Modulación y Procesamiento de Señales Segundo Parcial 2016

Tecnólogo en Telecomunicaciones - FING/CURE Universidad de la República

12 de julio de 2016

Indicaciones:

- La prueba tiene una duración total de 3 horas y media y un total de 60 puntos.
- Cada hoja entregada debe indicar nombre, número de C.I., y número. La hoja 1 debe indicar además el total de hojas entregadas.
- Se deberá utilizar únicamente un lado de las hojas.
- Cada problema o pregunta se deberá comenzar en una hoja nueva.
- Se evaluará explícitamente la claridad, prolijidad y presentación de las soluciones, desarrollos y justificaciones.
- Pueden utilizarse resultados teóricos del curso sin hacer su deducción siempre que la letra no lo exija explícitamente. Se evaluará la correcta formulación y validez de hipótesis.

Pregunta [10 pts.]

- (a) Dar el diagrama de bloques del transmisor y receptor de un sistema PCM binario. Explicar la función de cada uno de los bloques.
- (b) Bosquejar la SNR_D en función de la SNR_R , paramétrico en el número de niveles q. Indicar y justificar el punto de trabajo óptimo.
- (c) Explicar de donde surgen el ruido de cuantificación y el ruido de decodificación.

Pregunta [10 pts.]

- (a) Para mejorar el desempeño de ASK (Modulación por desplazamiento de amplitud) se utiliza QAM (Modulación de amplitud en cuadratura). Dar el diagrama de bloques de un transmisor QAM.
- (b) Comparar la eficiencia espectral de los métodos de modulación pasabanda binaros ASK y QAM.
- (c) Dibujar la constelación de un sistema de comunicación pasabanda PSK (Modulación por desplazamiento de fase) con M=4.

Problema 1 [20 pts.]

Se considera un sistema de transmisión bandabase bipolar binario. La fuente emite los símbolos lógicos "0" y "1" de manera equiprobable a una tasa de $r=B_C$ símbolos/s y se utilizan pulsos p(t)=sinc(rt) modulados con amplitudes $\pm A/2$. El canal tiene ancho de banda B_C e introduce ruido que se puede modelar como blanco, aditivo y gaussiano con densidad espectral de potencia $\eta/2$ constante. El filtro de recepción tiene ancho de banda $B_R=3/2\times B_C$ y se muestrea en el instante óptimo.

- (a) Bosquejar el pulso conformador p(t).
- (b) Bosquejar la onda conformada si se envía la secuencia 1101.

- (c) Calcular y esbozar la densidad espectral de potencia de la señal PAM. Además, calcular la potencia de la señal PAM en función de A.
- (d) Considerando la actual tasa de transferencia r y que no se desea interferencia intersimbólica. ¿Se está aprovechando al máximo el ancho de banda del canal? Justificar.
- (e) Indique la SNR_R relación señal a ruido en recepción en función de A y B_C . Se asume que el transmisor compensa la atenuación del canal. ¿Es posible mejorar la SNR_R modificando el filtro de recepción sin introducir interferencia intersimbólica? Justificar.
- (f) Indicar el valor del umbral óptimo en el receptor regenerativo y expresar la probabilidad de error en detección en función de la SNR_R . Indicar el rango de valores de SNR_R permitidos si se quiere una probabilidad de error $P_e \leq 10^{-5}$.

Problema 2 [20 pts.]

Una señal analógica normalizada x(t) con densidad espectral de potencia $G_x(f) = \frac{1}{W_x} \bigwedge (\frac{f}{W_x})$, donde $W_x = 10kHz$, se transmitirá utilizando PCM binario. El canal tiene una atenuación L en potencia e introduce ruido con densidad espectral de potencia $\frac{\eta}{2}$. La frecuencia de muestreo se elige $f_s = 2f_N$, siendo f_N la mínima frecuencia de muestreo válida. Se utilizará señalización polar y pulso de conformación rectangular sin retorno a cero. En la recepción se utilizará un filtro pasabajos de ancho de banda B_T . Se requiere una SNR_D de 50 dB trabajando sobre el umbral de PCM.

- (a) Determinar el mínimo número de niveles q necesarios. ¿Cuál debe ser el mínimo largo de palabra n?
- (b) Determinar la cadencia de símbolos r_b en kbps. Determinar el ancho de banda B_T mínimo necesario.
- (c) Determinar la potencia de transmisión S_T mínima necesaria. Hallar su valor para L=5 y $\eta=10^{-8}$.
- (d) Para el valor de S_T encontrado en la parte anterior, determinar la probabilidad de error P_e , asumiendo que los bits enviados son equiprobables.

Fórmulas útiles

Las siguientes funciones forman un par de transformadas de Fourier

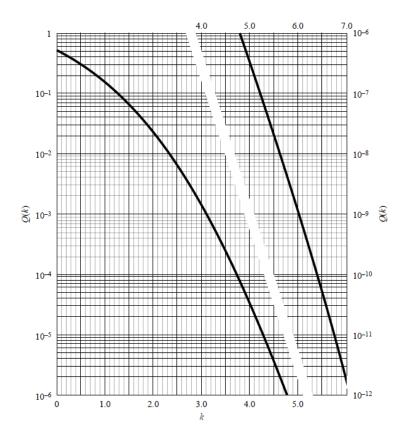
$$p(t) = r \operatorname{sinc}(rt) \stackrel{\mathcal{F}}{\longleftrightarrow} P(f) = \prod \left(\frac{f}{r}\right)$$

Densidad espectral de potencia de señal PAM digital

$$G_x(f) = \sigma_a^2 r_b |P(f)|^2 + (\mu_a r_b)^2 \sum_{k=-\infty}^{\infty} |P(kr_b)|^2 \delta(f - kr_b)$$

Probabilidad de error de receptor regenerativo con umbral V optimo

$$P_e = P_0 Q \left(\frac{V - a_0}{\sigma_\eta} \right) + P_1 Q \left(\frac{a_1 - V}{\sigma_\eta} \right)$$


En el caso de señalización M-aria polar, para que $P_e \approx 10^{-5}$, se tiene que cumplir que

$$SNR_R \approx 6(M^2 - 1)$$

Relación señal a ruido en sistema PCM

$$SNR_D = \frac{S_x}{X_m^2} \left(\frac{3q^2}{1 + 4q^2 P_e} \right) \frac{f_s}{2W}$$

Función Q(k) (cola gaussiana)

Solución

Pregunta

- (a)
- (b)
- (c)

Pregunta

- (a)
- (b)
- (c)

Problema 1

- (a)
- (b)
- (c) La densidad espectral de potencia de una señal PAM de la forma

$$x(t) = \sum_{k=-\infty}^{\infty} a_k p(t - kD)$$

es

$$G_x(f) = \sigma_a^2 r_b |P(f)|^2 + (\mu_a r_b)^2 \sum_{k=-\infty}^{\infty} |P(kr_b)|^2 \delta(f - kr_b)$$
 (1)

El pulso conformador es

$$p(t) = sinc(rt).$$

que tiene transformada de Fourier

$$P(f) = \frac{1}{r} \Pi\left(\frac{f}{r}\right)$$

Se tiene que $\mu_a = \mathbb{E} \{a_k\} = 0$ y $\sigma_a^2 = \mathbb{E} \{a_k^2\} - \mu_a^2 = \frac{A^2}{4}$ Sustituyendo en la ecuación 1 se obtiene que la PSD queda

$$G_x(f) = \frac{A^2}{4r} \Pi\left(\frac{f}{r}\right)$$

La potencia de la señal se puede calcular como el área de la PSD

$$S_x = \int_{-\infty}^{+\infty} G_x(f) df = \frac{A^2}{4}$$

(d) No se está aprovechando el ancho de banda del canal. Según Nyquist es posible transmitir sin interferencia intersimbólica si $r \leq 2B_C$, en especial con el pulso utilizado se podría transmitir a la tasa máxima $r_{max} = 2B_C$. En nuestro caso estamos sub-utilizando el canal pues $r = B_C$.

(e) Como el transmisor compensa la atenuación del canal, se cumple que $S_R = S_x$, y por la parte (a) se tiene que

$$S_R = \frac{A^2}{4}$$

Además, teniendo en cuenta que $N_R = \sigma_n^2 = \eta B_R = \frac{3\eta B_C}{2},$ se tiene que

$$\left(\frac{S}{N}\right)_R = \frac{A^2}{6\eta B_C}$$

(f) Dado que las amplitudes moduladoras son $\pm A/2$ y se tienen símbolos equiprobables, el umbral óptimo es V=0, con lo cual se tiene

$$P_e = Q\left(\frac{A}{2\sigma_\eta}\right) = Q\left(\sqrt{SNR_R}\right)$$

Según Q(k) para tener una probabilidad de error menor a $P_e \le 10^{-5}$ se debe tener un $k \le 4.3$, por lo tanto una $SNR_R \le 18.49$.

Problema 2

(a) Suponiendo que se trabaja con la suficiente SNR_R para despreciar el efecto del ruido de decodificación, se tiene

$$SNR_D \le \frac{3S_x q^2 f_s}{2X_m^2 W_x}$$

A partir del área de la densidad espectral de potencia $G_x(f)$ se puede obtener la potencia de la señal $S_x = 1$, donde además queda claro que el ancho de banda de la señal es $W_x = 10\,kHz$. Con lo cual resulta

$$SNR_D \le \frac{3q^2f_s}{2W_x}$$

Despejando los niveles de cuantización

$$q \ge \sqrt{\frac{2W_x SNR_D}{3f_s}} \simeq 130$$

Por lo tanto $q_{min} = 130$.

Si consideramos que se necesitan al menos cuantificar ese número de niveles,

$$q \leq M^n$$

Donde por ser un sistema PCM binario se tiene M = 2, despejando se obtiene que el largo de palabra debe cumplir,

$$n \ge log_2(q_{min}) \simeq 7.02$$

Entonces $n_{min} = 8$.

(b) La frecuencia de muestreo es $f_s = 2f_N = 2(2W_x) = 4W_x$ La cadencia de símbolos es,

$$r_b = nf_s \ge n_{min}f_s = (8 \times 4 \times 10) \, kbps = 320 \, kbps$$

. Según Nyquist se necesita un canal de al menos,

$$B_C \ge \frac{320 \, kbps}{2} = 160 \, kbps$$

El filtro de recepción se elige en general del mismo ancho de banda que el canal por lo tanto $B_{T_{min}} = B_{C_{min}} = 160kHz$

(c) La potencia de señal en recepción es $S_R = \frac{S_T}{L}$, y la potencia de ruido $N_R = \eta B_T = 10^{-8} \times 160 \, kHz = 1.6 \times 10^{-3}$. Para que se cumpla la hipótesis de que se puede despreciar el efecto del ruido de decodificación se debe cumplir que,

$$SNR_R = \frac{S_T}{L\eta B_T} \ge 6(M^2 - 1) = 18$$

Despejando la potencia transmitida,

$$S_T \ge 18L\eta B_T = 0.144$$

(d) Tomando $S_T=0.144$, se tiene una $SNR_R=18$, lo cual nos lleva a una probabilidad de error en detección de

$$P_e = Q(\sqrt{SNR_R}) = Q(k = 4.24) \simeq 10^{-5}$$