Next we consider solute conservation along the tubule. Such a solute can be
NaCl or urea or protein. The rate of flow of a given solute at position x is given
by the product of its concentration C.x/ and the rate of flow of water FV .x/, i.e.,
FV .x/C.x/. Let the amount of solute transported inward through the tubule walls
at x per unit area per unit time be denoted by JS.x/. Then, through a procedure
similar to the one we used to derive the water conservation equation (3.2), we can
describe the solute conservation along the renal tubule by

@

@x
.FV .x/C.x// D 2�rJS.x/: (3.3)

The conservation equations (3.2) and (3.3) are general and apply to all types
of renal tubules. Of course, tubules in the kidney differ widely in their transport
properties, and those differences are reflected in the flux terms JV and JS .
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3.2.2 Water Fluxes

Water can be driven through a cell membrane by hydrostatic pressure, oncotic
pressure, and osmotic pressure. Oncotic pressure, discussed in Chap. 4, is exerted
by proteins in blood plasma. Because in a healthy kidney, virtually no proteins are
filtered by the glomerulus, oncotic pressure can be assumed to be zero along the
loops of Henle and collecting ducts.

Osmotic pressure is the pressure that must be applied to a solution to stop
the inflow of water across a water-permeable membrane. Water tends to move
through a water-permeable membrane when the solutions on the two sides of the
membrane have different osmolalities. Osmolality is given by a weighted sum of
the concentrations of all the solutes in the solution:

osmolality D
X

k

�kCk; (3.4)

where Ck is the concentration of the kth solute, and �k is the osmotic coefficient of
that solute.

Consider a membrane that is permeable to water but impermeable to a given
solute. Suppose the difference in the concentration of that solute between the two
sides of the membrane is�C . Then, for a small solute, the osmotic pressure exerted
by that solute can be approximated by

osmotic pressure D RT��C; (3.5)

where R is the universal gas constant (62:36 	 10�3mmHg�K�1�mM�1), and T is
the absolute temperature. Even a small concentration gradient can exert a substantial
osmotic pressure. Let �C D 1mM, � D 1, and T D 310:15K (human body
temperature,�37 C). The osmotic pressure is about 19.3 mmHg.

Hydrostatic pressure is frequently assumed negligible, because the transmem-
brane hydrostatic pressure difference, which is likely on the order of 1 mmHg, is
much smaller than the osmotic pressure exerted by a concentration gradient of 1 mM
(which is �19.3 mmHg).

To derive the equation that describes water flux across a renal tubule, we make
another simplifying assumption, which is that water transport across tubular walls
can be represented as single-barrier transport. We make the same assumption in
our description of solute fluxes below as well. Renal tubular and vascular walls
are made up of a single layer of cells (epithelial cells for loops of Henle and
collecting ducts, and endothelial cells for vasa recta). A fluid or solute particle can
be transported through the cells, or paracellularly through the junctions between
cells. To move from the tubular lumen through the cells into the surrounding
interstitium, the particle must first move through the apical cell membrane into
the cytoplasm of the cell, diffuse through the cytoplasm, and then move through
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a second cell membrane, the basolateral membrane. The transport properties of the
two cell membranes (apical and basolateral) are often different. However, because
the transport properties of individual membranes are frequently not well known,
and because transcellular transport can be complicated, we assume that the transport
between luminal and interstitial compartments can be represented as a single-barrier
flux.

Given the above discussion, water flux into a renal tubule in Fig. 3.1 can be
described by

JV .x/ D Lp.x/RT� .C.x/ � Ce.x// ; (3.6)

where Lp.x/ is the water permeability of the tubule, and Ce.x/ denotes the
interstitial (i.e., external) solute concentration at position x. As discussed above,
oncotic and hydrostatic pressures are assumed negligible. For this simple model,
only one solute is represented. If multiple solutes are represented, the osmotic
pressure is given by a summation as in Eq. (3.4).

3.2.3 Solute Fluxes

Transepithelial solute fluxes may be driven by electrochemical potential gradients,
by pumps (i.e., active transport), or via coupled transport systems. In Chap. 8 we
discuss how to model these fluxes in details. Here we take a simpler approach and
make the same single-barrier transport assumption that we have made for water
fluxes. A typical simple model considers two pathways by which a solute may be
transported across renal tubular walls, passive and active:

JS.x/ D �Vmax.x/C.x/

KM C C.x/ C PS.x/ .C
e.x/ � C.x// : (3.7)

For simplicity, the solute is assumed to be uncharged (e.g., urea or NaCl). The first
term on the right represents active solute transport, characterized by Michaelis-
Menten kinetics, which is one of the simplest and best-known models of enzyme
kinetics in biochemistry, named after German biochemist Leonor Michaelis and
Canadian physicist Maud Menten. Here, Vmax represents the maximum transport
rate achieved by the system at solute concentration C , and the Michaelis constant
KM is the solute concentration at which the reaction rate is half of Vmax. Thus, the
transport rate increases as C increases from 0, but it levels off and approaches Vmax

as C approaches infinity. The negative sign implies that the active transport flux is
outward-directed. The second term in the equation represents transmural diffusion,
with solute permeability PS .
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3.3 Countercurrent Multiplication in a Loop

We will develop a model of the loop of Henle that illustrates the principle of
countercurrent multiplication. The paradigm of countercurrent multiplication was
proposed by Werner Kuhn, a brilliant Swiss physical chemist who had studied
with giants such as Niels Bohr and Ernest Rutherford. With his colleague Kaspar
Ryffel, Kuhn published a 34-page treatise describing and actually testing several
arrangements by which an osmolality gradient could be generated along parallel
but opposing flows in adjacent tubes that were made contiguous by a hair-pin
turn. By the principle of countercurrent multiplication, a transfer of solute from
one tubule to another (a “single” effect) augments (“multiplies,” or reinforces) the
axial osmolality gradient in the parallel flow (“Vervielfältigung des Einzeleffektes”).
Thus, a small transverse osmolality difference (a small single effect) is multiplied
into a much larger osmolality difference along the axis of tubular flow.

To exemplify the principle of countercurrent multiplication, we will construct a
model that represents a loop, with a descending limb and an ascending limb. The
two limbs are assumed to be in direct contact with each other. A schematic diagram
of the model configuration is shown in Fig. 3.2a. The model represents only one
solute, say, NaCl. In addition, we make the following simplifying assumptions:

1. We assume that the descending limb is water impermeable but infinitely perme-
able to solute. This is of course a simplification, because a large portion of the
descending limb is known to be highly water permeable. Nonetheless, we make
this assumption to make things easy. The conservation equations become

@

@x
FDL;V .x/ D 0; (3.8)

@

@x
.FDL;V .x/CDL.x// D 2�rDLJDL;S .x/; (3.9)

where the subscript ‘DL’ denotes the descending limb.
2. We assume that the ascending limb is water impermeable. And we assume that

the solute is pumped out of the ascending limb at a fixed rate of A. A fixed
pump rate is assumed instead of the (nonlinear) Michaelis-Menten kinetics in
Eq. (3.7) so that we can derive an analytical solution. Additionally, we assume
that all of that solute goes into the descending limb. Thus, 2�rDLJDL;S D A and
2�rALJAL;S D �A, where the subscript ’AL’ denotes the ascending limb. The
conservation equations for the ascending limb are

@

@x
FAL;V .x/ D 0; (3.10)

@

@x
.FAL;V .x/CAL.x// D �A: (3.11)

3. Because the descending and ascending limbs are assumed to be contiguous, at
the loop bend (x D L) we have
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Fig. 3.2 Two paradigms for countercurrent multiplication. (a) Countercurrent multiplication by
NaCl transfer from an ascending flow to a descending flow: the concentration of the descending
flow is progressively concentrated by NaCl addition. (b) Countercurrent multiplication by water
withdrawal from a descending flow: NaCl transport from the ascending flow into the interstitium
raises interstitial osmolality; this results in passive water transport from the descending flow, which
has lower osmolality than the interstitium. In both paradigms, a steady state is achieved in which
NaCl concentration is raised in the descending limb so that tubular fluid achieves a maximum
concentration at the loop bend. In both figure panels, tubular fluid flow direction is indicated by
blue arrows; increasing osmolality is indicated by darkening shades of blue. Thick black lines
indicate that a tubule is water impermeable; thin lines indicate high permeability to water (Figure
modified from Layton and Layton 2011)

FDL;V .L/ D �FAL;V .L/; (3.12)

CDL.L/ D CAL.L/: (3.13)

In Eq. (3.12) we assume that flow is positive in the x direction; thus, flow rate
along the ascending limb is negative.

4. Finally, to complete the system, we must specify the boundary conditions at the
entrance of the descending limb:

FDL;V .0/ D FV;0; (3.14)

CDL.0/ D C0: (3.15)

We now have enough information to determine CDL.x/ and CAL.x/. Since the
entire loop is assumed to be water impermeable, FDL;V .x/ D FV;0 and FAL;V .x/ D
�FV;0. Plugging this into Eq. (3.9), we have

FV;0
@

@x
CDL.x/ D A; (3.16)
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which can be integrated, and combined with the boundary condition (3.15), to yield

CDL.x/ D C0 C
�
A

FV;0

�
x: (3.17)

Now to compute solute concentration along the ascending limb, we evaluate CDL at
x D L, use that as the initial condition for the ODE (3.11) to get

CAL.x/ D CDL.L/ �
�
A

FV;0

�
.L� x/

D C0 C
�
A

FV;0

�
x D CDL.x/: (3.18)

This simple model predicts that (1) the concentrations along the descending and
ascending limbs are the same at any given position x; (2) solute concentration
increases linearly along the x direction; and thus (3) the longer the loop, the higher
the loop-bend concentration.

3.4 Countercurrent Multiplication in a Loop, Revisited

The preceding example assumes that solute is directly secreted from the ascending
limb into the descending limb. While experimental studies support active NaCl
transport from thick ascending limbs, experiments also indicate that descending
limbs are not highly permeable to NaCl. Instead, those segments of the descending
limbs are highly permeable to water. These observations suggest that the accumu-
lation of NaCl from thick limbs may concentrate descending limb tubular fluid
principally by means of osmotic water absorption from descending limbs rather
than by NaCl secretion into descending limbs. We will modify our model to capture
this mechanism.

A schematic diagram of the model is shown in Fig. 3.2b. We assume that the
descending and ascending limbs of the loop interact through a common, external
compartment, which represents extratubular structures, such as the interstitium,
interstitial cells and vasculature. Both the NaCl that is actively pumped out of the
ascending limb and the water that is reabsorbed from the descending limb are taken
up by the external compartment.

3.4.1 Model Assumptions

Here are the new model assumptions:

1. We assume that the descending limb is impermeable to solute, but is highly
permeable to water. In fact, we assume the descending limb is so permeable
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to water that its concentration equilibrates with the external solute concentration
Ce , i.e.,

CDL.x/ D Ce.x/: (3.19)

The solute conservation equation is

@

@x
.FDL;V .x/CDL.x// D 0; (3.20)

since there is no solute flux, i.e., JDL;S .x/ D 0. The water conservation
equation is

@

@x
FDL;V .x/ D 2�rDLJDL;V .x/: (3.21)

2. The conservation equations for the ascending limb are the same as before:
Eqs. (3.10) and (3.11).

3. For the external compartment, we assume that the reabsorbate (i.e., NaCl from
the ascending limb and water from the descending limb) is picked up locally. That
is, we assume no axial flow in this compartment. Thus, by mass conservation, the
external compartment concentrationCe.x/ can be related to the solute and water
fluxes by

Ce.x/ D 2�rALJAL;S .x/

2�rDLJDL;V .x/
D � A

2�rDLJDL;V .x/
: (3.22)

3.4.2 Model Solution

We will first compute water flow and solute concentration along the descend-
ing limb. Equation (3.20) implies that, because the descending limb is solute-
impermeable, solute flow is constant along the limb. That is, we can write

FDL;V .x/CDL.x/ D FDL;V .0/CDL.0/; (3.23)

) FDL;V .x/ D FDL;V .0/
C e.0/

C e.x/
: (3.24)

since we assume that the descending limb concentration equilibrates with the
external concentration. To get Ce.x/, we eliminate JDL;V .x/ from Eq. (3.21) using
Eq. (3.22) to get

@

@x
FDL;V .x/ D � A

Ce.x/
: (3.25)
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We then rewrite Eq. (3.20) as

Ce.x/
@

@x
FDL;V .x/C FDL;V .x/

@

@x
C e.x/ D 0; (3.26)

with CDL.x/ replaced by Ce.x/. Next, we eliminate FDL;V and its spatial derivative
from the above equation, using Eqs. (3.24) and (3.25):

A D FDL;V .0/
C e.0/

C e.x/

@

@x
C e.x/; (3.27)

which can be written as

@

@x
C e.x/ D A

FDL;V .0/C e.0/
C e.x/: (3.28)

The ODE can be integrated to give the solute concentrations along the external
compartment as well as the descending limb:

Ce.x/ D CDL.x/ D Ce.0/ exp

�
Ax

FDL;V .0/C e.0/

�
: (3.29)

The above solution indicates that the descending limb and external solute concen-
trations increase exponentially along the model medulla.

Now let’s consider the ascending limb. To compute its flow rate and concentra-
tion, we need its boundary conditions, i.e., flow rate and concentration at the loop
bend. By evaluating Eqs. (3.24) and (3.29) at x D L, we have

FAL;V .L/ D �FDL;V .L/ D �FDL;V .0/
CDL.0/

C e.L/
; (3.30)

CAL.L/ D Ce.L/ D Ce.0/ exp

�
AL

FDL;V .0/C e.0/

�
: (3.31)

Because the ascending limb is assumed to be water impermeable, its water flow
rate doesn’t change, i.e., FAL;V .x/ D FAL;V .L/. Its solute concentration does
change, though. In fact, we expect it to progressively decrease towards x D 0 as
NaCl is actively pumped out. Using Eq. (3.31) as the initial condition for the solute
conservation equation (3.11), we obtain

CAL.x/ D Ce.0/ exp

�
AL

FDL;V .0/C e.0/

�
� Ax

FV;DL.L/
: (3.32)
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Fig. 3.3 Schematic diagram of the central core model. Panel (a), tubules along spatial axis. DL
descending limb, AL ascending limb, CD collecting duct, CC central core. Arrows, steady-state
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3.5 The Central Core Model

In the model we have just considered, water and solute absorbed from tubules
into the interstitium are assumed to enter the peritubular capillaries directly, at
each medullary level, and afterwards, that absorbate is assumed to have no further
interaction with the medulla, because we assume that there is no axial flow outside of
the loop. Consequently, relatively concentrated ascending fluid does not equilibrate
with progressively less concentrated surrounding interstitium. And as a result, that
model may be unrealistically dissipative of the axial osmolality gradient.

We now consider an alternative model formulation, the central core assumption.
A schematic diagram of the central core model is shown in Fig. 3.3. The central
core was developed by John Stephenson (1955–2010), a former faculty member at
the Weill Cornell Medical College in New York City. In the central core formulation,
blood vessels, interstitial cells, and interstitial spaces are merged into a single
compartment, with which the loops of Henle and collecting ducts interact. Axial
flow is allowed within the central core. The central core formulation assumes
maximum countercurrent exchange by the vasculature, and, compared to the model
in Sect. 3.4, is much less dissipative of the axial osmolality gradient. The effects of
the vasculature on the concentrating mechanism are considered in Chap. 4.

We augment the previous model (Sect. 3.4) in two ways. First, we use the central
core assumption to represent the interactions among the tubules and the vasculature.
Second, we also represent the collecting duct, which, together with the loops of
Henle, are surrounded by, and interact through, a central core. The solute that is
pumped out of the ascending limb, or the water and solute that are reabsorbed from
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the descending limb and collecting duct, are picked up by the capillaries that are
represented by the central core. Thus, by water and solute conservation, the water
and solute fluxes into the central core are given by the sum of the corresponding
tubular fluxes:

2�rCCJCC;V D 2� .�rDLJDL;V � rALJAL;V � rCDJCD;V / ; (3.33)

2�rCCJCC;S D 2� .�rDLJDL;S � rALJAL;S � rCDJCD;S / : (3.34)

3.5.1 Model Assumptions

We make the following assumptions in this model:

1. We assume that the descending limb and collecting duct are infinitely water
permeable. As a result, the intratubular concentrations of the descending limb
and collecting duct nearly equilibrate with the central core, and, to a good
approximation,

CDL.x/ D CCD.x/ D CCC.x/ � C.x/: (3.35)

We denote the common concentration by C.x/.
2. The descending and ascending limbs are contiguous, and the boundary condi-

tions Eqs. (3.12) and (3.13) hold.
3. We assume that the ascending limb is water impermeable. Thus, JAL;V D 0, and

it follows that FAL;V .x/ D �FDL;V .L/ for all x.
4. We assume that the descending limb and collecting duct are solute permeable.

Thus, from Eq. (3.34), we have

rDLJDL;S .x/C rCDJCD;S .x/C rCCJCC;S .x/ D �rALJAL;S .x/: (3.36)

5. We further assume that the central core is closed at x D L, which corresponds
to the papillary tip. This assumption implies that there is no convective entry of
solute or fluid at x D L. Thus, FCC;V .L/ D 0.

3.5.2 Model Solution

If we add up the solute conservation equations for the descending limb, collecting
duct, and central core, we get

@

@x
.FDL;V CDLCFCD;V CCDCFCC;V CCC/ D 2� .rDLJDL;SCrCDJCD;SCrCCJCC;S / ;

(3.37)
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or,

2� .rDLJDL;V C rCDJCD;V C rCCJCC;V / C C .FDL;V C FCD;V C FCC;V /
@

@x
C

D� 2�rALJAL;S : (3.38)

Because, by water conservation, rDLJDL;S C rCDJCD;S C rCCJCC;S D 0, the above
equation simplifies to an ODE for C.x/:

@

@x
C.x/ D �2�rALJAL;S

FDL;V C FCD;V C FCC;V
; (3.39)

which says that the rate of increase of the concentration in the descending limb,
collecting duct, and central core is the ratio of the solute reabsorption from the
ascending limb to the net water flow rate in the other three tubules. Now we will
rewrite the above equation in terms of the solute flow, given by Fi;S D Fi;V C for
tubule i . Dividing Eq. (3.39) by C.x/, we have

C 0.x/
C.x/

D �2�rALJAL;S

FDL;S C FCD;S C FCC;S
: (3.40)

By solute conservation, we have for the collecting duct and central core

FCD;S .x/ D FCD;S .0/C 2�rCD

Z x

0

JCD;S .s/ ds; (3.41)

FCC;S .x/ D �2�
Z x

L

�
rDLJDL;S .s/C rCDJCD;S .s/C rALJAL;S .s/

�
ds; (3.42)

which together give

FCD;S .x/C FCC;S .x/ D FCD;S .L/ � 2�
Z L

x

�
rDLJDL;S .s/C rALJAL;S .s/

�
ds:

(3.43)

Upon substituting into Eq. (3.40), we get

C 0.x/
C.x/

D �2�rALJAL;S .x/

FDL;S .x/C FCD;S .L/ � 2�
R L
x

�
rDLJDL;S .s/C rALJAL;S .s/

�
ds
:

(3.44)

After integrating this ODE, we obtain the following expression

C.x/

C.0/
D exp

0

@
Z x

0

�2�rALJAL;S .y/

FDL;S .y/CFCD;S .L/�2�
R L
y

�
rDLJDL;S .s/CrALJAL;S .s/

�
ds

dy

1

A :

(3.45)
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Fig. 3.4 A comparison of
interstitial concentration
profile C.x/ obtained using
Eq. (3.29) for the
countercurrent multiplication
model in Sect. 3.4 with the
profile obtained using
Eq. (3.46) for the central core
model in Sect. 3.5

The above expression, which is very general, gives the concentration ratio attained
along the medulla as a function only of solute flow along the descending limb, flow
exiting the end of the collecting duct, and the solute fluxes from the loop.

Now in the mammalian kidney, the descending limbs have a low permeability to
NaCl. So let’s assume JDL;S D 0. As a result, FDL;S .x/ D FDL;S .0/. We further
assume that the solute is pumped out of the ascending limb at a fixed rate of A. With
these assumptions, the integral (3.45) can be evaluated:

C.x/ D C.0/
�
FDL;S .0/C FCD;S .L/ � .L � x/A
FDL;S .0/C FCD;S .L/ �LA

�
: (3.46)

Let’s plug in some numbers and plot the above expression. Let’s suppose
FDL;S .0/ D 1:6 nmol/min, FCD;S .L/ D 0:2 nmol/min, C.0/ D 160mM, and
L D 2mm. We assume that 2/3 of the salt is pumped out of the ascending limb,
consistent with what happens in the rat outer medulla; so A D .2=3 	 1:6/=2 D
0:533 nmol/(min�mm). With these numbers, the fluid osmolality in the descending
limb, collecting duct, and central core increases from 160 at x D 0 to 393 mOsm/kg
H2O at x D L, i.e., by a factor of 2.45.

What can we learn from the formula (3.46)? First, the higher the active transport
rate of the ascending limb (A), the larger the concentrating effect. Second, the
smaller the “load” on the concentrating mechanism, the larger the axial osmolality
gradient. By “load” we mean the water flow rate of the descending limb and
collecting duct. For example, if there is no urine “load” on the system, i.e.,
FCD;S .L/ D 0, then the descending limb and central core fluid will be concentrated
to 480 mOsm/(kg H2O), a factor of about 3.

To understand how the central core model solution compares with the earlier
model in Sect. 3.4, which assumes that there is no axial flow outside of the loop, we
calculate interstitial concentration profiles C.x/ for both models, using Eqs. (3.29)
and (3.46). Those concentration profiles are shown in Fig. 3.4. As you can see,
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the central core model produces a significantly higher concentrating effect. That is
because axial flow within the central core allows absorbate from the deep medulla
(i.e., closer to x D L), which has a high concentration, to interact with and
concentrate the tubular fluid in the upper medulla (i.e., closer to x D 0), thereby
augmenting the overall concentrating effect of the system.

3.6 The Distributed-Loop Model

Early models of the urine concentrating mechanism typically represent one loop
of Henle and one collecting duct. These single-loop models may be sufficient to
illustrate certain simple principles, e.g., countercurrent multiplication. But it has
long been recognized that the loops of Henle differ from one another greatly. In
the rat kidney, there are two populations of loops: the short loops of Henle, which
turn near the boundary between the outer and inner medullas; and the long loops of
Henle, which reach into the inner medulla. And not all long loops are alike either!
Those long loops of Henle turn at differing depths of the inner medulla, some turn
near the outer-inner medullary boundary, some reach deeper, and a small fraction
reach all the way to the papillary tip.

Based on this observation, some models used the discrete-loop representation.
Typically, such models represent a finite, usually small, number of loops. Say, two
loops, one short loop and one long loop that reaches to the papillary tip. Some
models represent a few more loops. But a rat kidney typically has approximately
30,000–40,000 loops, and it is simply not practical to represent each loop individu-
ally.

In his doctoral thesis, Harold Layton (now professor at Duke University)
developed a model representation using continuously distributed loops of Henle.
The reasoning is that because there are tens of thousands of loops of Henle in
a kidney, we might as well assume a continuous distribution of those loops. We
consider only one spatial direction that corresponds to the fluid flow direction,
with the assumption that fluid flow and composition are homogeneous in the radial
direction. However, we allow the tubular fluid flow rate and composition, as well as
transmural fluxes, to differ among loops of different lengths. So each variable, e.g.,
solute concentration, is a function of two spatial variables x and y, i.e., C.x; y/.
Here x denotes the location at which we are evaluating C , and y denotes the
medullary depth at which the loop turns. With this notation, C.x; y1/ and C.x; y2/
denote the concentration values at location x of two different loops, one turning at
depth y1 and the other at y2. C.x1; y/ and C.x2; y/ denote the concentration values
of the same loop at two different locations, x1 and x2. We use the same notation for
water flow FV .x; y/, and fluxes JV .x; y/ and JS.x; y/ (Fig. 3.5).

A kidney likely behaves very differently if most of its loops are short and only
a fraction are long (like in a rat), than if most of its loops are long ones (like in
chinchilla). So we need a way to describe the population distribution of the loops.
This can be done using a function w.x/ that specifies the fraction of loops that
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Fig. 3.5 Panel (a), schematic diagram of the distributed-loop model, showing loops of Henle
(descending limb, DL and ascending limb, AL), collecting duct (CD), and central core (CC). Only
six representative loops are drawn, but the model represents a continuously decreasing population.
Panel (b), fraction of loops of Henle remaining (w.x/) as a function of medullary depth

remain at location x. So w.x/ is a monotonically decreasing function of x, starting
at w.0/ D 1 and decreasing to w.L/ D 0 at the papillary tip.

As an example, we will revisit the central core model. This time, we replace
the single loop in the previous example with a continuously distributed loop with
population w.x/. Consider the sum of water fluxes into the central core at spatial
location x. We must take into account water fluxes from the collecting duct, as well
as from all loops that turn at a medullary level at or below x (i.e., at x 
 y). Loops
with length shorter than x have already turned and thus make no contribution. The
total water flux from all descending limbs that are present at x is given by

2�rDL

Z L

x

JDL.x; y/

�
�dw.y/

dy

�
dy: (3.47)

Since w.y/ is the fraction of loops remaining at level y, �dw.y/=dy gives the rate at
which loops turn at y. (Since w is monotonically decreasing, the negative sign gives
us a positive rate.) Hence, Eq. (3.47) is the integral of water fluxes from all loops that
turn beyond x, weighted by the population density of loops at each length. A similar
integral is applied to the ascending limbs (but not the collecting duct). Together, the
total water and solute fluxes into the central core are given by

2�rCCJCC;V .x/ D� 2�rDL

Z L

x

JDL;V .x; y/

�
�dw.y/

dy

�
dy

� 2�rAL

Z L

x

JAL;V .x; y/

�
�dw.y/

dy

�
dy � 2�rCDJCD;V .x/;

(3.48)
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2�rCCJCC;S .x/ D� 2�rDL

Z L

x

JDL;S .x; y/

�
�dw.y/

dy

�
dy

� 2�rAL

Z L

x

JAL;S .x; y/

�
�dw.y/

dy

�
dy � 2�rCDJCD;S .x/:

(3.49)

Making the same assumptions as we did in Sect. 3.5 and following the derivation
there, we obtain an expression for C.x/, which is the solute concentration for
the central core, as well as the infinitely water-permeable descending limb and
collecting duct:

C.x/

C.0/
D exp

 Z x

0

2�rAL
R L

z �JAL;S .z; y/.�w0.y// dy

F tot
DL;S .z/C FCD;S .L/ � J tot

loop;S .z/
dz

!
; (3.50)

where F tot
DL;S .z/ �

R L
z FDL;S .z; y/.�w0.y// dy and

J tot
loop;S .z/ � 2�

Z L

z

Z L

s

rDL.�w0.y//JDL;S .s; y/C rAL.�w0.y//JAL;S .s; y/ dy ds:

3.7 Current State of Affairs

The concentrating mechanism in the outer medulla of the mammalian kidney is
believed to be well understood. That mechanism involves processes similar to those
represented in the central core model in Sect. 3.5: the thick ascending limbs of the
loop of Henle actively transport NaCl into the surrounding interstitium to generate
an increasing osmolality gradient along all tubules and vessels.

However, the epithelial cells in the inner-medullary portion of the ascending
limbs are very different from those in the outer medulla. In the inner medulla, those
cells look “thinner” and have different transport properties. In particular, the thin
ascending limbs found in the inner medulla have no significant active transepithelial
transport of NaCl or of any other solute. As a result, active solute transport coupled
with countercurrent flow does not explain the concentrating process in this region.
This is particularly puzzling because the inner medulla is believed to be where the
steepest osmotic gradient is generated.

Decades of efforts, both theoretical and experimental, have been dedicated to
elucidating the urine concentrating mechanism of the inner medulla, which has
remained one of the longest-standing mysteries in traditional physiology. Even
though the inner medullary urine concentrating mechanism is still controversial,
progress has been made. Anatomical studies have revealed that, perhaps unsurpris-
ingly, the kidney is more complicated than we thought. New transporters continue to
be discovered. As a result, our knowledge of the transport properties of the tubules,
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as well as their interactions, is constantly revised. Mathematical models have been
built to shed light into the roles of these new findings in the mammalian urine
concentrating mechanism. For more details, you may refer to reviews by Layton
(2002), Layton et al. (2009), and Pannabecker et al. (2008).

3.8 Problems

Problem 3.1. To a good approximation, the descending limbs of the loops of Henle
in the Japanese quail kidney are water impermeable.

(a) Using the central core model described in Sect. 3.5, compute an expression for
R � C.L/=C.0/.

(b) Let

A D 2�
Z L

0

.rDLJDL;S C rALJAL;S / dx: (3.51)

Show that

lim
A!FCD;S .L/

R D 1:

(c) Why is the relation A > FCD;S .L/ prohibited in the model? Explain in terms of
flows and concentrations.

(d) In the Japanese quail kidney, the descending limb is slightly water permeable,
and, of course, there is a vasculature with counter-current exchange rather than
a “central core.” Also, CCD.0/ D CCC.0/ will not be enforced. Explain why
A > FCD;S .L/ is a condition that will not be prohibited in a bird renal medulla.
(Actual maximum avian concentration ratio R is about 2.)

Problem 3.2. In the outer medulla of the rat kidney, the lower half of about 2/3
of the descending limb is now thought to be water impermeable; the remaining
descending limbs appear to be highly water permeable throughout the outer medulla.
Assume that all descending limbs are solute impermeable.

(a) Assume that the collecting duct and the water-permeable population of the
descending limbs are infinitely water permeable. Assume also that the ascend-
ing limbs are water impermeable, and have active solute transport that is
independent of luminal solute concentration (but may depend on space). Using
the central core framework, derive an expression for R D C.L/=C.0/.

(b) LetM be the total amount of solute entering all descending limbs. Assume that
JAL;S is constant, that 2�rAL

R L
0
JAL;S ds DM=2, and that FCD;S .L/ D M=10.

Evaluate R.
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