

## Evaluation of nutrient retention in four restored Danish riparian wetlands

Carl Chr. Hoffmann, Brian Kronvang & Joachim Audet *Hydrobiologia*, 2011

> Ivan Gonzalez-Anahí López-Florencia Sarthou Grupo III

# History, use and function of wetlands

- Demands of the EU for measures to improve ecological quality in surface water bodies
- Regulate the pressures of nutrients on aquatic ecosystems
- Removal of N, retention of P
- Increase biodiversity

### Problems?

- Functioning of restored wetland for N and P retention is not well investigated
- Lack of information problems for planning new restorations projects
- Lack of guidelines —> Hydrological and biochemical processes
- Emission of greenhouse gases
- Deterioration of habitat conditions

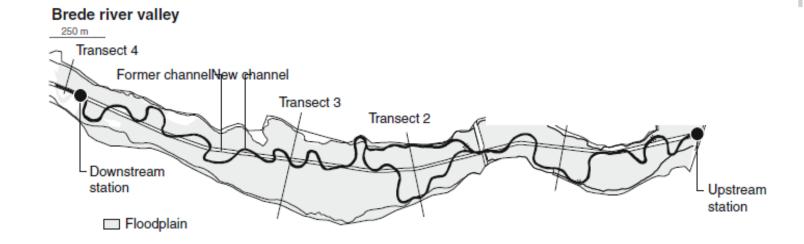
### Aims

- Quantify rates of N and P retention in restored Danish freshwater riparian wetlands and discuss the outcomes as compared to estimations
- Evaluate and discuss the outcome of different monitoring strategies deployed to quantify the effect of wetland restoration on nutrient retention



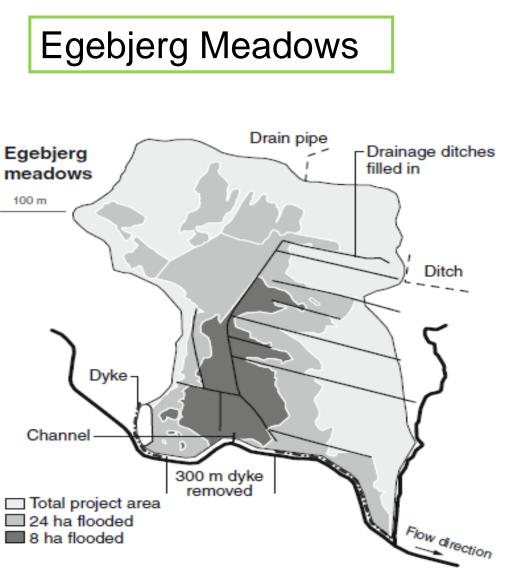
### Methods

 Monitoring programme for four restored riparian wetlands in Denmark


Different monitoring times (arround 1year in most)

Measurement of nutrients (all N and P forms), Fe, SO4 and flow pathways in Brede




### Brede river valley

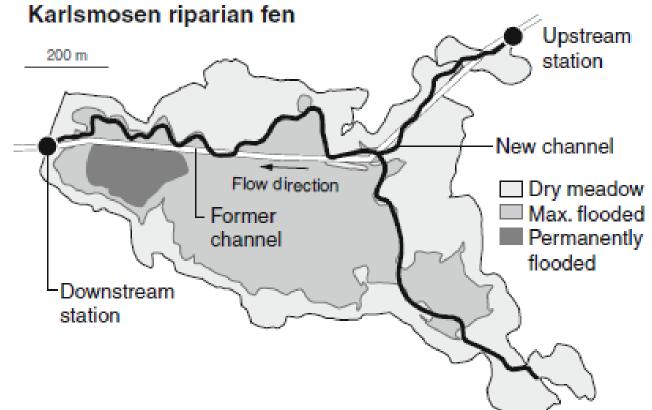
- Channelized river
- Remeandered channel and artificial wetland



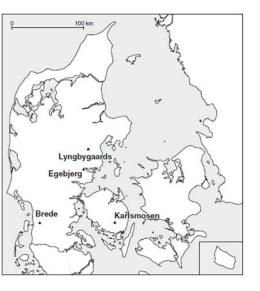


 $\bullet$ 



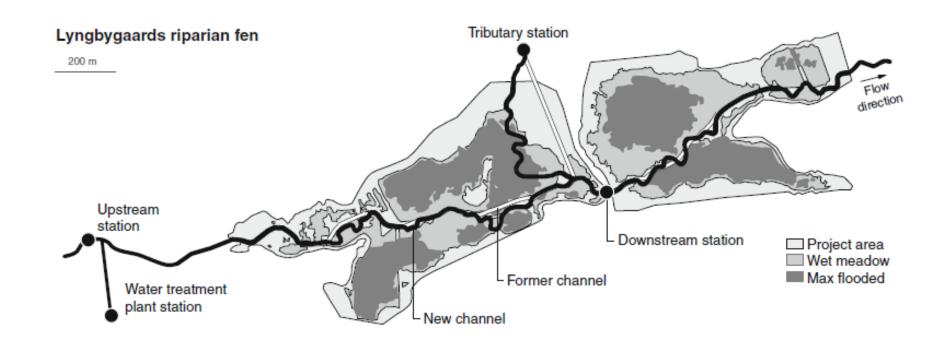

 As part of the restoration: ditches were disconnected

Before restoration: ditched


area and embanked river



### Karlsmosen riparian fen




• Remeandered watercourse



### Lyngbygaards riparian fen

 Remeandered segment of the river



| Transect         | First year after restoration (1995) |                                             |                                                        | %       | Five years a                      | %                                           |                                                        |         |
|------------------|-------------------------------------|---------------------------------------------|--------------------------------------------------------|---------|-----------------------------------|---------------------------------------------|--------------------------------------------------------|---------|
| and area<br>(ha) | Input<br>(kg year <sup>-1</sup> )   | Total retention<br>(kg year <sup>-1</sup> ) | Retention<br>(kg ha <sup>-1</sup> year <sup>-1</sup> ) |         | Input<br>(kg year <sup>-1</sup> ) | Total retention<br>(kg year <sup>-1</sup> ) | Retention<br>(kg ha <sup>-1</sup> year <sup>-1</sup> ) |         |
| Nitrate-N        |                                     |                                             |                                                        |         |                                   |                                             |                                                        |         |
| 1 (24.9)         | 2,236                               | 1,087                                       | 44                                                     | 49      | 2,795                             | 2,403                                       | 97                                                     | 86      |
| 3 (30.0)         | 5,793                               | 4,812                                       | 160                                                    | 83      | 6,592                             | 6,556                                       | 171                                                    | 99      |
| 4 (8.4)          | 243                                 | -51                                         | -6                                                     | -21     | _                                 | _                                           | $\overline{}$                                          |         |
| Σ (63.4)         | 8,272                               | 5,847                                       | 92                                                     | 71      | 9,387                             | 8,959                                       | 141                                                    | 95      |
| Ammoniur         | n-N                                 |                                             |                                                        |         |                                   |                                             | $\bigcirc$                                             |         |
| 1 (24.9)         | 21                                  | -208                                        | -8.4                                                   | -990    | 40                                | -662                                        | -27                                                    | -1,655  |
| 3 (30.0)         | 23                                  | -138                                        | -4.6                                                   | -600    | 63                                | -1,305                                      | -34                                                    | -2,071  |
| 4 (8.4)          | 123                                 | 18                                          | 2.1                                                    | 15      | _                                 | _                                           | $\overline{}$                                          |         |
| Σ (63.4)         | 167                                 | -328                                        | -5.8                                                   | -196    | 103                               | -1,967                                      | -31                                                    | -1,910  |
| Ferrous iro      | n                                   |                                             | $\bigcirc$                                             |         |                                   |                                             |                                                        |         |
| 1 (24.9)         | 97                                  | 27                                          | 1                                                      | 28      | 14                                | -26                                         | -1                                                     | -186    |
| 3 (30.0)         | 156                                 | -17,386                                     | -578                                                   | -11,145 | 235                               | -62,450                                     | -1,620                                                 | -26,574 |
| 4 (8.4)          | 614                                 | -149                                        | -18                                                    | -24     | _                                 | _                                           | $\sim$                                                 |         |
| Σ (63.4)         | 866                                 | -17,508                                     | -276                                                   | -2,022  | 249                               | -62,476                                     | -985                                                   | -25,091 |
| Sulphate         |                                     |                                             | $\smile$                                               |         |                                   |                                             | $\smile$                                               |         |
| 1 (24.9)         | 19,100                              | -14,200                                     | -575                                                   | -74     | 18,200                            | -58,600                                     | -2,352                                                 | -322    |
| 3 (30.0)         | 29,800                              | -32,800                                     | -1,092                                                 | -110    | 37,000                            | -95,000                                     | -2,473                                                 | -257    |
| 4 (8.4)          | 11,200                              | 2,900                                       | 349                                                    | 26      | _                                 | _                                           | -                                                      |         |
| Σ (63.4)         | 60,100                              | -44,100                                     | -696                                                   | -73     | 55,200                            | -153,600                                    | -2,423                                                 | -278    |

<sup>a</sup> Area 3 was covering an area of 38.4 ha in the 1999-2000 investigation

Flow: underground wetland and deep underground

Total N retention (92 and 141Kg/Ha, increasing with time)

P, NH<sub>4</sub>, Fe, So<sub>4</sub> Source (P and Fe due to machinery erosion)

Ratio decrease for N and Iron and increase for P

### **Results: Egebjerg Meadows**

| Table 8 Mass balance of ammonium, organic nitrogen (N), total N, soluble reactive phosphorus (SRP) and total P for the | e restored |
|------------------------------------------------------------------------------------------------------------------------|------------|
| wetland Egebjerg Meadows                                                                                               |            |

|                                                           | Ammonium-N<br>(kg year <sup>-1</sup> ) | Nitrate-N<br>(kg year <sup>-1</sup> ) | Total N<br>(kg year <sup>-1</sup> ) | SRP<br>(kg year <sup>-1</sup> ) | Total P<br>(kg year <sup>-1</sup> ) |
|-----------------------------------------------------------|----------------------------------------|---------------------------------------|-------------------------------------|---------------------------------|-------------------------------------|
| Inflow drainage ditch                                     | 6.4                                    | 435.2                                 | 511.3                               | 3.86                            | 11.66                               |
| Inflow drain pipe                                         | 11.2                                   | 706.8                                 | 718                                 | 8.61                            | 11.94                               |
| Inflow from river                                         | 30.2                                   | 741.3                                 | 1,442                               | 15.88                           | 47.26                               |
| Total inflow                                              | 47.8                                   | 1,883.3                               | 2,671                               | 28.35                           | 70.86                               |
| Outflow to river                                          | 39.7                                   | 102.4                                 | 781                                 | 13.1                            | 66.28                               |
| Total retention                                           | 8.1                                    | 1,780.9                               | 1,890                               | 15.3                            | 4.58                                |
| Retention of input (%)                                    | 17                                     | 95                                    | 71                                  | 54                              | 6                                   |
| Total retention (kg ha <sup>-1</sup> year <sup>-1</sup> ) | 0.23                                   | 52.4                                  | 55.6                                | 0.45                            | 0.13                                |

Input from the drainage ditch, the drain pipe and inflow from the river during inundation periods. Outflow from the wetland only to the river

Constant income from drain and ditch, flooding events

Net retention of N (NO<sub>3</sub>, NH<sub>4</sub> and total), and P (SRP and Total)

Inflow :15 % Organic N, 40-69% organic P  $\rightarrow$  Outflow: 84% Organic N and 93% Organic P.

| Month                                                    | Total Nitrogen                                          |                               |                   |                                  |     |               | Total phosphorus |                   |                                     |    |  |  |
|----------------------------------------------------------|---------------------------------------------------------|-------------------------------|-------------------|----------------------------------|-----|---------------|------------------|-------------------|-------------------------------------|----|--|--|
|                                                          | Input<br>(kg)                                           | Output<br>(kg)                | Retention<br>(kg) | Retention (kg ha <sup>-1</sup> ) | %   | Input<br>(kg) | Output<br>(kg)   | Retention<br>(kg) | Retention<br>(kg ha <sup>-1</sup> ) | %  |  |  |
| T <sup>0008</sup>                                        |                                                         | 45.00                         |                   | 14.2                             | 51  | 40            | 22               | 18                | 0.28                                | 43 |  |  |
|                                                          | y = 475.71x - 7<br>R <sup>2</sup> = 0.9539              | 45.23                         | . /               | 95.8                             | 41  | 180           | 110              | 70                | 1.08                                | 39 |  |  |
| <u>මි</u> 6000 -                                         |                                                         |                               | <b>,</b>          | 49.1                             | 41  | 100           | 66               | 34                | 0.52                                | 3  |  |  |
| - 0009<br>- 0009<br>- 0007<br>- 0007<br>- 0009<br>- 0009 |                                                         |                               |                   | 101.5                            | 49  | 260           | 88               | 172               | 2.65                                | 6  |  |  |
| b 4000 -                                                 |                                                         |                               |                   | 47.5                             | 47  | 100           | 44               | 56                | 0.86                                | 5  |  |  |
| tal N                                                    |                                                         | / <b>`</b> .                  |                   | 36.1                             | 45  | 60            | 22               | 38                | 0.58                                | 6  |  |  |
| គ្ន <u>ី</u> 2000 –                                      | .,*                                                     |                               |                   | 28.7                             | 55  | 40            | 22               | 18                | 0.28                                | 4  |  |  |
| 0 -                                                      | *****                                                   |                               |                   | 36.1                             | 45  | 120           | 66               | 54                | 0.83                                | 4  |  |  |
| 200 T                                                    | I                                                       | I                             |                   | 8.6                              | 56  | 40            | 22               | 18                | 0.28                                | 4  |  |  |
|                                                          | y = 14.645e <sup>0.136</sup><br>R <sup>2</sup> = 0.7563 | 54x                           | •                 | 8.9                              | 73  | 40            | 22               | 18                | 0.28                                | 4  |  |  |
| 160 -<br>홋                                               |                                                         |                               |                   | 3.1                              | 100 | 20            | 0                | 20                | 0.31                                | 10 |  |  |
| Total P retention (kg)                                   |                                                         |                               | /•                | 6.2                              | 100 | 20            | 0                | 20                | 0.31                                | 10 |  |  |
| eten                                                     |                                                         |                               |                   | 8.9                              | 73  | 40            | 0                | 40                | 0.62                                | 10 |  |  |
| - 08 <sup>2</sup>                                        |                                                         |                               | •                 | 17.6                             | 63  | 40            | 22               | 18                | 0.28                                | 4  |  |  |
| р<br>40-                                                 | • •                                                     | ****                          |                   | 33.6                             | 48  | 100           | 44               | 56                | 0.86                                | 5  |  |  |
|                                                          | * *** *                                                 | ·                             |                   | 111.1                            | 45  | 280           | 154              | 126               | 1.94                                | 4  |  |  |
| 0<br>0                                                   | 5                                                       | 10                            | 15 20             | $\frown$                         | 47  | 1,481         | 703              | 778               | $\frown$                            | 5. |  |  |
| -                                                        |                                                         | Runoff (l/s/km <sup>2</sup> ) |                   | 337                              | 50  | 880           | 351              | 529               | 8.14                                | 6  |  |  |

Table 9 Mass balance results from monitoring of total nitrogen and total phosphorus retention in the Karlsmosen Fen during October 2002 to January 2004

Removing of N and P Permanently, retention efficiency of 50% for N and 60% for P

Positive relation of nutrient removing and runoff volume! (linear and exponential)

#### Results: Lyngbygaards riparian fen

| Table 10  | Input    | and   | retention   | of  | nitrate-N    | $(\mathbf{N})$ | and  | total |
|-----------|----------|-------|-------------|-----|--------------|----------------|------|-------|
| phosphoru | s (P) in | the 4 | 40-ha resto | red | riparian fei | ı Lyn          | gbyg | aards |

| Month  | N input | N reter | ntion | P input | P retention |        |  |
|--------|---------|---------|-------|---------|-------------|--------|--|
|        | (kg)    | (kg)    | (%)   | (kg)    | (kg)        | (%)    |  |
| Dec-07 | 18,765  | 1,450   | 7.7   | 257     | -3          | -1.3   |  |
| Jan-08 | 26,784  | 1,409   | 5.3   | 369     | 5           | 1.3    |  |
| Feb-08 | 13,244  | 955     | 7.2   | 220     | 18          | 8.0    |  |
| Mar-08 | 17,093  | 1,054   | 6.2   | 262     | 9           | 3.5    |  |
| Apr-08 | 6,300   | 518     | 8.2   | 121     | -192        | -159.1 |  |
| May-08 | 1,836   | 339     | 18.5  | 53      | 17          | 31.6   |  |
| Jun-08 | 1,295   | 463     | 35.8  | 38      | 17          | 45.3   |  |
| Jul-08 | 675     | 298     | 44.1  | 33      | 14          | 43.4   |  |
| Aug-08 | 1,269   | 380     | 29.9  | 67      | 12          | 17.3   |  |
| Sep-08 | 1,090   | 289     | 26.5  | 41      | 10          | 24.8   |  |
| Oct-08 | 1,539   | 76      | 4.9   | 56      | 3           | 4.5    |  |
| Nov-08 | 10,187  | 591     | 5.8   | 167     | 28          | 16.6   |  |
| Total  | 100,076 | 7,822   | 7.8   | 1,685   | -63.4       | -3.8   |  |

NO<sub>3</sub>, removal continuously : 7,5 % efficiency, 195,6 kg/Ha year.

Total P removal almost all months, effect of machinery work (great release from sediments), overall 7,7% efficiency, 1,58 Kg/Ha year (without april).

### DISCUSSION

### Nitrogen

4 rivers: high efficiency in N removal

•Brede

Similar results of monitoring methods
 Climatic conditions
 nitrate leaching to deeper groundwater → low removal rate

-Groundwater discharge  $\rightarrow$  better to have 2 methods

- Karlmosen -Up/downstream mass balance → min estimate
  Water directed to wetland → high removal capacity
- •Egebjer -lowest N removal → dike partly removed -high denitrification rates
- •Lynbyagaards -N removal rate similar to expected

#### DISCUSSION

### Phosphorus

#### Variable retention rates

•Net sink in Egebjerg & Karlmosen →high efficiency →biological uptake and sedimentation

- •Net source in Brede & Lyngbyagaars  $\rightarrow$ 1 post-restoration year !!!
- •Erosive phase after restoration
- •Sedimentation of particulate P +++ inundation periods
- •SRP  $\rightarrow$  Org. P (algal biomass)

### DISCUSSION Monitoring strategies for wetland restoration

#### 1 strategy $\rightarrow$ not for all systems

•E.g. Brede & groundwater, other strategies could help (more expensive)

•Ratio method  $\rightarrow$  valuable when mass balance difficult, needs premonitoring

•Mass balance - (fortnightly)  $\rightarrow$  high uncertainty (P dynamics)

- measurements in wetland→ to be used in postrestoration period
- -daily sampling  $\rightarrow$  ++ geochemical processes

#### Post-restoration monitoring for more than 1 year

- •Nutrient retention and removal assessed in 4 restored systems
- •Variability in efficiency among wetlands +N +o-P
- •Longer-term post-restoration monitoring is needed



### In Uruguay?



Native wetland areas as national parks. Some artificial wetland experiences for sewage treatment



TREATTER



# Thank you!!!