Modulación y Procesamiento de Señales Primer parcial

CURE

27 de octubre de 2010

Indicaciones:

- La prueba tiene una duración total de 3 horas y media.
- Cada hoja entregada debe indicar nombre, número de C.I., y número de hoja. La hoja 1 debe indicar además el total de hojas entregadas.
- Se deberá utilizar únicamente un lado de las hojas.
- Cada problema o pregunta se deberá comenzar en una hoja nueva.
- Se evaluará explícitamente la claridad, prolijidad y presentación de las soluciones, desarrollos y justificaciones.
- Pueden utilizarse resultados teóricos del curso sin hacer su deducción siempre que la letra no lo exija explícitamente. Se evaluará la correcta formulación y validez de hipótesis.

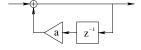
Pregunta [10 pts.]

Para cada uno de los siguientes sistemas, determine si el sistema es: estable, causal, lineal, invariante en el tiempo y sin memoria.

- (a) $T(\{x_m\}_{m\in\mathbb{Z}})|_n = a.x[n] + n$
- (b) $T(\{x_m\}_{m\in\mathbb{Z}})|_n = \sum_{k=n-5}^n x^2[-k]$
- (c) $T(\{x_m\}_{m\in\mathbb{Z}})|_n = \frac{1}{x[n]}$

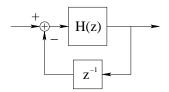
Problema 1 [20 pts.]

Sea el sistema de la figura:



(a) Encontrar la transferencia H(z) y las condiciones para que sea estable.

Al sistema anterior se le agrega una realimentación externa negativa, resultando el esquema siguiente:



- (b) Encontrar la nueva transferencia F(z).
- (c) Encontrar condiciones para que el nuevo sistema sea estable.
- (d) ¿Hay valores de a para los que el primer sistema es inestable y el segundo no?
- (e) Graficar el módulo de la respuesta en frecuencia de los filtros $H(e^{j\theta})$ y $F(e^{j\theta})$ para el caso en que a = 1/3.
- (f) Calcular el valor de a para que la respuesta en frecuencia en $\theta=\pi$ sea 2. Hallar la respuesta al impulso para este valor de a.

El sistema es utilizado para filtrar señales acotadas entre -1 y 1. Previo al filtrado se muestrea la entrada con una frecuencia de muestreo f_s y cuantizando los valores mediante 12 bits por muestra. Se utilizará el valor de a hallado en la parte anterior.

(g) Hallar la potencia del ruido de cuantización antes de ser filtrado por F(z). Calcular la potencia del ruido a la salida del filtro.

Problema 2 [20 pts.]

Sea $x_c(t) = cos(5000.2\pi t)$ una sinusoidal en tiempo continuo. x[n] son muestras de $x_c(t)$ tomadas a frecuencia $f_s = 7500 \text{Hz}$.

- (a) ¿Se cumple el teorema de muestreo?, ¿por qué?
- (b) Bosquejar $X(e^{j\theta})$ el espectro de x[n] si no se realiza un filtrado pasabajos previo al muestreo.
- (c) Si $y_c(t)$ es la reconstrucción ideal de x[n], hallar $y_c(t)$.

Se quiere cambiar la frecuencia de muestreo a $f_s' = \frac{4}{3}f_s$ mediante un procesamiento digital.

- (d) Dar un diagrama de bloques de un sistema que realice este cambio de frecuencia de muestreo.
- (e) Determinar los valores de todos los parámetros del sistema digital propuesto.
- (f) Graficar el espectro de las señales en cada punto intermedio del diagrama de bloques propuesto.
- (g) Sea x'[n] la secuencia obtenida a la nueva frecuencia y $y'_c(t)$ su reconstrucción ideal. Determinar $y'_c(t)$ y graficar su espectro.

Solución

Pregunta

	Estable	Causal	Lineal	Invariante en el tiempo	Sin memoria
a)	No	Si	No	No	Si
b)	Si	No	No	Si	No
c)	No	Si	No	Si	Si

Problema 1

(a) Llamemos v y w a la entrada y salida del sistema, respectivamente. Entonces,

$$w[n] = v[n] + awn - 1$$

$$W(z) = V(z) + az^{-1}W(z)$$

$$H(z) = \frac{W(z)}{V(z)} = \frac{1}{1 - az^{-1}}$$

Como el sistema es causal, el sistema es estabe si todos los polos están adentro del círculo unidad. En este caso el sistema es estable si

(b) Llamemos x y y a la entrada y salida, respectivamente, del nuevo sistema. Entonces,

$$y[n] = h[n] \ast (x[n] - y[n-1])$$

$$Y(z) = H(z) \Big(X(z) - z^{-1} Y(z) \Big)$$

$$F(z) = \frac{Y(z)}{X(z)} = \frac{H(z)}{1 + z^{-1}H(z)}$$

Sustituyendo H(z),

$$F(z) = \frac{1}{1 - (a - 1)z^{-1}}$$

(c) Como antes, el polo debe estar adentro de del círculo unidad,

$$|a - 1| < 1$$

- (d) Sí. Por ejemplo cuando a = 1.5, que el primer sistema es inestable y el segundo es estable, ya que a 1 = 0.5.
- (e) La respuesta en freuencia del filtro H es $H(e^{j\theta})=\frac{1}{1-e^{-j\theta}/3},$ que corresponde a un pasabajos de orden 1.

La respuesta en freuencia del filtro F es $F(e^{j\theta}) = \frac{1}{1+2e^{-j\theta}/3}$ que corresponde a un pasaaltos de orden 1.

(f)
$$a = 0.5$$

(g) El sistema es lineal frente a sus dos entradas, por lo que la salida será:

$$x[n] * f[n] + e[n] * f[n].$$

La transferencia desde e a la salida es igual a la del sistema total. Como el ruido es independiente de x[n], y el ruido es de media nula, el término cruzado se anula. Por lo tanto la potencia del ruido a la salida es

$$P_r = \frac{1}{2\pi} \int_{-\pi}^{\pi} |F(e^{j\theta})|^2 G_e(e^{j\theta}) d\theta = \frac{\sigma_e^2}{2\pi} \int_{-\pi}^{\pi} |F(e^{j\theta})|^2 d\theta = \sigma_e^2 \sum_{n=-\infty}^{\infty} |f[n]|^2$$

donde este último paso se justifica en la formula de Parseval. Cuando el sistema F(z) es causal, antitransformando obtenemos:

$$P_r = \sigma_e^2 \sum_{n=0}^{\infty} |(a-1)^n|^2 = \frac{2^{-2b}}{12} \frac{1}{1 - (a-1)^2}.$$