Phosphorus Modelling and Mangement

Cyanobacterial blooms in the Baltic Sea MODIS AQUA 2005-07-11, data from NASA processed by SMHI

COPYRIGHT © 1995 by RAY STERNER, JOHNS HOPKINS UNIVERSITY APPLIED PHYSICS LABORATOR

Critical Source Area

High source High

Critical Source Area

Led to the 80/20 rule: 80% of P comes from 20% of land area

High

transport

High source

Use of models

- Models inform decisions & targeting
 - Best way to prioritize finite resource allocation; e.g., NRCS Mississippi River Basin Initiative
- Models are a representation of reality

13.November 2011

	EPA	USDA	Diff.
	millior	acres	%
Land area	41.1	42.5	3
Agricultural land	9.0	12.1	35
Cropped	3.3	4.4	33
Conventional till	1.7	0.4	-74
Conservation till	1.7	3.9	133

LimnoTech 2011

- Models have uncertainty, due to
 - Routines used; especially for hydrology
 - Input data availability

La

Ag

- BMP N & P reduction efficiencies
- Accounting for the legacy of past mgt.

Conservation tillage

Lesson from Lake Erie Basin

MICHIGAN

Sandusky River catchment

Maumee River catchment

OHIO

Annual flow-weighted total P, ppm

Annual flow-weighted dissolved P, ppm

Adoption of mulch and no-till soybeans, %

(Schoumans et al., 2004; Schoumans and van der Berg, in prep)

Phosphorus model – losses from diffuse sources

Model has an $R^2 = 0,80$ (p<0.0001).

 $TP_{ij} = 1,06 \cdot \exp\left(-6,533 + 0,865 \cdot \ln\left(R - Flom_{ij}\right) + 0,0187 \cdot A_j + 0,00629 \cdot S_j + 0,0141 \cdot SL_j - 0,0383 \cdot BU_j\right)$

Where

 TP_{ij} is annual (i) diffuse loss of total P in kg P/ha from catchment (j) R-flom = overland and drainage flow from catchment in mm per year. $S_j e=$ proportion of sandy soils in catchment. $A_j =$ proportion of agricultural land in catchment. $SL_j =$ slope of stream in per mille $BU_i =$ proportion of lowlying rapirian soils (wetlands, meadows) in catchment.

Andersen, H.E., Kronvang, B. & Larsen, S.E. 2005: Development, validation and application of Danish empirical phosphorus models. - Journal of Hydrology 304: 355-365.

Professor Brian Kronvang

13.November 2011

Validation of models for diffuse P loss

Time for a break?

P losses is a result of many complex processes and pathways

13.November 2011

Source factors

Transport factors

Fields with high content of mobile P Fields with high transport potential

Critical source areas = risk areas High risk for P-loss

Professor Brian Kronvang

13.November 2011

Concept of the new P index

For each P loss pathway individually we evaluate the factors:

Each factor is characterized by variables which correlate to P loss and are easily available. Sub-index standardized to values between 0 and 100 AARHUS UNIVERSITY

Advantages of the sub-index concept

- Differentiated combination of source and transport factors
- Easy to incorporate new knowledge
- Directly shows the relative risk for each process
- Effect of mitigation measures easily incorporated

13.November 2011

Structure

	Source	Mobilization	Transport	Index value
Erosion				0 - 100
Surface runoff				0 – 100
Leaching via matrix				0 – 100
Leaching via macro pores				0 – 100

Professor Brian Kronvang

13.November 2011

P transfer continuum

AARHUS UNIVERSITY	Source	Mobilization		Transport
Erosion	TP + P input	Modelled soil erosion, tile drainage		Flow distance to surface waters
Surface runoff	DP, PP + P input	Runoff volume = topographically derived discharge area, winter precipitation		Flow distance to surface waters
Matrix flow	DP + P input	Subsoil PSC: (Alox + Feox)Low:< 60 mmol/kgMedium:60 - 100 mmol/kgHigh:>100 mmol/kg		HER, tile drainage or distance to surface waters
Macropore	DP, PP + P input	Contact volume in topsoil = f [porosity]		Subsoil macropores, Likelihood of macropore flow

K%-kvantilen er den værdi, som er større end k% af alle værdier i populationen.

Professor Brian Kronvang

13.November 2011

Calculating erosion sub-P Index

AARHUS UNIVERSITY

Professor Brian Kronvang

13.November 2011

C Calculate soil erosion Sub-P rate at slope unit scale by WaTEM

-P Localisation of erosion areas within fields -> calculate distance along flow lines to nearest surface waters

Professor Brian Kronvang

13.November 2011

Areas where surface runoff is likely to occur

P sorption capacity in subsoil

Existence of macro pores + the likelihood that macro pores are active

WEB based P Index Tool

Mitigation options

- Where can mitigation options be applied?
- Effect on P losses
- Costs
 - establishing e.g. buffer strips, wetlands
 - costs for management
 - farmer loss in yield
 - farmer budget and wellfare economy

Professor Brian Kronvang

13.November 2011

A. Mit	igation of farming practices
A1	Reduced tillage of soil
A2	Permanent grass
A3	Aviod or treat wheel tracks in field
A4	Manure should be incorporated in soil after spreading between harvest and 1st April
A5	Fertilization and soil tillage not allowed between harvest and 1. Aprill
A6	Low P fertilization (negative P surplus)

B. Cha	nges in land uses in risk areas
B1	Set aside
B2	Afforestation
B3	Buffer strips
B4	Reetablishing lakes
B5	Extensivation of farming and temporary inundations of meadows
B 6	Restoration of wetlands
B7	Stop for pumping of water from lowlying areas

C. Mit	itation options in risk areas based on environmental options
C1	Irrigation of meadows with tile drainage water
C2	Constructed wetlands – on fields

Links between P index value and mitigation options: Definition of P loss potentials for different P-pathways based on experimental data

Loss potential	Erosion	Surface Runoff	Matrix leaching	Macropore transport
	kg P ha ⁻¹ yr ⁻¹			
High risk	2	1	0,5	1
Moderate risk	0,1	0,1	0,1	0,1
Low risk	0	0	0	0

NATIONAL ENVIRONMENTAL RESEARCH INSTITUTE

AARHUS UNIVERSITY

Nikolai Friberg

SETAC June 2009

Pilot study on lake Haderslev Dam

272 ha lake , 104 km² catchment Agriculture: 70 % High recreational value

Nikolai Friberg

SETAC June 2009

Source apportionment of P contributions to lake Haderslev Dam (2000 – 2005)

Scattered dwellings	Point sources	Background losses	Agricultural losses
288 kg	406 kg	1862 kg	1872 kg
7%	9%	42%	42%

How can the problem be solved? – i.e. how can we reduce diffuse, agricultural losses to the lake?

We need to identify those areas/fields which contribute the most of diffuse P losses in order to target mitigation measures

The P index is a robust method for identifying risk areas for diffuse P losses in the landscape

SETAC June 2009

Risk areas for diffuse P losses in the lake Haderslev Dam catchment

Pathway	Area in high risk
Erosion	271 ha (3.2%)
Surface runoff	109 ha (1.3%)
Leaching via soil matrix	403 ha (4.8%)
Leaching via macro	482 ha (5.7%)
pores	

	AV = erosion	Nikolai Friberg	SETAC June 2009
P loss potential	Measure	Effect on P loss	Cost
kg P ha ⁻¹ yr ⁻¹		%	€ ha ⁻¹ yr ⁻¹
3	Permanent grass (A2)	100	670
0.1	Incorporation of fertilizer/manure between harvest and 1 April (A4)	10	20
0	P mining (A6)	5	6
	Buffer zones (B3) 2 m 10 mSet aside (B1)Afforestation (B2)Conservation tillage (A1)Avoid or treat wheel tracks in fields (A3)	25 50 100 100 70 20	620 620 570 ? ?
	P loss potential kg P ha ⁻¹ yr ⁻¹ 3 0.1 0	Ploss potential kg P ha ⁻¹ yr ⁻¹ Measure3Permanent grass (A2)0.1Incorporation of fertilizer/manure between harvest and 1 April (A4)0P mining (A6)10Buffer zones (B3) 2 m 10 m20Set aside (B1)Afforestation (B2)Conservation tillage (A1)Avoid or treat wheel tracks in fields (A3)	P loss potentialMeasureEffect on P loss $kg P ha^{-1} yr^{-1}$ %3Permanent grass (A2)1000.1Incorporation of fertilizer/manure between harvest and 1 April (A4)100P mining (A6)50Ruffer zones (B3) 2 m 10 m2510 m5050Set aside (B1)100Afforestation (B2)100Conservation tillage (A1)70Avoid or treat wheel tracks in fields (A3)20

NATIONAL ENVIRONMENTAL RESEARCH INSTITUTE

Nikolai Friberg

SETAC June 2009

Risk class	P loss potential	Measure	Effect on P loss	Cost
	kg P ha ⁻¹ yr ⁻¹		%	$ \in ha^{-1} yr^{-1} $
High	3	Permanent grass (A2)	100	670
Medium	0.1	Incorporation of fertilizer/manure between harvest and 1 April (A4)	10	20
Low	0	P mining (A6)	5	6
		Buffer zones (B3) 2 m 10 m Set aside (B1)	25 50 100	620 620
		Afforestation (B2)	100	570
		Conservation tillage (A1)	70	?
		Avoid or treat wheel tracks in fields (A3)	20	?

Effecte OF AREHUS UNIVERSITY Selected mitigation measures applied in risk

areas

Measure	Area in high risk	Effect kg P yr ⁻¹	Cost effectiveness $\mathcal{E}(kg P)^{-1}$
	па		
Erosion			
Permanent grass	271	813	223
10 m buffer zone	271	407	33
Surface runoff			
10 m buffer zone	109	11	600
Matrix leaching			
Negative P balance	403	10	240
Macro pore leaching			
Irrigation with drain water	357	179	691

By applying the most effective measure for each high risk area diffuse agricultural losses can be reduced by 1,100 kg P (25 % of total input) at an annual cost of € 314,000

Public expects blue waters and green pastures

With predicted population growth, 50 -100% increase in crops yields on

same acreage

Will create pressures to intensify

NATIONAL ENVIRON IEI DE PERCES TE DIANTS volai Friberg

- Pressures to maximize yields
- Likely on less suitable lands
- Economics remains a major driver

The bottom line

- Complex site hydrology turns everything on it's head
- Robust monitoring to document change
- Accounting for the legacy of past mgt.
- Explaining legacy effects
 - Reduce public disillusionment and impatience

SETAC June 2009

Herding elephants

- Policy requires black & white guidelines
- Science tries to account for all variables and situations
- Realistic goal setting
- Targeted management in an equitable manner

NATIONAL ENVIRONMENTAL RESEARCH INSTITUTE

AARHUS UNIVERSITY

SETAC June 2009

AARHUS UNIVERSITY

Buffer strips should be implemented after analyzing the local conditions (soil type, slope, erosion signs, biodiversity, cattle grazing in streams, etc.

NATIONAL ENVIRONMENTAL RESEARCH INSTITUTE

AARHUS UNIVERSITY

SETAC June 2009

Data fra Haygarth et al. 2009; J. Environ. Qual.

AARHUS UNIVERSITY

Nikolai Friberg

SETAC June 2009

Estimated effect of having 10 m wide buffer strips along all danish

streams

Reduktion i P-tab til overfladevand	VMPIII	New estimates
Surface Runoff from fields	4-30 tons P/yr	4-30 tons P/yr
Bank erosion (longer term)	55-129 tons P/yr	0 tons P/yr*
P leaching from organic soils	11-80 tons P/yr	0 tons P/yr
Fytoremediation of P (harvesting plants from BS (longer term)	0	2-8 tons P/yr

*Natural trees in 10% of BS's can reduce P-loss from bank erosion with11-83 tons P/yr

Biodiversity needs room - it will increase with the width of a BS

AARHUS UNIVERSITY

Nikolai Friberg

SETAC June 2009

BS's can reduce the amount of sediment bound P derived from soil erosion - but for how long?

BS's should be established with a width planned after a local analysis

P-risk model

from Aarhus Universitet

Phosphorus content in bufferstrip soils (1 m from stream edge) along 36 reaches in River Odense Å

Trees in BS's a powerfull mean to reduce bank erosion – 3 year results from a research study in Odense river, Denmark (bank erosion is significantly reduced with 25-40% with trees as compared to grazz or herb vegetation (Kronvang et al., 2012 J. Environmental Quality)

Nikolai Friberg

SETAC June 2009

BS's is a powerful management tool – BUT – there are unaswered questions to address:

??? Some questions:

- Width of BS how?
- Biodiversity how?
- Effect on stream ecology?
- Risk of Pollution swapping?
- Life time?
- Management of BS?
- Links to agricultural production
- Effects of energy crops
- Carbon sequestration?

NATIONAL ENVIRONMENTAL REWETIANDS and phosphate AARHUS UNIVERSITY Iron(III)oxide reduction and phosphate release

SETAC June 2009

Processes in reestablished meadows?

AARHUS UNIVERSITY

AARHUS UNIVERSITY NOSPHOTUS RETENTION IN RESEARCH INSTITUTE Wetlands

Results from the monitoring programme

	P-retention	%
	$Kg P ha^{-1} yr^{-1}$	
<u>Wetlands</u>		
Ulleruplund	-0.43	-88
Egebjerg Enge	0.13	6
Karlsmosen	8.1 - 9.0	53-60
Snaremose	0.4	4
Shallow lakes		
Årslev Engsø	-1.3	-4
Ødis Sø	-2.3	-192
Wedellsborg	16	?

Nikolai Friberg SETAC June 2009 NO₃ removal and net TP release – mostly particulate from erosion

NATIONAL ENVIRONMENTAL RESEARCH INSTITUTE