

DEPARTMENT OF BIOSCIENCE AARHUS UNIVERSITY

Daniel Graeber – Organic nitrogen Nutrient Cycling, Modeling and Management from Field to Catchment Scale

Learning goals of the lecture

After the lecture, you should be able to:

- > ... Define dissolved and particulate organic nitrogen
- ... Describe the sources of dissolved and particulate organic > nitrogen in streams
- > ... Create predictions for changes in organic nitrogen amount and sources in streams by land use transformation to agriculture
- > ... Describe processes related to dissolved organic nitrogen in streams

- Usually suspended particles of organic matter transported in the water column
- > Plant remains and plankton

What is dissolved organic nitrogen?

All organic nitrogen < 0.45 μ m (in the U.S. it is often all organic nitrogen < 0.7 μ m)

"Organic nitrogen appears to be the dominant form of nitrogen,..."

Organic nitrogen accounted on average for 48 % of total nitrogen export

Nitrate accounted on average for 41 % of total nitrogen export

Alvarez-Cobelas et al (2008) Environmental Pollution 156: 261-269

How much of the total N is organic N?

"...organic nitrogen ranged from less than 20% to over 80% of the total annual nitrogen yield (TON yields ranged from less than 15 to over 400 kg km⁻² yr⁻¹)."

Scott et al (2007) Global Biogeochemical Cycles 21: GB1003

Daniel Graeber – Organic nitrogen

Nutrient Cycling, Modeling and Management from Field to Catchment Scale

How much of the total N is organic N?

DEPARTMENT OF BIOSCIENCE AARHUS UNIVERSITY

Nutrient Cycling, Modeling and Management from Field to Catchment Scale Conclusions: How much of the total N is organic N?

Daniel Graeber – Organic nitrogen

- > For low total nitrogen exports, organic nitrogen is often the dominant form
- > For high nitrogen exports, nitrate is often the dominant form
- > On a worldwide scale and in the USA, organic nitrogen seems to be the dominant form of nitrogen in the catchment export

Nutrient Cycling, Modeling and Management from Field to Catchment Scale

Sources of organic nitrogen in streams and rivers

Surface organic matter (Fresh plant material)

Soil organic matter

Groundwater Terrestrial sources

In-stream production by aquatic macrophytes and algae Aquatic sources

structural units: 1 to 10 mm in size

10 to 100 mm in size

Ewing et al. 2006 J Geophys Res 111: G03012

Nutrient Cycling, Modeling and Management from Field to Catchment Scale

In-stream production by aquatic macrophytes and algae

- Aquatic macrophytes can release DON and PON, similar to terrestrial plants
- > Algae produce DON readily available to microbial organisms
- > Phytoplankton itself is PON, suspended in the water column →
 Most algae in small streams are benthic algae

DEPARTMENT OF BIOSCIENCE AARHUS UNIVERSITY

Daniel Graeber – Organic nitrogen

Nutrient Cycling, Modeling and Management from Field to Catchment Scale

How does agriculture change organic nitrogen sources and concentration?

Nutrient Cycling, Modeling and Management from Field to Catchment Scale

What is changed, when a forest catchment is converted to arable land?

Nutrient Cycling, Modeling and Management from Field to Catchment Scale

Clearcutting and pasture land use of Amazonian stream catchments

Forest

Watershed pair 1

Watershed pair 2

Neill et al (2001) Ecological Applications 11(6): 1817-1828

Actively used

pasture

Forest

Pasture

Daniel Graeber – Organic nitrogen Nutrient Cycling, Modeling and Management from Field to Catchment Scale

Clearcutting and pasture use of Amazonian stream catchments

Land use	Season	Dissolved oxygen (mg/L)	Mean daily temperature† (°C)	Only slight effect on temperature
Watershed forest	pair 1 dry	Min-max 5.2–5.6	Mean (1 SE) 24.3 (0.09)	Strong decrease in dissolved oxygen
forest pasture pasture	wet dry wet	5.8–6.2 0.1–0.2 0.1–0.4	25.6 (0.04) 24.6 (0.10) 26.6 (0.06)	Interpretation: Low dissolved oxygen in pasture is probably the result of high organic matter inputs + low water flow and turbulence within streams
Watershed forest forest pasture pasture	pair 2 dry wet dry wet	4.6–5.7 7.0–7.3 0.2–1.4 0.1–1.9	23.5 (0.11) 25.0 (0.04) 24.4 (0.10) 26.1 (0.05)	

Neill et al (2001) Ecological Applications 11(6): 1817-1828

Neill et al (2001) Ecological Applications 11(6): 1817-1828

Depth = 30 cm

Pasture

 4.6 ± 2.5^{a}

(15)

 3.3 ± 1.0^{b} (15)

 33.4 ± 15.8^{a} (6)

Forest

(15)

 111.2 ± 21.7^{a}

 68.2 ± 13.1^{a} (7)

(15)

What may be the reasons for the differences in soil & stream

water N concentrations?

 2.8 ± 1.6^{a}

Soil lysimeter samples

Variable

NH4+ (µmol/L)

 NO_3^- (µmol/L)

DON (µmol/L)

Daniel Graeber - Organic nitrogen

Nutrient Cycling, Modeling and Management from Field to Catchment Scale

Stream water samples

Clearcutting and pasture land use of Amazonian stream catchments

Neill et al (2001) Ecological Applications 11(6): 1817-1828

Clearcutting and pasture land use of Amazonian stream catchments

	Depth = 30 cm		
Variable	Forest	Pasture	
NH_4^+ (µmol/L)	2.8 ± 1.6^{a} (15)	4.6 ± 2.5^{a} (15)	
NO3 ⁻ (µmol/L)	111.2 ± 21.7^{a} (15)	3.3 ± 1.0^{b} (15)	
DON (µmol/L)	68.2 ± 13.1^{a} (7)	33.4 ± 15.8^{a} (6)	

Low oxygen in soils \rightarrow low nitrification \rightarrow low NO3- \rightarrow low export to streams

NH4+ is not nitrified in soils→ transported to streams

Higher surface organic matter inputs + algal production → Higher PON and **DON** concentration

Neill et al (2001) Ecological Applications 11(6): 1817-1828

Stream water samples

Nutrient Cycling, Modeling and Management from Field to Catchment Scale

Daniel Graeber - Organic nitrogen

Conclusions:

Clearcutting and pasture land use of Amazonian stream catchments

- > Clearcutting increases light availability and benthic algae growth
- Pasture land use resulted in higher DON and PON concentrations probably by surface organic matter inputs and maybe also by algal production
- > Pasture land use resulted in low nitrification and low nitrate concentrations in soils and streams
- Pasture land use resulted in low dissolved oxygen concentrations by high respiration due to organic matter inputs

NCH

0

50 100 km

- b. Mixed: no dominant land use type
- c. Human: with > 50% agriculture and urban

Stanley & Maxted (2008) Ecological Applications, 18(7): 1579–1590

> 10-15 min, with a little presentation afterwards

Organic nitrogen processing in streams

- > PON and DON have to be investigated separatedly
- > PON is prone to sedimentation, while DON is not
- Organic nitrogen is only used in assimilative uptake (= for biomass production), not in dissimilative uptake (= for energy production)
- > DON processing depends on its composition
 - > It has a refractory (not available for uptake) and a bioavailable (available for uptake) part

Nutrient Cycling, Modeling and Management from Field to Catchment Scale

Uptake of DON: classical view

> Classical terrestrial N cycle

Neff et al Front. Ecol. Environ. (2003) 1(4):205:211

Uptake of DON: actualized view

- > Uptake of DON by macrophytes and algae
- > An hypothesis from terrestrial ecologists:

"Short-cutted" terrestrial N cycle

Marine phytoplankton also was found to take up DON, See review Berman & Bronk (2003) Aquat Microb Ecol 31: 279–305

Neff et al Front. Ecol. Environ. (2003) 1(4):205:211

days of incubation

Same inoculum was

High variability of DON bioavailability

Wiegner et al (2006) Aquatic Microbial Ecology 43: 277-287

Lets take up some organic nitrogen (Mate) >

