

Programa de Modulación y Procesamiento de Señales

1. NOMBRE DE LA UNIDAD CURRICULAR

Modulación y Procesamiento de Señales

2. CRÉDITOS

12 créditos.

3. OBJETIVOS DE LA UNIDAD CURRICULAR

El objetivo del curso es familiarizar al alumno con el procesamiento de señales digitales y los elementos básicos de un sistema de comunicación y sus principales herramientas de análisis. Al finalizar el curso, el alumno será capaz de: estudiar y diseñar filtros digitales; analizar la relación señal a ruido y los requerimientos de sistemas de comunicación digitales que utilizan diferentes técnicas de modulación.

4. METODOLOGÍA DE ENSEÑANZA

Se dictarán clases teóricas, práctico de ejercicios y laboratorio. Se debe resaltar que el enfoque del curso se orienta más al análisis conceptual de los temas que al desarrollo detallado de los modelos analíticos.

5. TEMARIO

1. Teorema de Muestreo:

- Criterios de elección de la frecuencia de muestreo.
- 2. <u>Introducción al diseño de filtros digitales :</u>
 - Linealidad, invarianza temporal.
 - Convolución, respuesta en frecuencia.
 - Definición y propiedades de filtros FIR e IIR .
 - Criterios de diseño.

3. Modelos de señal y ruido:

- Propiedades de señales determinísticas y aleatorias .
- Ruido de cuantificación .
- Ruido en operaciones.

4. Trasmisión digital en Banda Base :

- Propiedades de las comunicaciones digitales .
- Determinación ancho de banda.
- Errores y regeneración.

5. Modulación por impulsos codificados (PCM):

- Diagrama de bloques .
- · Relación Señal a Ruido.
- Criterio de diseño: umbral.

6. BIBLIOGRAFÍA

Tema	Básica	Complement
		aria
Teorema de Muestreo	(1)	(3,4)
Introducción al diseño de filtros digitales	(1)	(3)
Modelos de señal y ruido	(2)	(5)
Trasmisión digital en Banda Base	(2)	(6,7)
Modulación por impulsos codificados (PCM)	(2)	(6,7)

6.1 Básica

- 1. Carlson, A. Bruce; Crilly, Paul B.; Rutledge, Janet C (2007). Sistemas De Comunicación. California, Estados Unidos. Editorial McGraw-Hill Education.
- 2. Oppenheim, Alan V.; Schafer, Ronald W. (1975). Digital Signal Processing. Estados Unidos. Prentice Hall.

6.2 Complementaria

- 3. Smith, Steven. W. (1997). The Scientist & Engineer's Guide to Digital Signal Processing. California, Estados Unidos. California Technical Publishing.
- 4. Oppenheim, Alan V.; Willsky, Alan S.; Nawab ,Hamid. (1996). Signals and Systems. Estados Unidos. Prentice Hall.
- 5. Hayes, Monson. H. (1996). Statistical Digital Signal Processing and Modeling. Estados Unidos. John Wiley & Sons.
- 6. Couch II, Leon. W. (1996). Digital and Analog Communication Systems. Estados Unidos. Prentice Hall.
- 7. Proakis, John. G. and Salehi, Masoud. (2001). Communication Systems Engineering. Estados Unidos. Prentice Hall.

7. CONOCIMIENTOS PREVIOS EXIGIDOS Y RECOMENDADOS

- **7.1 Conocimientos Previos Exigidos:** Cálculo, Álgebra, Probabilidad y Estadística.
- **7.2 Conocimientos Previos Recomendados:** Transformada de Fourier, Transformada de Laplace, Transformada Z y Series de Fourier.

ANEXO A Para todas las Carreras

A1) INSTITUTO

Tecnólogo en Telecomunicaciones.

A2) CRONOGRAMA TENTATIVO

Semana 1	Introducción (2 hs de clase). Señales en tiempo discreto (5 hs de clase).
Semana 2	Sistemas en tiempo discreto (7 hs de clase).
Semana 3	Sistemas lineales e invariantes en el tiempo (7 hs de clase).
Semana 4	Transformada de Fourier en tiempo discreto (7 hs de clase).
Semana 5	Transformada de Fourier en tiempo discreto (7 hs de clase).
Semana 6	Teorema de Muestreo (7 hs de clase).
Semana 7	Transformada Z (7 hs de clase).
Semana 8	Transformada Z (7 hs de clase).
Semana 9	Procesos estocásticos (7 hs de clase).
Semana 10	Procesos estocásticos (7 hs de clase).
Semana 11	Conversión Analógico / Digital (7 hs de clase).
Semana 12	Transmisión Digital Banda Base (7 hs de clase).
Semana 13	Transmisión Digital Banda Base (7 hs de clase).
Semana 14	Modulación por impulsos codificados (7 hs de clase).
Semana 15	Modulación por impulsos codificados (7 hs de clase).

A3) MODALIDAD DEL CURSO Y PROCEDIMIENTO DE EVALUACIÓN

Constará de 7 horas de clase semanales. Las clases de laboratorio serán obligatorias. La asignatura tendrá dos parciales. De los resultados obtenidos en las instancias de evaluación surgirán tres posibilidades:

- Exoneración del examen final: el estudiante aprueba totalmente el curso.
- Suficiencia en el curso: el estudiante está habilitado a rendir examen.
- Insuficiencia en el curso: el estudiante reprueba, debiendo inscribirse nuevamente en el curso.

La exoneración del examen final se logra acumulando entre los dos parciales y el laboratorio 60 puntos sobre un total de 100. La suficiencia se logra acumulando entre ambos parciales y el laboratorio la calificación de 25 puntos sobre un total de 100. Quien no obtenga la calificación mínima deberá recursar la asignatura.

A4) CALIDAD DE LIBRE

No adhiere a calidad de libre.

A5) CUPOS DE LA UNIDAD CURRICULAR

No tiene cupos.

ANEXO B para la carrera Tecnólogo en Telecomunicaciones

B1) ÁREA DE FORMACIÓN

Telecomunicaciones.

B2) UNIDADES CURRICULARES PREVIAS

Curso: Matemática 3

Examen: Matemática 2