LIMITES DE FUNCIONES

-		
- 0	****	0
13	uIII	a

u	v	u+v
b	С	b+c
b	+∞	+∞
b	- ∞	- ∞
+∞	+∞	+∞
- ∞	- ∞	- ∞
Acot.	+∞	+∞
Acot.	- ∞	-∞
+∞	- ∞	Indet

Producto

u	v	u.v
b	С	b.c
b ≠ 0	∞	∞
∞	∞	∞
Acot.	0.	0
0	~	Indet

Cociente

u	v	u/v
Ъ	c ≠ 0	b/c
Ъ	- ∞	0
b ≠ 0	. 0	∞
∞ .	b	∞
Acot.	∞	0
0	0	Indet
∞	~	Indet

Vale la regla de signos del producto y cociente

Raíz cuadrada

u	$\sqrt{\mathbf{u}}$
a ≥ 0	\sqrt{a}
+∞	+∞

Raíz cúbica

u	³ √u
a	3√a
+∞	+∞
-∞	-∞

Exponencial

u	e ^u
a	e ^a
+∞	+∞
- ∞	0+

Logaritmo

u	Lu
a > 0	La
0+	- ∞
+∞	+∞

Potencial - Exponencial

u	V	u v
b > 0	С	b°
b > 1	+∞	+∞
b > 1	- ∞	0+
0 < b < 1	+∞	0+
0 < b < 1	- ∞	+∞
1	∞	Indet
+∞	c > 0	+∞
+∞	c < 0	0+

u	v	u v
+∞	+∞	+∞
+∞	- ∞	0+
+∞	0	Indet
0+	c > 0	0+
0+	c < 0	+∞
0+	+∞	0+
0+	-∞	+∞
0+	0	Indet

Indeterminaciones

∞-∞	0.∞	0/0	<u>⊗</u>	1.00	00	∞0
-----	-----	-----	----------	------	----	----

TABLA DE INFINITESIMOS EQUIVALENTES

u La	1 - $\cos(u) \sim \frac{u^2}{2}$	Arsen (u) ~ u
) ~ u	tg (u) ~ u	Sh (u) ~ u
) ~ u	2

$\lim u(x) = 1$	$e^{u} - e \sim e (u-1)$	Lu ~ u-1
	$\sqrt[n]{u} - 1 \sim \frac{u-1}{n}$	$u^p - 1 \sim p (u-1)$

$\lim u(x) = 2$	$\lim u(x) = 3$	$\lim u(x) = a$
$e^{u} - e^{2} \sim e^{2}(u-2)$	$e^{u} - e^{3} \sim e^{3}(u - 3)$	$e^{u} - e^{a} \sim e^{a}(u - a)$

TABLA DE INFINITOS EQUIVALENTES PARA $x \rightarrow +\infty$

$$a_0x^n + a_1x^{n-1} + ... + a_n \sim a_0x^n$$

$$\sqrt[p]{a_0x^n + a_1x^{n-1} + ... + a_n} \sim \sqrt[p]{a_0x^n} \qquad a_0 > 0$$

$$Ln (a_0x^n + a_1x^{n-1} + ... + a_n) \sim n.Ln(x) \quad a_0 > 0$$

ORDENES FUNDAMENTALES DE INFINITOS PARA $x \rightarrow +\infty$

ord $(Lx)^{\alpha} \langle \operatorname{ord} (x^{\beta}) \langle \operatorname{ord} (e^{\gamma x}) \langle \operatorname{ord} (x^{\delta x}) \rangle$ $\forall \alpha, \beta, \gamma, \delta \text{ reales positivos}$

DETERMINACIÓN DE PARÁMETROS

DATO	SE DEBE IMPONER
El Punto P(a, b) pertenece al G(f)	f(a) = b
El G(f) corta a \overrightarrow{Ox} en x = a	f (a) = 0
La tangente al $G(f)$ es horizontal en $x = a$	f'(a) = 0
La tangente al G(f) es horizontal en P(a,b)	f(a) = b; $f'(a) = 0$