dat <- read.delim("clipboard", dec=","); attach(dat)
names(dat)
head(dat)
str(dat)
dat$Especie=as.factor(dat$
attach(dat)
levels(Especie)
str(dat)
model.results = glm(Muerte ~ Especie*Concentracion, binomial(link = "probit"))
summary(model.results)
127/116
par(mfrow=c(2,2))
plot(model.results)
install.packages("DHARMa")
library(DHARMa)
residh <- simulateResiduals(model.
plot(residh)
anova(model.results, test="Chisq")
#Elaborar Ho y Ha
model.results1 = glm(Muerte ~ Especie+Concentracion, binomial(link = "probit"))
summary(model.results1)
residh1 <- simulateResiduals(model.
plot(residh1)
anova(model.results1, test="Chisq")
model.results2 = glm(Muerte ~ Concentracion, binomial(link = "probit"))
summary(model.results2)
residh2 <- simulateResiduals(model.
plot(residh2)
anova(model.results2, test="Chisq")
anova(model.results,model.
#Qué pasos siguen?
library(ggplot2)
library(sjPlot)
p <- plot_model(model.results1, type = "pred", terms = c("Concentracion[n=300]","
digits=1, line.size=0.5, show.data=F,
colors = viridisLite::magma(begin = 0.2, end = 0.8, n = 3) # Color blind friendly.
)
p
p <- plot_model(model.results2, type = "pred", terms = c("Concentracion[n=300]"),
digits=1, line.size=0.5, show.data=F,
colors = viridisLite::magma(begin = 0.2, end = 0.8, n = 3) # Color blind friendly.
)
p